xref: /openbmc/linux/drivers/acpi/osl.c (revision 25985edc)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/pci.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/acpi.h>
41 #include <linux/acpi_io.h>
42 #include <linux/efi.h>
43 #include <linux/ioport.h>
44 #include <linux/list.h>
45 #include <linux/jiffies.h>
46 #include <linux/semaphore.h>
47 
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 
51 #include <acpi/acpi.h>
52 #include <acpi/acpi_bus.h>
53 #include <acpi/processor.h>
54 
55 #define _COMPONENT		ACPI_OS_SERVICES
56 ACPI_MODULE_NAME("osl");
57 #define PREFIX		"ACPI: "
58 struct acpi_os_dpc {
59 	acpi_osd_exec_callback function;
60 	void *context;
61 	struct work_struct work;
62 	int wait;
63 };
64 
65 #ifdef CONFIG_ACPI_CUSTOM_DSDT
66 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
67 #endif
68 
69 #ifdef ENABLE_DEBUGGER
70 #include <linux/kdb.h>
71 
72 /* stuff for debugger support */
73 int acpi_in_debugger;
74 EXPORT_SYMBOL(acpi_in_debugger);
75 
76 extern char line_buf[80];
77 #endif				/*ENABLE_DEBUGGER */
78 
79 static acpi_osd_handler acpi_irq_handler;
80 static void *acpi_irq_context;
81 static struct workqueue_struct *kacpid_wq;
82 static struct workqueue_struct *kacpi_notify_wq;
83 static struct workqueue_struct *kacpi_hotplug_wq;
84 
85 struct acpi_res_list {
86 	resource_size_t start;
87 	resource_size_t end;
88 	acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 	char name[5];   /* only can have a length of 4 chars, make use of this
90 			   one instead of res->name, no need to kalloc then */
91 	struct list_head resource_list;
92 	int count;
93 };
94 
95 static LIST_HEAD(resource_list_head);
96 static DEFINE_SPINLOCK(acpi_res_lock);
97 
98 /*
99  * This list of permanent mappings is for memory that may be accessed from
100  * interrupt context, where we can't do the ioremap().
101  */
102 struct acpi_ioremap {
103 	struct list_head list;
104 	void __iomem *virt;
105 	acpi_physical_address phys;
106 	acpi_size size;
107 	unsigned long refcount;
108 };
109 
110 static LIST_HEAD(acpi_ioremaps);
111 static DEFINE_MUTEX(acpi_ioremap_lock);
112 
113 static void __init acpi_osi_setup_late(void);
114 
115 /*
116  * The story of _OSI(Linux)
117  *
118  * From pre-history through Linux-2.6.22,
119  * Linux responded TRUE upon a BIOS OSI(Linux) query.
120  *
121  * Unfortunately, reference BIOS writers got wind of this
122  * and put OSI(Linux) in their example code, quickly exposing
123  * this string as ill-conceived and opening the door to
124  * an un-bounded number of BIOS incompatibilities.
125  *
126  * For example, OSI(Linux) was used on resume to re-POST a
127  * video card on one system, because Linux at that time
128  * could not do a speedy restore in its native driver.
129  * But then upon gaining quick native restore capability,
130  * Linux has no way to tell the BIOS to skip the time-consuming
131  * POST -- putting Linux at a permanent performance disadvantage.
132  * On another system, the BIOS writer used OSI(Linux)
133  * to infer native OS support for IPMI!  On other systems,
134  * OSI(Linux) simply got in the way of Linux claiming to
135  * be compatible with other operating systems, exposing
136  * BIOS issues such as skipped device initialization.
137  *
138  * So "Linux" turned out to be a really poor chose of
139  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
140  *
141  * BIOS writers should NOT query _OSI(Linux) on future systems.
142  * Linux will complain on the console when it sees it, and return FALSE.
143  * To get Linux to return TRUE for your system  will require
144  * a kernel source update to add a DMI entry,
145  * or boot with "acpi_osi=Linux"
146  */
147 
148 static struct osi_linux {
149 	unsigned int	enable:1;
150 	unsigned int	dmi:1;
151 	unsigned int	cmdline:1;
152 } osi_linux = {0, 0, 0};
153 
154 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
155 {
156 	if (!strcmp("Linux", interface)) {
157 
158 		printk(KERN_NOTICE FW_BUG PREFIX
159 			"BIOS _OSI(Linux) query %s%s\n",
160 			osi_linux.enable ? "honored" : "ignored",
161 			osi_linux.cmdline ? " via cmdline" :
162 			osi_linux.dmi ? " via DMI" : "");
163 	}
164 
165 	return supported;
166 }
167 
168 static void __init acpi_request_region (struct acpi_generic_address *addr,
169 	unsigned int length, char *desc)
170 {
171 	if (!addr->address || !length)
172 		return;
173 
174 	/* Resources are never freed */
175 	if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
176 		request_region(addr->address, length, desc);
177 	else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
178 		request_mem_region(addr->address, length, desc);
179 }
180 
181 static int __init acpi_reserve_resources(void)
182 {
183 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
184 		"ACPI PM1a_EVT_BLK");
185 
186 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
187 		"ACPI PM1b_EVT_BLK");
188 
189 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
190 		"ACPI PM1a_CNT_BLK");
191 
192 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
193 		"ACPI PM1b_CNT_BLK");
194 
195 	if (acpi_gbl_FADT.pm_timer_length == 4)
196 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
197 
198 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
199 		"ACPI PM2_CNT_BLK");
200 
201 	/* Length of GPE blocks must be a non-negative multiple of 2 */
202 
203 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
204 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
205 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
206 
207 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
208 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
209 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
210 
211 	return 0;
212 }
213 device_initcall(acpi_reserve_resources);
214 
215 void acpi_os_printf(const char *fmt, ...)
216 {
217 	va_list args;
218 	va_start(args, fmt);
219 	acpi_os_vprintf(fmt, args);
220 	va_end(args);
221 }
222 
223 void acpi_os_vprintf(const char *fmt, va_list args)
224 {
225 	static char buffer[512];
226 
227 	vsprintf(buffer, fmt, args);
228 
229 #ifdef ENABLE_DEBUGGER
230 	if (acpi_in_debugger) {
231 		kdb_printf("%s", buffer);
232 	} else {
233 		printk(KERN_CONT "%s", buffer);
234 	}
235 #else
236 	printk(KERN_CONT "%s", buffer);
237 #endif
238 }
239 
240 acpi_physical_address __init acpi_os_get_root_pointer(void)
241 {
242 	if (efi_enabled) {
243 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
244 			return efi.acpi20;
245 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
246 			return efi.acpi;
247 		else {
248 			printk(KERN_ERR PREFIX
249 			       "System description tables not found\n");
250 			return 0;
251 		}
252 	} else {
253 		acpi_physical_address pa = 0;
254 
255 		acpi_find_root_pointer(&pa);
256 		return pa;
257 	}
258 }
259 
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
263 {
264 	struct acpi_ioremap *map;
265 
266 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 		if (map->phys <= phys &&
268 		    phys + size <= map->phys + map->size)
269 			return map;
270 
271 	return NULL;
272 }
273 
274 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
275 static void __iomem *
276 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
277 {
278 	struct acpi_ioremap *map;
279 
280 	map = acpi_map_lookup(phys, size);
281 	if (map)
282 		return map->virt + (phys - map->phys);
283 
284 	return NULL;
285 }
286 
287 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
288 {
289 	struct acpi_ioremap *map;
290 	void __iomem *virt = NULL;
291 
292 	mutex_lock(&acpi_ioremap_lock);
293 	map = acpi_map_lookup(phys, size);
294 	if (map) {
295 		virt = map->virt + (phys - map->phys);
296 		map->refcount++;
297 	}
298 	mutex_unlock(&acpi_ioremap_lock);
299 	return virt;
300 }
301 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
302 
303 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
304 static struct acpi_ioremap *
305 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
306 {
307 	struct acpi_ioremap *map;
308 
309 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
310 		if (map->virt <= virt &&
311 		    virt + size <= map->virt + map->size)
312 			return map;
313 
314 	return NULL;
315 }
316 
317 void __iomem *__init_refok
318 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
319 {
320 	struct acpi_ioremap *map;
321 	void __iomem *virt;
322 	acpi_physical_address pg_off;
323 	acpi_size pg_sz;
324 
325 	if (phys > ULONG_MAX) {
326 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
327 		return NULL;
328 	}
329 
330 	if (!acpi_gbl_permanent_mmap)
331 		return __acpi_map_table((unsigned long)phys, size);
332 
333 	mutex_lock(&acpi_ioremap_lock);
334 	/* Check if there's a suitable mapping already. */
335 	map = acpi_map_lookup(phys, size);
336 	if (map) {
337 		map->refcount++;
338 		goto out;
339 	}
340 
341 	map = kzalloc(sizeof(*map), GFP_KERNEL);
342 	if (!map) {
343 		mutex_unlock(&acpi_ioremap_lock);
344 		return NULL;
345 	}
346 
347 	pg_off = round_down(phys, PAGE_SIZE);
348 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
349 	virt = acpi_os_ioremap(pg_off, pg_sz);
350 	if (!virt) {
351 		mutex_unlock(&acpi_ioremap_lock);
352 		kfree(map);
353 		return NULL;
354 	}
355 
356 	INIT_LIST_HEAD(&map->list);
357 	map->virt = virt;
358 	map->phys = pg_off;
359 	map->size = pg_sz;
360 	map->refcount = 1;
361 
362 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
363 
364  out:
365 	mutex_unlock(&acpi_ioremap_lock);
366 	return map->virt + (phys - map->phys);
367 }
368 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
369 
370 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
371 {
372 	if (!--map->refcount)
373 		list_del_rcu(&map->list);
374 }
375 
376 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
377 {
378 	if (!map->refcount) {
379 		synchronize_rcu();
380 		iounmap(map->virt);
381 		kfree(map);
382 	}
383 }
384 
385 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
386 {
387 	struct acpi_ioremap *map;
388 
389 	if (!acpi_gbl_permanent_mmap) {
390 		__acpi_unmap_table(virt, size);
391 		return;
392 	}
393 
394 	mutex_lock(&acpi_ioremap_lock);
395 	map = acpi_map_lookup_virt(virt, size);
396 	if (!map) {
397 		mutex_unlock(&acpi_ioremap_lock);
398 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
399 		return;
400 	}
401 	acpi_os_drop_map_ref(map);
402 	mutex_unlock(&acpi_ioremap_lock);
403 
404 	acpi_os_map_cleanup(map);
405 }
406 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
407 
408 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
409 {
410 	if (!acpi_gbl_permanent_mmap)
411 		__acpi_unmap_table(virt, size);
412 }
413 
414 static int acpi_os_map_generic_address(struct acpi_generic_address *addr)
415 {
416 	void __iomem *virt;
417 
418 	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
419 		return 0;
420 
421 	if (!addr->address || !addr->bit_width)
422 		return -EINVAL;
423 
424 	virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
425 	if (!virt)
426 		return -EIO;
427 
428 	return 0;
429 }
430 
431 static void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
432 {
433 	struct acpi_ioremap *map;
434 
435 	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
436 		return;
437 
438 	if (!addr->address || !addr->bit_width)
439 		return;
440 
441 	mutex_lock(&acpi_ioremap_lock);
442 	map = acpi_map_lookup(addr->address, addr->bit_width / 8);
443 	if (!map) {
444 		mutex_unlock(&acpi_ioremap_lock);
445 		return;
446 	}
447 	acpi_os_drop_map_ref(map);
448 	mutex_unlock(&acpi_ioremap_lock);
449 
450 	acpi_os_map_cleanup(map);
451 }
452 
453 #ifdef ACPI_FUTURE_USAGE
454 acpi_status
455 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
456 {
457 	if (!phys || !virt)
458 		return AE_BAD_PARAMETER;
459 
460 	*phys = virt_to_phys(virt);
461 
462 	return AE_OK;
463 }
464 #endif
465 
466 #define ACPI_MAX_OVERRIDE_LEN 100
467 
468 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
469 
470 acpi_status
471 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
472 			    acpi_string * new_val)
473 {
474 	if (!init_val || !new_val)
475 		return AE_BAD_PARAMETER;
476 
477 	*new_val = NULL;
478 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
479 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
480 		       acpi_os_name);
481 		*new_val = acpi_os_name;
482 	}
483 
484 	return AE_OK;
485 }
486 
487 acpi_status
488 acpi_os_table_override(struct acpi_table_header * existing_table,
489 		       struct acpi_table_header ** new_table)
490 {
491 	if (!existing_table || !new_table)
492 		return AE_BAD_PARAMETER;
493 
494 	*new_table = NULL;
495 
496 #ifdef CONFIG_ACPI_CUSTOM_DSDT
497 	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
498 		*new_table = (struct acpi_table_header *)AmlCode;
499 #endif
500 	if (*new_table != NULL) {
501 		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
502 			   "this is unsafe: tainting kernel\n",
503 		       existing_table->signature,
504 		       existing_table->oem_table_id);
505 		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
506 	}
507 	return AE_OK;
508 }
509 
510 static irqreturn_t acpi_irq(int irq, void *dev_id)
511 {
512 	u32 handled;
513 
514 	handled = (*acpi_irq_handler) (acpi_irq_context);
515 
516 	if (handled) {
517 		acpi_irq_handled++;
518 		return IRQ_HANDLED;
519 	} else {
520 		acpi_irq_not_handled++;
521 		return IRQ_NONE;
522 	}
523 }
524 
525 acpi_status
526 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
527 				  void *context)
528 {
529 	unsigned int irq;
530 
531 	acpi_irq_stats_init();
532 
533 	/*
534 	 * ACPI interrupts different from the SCI in our copy of the FADT are
535 	 * not supported.
536 	 */
537 	if (gsi != acpi_gbl_FADT.sci_interrupt)
538 		return AE_BAD_PARAMETER;
539 
540 	if (acpi_irq_handler)
541 		return AE_ALREADY_ACQUIRED;
542 
543 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
544 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
545 		       gsi);
546 		return AE_OK;
547 	}
548 
549 	acpi_irq_handler = handler;
550 	acpi_irq_context = context;
551 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
552 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
553 		acpi_irq_handler = NULL;
554 		return AE_NOT_ACQUIRED;
555 	}
556 
557 	return AE_OK;
558 }
559 
560 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
561 {
562 	if (irq != acpi_gbl_FADT.sci_interrupt)
563 		return AE_BAD_PARAMETER;
564 
565 	free_irq(irq, acpi_irq);
566 	acpi_irq_handler = NULL;
567 
568 	return AE_OK;
569 }
570 
571 /*
572  * Running in interpreter thread context, safe to sleep
573  */
574 
575 void acpi_os_sleep(u64 ms)
576 {
577 	schedule_timeout_interruptible(msecs_to_jiffies(ms));
578 }
579 
580 void acpi_os_stall(u32 us)
581 {
582 	while (us) {
583 		u32 delay = 1000;
584 
585 		if (delay > us)
586 			delay = us;
587 		udelay(delay);
588 		touch_nmi_watchdog();
589 		us -= delay;
590 	}
591 }
592 
593 /*
594  * Support ACPI 3.0 AML Timer operand
595  * Returns 64-bit free-running, monotonically increasing timer
596  * with 100ns granularity
597  */
598 u64 acpi_os_get_timer(void)
599 {
600 	static u64 t;
601 
602 #ifdef	CONFIG_HPET
603 	/* TBD: use HPET if available */
604 #endif
605 
606 #ifdef	CONFIG_X86_PM_TIMER
607 	/* TBD: default to PM timer if HPET was not available */
608 #endif
609 	if (!t)
610 		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
611 
612 	return ++t;
613 }
614 
615 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
616 {
617 	u32 dummy;
618 
619 	if (!value)
620 		value = &dummy;
621 
622 	*value = 0;
623 	if (width <= 8) {
624 		*(u8 *) value = inb(port);
625 	} else if (width <= 16) {
626 		*(u16 *) value = inw(port);
627 	} else if (width <= 32) {
628 		*(u32 *) value = inl(port);
629 	} else {
630 		BUG();
631 	}
632 
633 	return AE_OK;
634 }
635 
636 EXPORT_SYMBOL(acpi_os_read_port);
637 
638 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
639 {
640 	if (width <= 8) {
641 		outb(value, port);
642 	} else if (width <= 16) {
643 		outw(value, port);
644 	} else if (width <= 32) {
645 		outl(value, port);
646 	} else {
647 		BUG();
648 	}
649 
650 	return AE_OK;
651 }
652 
653 EXPORT_SYMBOL(acpi_os_write_port);
654 
655 acpi_status
656 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
657 {
658 	void __iomem *virt_addr;
659 	unsigned int size = width / 8;
660 	bool unmap = false;
661 	u32 dummy;
662 
663 	rcu_read_lock();
664 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
665 	if (!virt_addr) {
666 		rcu_read_unlock();
667 		virt_addr = acpi_os_ioremap(phys_addr, size);
668 		if (!virt_addr)
669 			return AE_BAD_ADDRESS;
670 		unmap = true;
671 	}
672 
673 	if (!value)
674 		value = &dummy;
675 
676 	switch (width) {
677 	case 8:
678 		*(u8 *) value = readb(virt_addr);
679 		break;
680 	case 16:
681 		*(u16 *) value = readw(virt_addr);
682 		break;
683 	case 32:
684 		*(u32 *) value = readl(virt_addr);
685 		break;
686 	default:
687 		BUG();
688 	}
689 
690 	if (unmap)
691 		iounmap(virt_addr);
692 	else
693 		rcu_read_unlock();
694 
695 	return AE_OK;
696 }
697 
698 acpi_status
699 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
700 {
701 	void __iomem *virt_addr;
702 	unsigned int size = width / 8;
703 	bool unmap = false;
704 
705 	rcu_read_lock();
706 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
707 	if (!virt_addr) {
708 		rcu_read_unlock();
709 		virt_addr = acpi_os_ioremap(phys_addr, size);
710 		if (!virt_addr)
711 			return AE_BAD_ADDRESS;
712 		unmap = true;
713 	}
714 
715 	switch (width) {
716 	case 8:
717 		writeb(value, virt_addr);
718 		break;
719 	case 16:
720 		writew(value, virt_addr);
721 		break;
722 	case 32:
723 		writel(value, virt_addr);
724 		break;
725 	default:
726 		BUG();
727 	}
728 
729 	if (unmap)
730 		iounmap(virt_addr);
731 	else
732 		rcu_read_unlock();
733 
734 	return AE_OK;
735 }
736 
737 acpi_status
738 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
739 			       u64 *value, u32 width)
740 {
741 	int result, size;
742 	u32 value32;
743 
744 	if (!value)
745 		return AE_BAD_PARAMETER;
746 
747 	switch (width) {
748 	case 8:
749 		size = 1;
750 		break;
751 	case 16:
752 		size = 2;
753 		break;
754 	case 32:
755 		size = 4;
756 		break;
757 	default:
758 		return AE_ERROR;
759 	}
760 
761 	result = raw_pci_read(pci_id->segment, pci_id->bus,
762 				PCI_DEVFN(pci_id->device, pci_id->function),
763 				reg, size, &value32);
764 	*value = value32;
765 
766 	return (result ? AE_ERROR : AE_OK);
767 }
768 
769 acpi_status
770 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
771 				u64 value, u32 width)
772 {
773 	int result, size;
774 
775 	switch (width) {
776 	case 8:
777 		size = 1;
778 		break;
779 	case 16:
780 		size = 2;
781 		break;
782 	case 32:
783 		size = 4;
784 		break;
785 	default:
786 		return AE_ERROR;
787 	}
788 
789 	result = raw_pci_write(pci_id->segment, pci_id->bus,
790 				PCI_DEVFN(pci_id->device, pci_id->function),
791 				reg, size, value);
792 
793 	return (result ? AE_ERROR : AE_OK);
794 }
795 
796 static void acpi_os_execute_deferred(struct work_struct *work)
797 {
798 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
799 
800 	if (dpc->wait)
801 		acpi_os_wait_events_complete(NULL);
802 
803 	dpc->function(dpc->context);
804 	kfree(dpc);
805 }
806 
807 /*******************************************************************************
808  *
809  * FUNCTION:    acpi_os_execute
810  *
811  * PARAMETERS:  Type               - Type of the callback
812  *              Function           - Function to be executed
813  *              Context            - Function parameters
814  *
815  * RETURN:      Status
816  *
817  * DESCRIPTION: Depending on type, either queues function for deferred execution or
818  *              immediately executes function on a separate thread.
819  *
820  ******************************************************************************/
821 
822 static acpi_status __acpi_os_execute(acpi_execute_type type,
823 	acpi_osd_exec_callback function, void *context, int hp)
824 {
825 	acpi_status status = AE_OK;
826 	struct acpi_os_dpc *dpc;
827 	struct workqueue_struct *queue;
828 	int ret;
829 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
830 			  "Scheduling function [%p(%p)] for deferred execution.\n",
831 			  function, context));
832 
833 	/*
834 	 * Allocate/initialize DPC structure.  Note that this memory will be
835 	 * freed by the callee.  The kernel handles the work_struct list  in a
836 	 * way that allows us to also free its memory inside the callee.
837 	 * Because we may want to schedule several tasks with different
838 	 * parameters we can't use the approach some kernel code uses of
839 	 * having a static work_struct.
840 	 */
841 
842 	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
843 	if (!dpc)
844 		return AE_NO_MEMORY;
845 
846 	dpc->function = function;
847 	dpc->context = context;
848 
849 	/*
850 	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
851 	 * because the hotplug code may call driver .remove() functions,
852 	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
853 	 * to flush these workqueues.
854 	 */
855 	queue = hp ? kacpi_hotplug_wq :
856 		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
857 	dpc->wait = hp ? 1 : 0;
858 
859 	if (queue == kacpi_hotplug_wq)
860 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
861 	else if (queue == kacpi_notify_wq)
862 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
863 	else
864 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
865 
866 	/*
867 	 * On some machines, a software-initiated SMI causes corruption unless
868 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
869 	 * typically it's done in GPE-related methods that are run via
870 	 * workqueues, so we can avoid the known corruption cases by always
871 	 * queueing on CPU 0.
872 	 */
873 	ret = queue_work_on(0, queue, &dpc->work);
874 
875 	if (!ret) {
876 		printk(KERN_ERR PREFIX
877 			  "Call to queue_work() failed.\n");
878 		status = AE_ERROR;
879 		kfree(dpc);
880 	}
881 	return status;
882 }
883 
884 acpi_status acpi_os_execute(acpi_execute_type type,
885 			    acpi_osd_exec_callback function, void *context)
886 {
887 	return __acpi_os_execute(type, function, context, 0);
888 }
889 EXPORT_SYMBOL(acpi_os_execute);
890 
891 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
892 	void *context)
893 {
894 	return __acpi_os_execute(0, function, context, 1);
895 }
896 
897 void acpi_os_wait_events_complete(void *context)
898 {
899 	flush_workqueue(kacpid_wq);
900 	flush_workqueue(kacpi_notify_wq);
901 }
902 
903 EXPORT_SYMBOL(acpi_os_wait_events_complete);
904 
905 /*
906  * Deallocate the memory for a spinlock.
907  */
908 void acpi_os_delete_lock(acpi_spinlock handle)
909 {
910 	return;
911 }
912 
913 acpi_status
914 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
915 {
916 	struct semaphore *sem = NULL;
917 
918 	sem = acpi_os_allocate(sizeof(struct semaphore));
919 	if (!sem)
920 		return AE_NO_MEMORY;
921 	memset(sem, 0, sizeof(struct semaphore));
922 
923 	sema_init(sem, initial_units);
924 
925 	*handle = (acpi_handle *) sem;
926 
927 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
928 			  *handle, initial_units));
929 
930 	return AE_OK;
931 }
932 
933 /*
934  * TODO: A better way to delete semaphores?  Linux doesn't have a
935  * 'delete_semaphore()' function -- may result in an invalid
936  * pointer dereference for non-synchronized consumers.	Should
937  * we at least check for blocked threads and signal/cancel them?
938  */
939 
940 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
941 {
942 	struct semaphore *sem = (struct semaphore *)handle;
943 
944 	if (!sem)
945 		return AE_BAD_PARAMETER;
946 
947 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
948 
949 	BUG_ON(!list_empty(&sem->wait_list));
950 	kfree(sem);
951 	sem = NULL;
952 
953 	return AE_OK;
954 }
955 
956 /*
957  * TODO: Support for units > 1?
958  */
959 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
960 {
961 	acpi_status status = AE_OK;
962 	struct semaphore *sem = (struct semaphore *)handle;
963 	long jiffies;
964 	int ret = 0;
965 
966 	if (!sem || (units < 1))
967 		return AE_BAD_PARAMETER;
968 
969 	if (units > 1)
970 		return AE_SUPPORT;
971 
972 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
973 			  handle, units, timeout));
974 
975 	if (timeout == ACPI_WAIT_FOREVER)
976 		jiffies = MAX_SCHEDULE_TIMEOUT;
977 	else
978 		jiffies = msecs_to_jiffies(timeout);
979 
980 	ret = down_timeout(sem, jiffies);
981 	if (ret)
982 		status = AE_TIME;
983 
984 	if (ACPI_FAILURE(status)) {
985 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
986 				  "Failed to acquire semaphore[%p|%d|%d], %s",
987 				  handle, units, timeout,
988 				  acpi_format_exception(status)));
989 	} else {
990 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
991 				  "Acquired semaphore[%p|%d|%d]", handle,
992 				  units, timeout));
993 	}
994 
995 	return status;
996 }
997 
998 /*
999  * TODO: Support for units > 1?
1000  */
1001 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1002 {
1003 	struct semaphore *sem = (struct semaphore *)handle;
1004 
1005 	if (!sem || (units < 1))
1006 		return AE_BAD_PARAMETER;
1007 
1008 	if (units > 1)
1009 		return AE_SUPPORT;
1010 
1011 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1012 			  units));
1013 
1014 	up(sem);
1015 
1016 	return AE_OK;
1017 }
1018 
1019 #ifdef ACPI_FUTURE_USAGE
1020 u32 acpi_os_get_line(char *buffer)
1021 {
1022 
1023 #ifdef ENABLE_DEBUGGER
1024 	if (acpi_in_debugger) {
1025 		u32 chars;
1026 
1027 		kdb_read(buffer, sizeof(line_buf));
1028 
1029 		/* remove the CR kdb includes */
1030 		chars = strlen(buffer) - 1;
1031 		buffer[chars] = '\0';
1032 	}
1033 #endif
1034 
1035 	return 0;
1036 }
1037 #endif				/*  ACPI_FUTURE_USAGE  */
1038 
1039 acpi_status acpi_os_signal(u32 function, void *info)
1040 {
1041 	switch (function) {
1042 	case ACPI_SIGNAL_FATAL:
1043 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1044 		break;
1045 	case ACPI_SIGNAL_BREAKPOINT:
1046 		/*
1047 		 * AML Breakpoint
1048 		 * ACPI spec. says to treat it as a NOP unless
1049 		 * you are debugging.  So if/when we integrate
1050 		 * AML debugger into the kernel debugger its
1051 		 * hook will go here.  But until then it is
1052 		 * not useful to print anything on breakpoints.
1053 		 */
1054 		break;
1055 	default:
1056 		break;
1057 	}
1058 
1059 	return AE_OK;
1060 }
1061 
1062 static int __init acpi_os_name_setup(char *str)
1063 {
1064 	char *p = acpi_os_name;
1065 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1066 
1067 	if (!str || !*str)
1068 		return 0;
1069 
1070 	for (; count-- && str && *str; str++) {
1071 		if (isalnum(*str) || *str == ' ' || *str == ':')
1072 			*p++ = *str;
1073 		else if (*str == '\'' || *str == '"')
1074 			continue;
1075 		else
1076 			break;
1077 	}
1078 	*p = 0;
1079 
1080 	return 1;
1081 
1082 }
1083 
1084 __setup("acpi_os_name=", acpi_os_name_setup);
1085 
1086 #define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1087 #define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1088 
1089 struct osi_setup_entry {
1090 	char string[OSI_STRING_LENGTH_MAX];
1091 	bool enable;
1092 };
1093 
1094 static struct osi_setup_entry __initdata osi_setup_entries[OSI_STRING_ENTRIES_MAX];
1095 
1096 void __init acpi_osi_setup(char *str)
1097 {
1098 	struct osi_setup_entry *osi;
1099 	bool enable = true;
1100 	int i;
1101 
1102 	if (!acpi_gbl_create_osi_method)
1103 		return;
1104 
1105 	if (str == NULL || *str == '\0') {
1106 		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1107 		acpi_gbl_create_osi_method = FALSE;
1108 		return;
1109 	}
1110 
1111 	if (*str == '!') {
1112 		str++;
1113 		enable = false;
1114 	}
1115 
1116 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1117 		osi = &osi_setup_entries[i];
1118 		if (!strcmp(osi->string, str)) {
1119 			osi->enable = enable;
1120 			break;
1121 		} else if (osi->string[0] == '\0') {
1122 			osi->enable = enable;
1123 			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1124 			break;
1125 		}
1126 	}
1127 }
1128 
1129 static void __init set_osi_linux(unsigned int enable)
1130 {
1131 	if (osi_linux.enable != enable)
1132 		osi_linux.enable = enable;
1133 
1134 	if (osi_linux.enable)
1135 		acpi_osi_setup("Linux");
1136 	else
1137 		acpi_osi_setup("!Linux");
1138 
1139 	return;
1140 }
1141 
1142 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1143 {
1144 	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1145 	osi_linux.dmi = 0;
1146 	set_osi_linux(enable);
1147 
1148 	return;
1149 }
1150 
1151 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1152 {
1153 	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1154 
1155 	if (enable == -1)
1156 		return;
1157 
1158 	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1159 	set_osi_linux(enable);
1160 
1161 	return;
1162 }
1163 
1164 /*
1165  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1166  *
1167  * empty string disables _OSI
1168  * string starting with '!' disables that string
1169  * otherwise string is added to list, augmenting built-in strings
1170  */
1171 static void __init acpi_osi_setup_late(void)
1172 {
1173 	struct osi_setup_entry *osi;
1174 	char *str;
1175 	int i;
1176 	acpi_status status;
1177 
1178 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1179 		osi = &osi_setup_entries[i];
1180 		str = osi->string;
1181 
1182 		if (*str == '\0')
1183 			break;
1184 		if (osi->enable) {
1185 			status = acpi_install_interface(str);
1186 
1187 			if (ACPI_SUCCESS(status))
1188 				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1189 		} else {
1190 			status = acpi_remove_interface(str);
1191 
1192 			if (ACPI_SUCCESS(status))
1193 				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1194 		}
1195 	}
1196 }
1197 
1198 static int __init osi_setup(char *str)
1199 {
1200 	if (str && !strcmp("Linux", str))
1201 		acpi_cmdline_osi_linux(1);
1202 	else if (str && !strcmp("!Linux", str))
1203 		acpi_cmdline_osi_linux(0);
1204 	else
1205 		acpi_osi_setup(str);
1206 
1207 	return 1;
1208 }
1209 
1210 __setup("acpi_osi=", osi_setup);
1211 
1212 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1213 static int __init acpi_serialize_setup(char *str)
1214 {
1215 	printk(KERN_INFO PREFIX "serialize enabled\n");
1216 
1217 	acpi_gbl_all_methods_serialized = TRUE;
1218 
1219 	return 1;
1220 }
1221 
1222 __setup("acpi_serialize", acpi_serialize_setup);
1223 
1224 /* Check of resource interference between native drivers and ACPI
1225  * OperationRegions (SystemIO and System Memory only).
1226  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1227  * in arbitrary AML code and can interfere with legacy drivers.
1228  * acpi_enforce_resources= can be set to:
1229  *
1230  *   - strict (default) (2)
1231  *     -> further driver trying to access the resources will not load
1232  *   - lax              (1)
1233  *     -> further driver trying to access the resources will load, but you
1234  *     get a system message that something might go wrong...
1235  *
1236  *   - no               (0)
1237  *     -> ACPI Operation Region resources will not be registered
1238  *
1239  */
1240 #define ENFORCE_RESOURCES_STRICT 2
1241 #define ENFORCE_RESOURCES_LAX    1
1242 #define ENFORCE_RESOURCES_NO     0
1243 
1244 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1245 
1246 static int __init acpi_enforce_resources_setup(char *str)
1247 {
1248 	if (str == NULL || *str == '\0')
1249 		return 0;
1250 
1251 	if (!strcmp("strict", str))
1252 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1253 	else if (!strcmp("lax", str))
1254 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1255 	else if (!strcmp("no", str))
1256 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1257 
1258 	return 1;
1259 }
1260 
1261 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1262 
1263 /* Check for resource conflicts between ACPI OperationRegions and native
1264  * drivers */
1265 int acpi_check_resource_conflict(const struct resource *res)
1266 {
1267 	struct acpi_res_list *res_list_elem;
1268 	int ioport = 0, clash = 0;
1269 
1270 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1271 		return 0;
1272 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1273 		return 0;
1274 
1275 	ioport = res->flags & IORESOURCE_IO;
1276 
1277 	spin_lock(&acpi_res_lock);
1278 	list_for_each_entry(res_list_elem, &resource_list_head,
1279 			    resource_list) {
1280 		if (ioport && (res_list_elem->resource_type
1281 			       != ACPI_ADR_SPACE_SYSTEM_IO))
1282 			continue;
1283 		if (!ioport && (res_list_elem->resource_type
1284 				!= ACPI_ADR_SPACE_SYSTEM_MEMORY))
1285 			continue;
1286 
1287 		if (res->end < res_list_elem->start
1288 		    || res_list_elem->end < res->start)
1289 			continue;
1290 		clash = 1;
1291 		break;
1292 	}
1293 	spin_unlock(&acpi_res_lock);
1294 
1295 	if (clash) {
1296 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1297 			printk(KERN_WARNING "ACPI: resource %s %pR"
1298 			       " conflicts with ACPI region %s "
1299 			       "[%s 0x%zx-0x%zx]\n",
1300 			       res->name, res, res_list_elem->name,
1301 			       (res_list_elem->resource_type ==
1302 				ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1303 			       (size_t) res_list_elem->start,
1304 			       (size_t) res_list_elem->end);
1305 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1306 				printk(KERN_NOTICE "ACPI: This conflict may"
1307 				       " cause random problems and system"
1308 				       " instability\n");
1309 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1310 			       " for this device, you should use it instead of"
1311 			       " the native driver\n");
1312 		}
1313 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1314 			return -EBUSY;
1315 	}
1316 	return 0;
1317 }
1318 EXPORT_SYMBOL(acpi_check_resource_conflict);
1319 
1320 int acpi_check_region(resource_size_t start, resource_size_t n,
1321 		      const char *name)
1322 {
1323 	struct resource res = {
1324 		.start = start,
1325 		.end   = start + n - 1,
1326 		.name  = name,
1327 		.flags = IORESOURCE_IO,
1328 	};
1329 
1330 	return acpi_check_resource_conflict(&res);
1331 }
1332 EXPORT_SYMBOL(acpi_check_region);
1333 
1334 /*
1335  * Let drivers know whether the resource checks are effective
1336  */
1337 int acpi_resources_are_enforced(void)
1338 {
1339 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1340 }
1341 EXPORT_SYMBOL(acpi_resources_are_enforced);
1342 
1343 /*
1344  * Acquire a spinlock.
1345  *
1346  * handle is a pointer to the spinlock_t.
1347  */
1348 
1349 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1350 {
1351 	acpi_cpu_flags flags;
1352 	spin_lock_irqsave(lockp, flags);
1353 	return flags;
1354 }
1355 
1356 /*
1357  * Release a spinlock. See above.
1358  */
1359 
1360 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1361 {
1362 	spin_unlock_irqrestore(lockp, flags);
1363 }
1364 
1365 #ifndef ACPI_USE_LOCAL_CACHE
1366 
1367 /*******************************************************************************
1368  *
1369  * FUNCTION:    acpi_os_create_cache
1370  *
1371  * PARAMETERS:  name      - Ascii name for the cache
1372  *              size      - Size of each cached object
1373  *              depth     - Maximum depth of the cache (in objects) <ignored>
1374  *              cache     - Where the new cache object is returned
1375  *
1376  * RETURN:      status
1377  *
1378  * DESCRIPTION: Create a cache object
1379  *
1380  ******************************************************************************/
1381 
1382 acpi_status
1383 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1384 {
1385 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1386 	if (*cache == NULL)
1387 		return AE_ERROR;
1388 	else
1389 		return AE_OK;
1390 }
1391 
1392 /*******************************************************************************
1393  *
1394  * FUNCTION:    acpi_os_purge_cache
1395  *
1396  * PARAMETERS:  Cache           - Handle to cache object
1397  *
1398  * RETURN:      Status
1399  *
1400  * DESCRIPTION: Free all objects within the requested cache.
1401  *
1402  ******************************************************************************/
1403 
1404 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1405 {
1406 	kmem_cache_shrink(cache);
1407 	return (AE_OK);
1408 }
1409 
1410 /*******************************************************************************
1411  *
1412  * FUNCTION:    acpi_os_delete_cache
1413  *
1414  * PARAMETERS:  Cache           - Handle to cache object
1415  *
1416  * RETURN:      Status
1417  *
1418  * DESCRIPTION: Free all objects within the requested cache and delete the
1419  *              cache object.
1420  *
1421  ******************************************************************************/
1422 
1423 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1424 {
1425 	kmem_cache_destroy(cache);
1426 	return (AE_OK);
1427 }
1428 
1429 /*******************************************************************************
1430  *
1431  * FUNCTION:    acpi_os_release_object
1432  *
1433  * PARAMETERS:  Cache       - Handle to cache object
1434  *              Object      - The object to be released
1435  *
1436  * RETURN:      None
1437  *
1438  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1439  *              the object is deleted.
1440  *
1441  ******************************************************************************/
1442 
1443 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1444 {
1445 	kmem_cache_free(cache, object);
1446 	return (AE_OK);
1447 }
1448 
1449 static inline int acpi_res_list_add(struct acpi_res_list *res)
1450 {
1451 	struct acpi_res_list *res_list_elem;
1452 
1453 	list_for_each_entry(res_list_elem, &resource_list_head,
1454 			    resource_list) {
1455 
1456 		if (res->resource_type == res_list_elem->resource_type &&
1457 		    res->start == res_list_elem->start &&
1458 		    res->end == res_list_elem->end) {
1459 
1460 			/*
1461 			 * The Region(addr,len) already exist in the list,
1462 			 * just increase the count
1463 			 */
1464 
1465 			res_list_elem->count++;
1466 			return 0;
1467 		}
1468 	}
1469 
1470 	res->count = 1;
1471 	list_add(&res->resource_list, &resource_list_head);
1472 	return 1;
1473 }
1474 
1475 static inline void acpi_res_list_del(struct acpi_res_list *res)
1476 {
1477 	struct acpi_res_list *res_list_elem;
1478 
1479 	list_for_each_entry(res_list_elem, &resource_list_head,
1480 			    resource_list) {
1481 
1482 		if (res->resource_type == res_list_elem->resource_type &&
1483 		    res->start == res_list_elem->start &&
1484 		    res->end == res_list_elem->end) {
1485 
1486 			/*
1487 			 * If the res count is decreased to 0,
1488 			 * remove and free it
1489 			 */
1490 
1491 			if (--res_list_elem->count == 0) {
1492 				list_del(&res_list_elem->resource_list);
1493 				kfree(res_list_elem);
1494 			}
1495 			return;
1496 		}
1497 	}
1498 }
1499 
1500 acpi_status
1501 acpi_os_invalidate_address(
1502     u8                   space_id,
1503     acpi_physical_address   address,
1504     acpi_size               length)
1505 {
1506 	struct acpi_res_list res;
1507 
1508 	switch (space_id) {
1509 	case ACPI_ADR_SPACE_SYSTEM_IO:
1510 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1511 		/* Only interference checks against SystemIO and SystemMemory
1512 		   are needed */
1513 		res.start = address;
1514 		res.end = address + length - 1;
1515 		res.resource_type = space_id;
1516 		spin_lock(&acpi_res_lock);
1517 		acpi_res_list_del(&res);
1518 		spin_unlock(&acpi_res_lock);
1519 		break;
1520 	case ACPI_ADR_SPACE_PCI_CONFIG:
1521 	case ACPI_ADR_SPACE_EC:
1522 	case ACPI_ADR_SPACE_SMBUS:
1523 	case ACPI_ADR_SPACE_CMOS:
1524 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1525 	case ACPI_ADR_SPACE_DATA_TABLE:
1526 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1527 		break;
1528 	}
1529 	return AE_OK;
1530 }
1531 
1532 /******************************************************************************
1533  *
1534  * FUNCTION:    acpi_os_validate_address
1535  *
1536  * PARAMETERS:  space_id             - ACPI space ID
1537  *              address             - Physical address
1538  *              length              - Address length
1539  *
1540  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1541  *              should return AE_AML_ILLEGAL_ADDRESS.
1542  *
1543  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1544  *              the addresses accessed by AML operation regions.
1545  *
1546  *****************************************************************************/
1547 
1548 acpi_status
1549 acpi_os_validate_address (
1550     u8                   space_id,
1551     acpi_physical_address   address,
1552     acpi_size               length,
1553     char *name)
1554 {
1555 	struct acpi_res_list *res;
1556 	int added;
1557 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1558 		return AE_OK;
1559 
1560 	switch (space_id) {
1561 	case ACPI_ADR_SPACE_SYSTEM_IO:
1562 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1563 		/* Only interference checks against SystemIO and SystemMemory
1564 		   are needed */
1565 		res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1566 		if (!res)
1567 			return AE_OK;
1568 		/* ACPI names are fixed to 4 bytes, still better use strlcpy */
1569 		strlcpy(res->name, name, 5);
1570 		res->start = address;
1571 		res->end = address + length - 1;
1572 		res->resource_type = space_id;
1573 		spin_lock(&acpi_res_lock);
1574 		added = acpi_res_list_add(res);
1575 		spin_unlock(&acpi_res_lock);
1576 		pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1577 			 "name: %s\n", added ? "Added" : "Already exist",
1578 			 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1579 			 ? "SystemIO" : "System Memory",
1580 			 (unsigned long long)res->start,
1581 			 (unsigned long long)res->end,
1582 			 res->name);
1583 		if (!added)
1584 			kfree(res);
1585 		break;
1586 	case ACPI_ADR_SPACE_PCI_CONFIG:
1587 	case ACPI_ADR_SPACE_EC:
1588 	case ACPI_ADR_SPACE_SMBUS:
1589 	case ACPI_ADR_SPACE_CMOS:
1590 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1591 	case ACPI_ADR_SPACE_DATA_TABLE:
1592 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1593 		break;
1594 	}
1595 	return AE_OK;
1596 }
1597 #endif
1598 
1599 acpi_status __init acpi_os_initialize(void)
1600 {
1601 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1602 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1603 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1604 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1605 
1606 	return AE_OK;
1607 }
1608 
1609 acpi_status __init acpi_os_initialize1(void)
1610 {
1611 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1612 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1613 	kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1614 	BUG_ON(!kacpid_wq);
1615 	BUG_ON(!kacpi_notify_wq);
1616 	BUG_ON(!kacpi_hotplug_wq);
1617 	acpi_install_interface_handler(acpi_osi_handler);
1618 	acpi_osi_setup_late();
1619 	return AE_OK;
1620 }
1621 
1622 acpi_status acpi_os_terminate(void)
1623 {
1624 	if (acpi_irq_handler) {
1625 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1626 						 acpi_irq_handler);
1627 	}
1628 
1629 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1630 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1631 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1632 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1633 
1634 	destroy_workqueue(kacpid_wq);
1635 	destroy_workqueue(kacpi_notify_wq);
1636 	destroy_workqueue(kacpi_hotplug_wq);
1637 
1638 	return AE_OK;
1639 }
1640