1 /* 2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $) 3 * 4 * Copyright (C) 2000 Andrew Henroid 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (c) 2008 Intel Corporation 8 * Author: Matthew Wilcox <willy@linux.intel.com> 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 27 * 28 */ 29 30 #include <linux/module.h> 31 #include <linux/kernel.h> 32 #include <linux/slab.h> 33 #include <linux/mm.h> 34 #include <linux/highmem.h> 35 #include <linux/pci.h> 36 #include <linux/interrupt.h> 37 #include <linux/kmod.h> 38 #include <linux/delay.h> 39 #include <linux/workqueue.h> 40 #include <linux/nmi.h> 41 #include <linux/acpi.h> 42 #include <linux/efi.h> 43 #include <linux/ioport.h> 44 #include <linux/list.h> 45 #include <linux/jiffies.h> 46 #include <linux/semaphore.h> 47 48 #include <asm/io.h> 49 #include <asm/uaccess.h> 50 51 #include "internal.h" 52 53 #define _COMPONENT ACPI_OS_SERVICES 54 ACPI_MODULE_NAME("osl"); 55 56 struct acpi_os_dpc { 57 acpi_osd_exec_callback function; 58 void *context; 59 struct work_struct work; 60 }; 61 62 #ifdef CONFIG_ACPI_CUSTOM_DSDT 63 #include CONFIG_ACPI_CUSTOM_DSDT_FILE 64 #endif 65 66 #ifdef ENABLE_DEBUGGER 67 #include <linux/kdb.h> 68 69 /* stuff for debugger support */ 70 int acpi_in_debugger; 71 EXPORT_SYMBOL(acpi_in_debugger); 72 73 extern char line_buf[80]; 74 #endif /*ENABLE_DEBUGGER */ 75 76 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, 77 u32 pm1b_ctrl); 78 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, 79 u32 val_b); 80 81 static acpi_osd_handler acpi_irq_handler; 82 static void *acpi_irq_context; 83 static struct workqueue_struct *kacpid_wq; 84 static struct workqueue_struct *kacpi_notify_wq; 85 static struct workqueue_struct *kacpi_hotplug_wq; 86 87 /* 88 * This list of permanent mappings is for memory that may be accessed from 89 * interrupt context, where we can't do the ioremap(). 90 */ 91 struct acpi_ioremap { 92 struct list_head list; 93 void __iomem *virt; 94 acpi_physical_address phys; 95 acpi_size size; 96 unsigned long refcount; 97 }; 98 99 static LIST_HEAD(acpi_ioremaps); 100 static DEFINE_MUTEX(acpi_ioremap_lock); 101 102 static void __init acpi_osi_setup_late(void); 103 104 /* 105 * The story of _OSI(Linux) 106 * 107 * From pre-history through Linux-2.6.22, 108 * Linux responded TRUE upon a BIOS OSI(Linux) query. 109 * 110 * Unfortunately, reference BIOS writers got wind of this 111 * and put OSI(Linux) in their example code, quickly exposing 112 * this string as ill-conceived and opening the door to 113 * an un-bounded number of BIOS incompatibilities. 114 * 115 * For example, OSI(Linux) was used on resume to re-POST a 116 * video card on one system, because Linux at that time 117 * could not do a speedy restore in its native driver. 118 * But then upon gaining quick native restore capability, 119 * Linux has no way to tell the BIOS to skip the time-consuming 120 * POST -- putting Linux at a permanent performance disadvantage. 121 * On another system, the BIOS writer used OSI(Linux) 122 * to infer native OS support for IPMI! On other systems, 123 * OSI(Linux) simply got in the way of Linux claiming to 124 * be compatible with other operating systems, exposing 125 * BIOS issues such as skipped device initialization. 126 * 127 * So "Linux" turned out to be a really poor chose of 128 * OSI string, and from Linux-2.6.23 onward we respond FALSE. 129 * 130 * BIOS writers should NOT query _OSI(Linux) on future systems. 131 * Linux will complain on the console when it sees it, and return FALSE. 132 * To get Linux to return TRUE for your system will require 133 * a kernel source update to add a DMI entry, 134 * or boot with "acpi_osi=Linux" 135 */ 136 137 static struct osi_linux { 138 unsigned int enable:1; 139 unsigned int dmi:1; 140 unsigned int cmdline:1; 141 unsigned int default_disabling:1; 142 } osi_linux = {0, 0, 0, 0}; 143 144 static u32 acpi_osi_handler(acpi_string interface, u32 supported) 145 { 146 if (!strcmp("Linux", interface)) { 147 148 printk_once(KERN_NOTICE FW_BUG PREFIX 149 "BIOS _OSI(Linux) query %s%s\n", 150 osi_linux.enable ? "honored" : "ignored", 151 osi_linux.cmdline ? " via cmdline" : 152 osi_linux.dmi ? " via DMI" : ""); 153 } 154 155 return supported; 156 } 157 158 static void __init acpi_request_region (struct acpi_generic_address *gas, 159 unsigned int length, char *desc) 160 { 161 u64 addr; 162 163 /* Handle possible alignment issues */ 164 memcpy(&addr, &gas->address, sizeof(addr)); 165 if (!addr || !length) 166 return; 167 168 /* Resources are never freed */ 169 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) 170 request_region(addr, length, desc); 171 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 172 request_mem_region(addr, length, desc); 173 } 174 175 static int __init acpi_reserve_resources(void) 176 { 177 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, 178 "ACPI PM1a_EVT_BLK"); 179 180 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, 181 "ACPI PM1b_EVT_BLK"); 182 183 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, 184 "ACPI PM1a_CNT_BLK"); 185 186 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, 187 "ACPI PM1b_CNT_BLK"); 188 189 if (acpi_gbl_FADT.pm_timer_length == 4) 190 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); 191 192 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, 193 "ACPI PM2_CNT_BLK"); 194 195 /* Length of GPE blocks must be a non-negative multiple of 2 */ 196 197 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) 198 acpi_request_region(&acpi_gbl_FADT.xgpe0_block, 199 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); 200 201 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) 202 acpi_request_region(&acpi_gbl_FADT.xgpe1_block, 203 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); 204 205 return 0; 206 } 207 device_initcall(acpi_reserve_resources); 208 209 void acpi_os_printf(const char *fmt, ...) 210 { 211 va_list args; 212 va_start(args, fmt); 213 acpi_os_vprintf(fmt, args); 214 va_end(args); 215 } 216 217 void acpi_os_vprintf(const char *fmt, va_list args) 218 { 219 static char buffer[512]; 220 221 vsprintf(buffer, fmt, args); 222 223 #ifdef ENABLE_DEBUGGER 224 if (acpi_in_debugger) { 225 kdb_printf("%s", buffer); 226 } else { 227 printk(KERN_CONT "%s", buffer); 228 } 229 #else 230 printk(KERN_CONT "%s", buffer); 231 #endif 232 } 233 234 #ifdef CONFIG_KEXEC 235 static unsigned long acpi_rsdp; 236 static int __init setup_acpi_rsdp(char *arg) 237 { 238 acpi_rsdp = simple_strtoul(arg, NULL, 16); 239 return 0; 240 } 241 early_param("acpi_rsdp", setup_acpi_rsdp); 242 #endif 243 244 acpi_physical_address __init acpi_os_get_root_pointer(void) 245 { 246 #ifdef CONFIG_KEXEC 247 if (acpi_rsdp) 248 return acpi_rsdp; 249 #endif 250 251 if (efi_enabled(EFI_CONFIG_TABLES)) { 252 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) 253 return efi.acpi20; 254 else if (efi.acpi != EFI_INVALID_TABLE_ADDR) 255 return efi.acpi; 256 else { 257 printk(KERN_ERR PREFIX 258 "System description tables not found\n"); 259 return 0; 260 } 261 } else { 262 acpi_physical_address pa = 0; 263 264 acpi_find_root_pointer(&pa); 265 return pa; 266 } 267 } 268 269 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 270 static struct acpi_ioremap * 271 acpi_map_lookup(acpi_physical_address phys, acpi_size size) 272 { 273 struct acpi_ioremap *map; 274 275 list_for_each_entry_rcu(map, &acpi_ioremaps, list) 276 if (map->phys <= phys && 277 phys + size <= map->phys + map->size) 278 return map; 279 280 return NULL; 281 } 282 283 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 284 static void __iomem * 285 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) 286 { 287 struct acpi_ioremap *map; 288 289 map = acpi_map_lookup(phys, size); 290 if (map) 291 return map->virt + (phys - map->phys); 292 293 return NULL; 294 } 295 296 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) 297 { 298 struct acpi_ioremap *map; 299 void __iomem *virt = NULL; 300 301 mutex_lock(&acpi_ioremap_lock); 302 map = acpi_map_lookup(phys, size); 303 if (map) { 304 virt = map->virt + (phys - map->phys); 305 map->refcount++; 306 } 307 mutex_unlock(&acpi_ioremap_lock); 308 return virt; 309 } 310 EXPORT_SYMBOL_GPL(acpi_os_get_iomem); 311 312 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 313 static struct acpi_ioremap * 314 acpi_map_lookup_virt(void __iomem *virt, acpi_size size) 315 { 316 struct acpi_ioremap *map; 317 318 list_for_each_entry_rcu(map, &acpi_ioremaps, list) 319 if (map->virt <= virt && 320 virt + size <= map->virt + map->size) 321 return map; 322 323 return NULL; 324 } 325 326 #ifndef CONFIG_IA64 327 #define should_use_kmap(pfn) page_is_ram(pfn) 328 #else 329 /* ioremap will take care of cache attributes */ 330 #define should_use_kmap(pfn) 0 331 #endif 332 333 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz) 334 { 335 unsigned long pfn; 336 337 pfn = pg_off >> PAGE_SHIFT; 338 if (should_use_kmap(pfn)) { 339 if (pg_sz > PAGE_SIZE) 340 return NULL; 341 return (void __iomem __force *)kmap(pfn_to_page(pfn)); 342 } else 343 return acpi_os_ioremap(pg_off, pg_sz); 344 } 345 346 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) 347 { 348 unsigned long pfn; 349 350 pfn = pg_off >> PAGE_SHIFT; 351 if (should_use_kmap(pfn)) 352 kunmap(pfn_to_page(pfn)); 353 else 354 iounmap(vaddr); 355 } 356 357 void __iomem *__init_refok 358 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) 359 { 360 struct acpi_ioremap *map; 361 void __iomem *virt; 362 acpi_physical_address pg_off; 363 acpi_size pg_sz; 364 365 if (phys > ULONG_MAX) { 366 printk(KERN_ERR PREFIX "Cannot map memory that high\n"); 367 return NULL; 368 } 369 370 if (!acpi_gbl_permanent_mmap) 371 return __acpi_map_table((unsigned long)phys, size); 372 373 mutex_lock(&acpi_ioremap_lock); 374 /* Check if there's a suitable mapping already. */ 375 map = acpi_map_lookup(phys, size); 376 if (map) { 377 map->refcount++; 378 goto out; 379 } 380 381 map = kzalloc(sizeof(*map), GFP_KERNEL); 382 if (!map) { 383 mutex_unlock(&acpi_ioremap_lock); 384 return NULL; 385 } 386 387 pg_off = round_down(phys, PAGE_SIZE); 388 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; 389 virt = acpi_map(pg_off, pg_sz); 390 if (!virt) { 391 mutex_unlock(&acpi_ioremap_lock); 392 kfree(map); 393 return NULL; 394 } 395 396 INIT_LIST_HEAD(&map->list); 397 map->virt = virt; 398 map->phys = pg_off; 399 map->size = pg_sz; 400 map->refcount = 1; 401 402 list_add_tail_rcu(&map->list, &acpi_ioremaps); 403 404 out: 405 mutex_unlock(&acpi_ioremap_lock); 406 return map->virt + (phys - map->phys); 407 } 408 EXPORT_SYMBOL_GPL(acpi_os_map_iomem); 409 410 void *__init_refok 411 acpi_os_map_memory(acpi_physical_address phys, acpi_size size) 412 { 413 return (void *)acpi_os_map_iomem(phys, size); 414 } 415 EXPORT_SYMBOL_GPL(acpi_os_map_memory); 416 417 static void acpi_os_drop_map_ref(struct acpi_ioremap *map) 418 { 419 if (!--map->refcount) 420 list_del_rcu(&map->list); 421 } 422 423 static void acpi_os_map_cleanup(struct acpi_ioremap *map) 424 { 425 if (!map->refcount) { 426 synchronize_rcu(); 427 acpi_unmap(map->phys, map->virt); 428 kfree(map); 429 } 430 } 431 432 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) 433 { 434 struct acpi_ioremap *map; 435 436 if (!acpi_gbl_permanent_mmap) { 437 __acpi_unmap_table(virt, size); 438 return; 439 } 440 441 mutex_lock(&acpi_ioremap_lock); 442 map = acpi_map_lookup_virt(virt, size); 443 if (!map) { 444 mutex_unlock(&acpi_ioremap_lock); 445 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt); 446 return; 447 } 448 acpi_os_drop_map_ref(map); 449 mutex_unlock(&acpi_ioremap_lock); 450 451 acpi_os_map_cleanup(map); 452 } 453 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); 454 455 void __ref acpi_os_unmap_memory(void *virt, acpi_size size) 456 { 457 return acpi_os_unmap_iomem((void __iomem *)virt, size); 458 } 459 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); 460 461 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size) 462 { 463 if (!acpi_gbl_permanent_mmap) 464 __acpi_unmap_table(virt, size); 465 } 466 467 int acpi_os_map_generic_address(struct acpi_generic_address *gas) 468 { 469 u64 addr; 470 void __iomem *virt; 471 472 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 473 return 0; 474 475 /* Handle possible alignment issues */ 476 memcpy(&addr, &gas->address, sizeof(addr)); 477 if (!addr || !gas->bit_width) 478 return -EINVAL; 479 480 virt = acpi_os_map_iomem(addr, gas->bit_width / 8); 481 if (!virt) 482 return -EIO; 483 484 return 0; 485 } 486 EXPORT_SYMBOL(acpi_os_map_generic_address); 487 488 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) 489 { 490 u64 addr; 491 struct acpi_ioremap *map; 492 493 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 494 return; 495 496 /* Handle possible alignment issues */ 497 memcpy(&addr, &gas->address, sizeof(addr)); 498 if (!addr || !gas->bit_width) 499 return; 500 501 mutex_lock(&acpi_ioremap_lock); 502 map = acpi_map_lookup(addr, gas->bit_width / 8); 503 if (!map) { 504 mutex_unlock(&acpi_ioremap_lock); 505 return; 506 } 507 acpi_os_drop_map_ref(map); 508 mutex_unlock(&acpi_ioremap_lock); 509 510 acpi_os_map_cleanup(map); 511 } 512 EXPORT_SYMBOL(acpi_os_unmap_generic_address); 513 514 #ifdef ACPI_FUTURE_USAGE 515 acpi_status 516 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys) 517 { 518 if (!phys || !virt) 519 return AE_BAD_PARAMETER; 520 521 *phys = virt_to_phys(virt); 522 523 return AE_OK; 524 } 525 #endif 526 527 #define ACPI_MAX_OVERRIDE_LEN 100 528 529 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; 530 531 acpi_status 532 acpi_os_predefined_override(const struct acpi_predefined_names *init_val, 533 acpi_string * new_val) 534 { 535 if (!init_val || !new_val) 536 return AE_BAD_PARAMETER; 537 538 *new_val = NULL; 539 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { 540 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n", 541 acpi_os_name); 542 *new_val = acpi_os_name; 543 } 544 545 return AE_OK; 546 } 547 548 #ifdef CONFIG_ACPI_INITRD_TABLE_OVERRIDE 549 #include <linux/earlycpio.h> 550 #include <linux/memblock.h> 551 552 static u64 acpi_tables_addr; 553 static int all_tables_size; 554 555 /* Copied from acpica/tbutils.c:acpi_tb_checksum() */ 556 static u8 __init acpi_table_checksum(u8 *buffer, u32 length) 557 { 558 u8 sum = 0; 559 u8 *end = buffer + length; 560 561 while (buffer < end) 562 sum = (u8) (sum + *(buffer++)); 563 return sum; 564 } 565 566 /* All but ACPI_SIG_RSDP and ACPI_SIG_FACS: */ 567 static const char * const table_sigs[] = { 568 ACPI_SIG_BERT, ACPI_SIG_CPEP, ACPI_SIG_ECDT, ACPI_SIG_EINJ, 569 ACPI_SIG_ERST, ACPI_SIG_HEST, ACPI_SIG_MADT, ACPI_SIG_MSCT, 570 ACPI_SIG_SBST, ACPI_SIG_SLIT, ACPI_SIG_SRAT, ACPI_SIG_ASF, 571 ACPI_SIG_BOOT, ACPI_SIG_DBGP, ACPI_SIG_DMAR, ACPI_SIG_HPET, 572 ACPI_SIG_IBFT, ACPI_SIG_IVRS, ACPI_SIG_MCFG, ACPI_SIG_MCHI, 573 ACPI_SIG_SLIC, ACPI_SIG_SPCR, ACPI_SIG_SPMI, ACPI_SIG_TCPA, 574 ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT, 575 ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT, 576 ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, NULL }; 577 578 #define ACPI_HEADER_SIZE sizeof(struct acpi_table_header) 579 580 #define ACPI_OVERRIDE_TABLES 64 581 static struct cpio_data __initdata acpi_initrd_files[ACPI_OVERRIDE_TABLES]; 582 583 #define MAP_CHUNK_SIZE (NR_FIX_BTMAPS << PAGE_SHIFT) 584 585 void __init acpi_initrd_override(void *data, size_t size) 586 { 587 int sig, no, table_nr = 0, total_offset = 0; 588 long offset = 0; 589 struct acpi_table_header *table; 590 char cpio_path[32] = "kernel/firmware/acpi/"; 591 struct cpio_data file; 592 593 if (data == NULL || size == 0) 594 return; 595 596 for (no = 0; no < ACPI_OVERRIDE_TABLES; no++) { 597 file = find_cpio_data(cpio_path, data, size, &offset); 598 if (!file.data) 599 break; 600 601 data += offset; 602 size -= offset; 603 604 if (file.size < sizeof(struct acpi_table_header)) { 605 pr_err("ACPI OVERRIDE: Table smaller than ACPI header [%s%s]\n", 606 cpio_path, file.name); 607 continue; 608 } 609 610 table = file.data; 611 612 for (sig = 0; table_sigs[sig]; sig++) 613 if (!memcmp(table->signature, table_sigs[sig], 4)) 614 break; 615 616 if (!table_sigs[sig]) { 617 pr_err("ACPI OVERRIDE: Unknown signature [%s%s]\n", 618 cpio_path, file.name); 619 continue; 620 } 621 if (file.size != table->length) { 622 pr_err("ACPI OVERRIDE: File length does not match table length [%s%s]\n", 623 cpio_path, file.name); 624 continue; 625 } 626 if (acpi_table_checksum(file.data, table->length)) { 627 pr_err("ACPI OVERRIDE: Bad table checksum [%s%s]\n", 628 cpio_path, file.name); 629 continue; 630 } 631 632 pr_info("%4.4s ACPI table found in initrd [%s%s][0x%x]\n", 633 table->signature, cpio_path, file.name, table->length); 634 635 all_tables_size += table->length; 636 acpi_initrd_files[table_nr].data = file.data; 637 acpi_initrd_files[table_nr].size = file.size; 638 table_nr++; 639 } 640 if (table_nr == 0) 641 return; 642 643 acpi_tables_addr = 644 memblock_find_in_range(0, max_low_pfn_mapped << PAGE_SHIFT, 645 all_tables_size, PAGE_SIZE); 646 if (!acpi_tables_addr) { 647 WARN_ON(1); 648 return; 649 } 650 /* 651 * Only calling e820_add_reserve does not work and the 652 * tables are invalid (memory got used) later. 653 * memblock_reserve works as expected and the tables won't get modified. 654 * But it's not enough on X86 because ioremap will 655 * complain later (used by acpi_os_map_memory) that the pages 656 * that should get mapped are not marked "reserved". 657 * Both memblock_reserve and e820_add_region (via arch_reserve_mem_area) 658 * works fine. 659 */ 660 memblock_reserve(acpi_tables_addr, all_tables_size); 661 arch_reserve_mem_area(acpi_tables_addr, all_tables_size); 662 663 /* 664 * early_ioremap only can remap 256k one time. If we map all 665 * tables one time, we will hit the limit. Need to map chunks 666 * one by one during copying the same as that in relocate_initrd(). 667 */ 668 for (no = 0; no < table_nr; no++) { 669 unsigned char *src_p = acpi_initrd_files[no].data; 670 phys_addr_t size = acpi_initrd_files[no].size; 671 phys_addr_t dest_addr = acpi_tables_addr + total_offset; 672 phys_addr_t slop, clen; 673 char *dest_p; 674 675 total_offset += size; 676 677 while (size) { 678 slop = dest_addr & ~PAGE_MASK; 679 clen = size; 680 if (clen > MAP_CHUNK_SIZE - slop) 681 clen = MAP_CHUNK_SIZE - slop; 682 dest_p = early_ioremap(dest_addr & PAGE_MASK, 683 clen + slop); 684 memcpy(dest_p + slop, src_p, clen); 685 early_iounmap(dest_p, clen + slop); 686 src_p += clen; 687 dest_addr += clen; 688 size -= clen; 689 } 690 } 691 } 692 #endif /* CONFIG_ACPI_INITRD_TABLE_OVERRIDE */ 693 694 static void acpi_table_taint(struct acpi_table_header *table) 695 { 696 pr_warn(PREFIX 697 "Override [%4.4s-%8.8s], this is unsafe: tainting kernel\n", 698 table->signature, table->oem_table_id); 699 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE, LOCKDEP_NOW_UNRELIABLE); 700 } 701 702 703 acpi_status 704 acpi_os_table_override(struct acpi_table_header * existing_table, 705 struct acpi_table_header ** new_table) 706 { 707 if (!existing_table || !new_table) 708 return AE_BAD_PARAMETER; 709 710 *new_table = NULL; 711 712 #ifdef CONFIG_ACPI_CUSTOM_DSDT 713 if (strncmp(existing_table->signature, "DSDT", 4) == 0) 714 *new_table = (struct acpi_table_header *)AmlCode; 715 #endif 716 if (*new_table != NULL) 717 acpi_table_taint(existing_table); 718 return AE_OK; 719 } 720 721 acpi_status 722 acpi_os_physical_table_override(struct acpi_table_header *existing_table, 723 acpi_physical_address *address, 724 u32 *table_length) 725 { 726 #ifndef CONFIG_ACPI_INITRD_TABLE_OVERRIDE 727 *table_length = 0; 728 *address = 0; 729 return AE_OK; 730 #else 731 int table_offset = 0; 732 struct acpi_table_header *table; 733 734 *table_length = 0; 735 *address = 0; 736 737 if (!acpi_tables_addr) 738 return AE_OK; 739 740 do { 741 if (table_offset + ACPI_HEADER_SIZE > all_tables_size) { 742 WARN_ON(1); 743 return AE_OK; 744 } 745 746 table = acpi_os_map_memory(acpi_tables_addr + table_offset, 747 ACPI_HEADER_SIZE); 748 749 if (table_offset + table->length > all_tables_size) { 750 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE); 751 WARN_ON(1); 752 return AE_OK; 753 } 754 755 table_offset += table->length; 756 757 if (memcmp(existing_table->signature, table->signature, 4)) { 758 acpi_os_unmap_memory(table, 759 ACPI_HEADER_SIZE); 760 continue; 761 } 762 763 /* Only override tables with matching oem id */ 764 if (memcmp(table->oem_table_id, existing_table->oem_table_id, 765 ACPI_OEM_TABLE_ID_SIZE)) { 766 acpi_os_unmap_memory(table, 767 ACPI_HEADER_SIZE); 768 continue; 769 } 770 771 table_offset -= table->length; 772 *table_length = table->length; 773 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE); 774 *address = acpi_tables_addr + table_offset; 775 break; 776 } while (table_offset + ACPI_HEADER_SIZE < all_tables_size); 777 778 if (*address != 0) 779 acpi_table_taint(existing_table); 780 return AE_OK; 781 #endif 782 } 783 784 static irqreturn_t acpi_irq(int irq, void *dev_id) 785 { 786 u32 handled; 787 788 handled = (*acpi_irq_handler) (acpi_irq_context); 789 790 if (handled) { 791 acpi_irq_handled++; 792 return IRQ_HANDLED; 793 } else { 794 acpi_irq_not_handled++; 795 return IRQ_NONE; 796 } 797 } 798 799 acpi_status 800 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, 801 void *context) 802 { 803 unsigned int irq; 804 805 acpi_irq_stats_init(); 806 807 /* 808 * ACPI interrupts different from the SCI in our copy of the FADT are 809 * not supported. 810 */ 811 if (gsi != acpi_gbl_FADT.sci_interrupt) 812 return AE_BAD_PARAMETER; 813 814 if (acpi_irq_handler) 815 return AE_ALREADY_ACQUIRED; 816 817 if (acpi_gsi_to_irq(gsi, &irq) < 0) { 818 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n", 819 gsi); 820 return AE_OK; 821 } 822 823 acpi_irq_handler = handler; 824 acpi_irq_context = context; 825 if (request_irq(irq, acpi_irq, IRQF_SHARED | IRQF_NO_SUSPEND, "acpi", acpi_irq)) { 826 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq); 827 acpi_irq_handler = NULL; 828 return AE_NOT_ACQUIRED; 829 } 830 831 return AE_OK; 832 } 833 834 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler) 835 { 836 if (irq != acpi_gbl_FADT.sci_interrupt) 837 return AE_BAD_PARAMETER; 838 839 free_irq(irq, acpi_irq); 840 acpi_irq_handler = NULL; 841 842 return AE_OK; 843 } 844 845 /* 846 * Running in interpreter thread context, safe to sleep 847 */ 848 849 void acpi_os_sleep(u64 ms) 850 { 851 msleep(ms); 852 } 853 854 void acpi_os_stall(u32 us) 855 { 856 while (us) { 857 u32 delay = 1000; 858 859 if (delay > us) 860 delay = us; 861 udelay(delay); 862 touch_nmi_watchdog(); 863 us -= delay; 864 } 865 } 866 867 /* 868 * Support ACPI 3.0 AML Timer operand 869 * Returns 64-bit free-running, monotonically increasing timer 870 * with 100ns granularity 871 */ 872 u64 acpi_os_get_timer(void) 873 { 874 u64 time_ns = ktime_to_ns(ktime_get()); 875 do_div(time_ns, 100); 876 return time_ns; 877 } 878 879 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width) 880 { 881 u32 dummy; 882 883 if (!value) 884 value = &dummy; 885 886 *value = 0; 887 if (width <= 8) { 888 *(u8 *) value = inb(port); 889 } else if (width <= 16) { 890 *(u16 *) value = inw(port); 891 } else if (width <= 32) { 892 *(u32 *) value = inl(port); 893 } else { 894 BUG(); 895 } 896 897 return AE_OK; 898 } 899 900 EXPORT_SYMBOL(acpi_os_read_port); 901 902 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) 903 { 904 if (width <= 8) { 905 outb(value, port); 906 } else if (width <= 16) { 907 outw(value, port); 908 } else if (width <= 32) { 909 outl(value, port); 910 } else { 911 BUG(); 912 } 913 914 return AE_OK; 915 } 916 917 EXPORT_SYMBOL(acpi_os_write_port); 918 919 #ifdef readq 920 static inline u64 read64(const volatile void __iomem *addr) 921 { 922 return readq(addr); 923 } 924 #else 925 static inline u64 read64(const volatile void __iomem *addr) 926 { 927 u64 l, h; 928 l = readl(addr); 929 h = readl(addr+4); 930 return l | (h << 32); 931 } 932 #endif 933 934 acpi_status 935 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) 936 { 937 void __iomem *virt_addr; 938 unsigned int size = width / 8; 939 bool unmap = false; 940 u64 dummy; 941 942 rcu_read_lock(); 943 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 944 if (!virt_addr) { 945 rcu_read_unlock(); 946 virt_addr = acpi_os_ioremap(phys_addr, size); 947 if (!virt_addr) 948 return AE_BAD_ADDRESS; 949 unmap = true; 950 } 951 952 if (!value) 953 value = &dummy; 954 955 switch (width) { 956 case 8: 957 *(u8 *) value = readb(virt_addr); 958 break; 959 case 16: 960 *(u16 *) value = readw(virt_addr); 961 break; 962 case 32: 963 *(u32 *) value = readl(virt_addr); 964 break; 965 case 64: 966 *(u64 *) value = read64(virt_addr); 967 break; 968 default: 969 BUG(); 970 } 971 972 if (unmap) 973 iounmap(virt_addr); 974 else 975 rcu_read_unlock(); 976 977 return AE_OK; 978 } 979 980 #ifdef writeq 981 static inline void write64(u64 val, volatile void __iomem *addr) 982 { 983 writeq(val, addr); 984 } 985 #else 986 static inline void write64(u64 val, volatile void __iomem *addr) 987 { 988 writel(val, addr); 989 writel(val>>32, addr+4); 990 } 991 #endif 992 993 acpi_status 994 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) 995 { 996 void __iomem *virt_addr; 997 unsigned int size = width / 8; 998 bool unmap = false; 999 1000 rcu_read_lock(); 1001 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 1002 if (!virt_addr) { 1003 rcu_read_unlock(); 1004 virt_addr = acpi_os_ioremap(phys_addr, size); 1005 if (!virt_addr) 1006 return AE_BAD_ADDRESS; 1007 unmap = true; 1008 } 1009 1010 switch (width) { 1011 case 8: 1012 writeb(value, virt_addr); 1013 break; 1014 case 16: 1015 writew(value, virt_addr); 1016 break; 1017 case 32: 1018 writel(value, virt_addr); 1019 break; 1020 case 64: 1021 write64(value, virt_addr); 1022 break; 1023 default: 1024 BUG(); 1025 } 1026 1027 if (unmap) 1028 iounmap(virt_addr); 1029 else 1030 rcu_read_unlock(); 1031 1032 return AE_OK; 1033 } 1034 1035 acpi_status 1036 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, 1037 u64 *value, u32 width) 1038 { 1039 int result, size; 1040 u32 value32; 1041 1042 if (!value) 1043 return AE_BAD_PARAMETER; 1044 1045 switch (width) { 1046 case 8: 1047 size = 1; 1048 break; 1049 case 16: 1050 size = 2; 1051 break; 1052 case 32: 1053 size = 4; 1054 break; 1055 default: 1056 return AE_ERROR; 1057 } 1058 1059 result = raw_pci_read(pci_id->segment, pci_id->bus, 1060 PCI_DEVFN(pci_id->device, pci_id->function), 1061 reg, size, &value32); 1062 *value = value32; 1063 1064 return (result ? AE_ERROR : AE_OK); 1065 } 1066 1067 acpi_status 1068 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, 1069 u64 value, u32 width) 1070 { 1071 int result, size; 1072 1073 switch (width) { 1074 case 8: 1075 size = 1; 1076 break; 1077 case 16: 1078 size = 2; 1079 break; 1080 case 32: 1081 size = 4; 1082 break; 1083 default: 1084 return AE_ERROR; 1085 } 1086 1087 result = raw_pci_write(pci_id->segment, pci_id->bus, 1088 PCI_DEVFN(pci_id->device, pci_id->function), 1089 reg, size, value); 1090 1091 return (result ? AE_ERROR : AE_OK); 1092 } 1093 1094 static void acpi_os_execute_deferred(struct work_struct *work) 1095 { 1096 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); 1097 1098 dpc->function(dpc->context); 1099 kfree(dpc); 1100 } 1101 1102 /******************************************************************************* 1103 * 1104 * FUNCTION: acpi_os_execute 1105 * 1106 * PARAMETERS: Type - Type of the callback 1107 * Function - Function to be executed 1108 * Context - Function parameters 1109 * 1110 * RETURN: Status 1111 * 1112 * DESCRIPTION: Depending on type, either queues function for deferred execution or 1113 * immediately executes function on a separate thread. 1114 * 1115 ******************************************************************************/ 1116 1117 acpi_status acpi_os_execute(acpi_execute_type type, 1118 acpi_osd_exec_callback function, void *context) 1119 { 1120 acpi_status status = AE_OK; 1121 struct acpi_os_dpc *dpc; 1122 struct workqueue_struct *queue; 1123 int ret; 1124 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1125 "Scheduling function [%p(%p)] for deferred execution.\n", 1126 function, context)); 1127 1128 /* 1129 * Allocate/initialize DPC structure. Note that this memory will be 1130 * freed by the callee. The kernel handles the work_struct list in a 1131 * way that allows us to also free its memory inside the callee. 1132 * Because we may want to schedule several tasks with different 1133 * parameters we can't use the approach some kernel code uses of 1134 * having a static work_struct. 1135 */ 1136 1137 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); 1138 if (!dpc) 1139 return AE_NO_MEMORY; 1140 1141 dpc->function = function; 1142 dpc->context = context; 1143 1144 /* 1145 * To prevent lockdep from complaining unnecessarily, make sure that 1146 * there is a different static lockdep key for each workqueue by using 1147 * INIT_WORK() for each of them separately. 1148 */ 1149 if (type == OSL_NOTIFY_HANDLER) { 1150 queue = kacpi_notify_wq; 1151 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1152 } else { 1153 queue = kacpid_wq; 1154 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1155 } 1156 1157 /* 1158 * On some machines, a software-initiated SMI causes corruption unless 1159 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but 1160 * typically it's done in GPE-related methods that are run via 1161 * workqueues, so we can avoid the known corruption cases by always 1162 * queueing on CPU 0. 1163 */ 1164 ret = queue_work_on(0, queue, &dpc->work); 1165 1166 if (!ret) { 1167 printk(KERN_ERR PREFIX 1168 "Call to queue_work() failed.\n"); 1169 status = AE_ERROR; 1170 kfree(dpc); 1171 } 1172 return status; 1173 } 1174 EXPORT_SYMBOL(acpi_os_execute); 1175 1176 void acpi_os_wait_events_complete(void) 1177 { 1178 flush_workqueue(kacpid_wq); 1179 flush_workqueue(kacpi_notify_wq); 1180 } 1181 1182 struct acpi_hp_work { 1183 struct work_struct work; 1184 struct acpi_device *adev; 1185 u32 src; 1186 }; 1187 1188 static void acpi_hotplug_work_fn(struct work_struct *work) 1189 { 1190 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); 1191 1192 acpi_os_wait_events_complete(); 1193 acpi_device_hotplug(hpw->adev, hpw->src); 1194 kfree(hpw); 1195 } 1196 1197 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) 1198 { 1199 struct acpi_hp_work *hpw; 1200 1201 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1202 "Scheduling hotplug event (%p, %u) for deferred execution.\n", 1203 adev, src)); 1204 1205 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); 1206 if (!hpw) 1207 return AE_NO_MEMORY; 1208 1209 INIT_WORK(&hpw->work, acpi_hotplug_work_fn); 1210 hpw->adev = adev; 1211 hpw->src = src; 1212 /* 1213 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because 1214 * the hotplug code may call driver .remove() functions, which may 1215 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush 1216 * these workqueues. 1217 */ 1218 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { 1219 kfree(hpw); 1220 return AE_ERROR; 1221 } 1222 return AE_OK; 1223 } 1224 1225 bool acpi_queue_hotplug_work(struct work_struct *work) 1226 { 1227 return queue_work(kacpi_hotplug_wq, work); 1228 } 1229 1230 acpi_status 1231 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle) 1232 { 1233 struct semaphore *sem = NULL; 1234 1235 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); 1236 if (!sem) 1237 return AE_NO_MEMORY; 1238 1239 sema_init(sem, initial_units); 1240 1241 *handle = (acpi_handle *) sem; 1242 1243 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", 1244 *handle, initial_units)); 1245 1246 return AE_OK; 1247 } 1248 1249 /* 1250 * TODO: A better way to delete semaphores? Linux doesn't have a 1251 * 'delete_semaphore()' function -- may result in an invalid 1252 * pointer dereference for non-synchronized consumers. Should 1253 * we at least check for blocked threads and signal/cancel them? 1254 */ 1255 1256 acpi_status acpi_os_delete_semaphore(acpi_handle handle) 1257 { 1258 struct semaphore *sem = (struct semaphore *)handle; 1259 1260 if (!sem) 1261 return AE_BAD_PARAMETER; 1262 1263 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); 1264 1265 BUG_ON(!list_empty(&sem->wait_list)); 1266 kfree(sem); 1267 sem = NULL; 1268 1269 return AE_OK; 1270 } 1271 1272 /* 1273 * TODO: Support for units > 1? 1274 */ 1275 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) 1276 { 1277 acpi_status status = AE_OK; 1278 struct semaphore *sem = (struct semaphore *)handle; 1279 long jiffies; 1280 int ret = 0; 1281 1282 if (!sem || (units < 1)) 1283 return AE_BAD_PARAMETER; 1284 1285 if (units > 1) 1286 return AE_SUPPORT; 1287 1288 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", 1289 handle, units, timeout)); 1290 1291 if (timeout == ACPI_WAIT_FOREVER) 1292 jiffies = MAX_SCHEDULE_TIMEOUT; 1293 else 1294 jiffies = msecs_to_jiffies(timeout); 1295 1296 ret = down_timeout(sem, jiffies); 1297 if (ret) 1298 status = AE_TIME; 1299 1300 if (ACPI_FAILURE(status)) { 1301 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1302 "Failed to acquire semaphore[%p|%d|%d], %s", 1303 handle, units, timeout, 1304 acpi_format_exception(status))); 1305 } else { 1306 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1307 "Acquired semaphore[%p|%d|%d]", handle, 1308 units, timeout)); 1309 } 1310 1311 return status; 1312 } 1313 1314 /* 1315 * TODO: Support for units > 1? 1316 */ 1317 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) 1318 { 1319 struct semaphore *sem = (struct semaphore *)handle; 1320 1321 if (!sem || (units < 1)) 1322 return AE_BAD_PARAMETER; 1323 1324 if (units > 1) 1325 return AE_SUPPORT; 1326 1327 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, 1328 units)); 1329 1330 up(sem); 1331 1332 return AE_OK; 1333 } 1334 1335 #ifdef ACPI_FUTURE_USAGE 1336 u32 acpi_os_get_line(char *buffer) 1337 { 1338 1339 #ifdef ENABLE_DEBUGGER 1340 if (acpi_in_debugger) { 1341 u32 chars; 1342 1343 kdb_read(buffer, sizeof(line_buf)); 1344 1345 /* remove the CR kdb includes */ 1346 chars = strlen(buffer) - 1; 1347 buffer[chars] = '\0'; 1348 } 1349 #endif 1350 1351 return 0; 1352 } 1353 #endif /* ACPI_FUTURE_USAGE */ 1354 1355 acpi_status acpi_os_signal(u32 function, void *info) 1356 { 1357 switch (function) { 1358 case ACPI_SIGNAL_FATAL: 1359 printk(KERN_ERR PREFIX "Fatal opcode executed\n"); 1360 break; 1361 case ACPI_SIGNAL_BREAKPOINT: 1362 /* 1363 * AML Breakpoint 1364 * ACPI spec. says to treat it as a NOP unless 1365 * you are debugging. So if/when we integrate 1366 * AML debugger into the kernel debugger its 1367 * hook will go here. But until then it is 1368 * not useful to print anything on breakpoints. 1369 */ 1370 break; 1371 default: 1372 break; 1373 } 1374 1375 return AE_OK; 1376 } 1377 1378 static int __init acpi_os_name_setup(char *str) 1379 { 1380 char *p = acpi_os_name; 1381 int count = ACPI_MAX_OVERRIDE_LEN - 1; 1382 1383 if (!str || !*str) 1384 return 0; 1385 1386 for (; count-- && *str; str++) { 1387 if (isalnum(*str) || *str == ' ' || *str == ':') 1388 *p++ = *str; 1389 else if (*str == '\'' || *str == '"') 1390 continue; 1391 else 1392 break; 1393 } 1394 *p = 0; 1395 1396 return 1; 1397 1398 } 1399 1400 __setup("acpi_os_name=", acpi_os_name_setup); 1401 1402 #define OSI_STRING_LENGTH_MAX 64 /* arbitrary */ 1403 #define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */ 1404 1405 struct osi_setup_entry { 1406 char string[OSI_STRING_LENGTH_MAX]; 1407 bool enable; 1408 }; 1409 1410 static struct osi_setup_entry 1411 osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = { 1412 {"Module Device", true}, 1413 {"Processor Device", true}, 1414 {"3.0 _SCP Extensions", true}, 1415 {"Processor Aggregator Device", true}, 1416 }; 1417 1418 void __init acpi_osi_setup(char *str) 1419 { 1420 struct osi_setup_entry *osi; 1421 bool enable = true; 1422 int i; 1423 1424 if (!acpi_gbl_create_osi_method) 1425 return; 1426 1427 if (str == NULL || *str == '\0') { 1428 printk(KERN_INFO PREFIX "_OSI method disabled\n"); 1429 acpi_gbl_create_osi_method = FALSE; 1430 return; 1431 } 1432 1433 if (*str == '!') { 1434 str++; 1435 if (*str == '\0') { 1436 osi_linux.default_disabling = 1; 1437 return; 1438 } else if (*str == '*') { 1439 acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS); 1440 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1441 osi = &osi_setup_entries[i]; 1442 osi->enable = false; 1443 } 1444 return; 1445 } 1446 enable = false; 1447 } 1448 1449 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1450 osi = &osi_setup_entries[i]; 1451 if (!strcmp(osi->string, str)) { 1452 osi->enable = enable; 1453 break; 1454 } else if (osi->string[0] == '\0') { 1455 osi->enable = enable; 1456 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX); 1457 break; 1458 } 1459 } 1460 } 1461 1462 static void __init set_osi_linux(unsigned int enable) 1463 { 1464 if (osi_linux.enable != enable) 1465 osi_linux.enable = enable; 1466 1467 if (osi_linux.enable) 1468 acpi_osi_setup("Linux"); 1469 else 1470 acpi_osi_setup("!Linux"); 1471 1472 return; 1473 } 1474 1475 static void __init acpi_cmdline_osi_linux(unsigned int enable) 1476 { 1477 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */ 1478 osi_linux.dmi = 0; 1479 set_osi_linux(enable); 1480 1481 return; 1482 } 1483 1484 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d) 1485 { 1486 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident); 1487 1488 if (enable == -1) 1489 return; 1490 1491 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */ 1492 set_osi_linux(enable); 1493 1494 return; 1495 } 1496 1497 /* 1498 * Modify the list of "OS Interfaces" reported to BIOS via _OSI 1499 * 1500 * empty string disables _OSI 1501 * string starting with '!' disables that string 1502 * otherwise string is added to list, augmenting built-in strings 1503 */ 1504 static void __init acpi_osi_setup_late(void) 1505 { 1506 struct osi_setup_entry *osi; 1507 char *str; 1508 int i; 1509 acpi_status status; 1510 1511 if (osi_linux.default_disabling) { 1512 status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS); 1513 1514 if (ACPI_SUCCESS(status)) 1515 printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n"); 1516 } 1517 1518 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1519 osi = &osi_setup_entries[i]; 1520 str = osi->string; 1521 1522 if (*str == '\0') 1523 break; 1524 if (osi->enable) { 1525 status = acpi_install_interface(str); 1526 1527 if (ACPI_SUCCESS(status)) 1528 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str); 1529 } else { 1530 status = acpi_remove_interface(str); 1531 1532 if (ACPI_SUCCESS(status)) 1533 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str); 1534 } 1535 } 1536 } 1537 1538 static int __init osi_setup(char *str) 1539 { 1540 if (str && !strcmp("Linux", str)) 1541 acpi_cmdline_osi_linux(1); 1542 else if (str && !strcmp("!Linux", str)) 1543 acpi_cmdline_osi_linux(0); 1544 else 1545 acpi_osi_setup(str); 1546 1547 return 1; 1548 } 1549 1550 __setup("acpi_osi=", osi_setup); 1551 1552 /* 1553 * Disable the auto-serialization of named objects creation methods. 1554 * 1555 * This feature is enabled by default. It marks the AML control methods 1556 * that contain the opcodes to create named objects as "Serialized". 1557 */ 1558 static int __init acpi_no_auto_serialize_setup(char *str) 1559 { 1560 acpi_gbl_auto_serialize_methods = FALSE; 1561 pr_info("ACPI: auto-serialization disabled\n"); 1562 1563 return 1; 1564 } 1565 1566 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); 1567 1568 /* Check of resource interference between native drivers and ACPI 1569 * OperationRegions (SystemIO and System Memory only). 1570 * IO ports and memory declared in ACPI might be used by the ACPI subsystem 1571 * in arbitrary AML code and can interfere with legacy drivers. 1572 * acpi_enforce_resources= can be set to: 1573 * 1574 * - strict (default) (2) 1575 * -> further driver trying to access the resources will not load 1576 * - lax (1) 1577 * -> further driver trying to access the resources will load, but you 1578 * get a system message that something might go wrong... 1579 * 1580 * - no (0) 1581 * -> ACPI Operation Region resources will not be registered 1582 * 1583 */ 1584 #define ENFORCE_RESOURCES_STRICT 2 1585 #define ENFORCE_RESOURCES_LAX 1 1586 #define ENFORCE_RESOURCES_NO 0 1587 1588 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1589 1590 static int __init acpi_enforce_resources_setup(char *str) 1591 { 1592 if (str == NULL || *str == '\0') 1593 return 0; 1594 1595 if (!strcmp("strict", str)) 1596 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1597 else if (!strcmp("lax", str)) 1598 acpi_enforce_resources = ENFORCE_RESOURCES_LAX; 1599 else if (!strcmp("no", str)) 1600 acpi_enforce_resources = ENFORCE_RESOURCES_NO; 1601 1602 return 1; 1603 } 1604 1605 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); 1606 1607 /* Check for resource conflicts between ACPI OperationRegions and native 1608 * drivers */ 1609 int acpi_check_resource_conflict(const struct resource *res) 1610 { 1611 acpi_adr_space_type space_id; 1612 acpi_size length; 1613 u8 warn = 0; 1614 int clash = 0; 1615 1616 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) 1617 return 0; 1618 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM)) 1619 return 0; 1620 1621 if (res->flags & IORESOURCE_IO) 1622 space_id = ACPI_ADR_SPACE_SYSTEM_IO; 1623 else 1624 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; 1625 1626 length = resource_size(res); 1627 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) 1628 warn = 1; 1629 clash = acpi_check_address_range(space_id, res->start, length, warn); 1630 1631 if (clash) { 1632 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) { 1633 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) 1634 printk(KERN_NOTICE "ACPI: This conflict may" 1635 " cause random problems and system" 1636 " instability\n"); 1637 printk(KERN_INFO "ACPI: If an ACPI driver is available" 1638 " for this device, you should use it instead of" 1639 " the native driver\n"); 1640 } 1641 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) 1642 return -EBUSY; 1643 } 1644 return 0; 1645 } 1646 EXPORT_SYMBOL(acpi_check_resource_conflict); 1647 1648 int acpi_check_region(resource_size_t start, resource_size_t n, 1649 const char *name) 1650 { 1651 struct resource res = { 1652 .start = start, 1653 .end = start + n - 1, 1654 .name = name, 1655 .flags = IORESOURCE_IO, 1656 }; 1657 1658 return acpi_check_resource_conflict(&res); 1659 } 1660 EXPORT_SYMBOL(acpi_check_region); 1661 1662 /* 1663 * Let drivers know whether the resource checks are effective 1664 */ 1665 int acpi_resources_are_enforced(void) 1666 { 1667 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; 1668 } 1669 EXPORT_SYMBOL(acpi_resources_are_enforced); 1670 1671 /* 1672 * Deallocate the memory for a spinlock. 1673 */ 1674 void acpi_os_delete_lock(acpi_spinlock handle) 1675 { 1676 ACPI_FREE(handle); 1677 } 1678 1679 /* 1680 * Acquire a spinlock. 1681 * 1682 * handle is a pointer to the spinlock_t. 1683 */ 1684 1685 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) 1686 { 1687 acpi_cpu_flags flags; 1688 spin_lock_irqsave(lockp, flags); 1689 return flags; 1690 } 1691 1692 /* 1693 * Release a spinlock. See above. 1694 */ 1695 1696 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags) 1697 { 1698 spin_unlock_irqrestore(lockp, flags); 1699 } 1700 1701 #ifndef ACPI_USE_LOCAL_CACHE 1702 1703 /******************************************************************************* 1704 * 1705 * FUNCTION: acpi_os_create_cache 1706 * 1707 * PARAMETERS: name - Ascii name for the cache 1708 * size - Size of each cached object 1709 * depth - Maximum depth of the cache (in objects) <ignored> 1710 * cache - Where the new cache object is returned 1711 * 1712 * RETURN: status 1713 * 1714 * DESCRIPTION: Create a cache object 1715 * 1716 ******************************************************************************/ 1717 1718 acpi_status 1719 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache) 1720 { 1721 *cache = kmem_cache_create(name, size, 0, 0, NULL); 1722 if (*cache == NULL) 1723 return AE_ERROR; 1724 else 1725 return AE_OK; 1726 } 1727 1728 /******************************************************************************* 1729 * 1730 * FUNCTION: acpi_os_purge_cache 1731 * 1732 * PARAMETERS: Cache - Handle to cache object 1733 * 1734 * RETURN: Status 1735 * 1736 * DESCRIPTION: Free all objects within the requested cache. 1737 * 1738 ******************************************************************************/ 1739 1740 acpi_status acpi_os_purge_cache(acpi_cache_t * cache) 1741 { 1742 kmem_cache_shrink(cache); 1743 return (AE_OK); 1744 } 1745 1746 /******************************************************************************* 1747 * 1748 * FUNCTION: acpi_os_delete_cache 1749 * 1750 * PARAMETERS: Cache - Handle to cache object 1751 * 1752 * RETURN: Status 1753 * 1754 * DESCRIPTION: Free all objects within the requested cache and delete the 1755 * cache object. 1756 * 1757 ******************************************************************************/ 1758 1759 acpi_status acpi_os_delete_cache(acpi_cache_t * cache) 1760 { 1761 kmem_cache_destroy(cache); 1762 return (AE_OK); 1763 } 1764 1765 /******************************************************************************* 1766 * 1767 * FUNCTION: acpi_os_release_object 1768 * 1769 * PARAMETERS: Cache - Handle to cache object 1770 * Object - The object to be released 1771 * 1772 * RETURN: None 1773 * 1774 * DESCRIPTION: Release an object to the specified cache. If cache is full, 1775 * the object is deleted. 1776 * 1777 ******************************************************************************/ 1778 1779 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object) 1780 { 1781 kmem_cache_free(cache, object); 1782 return (AE_OK); 1783 } 1784 #endif 1785 1786 static int __init acpi_no_static_ssdt_setup(char *s) 1787 { 1788 acpi_gbl_disable_ssdt_table_install = TRUE; 1789 pr_info("ACPI: static SSDT installation disabled\n"); 1790 1791 return 0; 1792 } 1793 1794 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); 1795 1796 static int __init acpi_disable_return_repair(char *s) 1797 { 1798 printk(KERN_NOTICE PREFIX 1799 "ACPI: Predefined validation mechanism disabled\n"); 1800 acpi_gbl_disable_auto_repair = TRUE; 1801 1802 return 1; 1803 } 1804 1805 __setup("acpica_no_return_repair", acpi_disable_return_repair); 1806 1807 acpi_status __init acpi_os_initialize(void) 1808 { 1809 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1810 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1811 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); 1812 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); 1813 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { 1814 /* 1815 * Use acpi_os_map_generic_address to pre-map the reset 1816 * register if it's in system memory. 1817 */ 1818 int rv; 1819 1820 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); 1821 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv); 1822 } 1823 1824 return AE_OK; 1825 } 1826 1827 acpi_status __init acpi_os_initialize1(void) 1828 { 1829 kacpid_wq = alloc_workqueue("kacpid", 0, 1); 1830 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1); 1831 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); 1832 BUG_ON(!kacpid_wq); 1833 BUG_ON(!kacpi_notify_wq); 1834 BUG_ON(!kacpi_hotplug_wq); 1835 acpi_install_interface_handler(acpi_osi_handler); 1836 acpi_osi_setup_late(); 1837 return AE_OK; 1838 } 1839 1840 acpi_status acpi_os_terminate(void) 1841 { 1842 if (acpi_irq_handler) { 1843 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, 1844 acpi_irq_handler); 1845 } 1846 1847 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); 1848 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); 1849 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1850 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1851 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) 1852 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); 1853 1854 destroy_workqueue(kacpid_wq); 1855 destroy_workqueue(kacpi_notify_wq); 1856 destroy_workqueue(kacpi_hotplug_wq); 1857 1858 return AE_OK; 1859 } 1860 1861 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, 1862 u32 pm1b_control) 1863 { 1864 int rc = 0; 1865 if (__acpi_os_prepare_sleep) 1866 rc = __acpi_os_prepare_sleep(sleep_state, 1867 pm1a_control, pm1b_control); 1868 if (rc < 0) 1869 return AE_ERROR; 1870 else if (rc > 0) 1871 return AE_CTRL_SKIP; 1872 1873 return AE_OK; 1874 } 1875 1876 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, 1877 u32 pm1a_ctrl, u32 pm1b_ctrl)) 1878 { 1879 __acpi_os_prepare_sleep = func; 1880 } 1881 1882 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 1883 u32 val_b) 1884 { 1885 int rc = 0; 1886 if (__acpi_os_prepare_extended_sleep) 1887 rc = __acpi_os_prepare_extended_sleep(sleep_state, 1888 val_a, val_b); 1889 if (rc < 0) 1890 return AE_ERROR; 1891 else if (rc > 0) 1892 return AE_CTRL_SKIP; 1893 1894 return AE_OK; 1895 } 1896 1897 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, 1898 u32 val_a, u32 val_b)) 1899 { 1900 __acpi_os_prepare_extended_sleep = func; 1901 } 1902