xref: /openbmc/linux/drivers/acpi/osl.c (revision 160b8e75)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "internal.h"
49 
50 #define _COMPONENT		ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52 
53 struct acpi_os_dpc {
54 	acpi_osd_exec_callback function;
55 	void *context;
56 	struct work_struct work;
57 };
58 
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61 
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif				/*ENABLE_DEBUGGER */
66 
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 				      u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 				      u32 val_b);
71 
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 bool acpi_permanent_mmap = false;
80 
81 /*
82  * This list of permanent mappings is for memory that may be accessed from
83  * interrupt context, where we can't do the ioremap().
84  */
85 struct acpi_ioremap {
86 	struct list_head list;
87 	void __iomem *virt;
88 	acpi_physical_address phys;
89 	acpi_size size;
90 	unsigned long refcount;
91 };
92 
93 static LIST_HEAD(acpi_ioremaps);
94 static DEFINE_MUTEX(acpi_ioremap_lock);
95 
96 static void __init acpi_request_region (struct acpi_generic_address *gas,
97 	unsigned int length, char *desc)
98 {
99 	u64 addr;
100 
101 	/* Handle possible alignment issues */
102 	memcpy(&addr, &gas->address, sizeof(addr));
103 	if (!addr || !length)
104 		return;
105 
106 	/* Resources are never freed */
107 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 		request_region(addr, length, desc);
109 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 		request_mem_region(addr, length, desc);
111 }
112 
113 static int __init acpi_reserve_resources(void)
114 {
115 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 		"ACPI PM1a_EVT_BLK");
117 
118 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 		"ACPI PM1b_EVT_BLK");
120 
121 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 		"ACPI PM1a_CNT_BLK");
123 
124 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 		"ACPI PM1b_CNT_BLK");
126 
127 	if (acpi_gbl_FADT.pm_timer_length == 4)
128 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129 
130 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 		"ACPI PM2_CNT_BLK");
132 
133 	/* Length of GPE blocks must be a non-negative multiple of 2 */
134 
135 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138 
139 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142 
143 	return 0;
144 }
145 fs_initcall_sync(acpi_reserve_resources);
146 
147 void acpi_os_printf(const char *fmt, ...)
148 {
149 	va_list args;
150 	va_start(args, fmt);
151 	acpi_os_vprintf(fmt, args);
152 	va_end(args);
153 }
154 EXPORT_SYMBOL(acpi_os_printf);
155 
156 void acpi_os_vprintf(const char *fmt, va_list args)
157 {
158 	static char buffer[512];
159 
160 	vsprintf(buffer, fmt, args);
161 
162 #ifdef ENABLE_DEBUGGER
163 	if (acpi_in_debugger) {
164 		kdb_printf("%s", buffer);
165 	} else {
166 		if (printk_get_level(buffer))
167 			printk("%s", buffer);
168 		else
169 			printk(KERN_CONT "%s", buffer);
170 	}
171 #else
172 	if (acpi_debugger_write_log(buffer) < 0) {
173 		if (printk_get_level(buffer))
174 			printk("%s", buffer);
175 		else
176 			printk(KERN_CONT "%s", buffer);
177 	}
178 #endif
179 }
180 
181 #ifdef CONFIG_KEXEC
182 static unsigned long acpi_rsdp;
183 static int __init setup_acpi_rsdp(char *arg)
184 {
185 	return kstrtoul(arg, 16, &acpi_rsdp);
186 }
187 early_param("acpi_rsdp", setup_acpi_rsdp);
188 #endif
189 
190 acpi_physical_address __init acpi_os_get_root_pointer(void)
191 {
192 	acpi_physical_address pa = 0;
193 
194 #ifdef CONFIG_KEXEC
195 	if (acpi_rsdp)
196 		return acpi_rsdp;
197 #endif
198 
199 	if (efi_enabled(EFI_CONFIG_TABLES)) {
200 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
201 			return efi.acpi20;
202 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
203 			return efi.acpi;
204 		pr_err(PREFIX "System description tables not found\n");
205 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
206 		acpi_find_root_pointer(&pa);
207 	}
208 
209 	return pa;
210 }
211 
212 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
213 static struct acpi_ioremap *
214 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
215 {
216 	struct acpi_ioremap *map;
217 
218 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
219 		if (map->phys <= phys &&
220 		    phys + size <= map->phys + map->size)
221 			return map;
222 
223 	return NULL;
224 }
225 
226 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
227 static void __iomem *
228 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
229 {
230 	struct acpi_ioremap *map;
231 
232 	map = acpi_map_lookup(phys, size);
233 	if (map)
234 		return map->virt + (phys - map->phys);
235 
236 	return NULL;
237 }
238 
239 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
240 {
241 	struct acpi_ioremap *map;
242 	void __iomem *virt = NULL;
243 
244 	mutex_lock(&acpi_ioremap_lock);
245 	map = acpi_map_lookup(phys, size);
246 	if (map) {
247 		virt = map->virt + (phys - map->phys);
248 		map->refcount++;
249 	}
250 	mutex_unlock(&acpi_ioremap_lock);
251 	return virt;
252 }
253 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
254 
255 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
256 static struct acpi_ioremap *
257 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
258 {
259 	struct acpi_ioremap *map;
260 
261 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
262 		if (map->virt <= virt &&
263 		    virt + size <= map->virt + map->size)
264 			return map;
265 
266 	return NULL;
267 }
268 
269 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
270 /* ioremap will take care of cache attributes */
271 #define should_use_kmap(pfn)   0
272 #else
273 #define should_use_kmap(pfn)   page_is_ram(pfn)
274 #endif
275 
276 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
277 {
278 	unsigned long pfn;
279 
280 	pfn = pg_off >> PAGE_SHIFT;
281 	if (should_use_kmap(pfn)) {
282 		if (pg_sz > PAGE_SIZE)
283 			return NULL;
284 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
285 	} else
286 		return acpi_os_ioremap(pg_off, pg_sz);
287 }
288 
289 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
290 {
291 	unsigned long pfn;
292 
293 	pfn = pg_off >> PAGE_SHIFT;
294 	if (should_use_kmap(pfn))
295 		kunmap(pfn_to_page(pfn));
296 	else
297 		iounmap(vaddr);
298 }
299 
300 /**
301  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
302  * @phys: Start of the physical address range to map.
303  * @size: Size of the physical address range to map.
304  *
305  * Look up the given physical address range in the list of existing ACPI memory
306  * mappings.  If found, get a reference to it and return a pointer to it (its
307  * virtual address).  If not found, map it, add it to that list and return a
308  * pointer to it.
309  *
310  * During early init (when acpi_permanent_mmap has not been set yet) this
311  * routine simply calls __acpi_map_table() to get the job done.
312  */
313 void __iomem *__ref
314 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
315 {
316 	struct acpi_ioremap *map;
317 	void __iomem *virt;
318 	acpi_physical_address pg_off;
319 	acpi_size pg_sz;
320 
321 	if (phys > ULONG_MAX) {
322 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
323 		return NULL;
324 	}
325 
326 	if (!acpi_permanent_mmap)
327 		return __acpi_map_table((unsigned long)phys, size);
328 
329 	mutex_lock(&acpi_ioremap_lock);
330 	/* Check if there's a suitable mapping already. */
331 	map = acpi_map_lookup(phys, size);
332 	if (map) {
333 		map->refcount++;
334 		goto out;
335 	}
336 
337 	map = kzalloc(sizeof(*map), GFP_KERNEL);
338 	if (!map) {
339 		mutex_unlock(&acpi_ioremap_lock);
340 		return NULL;
341 	}
342 
343 	pg_off = round_down(phys, PAGE_SIZE);
344 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
345 	virt = acpi_map(pg_off, pg_sz);
346 	if (!virt) {
347 		mutex_unlock(&acpi_ioremap_lock);
348 		kfree(map);
349 		return NULL;
350 	}
351 
352 	INIT_LIST_HEAD(&map->list);
353 	map->virt = virt;
354 	map->phys = pg_off;
355 	map->size = pg_sz;
356 	map->refcount = 1;
357 
358 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
359 
360 out:
361 	mutex_unlock(&acpi_ioremap_lock);
362 	return map->virt + (phys - map->phys);
363 }
364 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
365 
366 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
367 {
368 	return (void *)acpi_os_map_iomem(phys, size);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
371 
372 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
373 {
374 	if (!--map->refcount)
375 		list_del_rcu(&map->list);
376 }
377 
378 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
379 {
380 	if (!map->refcount) {
381 		synchronize_rcu_expedited();
382 		acpi_unmap(map->phys, map->virt);
383 		kfree(map);
384 	}
385 }
386 
387 /**
388  * acpi_os_unmap_iomem - Drop a memory mapping reference.
389  * @virt: Start of the address range to drop a reference to.
390  * @size: Size of the address range to drop a reference to.
391  *
392  * Look up the given virtual address range in the list of existing ACPI memory
393  * mappings, drop a reference to it and unmap it if there are no more active
394  * references to it.
395  *
396  * During early init (when acpi_permanent_mmap has not been set yet) this
397  * routine simply calls __acpi_unmap_table() to get the job done.  Since
398  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
399  * here.
400  */
401 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
402 {
403 	struct acpi_ioremap *map;
404 
405 	if (!acpi_permanent_mmap) {
406 		__acpi_unmap_table(virt, size);
407 		return;
408 	}
409 
410 	mutex_lock(&acpi_ioremap_lock);
411 	map = acpi_map_lookup_virt(virt, size);
412 	if (!map) {
413 		mutex_unlock(&acpi_ioremap_lock);
414 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
415 		return;
416 	}
417 	acpi_os_drop_map_ref(map);
418 	mutex_unlock(&acpi_ioremap_lock);
419 
420 	acpi_os_map_cleanup(map);
421 }
422 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
423 
424 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
425 {
426 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
429 
430 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
431 {
432 	u64 addr;
433 	void __iomem *virt;
434 
435 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
436 		return 0;
437 
438 	/* Handle possible alignment issues */
439 	memcpy(&addr, &gas->address, sizeof(addr));
440 	if (!addr || !gas->bit_width)
441 		return -EINVAL;
442 
443 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
444 	if (!virt)
445 		return -EIO;
446 
447 	return 0;
448 }
449 EXPORT_SYMBOL(acpi_os_map_generic_address);
450 
451 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
452 {
453 	u64 addr;
454 	struct acpi_ioremap *map;
455 
456 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 		return;
458 
459 	/* Handle possible alignment issues */
460 	memcpy(&addr, &gas->address, sizeof(addr));
461 	if (!addr || !gas->bit_width)
462 		return;
463 
464 	mutex_lock(&acpi_ioremap_lock);
465 	map = acpi_map_lookup(addr, gas->bit_width / 8);
466 	if (!map) {
467 		mutex_unlock(&acpi_ioremap_lock);
468 		return;
469 	}
470 	acpi_os_drop_map_ref(map);
471 	mutex_unlock(&acpi_ioremap_lock);
472 
473 	acpi_os_map_cleanup(map);
474 }
475 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
476 
477 #ifdef ACPI_FUTURE_USAGE
478 acpi_status
479 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
480 {
481 	if (!phys || !virt)
482 		return AE_BAD_PARAMETER;
483 
484 	*phys = virt_to_phys(virt);
485 
486 	return AE_OK;
487 }
488 #endif
489 
490 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
491 static bool acpi_rev_override;
492 
493 int __init acpi_rev_override_setup(char *str)
494 {
495 	acpi_rev_override = true;
496 	return 1;
497 }
498 __setup("acpi_rev_override", acpi_rev_override_setup);
499 #else
500 #define acpi_rev_override	false
501 #endif
502 
503 #define ACPI_MAX_OVERRIDE_LEN 100
504 
505 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
506 
507 acpi_status
508 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
509 			    acpi_string *new_val)
510 {
511 	if (!init_val || !new_val)
512 		return AE_BAD_PARAMETER;
513 
514 	*new_val = NULL;
515 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
516 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
517 		       acpi_os_name);
518 		*new_val = acpi_os_name;
519 	}
520 
521 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
522 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
523 		*new_val = (char *)5;
524 	}
525 
526 	return AE_OK;
527 }
528 
529 static irqreturn_t acpi_irq(int irq, void *dev_id)
530 {
531 	u32 handled;
532 
533 	handled = (*acpi_irq_handler) (acpi_irq_context);
534 
535 	if (handled) {
536 		acpi_irq_handled++;
537 		return IRQ_HANDLED;
538 	} else {
539 		acpi_irq_not_handled++;
540 		return IRQ_NONE;
541 	}
542 }
543 
544 acpi_status
545 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
546 				  void *context)
547 {
548 	unsigned int irq;
549 
550 	acpi_irq_stats_init();
551 
552 	/*
553 	 * ACPI interrupts different from the SCI in our copy of the FADT are
554 	 * not supported.
555 	 */
556 	if (gsi != acpi_gbl_FADT.sci_interrupt)
557 		return AE_BAD_PARAMETER;
558 
559 	if (acpi_irq_handler)
560 		return AE_ALREADY_ACQUIRED;
561 
562 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
563 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
564 		       gsi);
565 		return AE_OK;
566 	}
567 
568 	acpi_irq_handler = handler;
569 	acpi_irq_context = context;
570 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
571 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
572 		acpi_irq_handler = NULL;
573 		return AE_NOT_ACQUIRED;
574 	}
575 	acpi_sci_irq = irq;
576 
577 	return AE_OK;
578 }
579 
580 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
581 {
582 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
583 		return AE_BAD_PARAMETER;
584 
585 	free_irq(acpi_sci_irq, acpi_irq);
586 	acpi_irq_handler = NULL;
587 	acpi_sci_irq = INVALID_ACPI_IRQ;
588 
589 	return AE_OK;
590 }
591 
592 /*
593  * Running in interpreter thread context, safe to sleep
594  */
595 
596 void acpi_os_sleep(u64 ms)
597 {
598 	msleep(ms);
599 }
600 
601 void acpi_os_stall(u32 us)
602 {
603 	while (us) {
604 		u32 delay = 1000;
605 
606 		if (delay > us)
607 			delay = us;
608 		udelay(delay);
609 		touch_nmi_watchdog();
610 		us -= delay;
611 	}
612 }
613 
614 /*
615  * Support ACPI 3.0 AML Timer operand
616  * Returns 64-bit free-running, monotonically increasing timer
617  * with 100ns granularity
618  */
619 u64 acpi_os_get_timer(void)
620 {
621 	u64 time_ns = ktime_to_ns(ktime_get());
622 	do_div(time_ns, 100);
623 	return time_ns;
624 }
625 
626 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
627 {
628 	u32 dummy;
629 
630 	if (!value)
631 		value = &dummy;
632 
633 	*value = 0;
634 	if (width <= 8) {
635 		*(u8 *) value = inb(port);
636 	} else if (width <= 16) {
637 		*(u16 *) value = inw(port);
638 	} else if (width <= 32) {
639 		*(u32 *) value = inl(port);
640 	} else {
641 		BUG();
642 	}
643 
644 	return AE_OK;
645 }
646 
647 EXPORT_SYMBOL(acpi_os_read_port);
648 
649 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
650 {
651 	if (width <= 8) {
652 		outb(value, port);
653 	} else if (width <= 16) {
654 		outw(value, port);
655 	} else if (width <= 32) {
656 		outl(value, port);
657 	} else {
658 		BUG();
659 	}
660 
661 	return AE_OK;
662 }
663 
664 EXPORT_SYMBOL(acpi_os_write_port);
665 
666 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
667 {
668 
669 	switch (width) {
670 	case 8:
671 		*(u8 *) value = readb(virt_addr);
672 		break;
673 	case 16:
674 		*(u16 *) value = readw(virt_addr);
675 		break;
676 	case 32:
677 		*(u32 *) value = readl(virt_addr);
678 		break;
679 	case 64:
680 		*(u64 *) value = readq(virt_addr);
681 		break;
682 	default:
683 		return -EINVAL;
684 	}
685 
686 	return 0;
687 }
688 
689 acpi_status
690 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
691 {
692 	void __iomem *virt_addr;
693 	unsigned int size = width / 8;
694 	bool unmap = false;
695 	u64 dummy;
696 	int error;
697 
698 	rcu_read_lock();
699 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
700 	if (!virt_addr) {
701 		rcu_read_unlock();
702 		virt_addr = acpi_os_ioremap(phys_addr, size);
703 		if (!virt_addr)
704 			return AE_BAD_ADDRESS;
705 		unmap = true;
706 	}
707 
708 	if (!value)
709 		value = &dummy;
710 
711 	error = acpi_os_read_iomem(virt_addr, value, width);
712 	BUG_ON(error);
713 
714 	if (unmap)
715 		iounmap(virt_addr);
716 	else
717 		rcu_read_unlock();
718 
719 	return AE_OK;
720 }
721 
722 acpi_status
723 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
724 {
725 	void __iomem *virt_addr;
726 	unsigned int size = width / 8;
727 	bool unmap = false;
728 
729 	rcu_read_lock();
730 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
731 	if (!virt_addr) {
732 		rcu_read_unlock();
733 		virt_addr = acpi_os_ioremap(phys_addr, size);
734 		if (!virt_addr)
735 			return AE_BAD_ADDRESS;
736 		unmap = true;
737 	}
738 
739 	switch (width) {
740 	case 8:
741 		writeb(value, virt_addr);
742 		break;
743 	case 16:
744 		writew(value, virt_addr);
745 		break;
746 	case 32:
747 		writel(value, virt_addr);
748 		break;
749 	case 64:
750 		writeq(value, virt_addr);
751 		break;
752 	default:
753 		BUG();
754 	}
755 
756 	if (unmap)
757 		iounmap(virt_addr);
758 	else
759 		rcu_read_unlock();
760 
761 	return AE_OK;
762 }
763 
764 acpi_status
765 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
766 			       u64 *value, u32 width)
767 {
768 	int result, size;
769 	u32 value32;
770 
771 	if (!value)
772 		return AE_BAD_PARAMETER;
773 
774 	switch (width) {
775 	case 8:
776 		size = 1;
777 		break;
778 	case 16:
779 		size = 2;
780 		break;
781 	case 32:
782 		size = 4;
783 		break;
784 	default:
785 		return AE_ERROR;
786 	}
787 
788 	result = raw_pci_read(pci_id->segment, pci_id->bus,
789 				PCI_DEVFN(pci_id->device, pci_id->function),
790 				reg, size, &value32);
791 	*value = value32;
792 
793 	return (result ? AE_ERROR : AE_OK);
794 }
795 
796 acpi_status
797 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
798 				u64 value, u32 width)
799 {
800 	int result, size;
801 
802 	switch (width) {
803 	case 8:
804 		size = 1;
805 		break;
806 	case 16:
807 		size = 2;
808 		break;
809 	case 32:
810 		size = 4;
811 		break;
812 	default:
813 		return AE_ERROR;
814 	}
815 
816 	result = raw_pci_write(pci_id->segment, pci_id->bus,
817 				PCI_DEVFN(pci_id->device, pci_id->function),
818 				reg, size, value);
819 
820 	return (result ? AE_ERROR : AE_OK);
821 }
822 
823 static void acpi_os_execute_deferred(struct work_struct *work)
824 {
825 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
826 
827 	dpc->function(dpc->context);
828 	kfree(dpc);
829 }
830 
831 #ifdef CONFIG_ACPI_DEBUGGER
832 static struct acpi_debugger acpi_debugger;
833 static bool acpi_debugger_initialized;
834 
835 int acpi_register_debugger(struct module *owner,
836 			   const struct acpi_debugger_ops *ops)
837 {
838 	int ret = 0;
839 
840 	mutex_lock(&acpi_debugger.lock);
841 	if (acpi_debugger.ops) {
842 		ret = -EBUSY;
843 		goto err_lock;
844 	}
845 
846 	acpi_debugger.owner = owner;
847 	acpi_debugger.ops = ops;
848 
849 err_lock:
850 	mutex_unlock(&acpi_debugger.lock);
851 	return ret;
852 }
853 EXPORT_SYMBOL(acpi_register_debugger);
854 
855 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
856 {
857 	mutex_lock(&acpi_debugger.lock);
858 	if (ops == acpi_debugger.ops) {
859 		acpi_debugger.ops = NULL;
860 		acpi_debugger.owner = NULL;
861 	}
862 	mutex_unlock(&acpi_debugger.lock);
863 }
864 EXPORT_SYMBOL(acpi_unregister_debugger);
865 
866 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
867 {
868 	int ret;
869 	int (*func)(acpi_osd_exec_callback, void *);
870 	struct module *owner;
871 
872 	if (!acpi_debugger_initialized)
873 		return -ENODEV;
874 	mutex_lock(&acpi_debugger.lock);
875 	if (!acpi_debugger.ops) {
876 		ret = -ENODEV;
877 		goto err_lock;
878 	}
879 	if (!try_module_get(acpi_debugger.owner)) {
880 		ret = -ENODEV;
881 		goto err_lock;
882 	}
883 	func = acpi_debugger.ops->create_thread;
884 	owner = acpi_debugger.owner;
885 	mutex_unlock(&acpi_debugger.lock);
886 
887 	ret = func(function, context);
888 
889 	mutex_lock(&acpi_debugger.lock);
890 	module_put(owner);
891 err_lock:
892 	mutex_unlock(&acpi_debugger.lock);
893 	return ret;
894 }
895 
896 ssize_t acpi_debugger_write_log(const char *msg)
897 {
898 	ssize_t ret;
899 	ssize_t (*func)(const char *);
900 	struct module *owner;
901 
902 	if (!acpi_debugger_initialized)
903 		return -ENODEV;
904 	mutex_lock(&acpi_debugger.lock);
905 	if (!acpi_debugger.ops) {
906 		ret = -ENODEV;
907 		goto err_lock;
908 	}
909 	if (!try_module_get(acpi_debugger.owner)) {
910 		ret = -ENODEV;
911 		goto err_lock;
912 	}
913 	func = acpi_debugger.ops->write_log;
914 	owner = acpi_debugger.owner;
915 	mutex_unlock(&acpi_debugger.lock);
916 
917 	ret = func(msg);
918 
919 	mutex_lock(&acpi_debugger.lock);
920 	module_put(owner);
921 err_lock:
922 	mutex_unlock(&acpi_debugger.lock);
923 	return ret;
924 }
925 
926 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
927 {
928 	ssize_t ret;
929 	ssize_t (*func)(char *, size_t);
930 	struct module *owner;
931 
932 	if (!acpi_debugger_initialized)
933 		return -ENODEV;
934 	mutex_lock(&acpi_debugger.lock);
935 	if (!acpi_debugger.ops) {
936 		ret = -ENODEV;
937 		goto err_lock;
938 	}
939 	if (!try_module_get(acpi_debugger.owner)) {
940 		ret = -ENODEV;
941 		goto err_lock;
942 	}
943 	func = acpi_debugger.ops->read_cmd;
944 	owner = acpi_debugger.owner;
945 	mutex_unlock(&acpi_debugger.lock);
946 
947 	ret = func(buffer, buffer_length);
948 
949 	mutex_lock(&acpi_debugger.lock);
950 	module_put(owner);
951 err_lock:
952 	mutex_unlock(&acpi_debugger.lock);
953 	return ret;
954 }
955 
956 int acpi_debugger_wait_command_ready(void)
957 {
958 	int ret;
959 	int (*func)(bool, char *, size_t);
960 	struct module *owner;
961 
962 	if (!acpi_debugger_initialized)
963 		return -ENODEV;
964 	mutex_lock(&acpi_debugger.lock);
965 	if (!acpi_debugger.ops) {
966 		ret = -ENODEV;
967 		goto err_lock;
968 	}
969 	if (!try_module_get(acpi_debugger.owner)) {
970 		ret = -ENODEV;
971 		goto err_lock;
972 	}
973 	func = acpi_debugger.ops->wait_command_ready;
974 	owner = acpi_debugger.owner;
975 	mutex_unlock(&acpi_debugger.lock);
976 
977 	ret = func(acpi_gbl_method_executing,
978 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
979 
980 	mutex_lock(&acpi_debugger.lock);
981 	module_put(owner);
982 err_lock:
983 	mutex_unlock(&acpi_debugger.lock);
984 	return ret;
985 }
986 
987 int acpi_debugger_notify_command_complete(void)
988 {
989 	int ret;
990 	int (*func)(void);
991 	struct module *owner;
992 
993 	if (!acpi_debugger_initialized)
994 		return -ENODEV;
995 	mutex_lock(&acpi_debugger.lock);
996 	if (!acpi_debugger.ops) {
997 		ret = -ENODEV;
998 		goto err_lock;
999 	}
1000 	if (!try_module_get(acpi_debugger.owner)) {
1001 		ret = -ENODEV;
1002 		goto err_lock;
1003 	}
1004 	func = acpi_debugger.ops->notify_command_complete;
1005 	owner = acpi_debugger.owner;
1006 	mutex_unlock(&acpi_debugger.lock);
1007 
1008 	ret = func();
1009 
1010 	mutex_lock(&acpi_debugger.lock);
1011 	module_put(owner);
1012 err_lock:
1013 	mutex_unlock(&acpi_debugger.lock);
1014 	return ret;
1015 }
1016 
1017 int __init acpi_debugger_init(void)
1018 {
1019 	mutex_init(&acpi_debugger.lock);
1020 	acpi_debugger_initialized = true;
1021 	return 0;
1022 }
1023 #endif
1024 
1025 /*******************************************************************************
1026  *
1027  * FUNCTION:    acpi_os_execute
1028  *
1029  * PARAMETERS:  Type               - Type of the callback
1030  *              Function           - Function to be executed
1031  *              Context            - Function parameters
1032  *
1033  * RETURN:      Status
1034  *
1035  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1036  *              immediately executes function on a separate thread.
1037  *
1038  ******************************************************************************/
1039 
1040 acpi_status acpi_os_execute(acpi_execute_type type,
1041 			    acpi_osd_exec_callback function, void *context)
1042 {
1043 	acpi_status status = AE_OK;
1044 	struct acpi_os_dpc *dpc;
1045 	struct workqueue_struct *queue;
1046 	int ret;
1047 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1048 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1049 			  function, context));
1050 
1051 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1052 		ret = acpi_debugger_create_thread(function, context);
1053 		if (ret) {
1054 			pr_err("Call to kthread_create() failed.\n");
1055 			status = AE_ERROR;
1056 		}
1057 		goto out_thread;
1058 	}
1059 
1060 	/*
1061 	 * Allocate/initialize DPC structure.  Note that this memory will be
1062 	 * freed by the callee.  The kernel handles the work_struct list  in a
1063 	 * way that allows us to also free its memory inside the callee.
1064 	 * Because we may want to schedule several tasks with different
1065 	 * parameters we can't use the approach some kernel code uses of
1066 	 * having a static work_struct.
1067 	 */
1068 
1069 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1070 	if (!dpc)
1071 		return AE_NO_MEMORY;
1072 
1073 	dpc->function = function;
1074 	dpc->context = context;
1075 
1076 	/*
1077 	 * To prevent lockdep from complaining unnecessarily, make sure that
1078 	 * there is a different static lockdep key for each workqueue by using
1079 	 * INIT_WORK() for each of them separately.
1080 	 */
1081 	if (type == OSL_NOTIFY_HANDLER) {
1082 		queue = kacpi_notify_wq;
1083 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1084 	} else if (type == OSL_GPE_HANDLER) {
1085 		queue = kacpid_wq;
1086 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1087 	} else {
1088 		pr_err("Unsupported os_execute type %d.\n", type);
1089 		status = AE_ERROR;
1090 	}
1091 
1092 	if (ACPI_FAILURE(status))
1093 		goto err_workqueue;
1094 
1095 	/*
1096 	 * On some machines, a software-initiated SMI causes corruption unless
1097 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1098 	 * typically it's done in GPE-related methods that are run via
1099 	 * workqueues, so we can avoid the known corruption cases by always
1100 	 * queueing on CPU 0.
1101 	 */
1102 	ret = queue_work_on(0, queue, &dpc->work);
1103 	if (!ret) {
1104 		printk(KERN_ERR PREFIX
1105 			  "Call to queue_work() failed.\n");
1106 		status = AE_ERROR;
1107 	}
1108 err_workqueue:
1109 	if (ACPI_FAILURE(status))
1110 		kfree(dpc);
1111 out_thread:
1112 	return status;
1113 }
1114 EXPORT_SYMBOL(acpi_os_execute);
1115 
1116 void acpi_os_wait_events_complete(void)
1117 {
1118 	/*
1119 	 * Make sure the GPE handler or the fixed event handler is not used
1120 	 * on another CPU after removal.
1121 	 */
1122 	if (acpi_sci_irq_valid())
1123 		synchronize_hardirq(acpi_sci_irq);
1124 	flush_workqueue(kacpid_wq);
1125 	flush_workqueue(kacpi_notify_wq);
1126 }
1127 
1128 struct acpi_hp_work {
1129 	struct work_struct work;
1130 	struct acpi_device *adev;
1131 	u32 src;
1132 };
1133 
1134 static void acpi_hotplug_work_fn(struct work_struct *work)
1135 {
1136 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1137 
1138 	acpi_os_wait_events_complete();
1139 	acpi_device_hotplug(hpw->adev, hpw->src);
1140 	kfree(hpw);
1141 }
1142 
1143 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1144 {
1145 	struct acpi_hp_work *hpw;
1146 
1147 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1148 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1149 		  adev, src));
1150 
1151 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1152 	if (!hpw)
1153 		return AE_NO_MEMORY;
1154 
1155 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1156 	hpw->adev = adev;
1157 	hpw->src = src;
1158 	/*
1159 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1160 	 * the hotplug code may call driver .remove() functions, which may
1161 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1162 	 * these workqueues.
1163 	 */
1164 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1165 		kfree(hpw);
1166 		return AE_ERROR;
1167 	}
1168 	return AE_OK;
1169 }
1170 
1171 bool acpi_queue_hotplug_work(struct work_struct *work)
1172 {
1173 	return queue_work(kacpi_hotplug_wq, work);
1174 }
1175 
1176 acpi_status
1177 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1178 {
1179 	struct semaphore *sem = NULL;
1180 
1181 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1182 	if (!sem)
1183 		return AE_NO_MEMORY;
1184 
1185 	sema_init(sem, initial_units);
1186 
1187 	*handle = (acpi_handle *) sem;
1188 
1189 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1190 			  *handle, initial_units));
1191 
1192 	return AE_OK;
1193 }
1194 
1195 /*
1196  * TODO: A better way to delete semaphores?  Linux doesn't have a
1197  * 'delete_semaphore()' function -- may result in an invalid
1198  * pointer dereference for non-synchronized consumers.	Should
1199  * we at least check for blocked threads and signal/cancel them?
1200  */
1201 
1202 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1203 {
1204 	struct semaphore *sem = (struct semaphore *)handle;
1205 
1206 	if (!sem)
1207 		return AE_BAD_PARAMETER;
1208 
1209 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1210 
1211 	BUG_ON(!list_empty(&sem->wait_list));
1212 	kfree(sem);
1213 	sem = NULL;
1214 
1215 	return AE_OK;
1216 }
1217 
1218 /*
1219  * TODO: Support for units > 1?
1220  */
1221 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1222 {
1223 	acpi_status status = AE_OK;
1224 	struct semaphore *sem = (struct semaphore *)handle;
1225 	long jiffies;
1226 	int ret = 0;
1227 
1228 	if (!acpi_os_initialized)
1229 		return AE_OK;
1230 
1231 	if (!sem || (units < 1))
1232 		return AE_BAD_PARAMETER;
1233 
1234 	if (units > 1)
1235 		return AE_SUPPORT;
1236 
1237 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1238 			  handle, units, timeout));
1239 
1240 	if (timeout == ACPI_WAIT_FOREVER)
1241 		jiffies = MAX_SCHEDULE_TIMEOUT;
1242 	else
1243 		jiffies = msecs_to_jiffies(timeout);
1244 
1245 	ret = down_timeout(sem, jiffies);
1246 	if (ret)
1247 		status = AE_TIME;
1248 
1249 	if (ACPI_FAILURE(status)) {
1250 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1251 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1252 				  handle, units, timeout,
1253 				  acpi_format_exception(status)));
1254 	} else {
1255 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1256 				  "Acquired semaphore[%p|%d|%d]", handle,
1257 				  units, timeout));
1258 	}
1259 
1260 	return status;
1261 }
1262 
1263 /*
1264  * TODO: Support for units > 1?
1265  */
1266 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1267 {
1268 	struct semaphore *sem = (struct semaphore *)handle;
1269 
1270 	if (!acpi_os_initialized)
1271 		return AE_OK;
1272 
1273 	if (!sem || (units < 1))
1274 		return AE_BAD_PARAMETER;
1275 
1276 	if (units > 1)
1277 		return AE_SUPPORT;
1278 
1279 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1280 			  units));
1281 
1282 	up(sem);
1283 
1284 	return AE_OK;
1285 }
1286 
1287 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1288 {
1289 #ifdef ENABLE_DEBUGGER
1290 	if (acpi_in_debugger) {
1291 		u32 chars;
1292 
1293 		kdb_read(buffer, buffer_length);
1294 
1295 		/* remove the CR kdb includes */
1296 		chars = strlen(buffer) - 1;
1297 		buffer[chars] = '\0';
1298 	}
1299 #else
1300 	int ret;
1301 
1302 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1303 	if (ret < 0)
1304 		return AE_ERROR;
1305 	if (bytes_read)
1306 		*bytes_read = ret;
1307 #endif
1308 
1309 	return AE_OK;
1310 }
1311 EXPORT_SYMBOL(acpi_os_get_line);
1312 
1313 acpi_status acpi_os_wait_command_ready(void)
1314 {
1315 	int ret;
1316 
1317 	ret = acpi_debugger_wait_command_ready();
1318 	if (ret < 0)
1319 		return AE_ERROR;
1320 	return AE_OK;
1321 }
1322 
1323 acpi_status acpi_os_notify_command_complete(void)
1324 {
1325 	int ret;
1326 
1327 	ret = acpi_debugger_notify_command_complete();
1328 	if (ret < 0)
1329 		return AE_ERROR;
1330 	return AE_OK;
1331 }
1332 
1333 acpi_status acpi_os_signal(u32 function, void *info)
1334 {
1335 	switch (function) {
1336 	case ACPI_SIGNAL_FATAL:
1337 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1338 		break;
1339 	case ACPI_SIGNAL_BREAKPOINT:
1340 		/*
1341 		 * AML Breakpoint
1342 		 * ACPI spec. says to treat it as a NOP unless
1343 		 * you are debugging.  So if/when we integrate
1344 		 * AML debugger into the kernel debugger its
1345 		 * hook will go here.  But until then it is
1346 		 * not useful to print anything on breakpoints.
1347 		 */
1348 		break;
1349 	default:
1350 		break;
1351 	}
1352 
1353 	return AE_OK;
1354 }
1355 
1356 static int __init acpi_os_name_setup(char *str)
1357 {
1358 	char *p = acpi_os_name;
1359 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1360 
1361 	if (!str || !*str)
1362 		return 0;
1363 
1364 	for (; count-- && *str; str++) {
1365 		if (isalnum(*str) || *str == ' ' || *str == ':')
1366 			*p++ = *str;
1367 		else if (*str == '\'' || *str == '"')
1368 			continue;
1369 		else
1370 			break;
1371 	}
1372 	*p = 0;
1373 
1374 	return 1;
1375 
1376 }
1377 
1378 __setup("acpi_os_name=", acpi_os_name_setup);
1379 
1380 /*
1381  * Disable the auto-serialization of named objects creation methods.
1382  *
1383  * This feature is enabled by default.  It marks the AML control methods
1384  * that contain the opcodes to create named objects as "Serialized".
1385  */
1386 static int __init acpi_no_auto_serialize_setup(char *str)
1387 {
1388 	acpi_gbl_auto_serialize_methods = FALSE;
1389 	pr_info("ACPI: auto-serialization disabled\n");
1390 
1391 	return 1;
1392 }
1393 
1394 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1395 
1396 /* Check of resource interference between native drivers and ACPI
1397  * OperationRegions (SystemIO and System Memory only).
1398  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1399  * in arbitrary AML code and can interfere with legacy drivers.
1400  * acpi_enforce_resources= can be set to:
1401  *
1402  *   - strict (default) (2)
1403  *     -> further driver trying to access the resources will not load
1404  *   - lax              (1)
1405  *     -> further driver trying to access the resources will load, but you
1406  *     get a system message that something might go wrong...
1407  *
1408  *   - no               (0)
1409  *     -> ACPI Operation Region resources will not be registered
1410  *
1411  */
1412 #define ENFORCE_RESOURCES_STRICT 2
1413 #define ENFORCE_RESOURCES_LAX    1
1414 #define ENFORCE_RESOURCES_NO     0
1415 
1416 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1417 
1418 static int __init acpi_enforce_resources_setup(char *str)
1419 {
1420 	if (str == NULL || *str == '\0')
1421 		return 0;
1422 
1423 	if (!strcmp("strict", str))
1424 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1425 	else if (!strcmp("lax", str))
1426 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1427 	else if (!strcmp("no", str))
1428 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1429 
1430 	return 1;
1431 }
1432 
1433 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1434 
1435 /* Check for resource conflicts between ACPI OperationRegions and native
1436  * drivers */
1437 int acpi_check_resource_conflict(const struct resource *res)
1438 {
1439 	acpi_adr_space_type space_id;
1440 	acpi_size length;
1441 	u8 warn = 0;
1442 	int clash = 0;
1443 
1444 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1445 		return 0;
1446 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1447 		return 0;
1448 
1449 	if (res->flags & IORESOURCE_IO)
1450 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1451 	else
1452 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1453 
1454 	length = resource_size(res);
1455 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1456 		warn = 1;
1457 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1458 
1459 	if (clash) {
1460 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1461 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1462 				printk(KERN_NOTICE "ACPI: This conflict may"
1463 				       " cause random problems and system"
1464 				       " instability\n");
1465 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1466 			       " for this device, you should use it instead of"
1467 			       " the native driver\n");
1468 		}
1469 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1470 			return -EBUSY;
1471 	}
1472 	return 0;
1473 }
1474 EXPORT_SYMBOL(acpi_check_resource_conflict);
1475 
1476 int acpi_check_region(resource_size_t start, resource_size_t n,
1477 		      const char *name)
1478 {
1479 	struct resource res = {
1480 		.start = start,
1481 		.end   = start + n - 1,
1482 		.name  = name,
1483 		.flags = IORESOURCE_IO,
1484 	};
1485 
1486 	return acpi_check_resource_conflict(&res);
1487 }
1488 EXPORT_SYMBOL(acpi_check_region);
1489 
1490 /*
1491  * Let drivers know whether the resource checks are effective
1492  */
1493 int acpi_resources_are_enforced(void)
1494 {
1495 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1496 }
1497 EXPORT_SYMBOL(acpi_resources_are_enforced);
1498 
1499 /*
1500  * Deallocate the memory for a spinlock.
1501  */
1502 void acpi_os_delete_lock(acpi_spinlock handle)
1503 {
1504 	ACPI_FREE(handle);
1505 }
1506 
1507 /*
1508  * Acquire a spinlock.
1509  *
1510  * handle is a pointer to the spinlock_t.
1511  */
1512 
1513 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1514 {
1515 	acpi_cpu_flags flags;
1516 	spin_lock_irqsave(lockp, flags);
1517 	return flags;
1518 }
1519 
1520 /*
1521  * Release a spinlock. See above.
1522  */
1523 
1524 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1525 {
1526 	spin_unlock_irqrestore(lockp, flags);
1527 }
1528 
1529 #ifndef ACPI_USE_LOCAL_CACHE
1530 
1531 /*******************************************************************************
1532  *
1533  * FUNCTION:    acpi_os_create_cache
1534  *
1535  * PARAMETERS:  name      - Ascii name for the cache
1536  *              size      - Size of each cached object
1537  *              depth     - Maximum depth of the cache (in objects) <ignored>
1538  *              cache     - Where the new cache object is returned
1539  *
1540  * RETURN:      status
1541  *
1542  * DESCRIPTION: Create a cache object
1543  *
1544  ******************************************************************************/
1545 
1546 acpi_status
1547 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1548 {
1549 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1550 	if (*cache == NULL)
1551 		return AE_ERROR;
1552 	else
1553 		return AE_OK;
1554 }
1555 
1556 /*******************************************************************************
1557  *
1558  * FUNCTION:    acpi_os_purge_cache
1559  *
1560  * PARAMETERS:  Cache           - Handle to cache object
1561  *
1562  * RETURN:      Status
1563  *
1564  * DESCRIPTION: Free all objects within the requested cache.
1565  *
1566  ******************************************************************************/
1567 
1568 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1569 {
1570 	kmem_cache_shrink(cache);
1571 	return (AE_OK);
1572 }
1573 
1574 /*******************************************************************************
1575  *
1576  * FUNCTION:    acpi_os_delete_cache
1577  *
1578  * PARAMETERS:  Cache           - Handle to cache object
1579  *
1580  * RETURN:      Status
1581  *
1582  * DESCRIPTION: Free all objects within the requested cache and delete the
1583  *              cache object.
1584  *
1585  ******************************************************************************/
1586 
1587 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1588 {
1589 	kmem_cache_destroy(cache);
1590 	return (AE_OK);
1591 }
1592 
1593 /*******************************************************************************
1594  *
1595  * FUNCTION:    acpi_os_release_object
1596  *
1597  * PARAMETERS:  Cache       - Handle to cache object
1598  *              Object      - The object to be released
1599  *
1600  * RETURN:      None
1601  *
1602  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1603  *              the object is deleted.
1604  *
1605  ******************************************************************************/
1606 
1607 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1608 {
1609 	kmem_cache_free(cache, object);
1610 	return (AE_OK);
1611 }
1612 #endif
1613 
1614 static int __init acpi_no_static_ssdt_setup(char *s)
1615 {
1616 	acpi_gbl_disable_ssdt_table_install = TRUE;
1617 	pr_info("ACPI: static SSDT installation disabled\n");
1618 
1619 	return 0;
1620 }
1621 
1622 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1623 
1624 static int __init acpi_disable_return_repair(char *s)
1625 {
1626 	printk(KERN_NOTICE PREFIX
1627 	       "ACPI: Predefined validation mechanism disabled\n");
1628 	acpi_gbl_disable_auto_repair = TRUE;
1629 
1630 	return 1;
1631 }
1632 
1633 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1634 
1635 acpi_status __init acpi_os_initialize(void)
1636 {
1637 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1638 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1639 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1640 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1641 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1642 		/*
1643 		 * Use acpi_os_map_generic_address to pre-map the reset
1644 		 * register if it's in system memory.
1645 		 */
1646 		int rv;
1647 
1648 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1649 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1650 	}
1651 	acpi_os_initialized = true;
1652 
1653 	return AE_OK;
1654 }
1655 
1656 acpi_status __init acpi_os_initialize1(void)
1657 {
1658 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1659 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1660 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1661 	BUG_ON(!kacpid_wq);
1662 	BUG_ON(!kacpi_notify_wq);
1663 	BUG_ON(!kacpi_hotplug_wq);
1664 	acpi_osi_init();
1665 	return AE_OK;
1666 }
1667 
1668 acpi_status acpi_os_terminate(void)
1669 {
1670 	if (acpi_irq_handler) {
1671 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1672 						 acpi_irq_handler);
1673 	}
1674 
1675 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1676 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1677 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1678 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1679 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1680 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1681 
1682 	destroy_workqueue(kacpid_wq);
1683 	destroy_workqueue(kacpi_notify_wq);
1684 	destroy_workqueue(kacpi_hotplug_wq);
1685 
1686 	return AE_OK;
1687 }
1688 
1689 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1690 				  u32 pm1b_control)
1691 {
1692 	int rc = 0;
1693 	if (__acpi_os_prepare_sleep)
1694 		rc = __acpi_os_prepare_sleep(sleep_state,
1695 					     pm1a_control, pm1b_control);
1696 	if (rc < 0)
1697 		return AE_ERROR;
1698 	else if (rc > 0)
1699 		return AE_CTRL_TERMINATE;
1700 
1701 	return AE_OK;
1702 }
1703 
1704 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1705 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1706 {
1707 	__acpi_os_prepare_sleep = func;
1708 }
1709 
1710 #if (ACPI_REDUCED_HARDWARE)
1711 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1712 				  u32 val_b)
1713 {
1714 	int rc = 0;
1715 	if (__acpi_os_prepare_extended_sleep)
1716 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1717 					     val_a, val_b);
1718 	if (rc < 0)
1719 		return AE_ERROR;
1720 	else if (rc > 0)
1721 		return AE_CTRL_TERMINATE;
1722 
1723 	return AE_OK;
1724 }
1725 #else
1726 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1727 				  u32 val_b)
1728 {
1729 	return AE_OK;
1730 }
1731 #endif
1732 
1733 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1734 			       u32 val_a, u32 val_b))
1735 {
1736 	__acpi_os_prepare_extended_sleep = func;
1737 }
1738 
1739 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1740 				u32 reg_a_value, u32 reg_b_value)
1741 {
1742 	acpi_status status;
1743 
1744 	if (acpi_gbl_reduced_hardware)
1745 		status = acpi_os_prepare_extended_sleep(sleep_state,
1746 							reg_a_value,
1747 							reg_b_value);
1748 	else
1749 		status = acpi_os_prepare_sleep(sleep_state,
1750 					       reg_a_value, reg_b_value);
1751 	return status;
1752 }
1753