xref: /openbmc/linux/drivers/acpi/osl.c (revision 2d6bed9c)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/highmem.h>
35 #include <linux/pci.h>
36 #include <linux/interrupt.h>
37 #include <linux/kmod.h>
38 #include <linux/delay.h>
39 #include <linux/workqueue.h>
40 #include <linux/nmi.h>
41 #include <linux/acpi.h>
42 #include <linux/acpi_io.h>
43 #include <linux/efi.h>
44 #include <linux/ioport.h>
45 #include <linux/list.h>
46 #include <linux/jiffies.h>
47 #include <linux/semaphore.h>
48 
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 
52 #include <acpi/acpi.h>
53 #include <acpi/acpi_bus.h>
54 #include <acpi/processor.h>
55 
56 #define _COMPONENT		ACPI_OS_SERVICES
57 ACPI_MODULE_NAME("osl");
58 #define PREFIX		"ACPI: "
59 struct acpi_os_dpc {
60 	acpi_osd_exec_callback function;
61 	void *context;
62 	struct work_struct work;
63 	int wait;
64 };
65 
66 #ifdef CONFIG_ACPI_CUSTOM_DSDT
67 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
68 #endif
69 
70 #ifdef ENABLE_DEBUGGER
71 #include <linux/kdb.h>
72 
73 /* stuff for debugger support */
74 int acpi_in_debugger;
75 EXPORT_SYMBOL(acpi_in_debugger);
76 
77 extern char line_buf[80];
78 #endif				/*ENABLE_DEBUGGER */
79 
80 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
81 				      u32 pm1b_ctrl);
82 
83 static acpi_osd_handler acpi_irq_handler;
84 static void *acpi_irq_context;
85 static struct workqueue_struct *kacpid_wq;
86 static struct workqueue_struct *kacpi_notify_wq;
87 struct workqueue_struct *kacpi_hotplug_wq;
88 EXPORT_SYMBOL(kacpi_hotplug_wq);
89 
90 /*
91  * This list of permanent mappings is for memory that may be accessed from
92  * interrupt context, where we can't do the ioremap().
93  */
94 struct acpi_ioremap {
95 	struct list_head list;
96 	void __iomem *virt;
97 	acpi_physical_address phys;
98 	acpi_size size;
99 	unsigned long refcount;
100 };
101 
102 static LIST_HEAD(acpi_ioremaps);
103 static DEFINE_MUTEX(acpi_ioremap_lock);
104 
105 static void __init acpi_osi_setup_late(void);
106 
107 /*
108  * The story of _OSI(Linux)
109  *
110  * From pre-history through Linux-2.6.22,
111  * Linux responded TRUE upon a BIOS OSI(Linux) query.
112  *
113  * Unfortunately, reference BIOS writers got wind of this
114  * and put OSI(Linux) in their example code, quickly exposing
115  * this string as ill-conceived and opening the door to
116  * an un-bounded number of BIOS incompatibilities.
117  *
118  * For example, OSI(Linux) was used on resume to re-POST a
119  * video card on one system, because Linux at that time
120  * could not do a speedy restore in its native driver.
121  * But then upon gaining quick native restore capability,
122  * Linux has no way to tell the BIOS to skip the time-consuming
123  * POST -- putting Linux at a permanent performance disadvantage.
124  * On another system, the BIOS writer used OSI(Linux)
125  * to infer native OS support for IPMI!  On other systems,
126  * OSI(Linux) simply got in the way of Linux claiming to
127  * be compatible with other operating systems, exposing
128  * BIOS issues such as skipped device initialization.
129  *
130  * So "Linux" turned out to be a really poor chose of
131  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
132  *
133  * BIOS writers should NOT query _OSI(Linux) on future systems.
134  * Linux will complain on the console when it sees it, and return FALSE.
135  * To get Linux to return TRUE for your system  will require
136  * a kernel source update to add a DMI entry,
137  * or boot with "acpi_osi=Linux"
138  */
139 
140 static struct osi_linux {
141 	unsigned int	enable:1;
142 	unsigned int	dmi:1;
143 	unsigned int	cmdline:1;
144 } osi_linux = {0, 0, 0};
145 
146 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
147 {
148 	if (!strcmp("Linux", interface)) {
149 
150 		printk_once(KERN_NOTICE FW_BUG PREFIX
151 			"BIOS _OSI(Linux) query %s%s\n",
152 			osi_linux.enable ? "honored" : "ignored",
153 			osi_linux.cmdline ? " via cmdline" :
154 			osi_linux.dmi ? " via DMI" : "");
155 	}
156 
157 	return supported;
158 }
159 
160 static void __init acpi_request_region (struct acpi_generic_address *gas,
161 	unsigned int length, char *desc)
162 {
163 	u64 addr;
164 
165 	/* Handle possible alignment issues */
166 	memcpy(&addr, &gas->address, sizeof(addr));
167 	if (!addr || !length)
168 		return;
169 
170 	/* Resources are never freed */
171 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
172 		request_region(addr, length, desc);
173 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
174 		request_mem_region(addr, length, desc);
175 }
176 
177 static int __init acpi_reserve_resources(void)
178 {
179 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
180 		"ACPI PM1a_EVT_BLK");
181 
182 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
183 		"ACPI PM1b_EVT_BLK");
184 
185 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
186 		"ACPI PM1a_CNT_BLK");
187 
188 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
189 		"ACPI PM1b_CNT_BLK");
190 
191 	if (acpi_gbl_FADT.pm_timer_length == 4)
192 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
193 
194 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
195 		"ACPI PM2_CNT_BLK");
196 
197 	/* Length of GPE blocks must be a non-negative multiple of 2 */
198 
199 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
200 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
201 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
202 
203 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
204 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
205 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
206 
207 	return 0;
208 }
209 device_initcall(acpi_reserve_resources);
210 
211 void acpi_os_printf(const char *fmt, ...)
212 {
213 	va_list args;
214 	va_start(args, fmt);
215 	acpi_os_vprintf(fmt, args);
216 	va_end(args);
217 }
218 
219 void acpi_os_vprintf(const char *fmt, va_list args)
220 {
221 	static char buffer[512];
222 
223 	vsprintf(buffer, fmt, args);
224 
225 #ifdef ENABLE_DEBUGGER
226 	if (acpi_in_debugger) {
227 		kdb_printf("%s", buffer);
228 	} else {
229 		printk(KERN_CONT "%s", buffer);
230 	}
231 #else
232 	printk(KERN_CONT "%s", buffer);
233 #endif
234 }
235 
236 #ifdef CONFIG_KEXEC
237 static unsigned long acpi_rsdp;
238 static int __init setup_acpi_rsdp(char *arg)
239 {
240 	acpi_rsdp = simple_strtoul(arg, NULL, 16);
241 	return 0;
242 }
243 early_param("acpi_rsdp", setup_acpi_rsdp);
244 #endif
245 
246 acpi_physical_address __init acpi_os_get_root_pointer(void)
247 {
248 #ifdef CONFIG_KEXEC
249 	if (acpi_rsdp)
250 		return acpi_rsdp;
251 #endif
252 
253 	if (efi_enabled) {
254 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
255 			return efi.acpi20;
256 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
257 			return efi.acpi;
258 		else {
259 			printk(KERN_ERR PREFIX
260 			       "System description tables not found\n");
261 			return 0;
262 		}
263 	} else {
264 		acpi_physical_address pa = 0;
265 
266 		acpi_find_root_pointer(&pa);
267 		return pa;
268 	}
269 }
270 
271 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
272 static struct acpi_ioremap *
273 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
274 {
275 	struct acpi_ioremap *map;
276 
277 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
278 		if (map->phys <= phys &&
279 		    phys + size <= map->phys + map->size)
280 			return map;
281 
282 	return NULL;
283 }
284 
285 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
286 static void __iomem *
287 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
288 {
289 	struct acpi_ioremap *map;
290 
291 	map = acpi_map_lookup(phys, size);
292 	if (map)
293 		return map->virt + (phys - map->phys);
294 
295 	return NULL;
296 }
297 
298 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
299 {
300 	struct acpi_ioremap *map;
301 	void __iomem *virt = NULL;
302 
303 	mutex_lock(&acpi_ioremap_lock);
304 	map = acpi_map_lookup(phys, size);
305 	if (map) {
306 		virt = map->virt + (phys - map->phys);
307 		map->refcount++;
308 	}
309 	mutex_unlock(&acpi_ioremap_lock);
310 	return virt;
311 }
312 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
313 
314 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
315 static struct acpi_ioremap *
316 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
317 {
318 	struct acpi_ioremap *map;
319 
320 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
321 		if (map->virt <= virt &&
322 		    virt + size <= map->virt + map->size)
323 			return map;
324 
325 	return NULL;
326 }
327 
328 #ifndef CONFIG_IA64
329 #define should_use_kmap(pfn)   page_is_ram(pfn)
330 #else
331 /* ioremap will take care of cache attributes */
332 #define should_use_kmap(pfn)   0
333 #endif
334 
335 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
336 {
337 	unsigned long pfn;
338 
339 	pfn = pg_off >> PAGE_SHIFT;
340 	if (should_use_kmap(pfn)) {
341 		if (pg_sz > PAGE_SIZE)
342 			return NULL;
343 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
344 	} else
345 		return acpi_os_ioremap(pg_off, pg_sz);
346 }
347 
348 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
349 {
350 	unsigned long pfn;
351 
352 	pfn = pg_off >> PAGE_SHIFT;
353 	if (should_use_kmap(pfn))
354 		kunmap(pfn_to_page(pfn));
355 	else
356 		iounmap(vaddr);
357 }
358 
359 void __iomem *__init_refok
360 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
361 {
362 	struct acpi_ioremap *map;
363 	void __iomem *virt;
364 	acpi_physical_address pg_off;
365 	acpi_size pg_sz;
366 
367 	if (phys > ULONG_MAX) {
368 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
369 		return NULL;
370 	}
371 
372 	if (!acpi_gbl_permanent_mmap)
373 		return __acpi_map_table((unsigned long)phys, size);
374 
375 	mutex_lock(&acpi_ioremap_lock);
376 	/* Check if there's a suitable mapping already. */
377 	map = acpi_map_lookup(phys, size);
378 	if (map) {
379 		map->refcount++;
380 		goto out;
381 	}
382 
383 	map = kzalloc(sizeof(*map), GFP_KERNEL);
384 	if (!map) {
385 		mutex_unlock(&acpi_ioremap_lock);
386 		return NULL;
387 	}
388 
389 	pg_off = round_down(phys, PAGE_SIZE);
390 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
391 	virt = acpi_map(pg_off, pg_sz);
392 	if (!virt) {
393 		mutex_unlock(&acpi_ioremap_lock);
394 		kfree(map);
395 		return NULL;
396 	}
397 
398 	INIT_LIST_HEAD(&map->list);
399 	map->virt = virt;
400 	map->phys = pg_off;
401 	map->size = pg_sz;
402 	map->refcount = 1;
403 
404 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
405 
406  out:
407 	mutex_unlock(&acpi_ioremap_lock);
408 	return map->virt + (phys - map->phys);
409 }
410 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
411 
412 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
413 {
414 	if (!--map->refcount)
415 		list_del_rcu(&map->list);
416 }
417 
418 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
419 {
420 	if (!map->refcount) {
421 		synchronize_rcu();
422 		acpi_unmap(map->phys, map->virt);
423 		kfree(map);
424 	}
425 }
426 
427 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
428 {
429 	struct acpi_ioremap *map;
430 
431 	if (!acpi_gbl_permanent_mmap) {
432 		__acpi_unmap_table(virt, size);
433 		return;
434 	}
435 
436 	mutex_lock(&acpi_ioremap_lock);
437 	map = acpi_map_lookup_virt(virt, size);
438 	if (!map) {
439 		mutex_unlock(&acpi_ioremap_lock);
440 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
441 		return;
442 	}
443 	acpi_os_drop_map_ref(map);
444 	mutex_unlock(&acpi_ioremap_lock);
445 
446 	acpi_os_map_cleanup(map);
447 }
448 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449 
450 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
451 {
452 	if (!acpi_gbl_permanent_mmap)
453 		__acpi_unmap_table(virt, size);
454 }
455 
456 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
457 {
458 	u64 addr;
459 	void __iomem *virt;
460 
461 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 		return 0;
463 
464 	/* Handle possible alignment issues */
465 	memcpy(&addr, &gas->address, sizeof(addr));
466 	if (!addr || !gas->bit_width)
467 		return -EINVAL;
468 
469 	virt = acpi_os_map_memory(addr, gas->bit_width / 8);
470 	if (!virt)
471 		return -EIO;
472 
473 	return 0;
474 }
475 EXPORT_SYMBOL(acpi_os_map_generic_address);
476 
477 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
478 {
479 	u64 addr;
480 	struct acpi_ioremap *map;
481 
482 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
483 		return;
484 
485 	/* Handle possible alignment issues */
486 	memcpy(&addr, &gas->address, sizeof(addr));
487 	if (!addr || !gas->bit_width)
488 		return;
489 
490 	mutex_lock(&acpi_ioremap_lock);
491 	map = acpi_map_lookup(addr, gas->bit_width / 8);
492 	if (!map) {
493 		mutex_unlock(&acpi_ioremap_lock);
494 		return;
495 	}
496 	acpi_os_drop_map_ref(map);
497 	mutex_unlock(&acpi_ioremap_lock);
498 
499 	acpi_os_map_cleanup(map);
500 }
501 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
502 
503 #ifdef ACPI_FUTURE_USAGE
504 acpi_status
505 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
506 {
507 	if (!phys || !virt)
508 		return AE_BAD_PARAMETER;
509 
510 	*phys = virt_to_phys(virt);
511 
512 	return AE_OK;
513 }
514 #endif
515 
516 #define ACPI_MAX_OVERRIDE_LEN 100
517 
518 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
519 
520 acpi_status
521 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
522 			    acpi_string * new_val)
523 {
524 	if (!init_val || !new_val)
525 		return AE_BAD_PARAMETER;
526 
527 	*new_val = NULL;
528 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
529 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
530 		       acpi_os_name);
531 		*new_val = acpi_os_name;
532 	}
533 
534 	return AE_OK;
535 }
536 
537 acpi_status
538 acpi_os_table_override(struct acpi_table_header * existing_table,
539 		       struct acpi_table_header ** new_table)
540 {
541 	if (!existing_table || !new_table)
542 		return AE_BAD_PARAMETER;
543 
544 	*new_table = NULL;
545 
546 #ifdef CONFIG_ACPI_CUSTOM_DSDT
547 	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
548 		*new_table = (struct acpi_table_header *)AmlCode;
549 #endif
550 	if (*new_table != NULL) {
551 		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
552 			   "this is unsafe: tainting kernel\n",
553 		       existing_table->signature,
554 		       existing_table->oem_table_id);
555 		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
556 	}
557 	return AE_OK;
558 }
559 
560 acpi_status
561 acpi_os_physical_table_override(struct acpi_table_header *existing_table,
562 				acpi_physical_address * new_address,
563 				u32 *new_table_length)
564 {
565 	return AE_SUPPORT;
566 }
567 
568 
569 static irqreturn_t acpi_irq(int irq, void *dev_id)
570 {
571 	u32 handled;
572 
573 	handled = (*acpi_irq_handler) (acpi_irq_context);
574 
575 	if (handled) {
576 		acpi_irq_handled++;
577 		return IRQ_HANDLED;
578 	} else {
579 		acpi_irq_not_handled++;
580 		return IRQ_NONE;
581 	}
582 }
583 
584 acpi_status
585 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
586 				  void *context)
587 {
588 	unsigned int irq;
589 
590 	acpi_irq_stats_init();
591 
592 	/*
593 	 * ACPI interrupts different from the SCI in our copy of the FADT are
594 	 * not supported.
595 	 */
596 	if (gsi != acpi_gbl_FADT.sci_interrupt)
597 		return AE_BAD_PARAMETER;
598 
599 	if (acpi_irq_handler)
600 		return AE_ALREADY_ACQUIRED;
601 
602 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
603 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
604 		       gsi);
605 		return AE_OK;
606 	}
607 
608 	acpi_irq_handler = handler;
609 	acpi_irq_context = context;
610 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
611 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
612 		acpi_irq_handler = NULL;
613 		return AE_NOT_ACQUIRED;
614 	}
615 
616 	return AE_OK;
617 }
618 
619 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
620 {
621 	if (irq != acpi_gbl_FADT.sci_interrupt)
622 		return AE_BAD_PARAMETER;
623 
624 	free_irq(irq, acpi_irq);
625 	acpi_irq_handler = NULL;
626 
627 	return AE_OK;
628 }
629 
630 /*
631  * Running in interpreter thread context, safe to sleep
632  */
633 
634 void acpi_os_sleep(u64 ms)
635 {
636 	schedule_timeout_interruptible(msecs_to_jiffies(ms));
637 }
638 
639 void acpi_os_stall(u32 us)
640 {
641 	while (us) {
642 		u32 delay = 1000;
643 
644 		if (delay > us)
645 			delay = us;
646 		udelay(delay);
647 		touch_nmi_watchdog();
648 		us -= delay;
649 	}
650 }
651 
652 /*
653  * Support ACPI 3.0 AML Timer operand
654  * Returns 64-bit free-running, monotonically increasing timer
655  * with 100ns granularity
656  */
657 u64 acpi_os_get_timer(void)
658 {
659 	static u64 t;
660 
661 #ifdef	CONFIG_HPET
662 	/* TBD: use HPET if available */
663 #endif
664 
665 #ifdef	CONFIG_X86_PM_TIMER
666 	/* TBD: default to PM timer if HPET was not available */
667 #endif
668 	if (!t)
669 		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
670 
671 	return ++t;
672 }
673 
674 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
675 {
676 	u32 dummy;
677 
678 	if (!value)
679 		value = &dummy;
680 
681 	*value = 0;
682 	if (width <= 8) {
683 		*(u8 *) value = inb(port);
684 	} else if (width <= 16) {
685 		*(u16 *) value = inw(port);
686 	} else if (width <= 32) {
687 		*(u32 *) value = inl(port);
688 	} else {
689 		BUG();
690 	}
691 
692 	return AE_OK;
693 }
694 
695 EXPORT_SYMBOL(acpi_os_read_port);
696 
697 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
698 {
699 	if (width <= 8) {
700 		outb(value, port);
701 	} else if (width <= 16) {
702 		outw(value, port);
703 	} else if (width <= 32) {
704 		outl(value, port);
705 	} else {
706 		BUG();
707 	}
708 
709 	return AE_OK;
710 }
711 
712 EXPORT_SYMBOL(acpi_os_write_port);
713 
714 #ifdef readq
715 static inline u64 read64(const volatile void __iomem *addr)
716 {
717 	return readq(addr);
718 }
719 #else
720 static inline u64 read64(const volatile void __iomem *addr)
721 {
722 	u64 l, h;
723 	l = readl(addr);
724 	h = readl(addr+4);
725 	return l | (h << 32);
726 }
727 #endif
728 
729 acpi_status
730 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
731 {
732 	void __iomem *virt_addr;
733 	unsigned int size = width / 8;
734 	bool unmap = false;
735 	u64 dummy;
736 
737 	rcu_read_lock();
738 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 	if (!virt_addr) {
740 		rcu_read_unlock();
741 		virt_addr = acpi_os_ioremap(phys_addr, size);
742 		if (!virt_addr)
743 			return AE_BAD_ADDRESS;
744 		unmap = true;
745 	}
746 
747 	if (!value)
748 		value = &dummy;
749 
750 	switch (width) {
751 	case 8:
752 		*(u8 *) value = readb(virt_addr);
753 		break;
754 	case 16:
755 		*(u16 *) value = readw(virt_addr);
756 		break;
757 	case 32:
758 		*(u32 *) value = readl(virt_addr);
759 		break;
760 	case 64:
761 		*(u64 *) value = read64(virt_addr);
762 		break;
763 	default:
764 		BUG();
765 	}
766 
767 	if (unmap)
768 		iounmap(virt_addr);
769 	else
770 		rcu_read_unlock();
771 
772 	return AE_OK;
773 }
774 
775 #ifdef writeq
776 static inline void write64(u64 val, volatile void __iomem *addr)
777 {
778 	writeq(val, addr);
779 }
780 #else
781 static inline void write64(u64 val, volatile void __iomem *addr)
782 {
783 	writel(val, addr);
784 	writel(val>>32, addr+4);
785 }
786 #endif
787 
788 acpi_status
789 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
790 {
791 	void __iomem *virt_addr;
792 	unsigned int size = width / 8;
793 	bool unmap = false;
794 
795 	rcu_read_lock();
796 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
797 	if (!virt_addr) {
798 		rcu_read_unlock();
799 		virt_addr = acpi_os_ioremap(phys_addr, size);
800 		if (!virt_addr)
801 			return AE_BAD_ADDRESS;
802 		unmap = true;
803 	}
804 
805 	switch (width) {
806 	case 8:
807 		writeb(value, virt_addr);
808 		break;
809 	case 16:
810 		writew(value, virt_addr);
811 		break;
812 	case 32:
813 		writel(value, virt_addr);
814 		break;
815 	case 64:
816 		write64(value, virt_addr);
817 		break;
818 	default:
819 		BUG();
820 	}
821 
822 	if (unmap)
823 		iounmap(virt_addr);
824 	else
825 		rcu_read_unlock();
826 
827 	return AE_OK;
828 }
829 
830 acpi_status
831 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
832 			       u64 *value, u32 width)
833 {
834 	int result, size;
835 	u32 value32;
836 
837 	if (!value)
838 		return AE_BAD_PARAMETER;
839 
840 	switch (width) {
841 	case 8:
842 		size = 1;
843 		break;
844 	case 16:
845 		size = 2;
846 		break;
847 	case 32:
848 		size = 4;
849 		break;
850 	default:
851 		return AE_ERROR;
852 	}
853 
854 	result = raw_pci_read(pci_id->segment, pci_id->bus,
855 				PCI_DEVFN(pci_id->device, pci_id->function),
856 				reg, size, &value32);
857 	*value = value32;
858 
859 	return (result ? AE_ERROR : AE_OK);
860 }
861 
862 acpi_status
863 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
864 				u64 value, u32 width)
865 {
866 	int result, size;
867 
868 	switch (width) {
869 	case 8:
870 		size = 1;
871 		break;
872 	case 16:
873 		size = 2;
874 		break;
875 	case 32:
876 		size = 4;
877 		break;
878 	default:
879 		return AE_ERROR;
880 	}
881 
882 	result = raw_pci_write(pci_id->segment, pci_id->bus,
883 				PCI_DEVFN(pci_id->device, pci_id->function),
884 				reg, size, value);
885 
886 	return (result ? AE_ERROR : AE_OK);
887 }
888 
889 static void acpi_os_execute_deferred(struct work_struct *work)
890 {
891 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
892 
893 	if (dpc->wait)
894 		acpi_os_wait_events_complete();
895 
896 	dpc->function(dpc->context);
897 	kfree(dpc);
898 }
899 
900 /*******************************************************************************
901  *
902  * FUNCTION:    acpi_os_execute
903  *
904  * PARAMETERS:  Type               - Type of the callback
905  *              Function           - Function to be executed
906  *              Context            - Function parameters
907  *
908  * RETURN:      Status
909  *
910  * DESCRIPTION: Depending on type, either queues function for deferred execution or
911  *              immediately executes function on a separate thread.
912  *
913  ******************************************************************************/
914 
915 static acpi_status __acpi_os_execute(acpi_execute_type type,
916 	acpi_osd_exec_callback function, void *context, int hp)
917 {
918 	acpi_status status = AE_OK;
919 	struct acpi_os_dpc *dpc;
920 	struct workqueue_struct *queue;
921 	int ret;
922 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
923 			  "Scheduling function [%p(%p)] for deferred execution.\n",
924 			  function, context));
925 
926 	/*
927 	 * Allocate/initialize DPC structure.  Note that this memory will be
928 	 * freed by the callee.  The kernel handles the work_struct list  in a
929 	 * way that allows us to also free its memory inside the callee.
930 	 * Because we may want to schedule several tasks with different
931 	 * parameters we can't use the approach some kernel code uses of
932 	 * having a static work_struct.
933 	 */
934 
935 	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
936 	if (!dpc)
937 		return AE_NO_MEMORY;
938 
939 	dpc->function = function;
940 	dpc->context = context;
941 
942 	/*
943 	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
944 	 * because the hotplug code may call driver .remove() functions,
945 	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
946 	 * to flush these workqueues.
947 	 */
948 	queue = hp ? kacpi_hotplug_wq :
949 		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
950 	dpc->wait = hp ? 1 : 0;
951 
952 	if (queue == kacpi_hotplug_wq)
953 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
954 	else if (queue == kacpi_notify_wq)
955 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
956 	else
957 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
958 
959 	/*
960 	 * On some machines, a software-initiated SMI causes corruption unless
961 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
962 	 * typically it's done in GPE-related methods that are run via
963 	 * workqueues, so we can avoid the known corruption cases by always
964 	 * queueing on CPU 0.
965 	 */
966 	ret = queue_work_on(0, queue, &dpc->work);
967 
968 	if (!ret) {
969 		printk(KERN_ERR PREFIX
970 			  "Call to queue_work() failed.\n");
971 		status = AE_ERROR;
972 		kfree(dpc);
973 	}
974 	return status;
975 }
976 
977 acpi_status acpi_os_execute(acpi_execute_type type,
978 			    acpi_osd_exec_callback function, void *context)
979 {
980 	return __acpi_os_execute(type, function, context, 0);
981 }
982 EXPORT_SYMBOL(acpi_os_execute);
983 
984 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
985 	void *context)
986 {
987 	return __acpi_os_execute(0, function, context, 1);
988 }
989 
990 void acpi_os_wait_events_complete(void)
991 {
992 	flush_workqueue(kacpid_wq);
993 	flush_workqueue(kacpi_notify_wq);
994 }
995 
996 EXPORT_SYMBOL(acpi_os_wait_events_complete);
997 
998 acpi_status
999 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1000 {
1001 	struct semaphore *sem = NULL;
1002 
1003 	sem = acpi_os_allocate(sizeof(struct semaphore));
1004 	if (!sem)
1005 		return AE_NO_MEMORY;
1006 	memset(sem, 0, sizeof(struct semaphore));
1007 
1008 	sema_init(sem, initial_units);
1009 
1010 	*handle = (acpi_handle *) sem;
1011 
1012 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1013 			  *handle, initial_units));
1014 
1015 	return AE_OK;
1016 }
1017 
1018 /*
1019  * TODO: A better way to delete semaphores?  Linux doesn't have a
1020  * 'delete_semaphore()' function -- may result in an invalid
1021  * pointer dereference for non-synchronized consumers.	Should
1022  * we at least check for blocked threads and signal/cancel them?
1023  */
1024 
1025 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1026 {
1027 	struct semaphore *sem = (struct semaphore *)handle;
1028 
1029 	if (!sem)
1030 		return AE_BAD_PARAMETER;
1031 
1032 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1033 
1034 	BUG_ON(!list_empty(&sem->wait_list));
1035 	kfree(sem);
1036 	sem = NULL;
1037 
1038 	return AE_OK;
1039 }
1040 
1041 /*
1042  * TODO: Support for units > 1?
1043  */
1044 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1045 {
1046 	acpi_status status = AE_OK;
1047 	struct semaphore *sem = (struct semaphore *)handle;
1048 	long jiffies;
1049 	int ret = 0;
1050 
1051 	if (!sem || (units < 1))
1052 		return AE_BAD_PARAMETER;
1053 
1054 	if (units > 1)
1055 		return AE_SUPPORT;
1056 
1057 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1058 			  handle, units, timeout));
1059 
1060 	if (timeout == ACPI_WAIT_FOREVER)
1061 		jiffies = MAX_SCHEDULE_TIMEOUT;
1062 	else
1063 		jiffies = msecs_to_jiffies(timeout);
1064 
1065 	ret = down_timeout(sem, jiffies);
1066 	if (ret)
1067 		status = AE_TIME;
1068 
1069 	if (ACPI_FAILURE(status)) {
1070 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1071 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1072 				  handle, units, timeout,
1073 				  acpi_format_exception(status)));
1074 	} else {
1075 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1076 				  "Acquired semaphore[%p|%d|%d]", handle,
1077 				  units, timeout));
1078 	}
1079 
1080 	return status;
1081 }
1082 
1083 /*
1084  * TODO: Support for units > 1?
1085  */
1086 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1087 {
1088 	struct semaphore *sem = (struct semaphore *)handle;
1089 
1090 	if (!sem || (units < 1))
1091 		return AE_BAD_PARAMETER;
1092 
1093 	if (units > 1)
1094 		return AE_SUPPORT;
1095 
1096 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1097 			  units));
1098 
1099 	up(sem);
1100 
1101 	return AE_OK;
1102 }
1103 
1104 #ifdef ACPI_FUTURE_USAGE
1105 u32 acpi_os_get_line(char *buffer)
1106 {
1107 
1108 #ifdef ENABLE_DEBUGGER
1109 	if (acpi_in_debugger) {
1110 		u32 chars;
1111 
1112 		kdb_read(buffer, sizeof(line_buf));
1113 
1114 		/* remove the CR kdb includes */
1115 		chars = strlen(buffer) - 1;
1116 		buffer[chars] = '\0';
1117 	}
1118 #endif
1119 
1120 	return 0;
1121 }
1122 #endif				/*  ACPI_FUTURE_USAGE  */
1123 
1124 acpi_status acpi_os_signal(u32 function, void *info)
1125 {
1126 	switch (function) {
1127 	case ACPI_SIGNAL_FATAL:
1128 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1129 		break;
1130 	case ACPI_SIGNAL_BREAKPOINT:
1131 		/*
1132 		 * AML Breakpoint
1133 		 * ACPI spec. says to treat it as a NOP unless
1134 		 * you are debugging.  So if/when we integrate
1135 		 * AML debugger into the kernel debugger its
1136 		 * hook will go here.  But until then it is
1137 		 * not useful to print anything on breakpoints.
1138 		 */
1139 		break;
1140 	default:
1141 		break;
1142 	}
1143 
1144 	return AE_OK;
1145 }
1146 
1147 static int __init acpi_os_name_setup(char *str)
1148 {
1149 	char *p = acpi_os_name;
1150 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1151 
1152 	if (!str || !*str)
1153 		return 0;
1154 
1155 	for (; count-- && str && *str; str++) {
1156 		if (isalnum(*str) || *str == ' ' || *str == ':')
1157 			*p++ = *str;
1158 		else if (*str == '\'' || *str == '"')
1159 			continue;
1160 		else
1161 			break;
1162 	}
1163 	*p = 0;
1164 
1165 	return 1;
1166 
1167 }
1168 
1169 __setup("acpi_os_name=", acpi_os_name_setup);
1170 
1171 #define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1172 #define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1173 
1174 struct osi_setup_entry {
1175 	char string[OSI_STRING_LENGTH_MAX];
1176 	bool enable;
1177 };
1178 
1179 static struct osi_setup_entry __initdata
1180 		osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1181 	{"Module Device", true},
1182 	{"Processor Device", true},
1183 	{"3.0 _SCP Extensions", true},
1184 	{"Processor Aggregator Device", true},
1185 };
1186 
1187 void __init acpi_osi_setup(char *str)
1188 {
1189 	struct osi_setup_entry *osi;
1190 	bool enable = true;
1191 	int i;
1192 
1193 	if (!acpi_gbl_create_osi_method)
1194 		return;
1195 
1196 	if (str == NULL || *str == '\0') {
1197 		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1198 		acpi_gbl_create_osi_method = FALSE;
1199 		return;
1200 	}
1201 
1202 	if (*str == '!') {
1203 		str++;
1204 		enable = false;
1205 	}
1206 
1207 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1208 		osi = &osi_setup_entries[i];
1209 		if (!strcmp(osi->string, str)) {
1210 			osi->enable = enable;
1211 			break;
1212 		} else if (osi->string[0] == '\0') {
1213 			osi->enable = enable;
1214 			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1215 			break;
1216 		}
1217 	}
1218 }
1219 
1220 static void __init set_osi_linux(unsigned int enable)
1221 {
1222 	if (osi_linux.enable != enable)
1223 		osi_linux.enable = enable;
1224 
1225 	if (osi_linux.enable)
1226 		acpi_osi_setup("Linux");
1227 	else
1228 		acpi_osi_setup("!Linux");
1229 
1230 	return;
1231 }
1232 
1233 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1234 {
1235 	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1236 	osi_linux.dmi = 0;
1237 	set_osi_linux(enable);
1238 
1239 	return;
1240 }
1241 
1242 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1243 {
1244 	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1245 
1246 	if (enable == -1)
1247 		return;
1248 
1249 	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1250 	set_osi_linux(enable);
1251 
1252 	return;
1253 }
1254 
1255 /*
1256  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1257  *
1258  * empty string disables _OSI
1259  * string starting with '!' disables that string
1260  * otherwise string is added to list, augmenting built-in strings
1261  */
1262 static void __init acpi_osi_setup_late(void)
1263 {
1264 	struct osi_setup_entry *osi;
1265 	char *str;
1266 	int i;
1267 	acpi_status status;
1268 
1269 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1270 		osi = &osi_setup_entries[i];
1271 		str = osi->string;
1272 
1273 		if (*str == '\0')
1274 			break;
1275 		if (osi->enable) {
1276 			status = acpi_install_interface(str);
1277 
1278 			if (ACPI_SUCCESS(status))
1279 				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1280 		} else {
1281 			status = acpi_remove_interface(str);
1282 
1283 			if (ACPI_SUCCESS(status))
1284 				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1285 		}
1286 	}
1287 }
1288 
1289 static int __init osi_setup(char *str)
1290 {
1291 	if (str && !strcmp("Linux", str))
1292 		acpi_cmdline_osi_linux(1);
1293 	else if (str && !strcmp("!Linux", str))
1294 		acpi_cmdline_osi_linux(0);
1295 	else
1296 		acpi_osi_setup(str);
1297 
1298 	return 1;
1299 }
1300 
1301 __setup("acpi_osi=", osi_setup);
1302 
1303 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1304 static int __init acpi_serialize_setup(char *str)
1305 {
1306 	printk(KERN_INFO PREFIX "serialize enabled\n");
1307 
1308 	acpi_gbl_all_methods_serialized = TRUE;
1309 
1310 	return 1;
1311 }
1312 
1313 __setup("acpi_serialize", acpi_serialize_setup);
1314 
1315 /* Check of resource interference between native drivers and ACPI
1316  * OperationRegions (SystemIO and System Memory only).
1317  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1318  * in arbitrary AML code and can interfere with legacy drivers.
1319  * acpi_enforce_resources= can be set to:
1320  *
1321  *   - strict (default) (2)
1322  *     -> further driver trying to access the resources will not load
1323  *   - lax              (1)
1324  *     -> further driver trying to access the resources will load, but you
1325  *     get a system message that something might go wrong...
1326  *
1327  *   - no               (0)
1328  *     -> ACPI Operation Region resources will not be registered
1329  *
1330  */
1331 #define ENFORCE_RESOURCES_STRICT 2
1332 #define ENFORCE_RESOURCES_LAX    1
1333 #define ENFORCE_RESOURCES_NO     0
1334 
1335 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1336 
1337 static int __init acpi_enforce_resources_setup(char *str)
1338 {
1339 	if (str == NULL || *str == '\0')
1340 		return 0;
1341 
1342 	if (!strcmp("strict", str))
1343 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1344 	else if (!strcmp("lax", str))
1345 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1346 	else if (!strcmp("no", str))
1347 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1348 
1349 	return 1;
1350 }
1351 
1352 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1353 
1354 /* Check for resource conflicts between ACPI OperationRegions and native
1355  * drivers */
1356 int acpi_check_resource_conflict(const struct resource *res)
1357 {
1358 	acpi_adr_space_type space_id;
1359 	acpi_size length;
1360 	u8 warn = 0;
1361 	int clash = 0;
1362 
1363 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1364 		return 0;
1365 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1366 		return 0;
1367 
1368 	if (res->flags & IORESOURCE_IO)
1369 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1370 	else
1371 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1372 
1373 	length = res->end - res->start + 1;
1374 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1375 		warn = 1;
1376 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1377 
1378 	if (clash) {
1379 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1380 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1381 				printk(KERN_NOTICE "ACPI: This conflict may"
1382 				       " cause random problems and system"
1383 				       " instability\n");
1384 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1385 			       " for this device, you should use it instead of"
1386 			       " the native driver\n");
1387 		}
1388 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1389 			return -EBUSY;
1390 	}
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL(acpi_check_resource_conflict);
1394 
1395 int acpi_check_region(resource_size_t start, resource_size_t n,
1396 		      const char *name)
1397 {
1398 	struct resource res = {
1399 		.start = start,
1400 		.end   = start + n - 1,
1401 		.name  = name,
1402 		.flags = IORESOURCE_IO,
1403 	};
1404 
1405 	return acpi_check_resource_conflict(&res);
1406 }
1407 EXPORT_SYMBOL(acpi_check_region);
1408 
1409 /*
1410  * Let drivers know whether the resource checks are effective
1411  */
1412 int acpi_resources_are_enforced(void)
1413 {
1414 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1415 }
1416 EXPORT_SYMBOL(acpi_resources_are_enforced);
1417 
1418 /*
1419  * Deallocate the memory for a spinlock.
1420  */
1421 void acpi_os_delete_lock(acpi_spinlock handle)
1422 {
1423 	ACPI_FREE(handle);
1424 }
1425 
1426 /*
1427  * Acquire a spinlock.
1428  *
1429  * handle is a pointer to the spinlock_t.
1430  */
1431 
1432 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1433 {
1434 	acpi_cpu_flags flags;
1435 	spin_lock_irqsave(lockp, flags);
1436 	return flags;
1437 }
1438 
1439 /*
1440  * Release a spinlock. See above.
1441  */
1442 
1443 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1444 {
1445 	spin_unlock_irqrestore(lockp, flags);
1446 }
1447 
1448 #ifndef ACPI_USE_LOCAL_CACHE
1449 
1450 /*******************************************************************************
1451  *
1452  * FUNCTION:    acpi_os_create_cache
1453  *
1454  * PARAMETERS:  name      - Ascii name for the cache
1455  *              size      - Size of each cached object
1456  *              depth     - Maximum depth of the cache (in objects) <ignored>
1457  *              cache     - Where the new cache object is returned
1458  *
1459  * RETURN:      status
1460  *
1461  * DESCRIPTION: Create a cache object
1462  *
1463  ******************************************************************************/
1464 
1465 acpi_status
1466 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1467 {
1468 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1469 	if (*cache == NULL)
1470 		return AE_ERROR;
1471 	else
1472 		return AE_OK;
1473 }
1474 
1475 /*******************************************************************************
1476  *
1477  * FUNCTION:    acpi_os_purge_cache
1478  *
1479  * PARAMETERS:  Cache           - Handle to cache object
1480  *
1481  * RETURN:      Status
1482  *
1483  * DESCRIPTION: Free all objects within the requested cache.
1484  *
1485  ******************************************************************************/
1486 
1487 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1488 {
1489 	kmem_cache_shrink(cache);
1490 	return (AE_OK);
1491 }
1492 
1493 /*******************************************************************************
1494  *
1495  * FUNCTION:    acpi_os_delete_cache
1496  *
1497  * PARAMETERS:  Cache           - Handle to cache object
1498  *
1499  * RETURN:      Status
1500  *
1501  * DESCRIPTION: Free all objects within the requested cache and delete the
1502  *              cache object.
1503  *
1504  ******************************************************************************/
1505 
1506 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1507 {
1508 	kmem_cache_destroy(cache);
1509 	return (AE_OK);
1510 }
1511 
1512 /*******************************************************************************
1513  *
1514  * FUNCTION:    acpi_os_release_object
1515  *
1516  * PARAMETERS:  Cache       - Handle to cache object
1517  *              Object      - The object to be released
1518  *
1519  * RETURN:      None
1520  *
1521  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1522  *              the object is deleted.
1523  *
1524  ******************************************************************************/
1525 
1526 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1527 {
1528 	kmem_cache_free(cache, object);
1529 	return (AE_OK);
1530 }
1531 #endif
1532 
1533 acpi_status __init acpi_os_initialize(void)
1534 {
1535 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1536 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1537 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1538 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1539 
1540 	return AE_OK;
1541 }
1542 
1543 acpi_status __init acpi_os_initialize1(void)
1544 {
1545 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1546 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1547 	kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1548 	BUG_ON(!kacpid_wq);
1549 	BUG_ON(!kacpi_notify_wq);
1550 	BUG_ON(!kacpi_hotplug_wq);
1551 	acpi_install_interface_handler(acpi_osi_handler);
1552 	acpi_osi_setup_late();
1553 	return AE_OK;
1554 }
1555 
1556 acpi_status acpi_os_terminate(void)
1557 {
1558 	if (acpi_irq_handler) {
1559 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1560 						 acpi_irq_handler);
1561 	}
1562 
1563 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1564 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1565 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1566 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1567 
1568 	destroy_workqueue(kacpid_wq);
1569 	destroy_workqueue(kacpi_notify_wq);
1570 	destroy_workqueue(kacpi_hotplug_wq);
1571 
1572 	return AE_OK;
1573 }
1574 
1575 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1576 				  u32 pm1b_control)
1577 {
1578 	int rc = 0;
1579 	if (__acpi_os_prepare_sleep)
1580 		rc = __acpi_os_prepare_sleep(sleep_state,
1581 					     pm1a_control, pm1b_control);
1582 	if (rc < 0)
1583 		return AE_ERROR;
1584 	else if (rc > 0)
1585 		return AE_CTRL_SKIP;
1586 
1587 	return AE_OK;
1588 }
1589 
1590 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1591 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1592 {
1593 	__acpi_os_prepare_sleep = func;
1594 }
1595