xref: /openbmc/linux/drivers/acpi/osl.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 #include <linux/security.h>
31 
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 #include <linux/io-64-nonatomic-lo-hi.h>
35 
36 #include "acpica/accommon.h"
37 #include "acpica/acnamesp.h"
38 #include "internal.h"
39 
40 #define _COMPONENT		ACPI_OS_SERVICES
41 ACPI_MODULE_NAME("osl");
42 
43 struct acpi_os_dpc {
44 	acpi_osd_exec_callback function;
45 	void *context;
46 	struct work_struct work;
47 };
48 
49 #ifdef ENABLE_DEBUGGER
50 #include <linux/kdb.h>
51 
52 /* stuff for debugger support */
53 int acpi_in_debugger;
54 EXPORT_SYMBOL(acpi_in_debugger);
55 #endif				/*ENABLE_DEBUGGER */
56 
57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 				      u32 pm1b_ctrl);
59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 				      u32 val_b);
61 
62 static acpi_osd_handler acpi_irq_handler;
63 static void *acpi_irq_context;
64 static struct workqueue_struct *kacpid_wq;
65 static struct workqueue_struct *kacpi_notify_wq;
66 static struct workqueue_struct *kacpi_hotplug_wq;
67 static bool acpi_os_initialized;
68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69 bool acpi_permanent_mmap = false;
70 
71 /*
72  * This list of permanent mappings is for memory that may be accessed from
73  * interrupt context, where we can't do the ioremap().
74  */
75 struct acpi_ioremap {
76 	struct list_head list;
77 	void __iomem *virt;
78 	acpi_physical_address phys;
79 	acpi_size size;
80 	unsigned long refcount;
81 };
82 
83 static LIST_HEAD(acpi_ioremaps);
84 static DEFINE_MUTEX(acpi_ioremap_lock);
85 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
86 
87 static void __init acpi_request_region (struct acpi_generic_address *gas,
88 	unsigned int length, char *desc)
89 {
90 	u64 addr;
91 
92 	/* Handle possible alignment issues */
93 	memcpy(&addr, &gas->address, sizeof(addr));
94 	if (!addr || !length)
95 		return;
96 
97 	/* Resources are never freed */
98 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
99 		request_region(addr, length, desc);
100 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
101 		request_mem_region(addr, length, desc);
102 }
103 
104 static int __init acpi_reserve_resources(void)
105 {
106 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
107 		"ACPI PM1a_EVT_BLK");
108 
109 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
110 		"ACPI PM1b_EVT_BLK");
111 
112 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
113 		"ACPI PM1a_CNT_BLK");
114 
115 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
116 		"ACPI PM1b_CNT_BLK");
117 
118 	if (acpi_gbl_FADT.pm_timer_length == 4)
119 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
120 
121 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
122 		"ACPI PM2_CNT_BLK");
123 
124 	/* Length of GPE blocks must be a non-negative multiple of 2 */
125 
126 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
127 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
128 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
129 
130 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
131 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
132 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
133 
134 	return 0;
135 }
136 fs_initcall_sync(acpi_reserve_resources);
137 
138 void acpi_os_printf(const char *fmt, ...)
139 {
140 	va_list args;
141 	va_start(args, fmt);
142 	acpi_os_vprintf(fmt, args);
143 	va_end(args);
144 }
145 EXPORT_SYMBOL(acpi_os_printf);
146 
147 void acpi_os_vprintf(const char *fmt, va_list args)
148 {
149 	static char buffer[512];
150 
151 	vsprintf(buffer, fmt, args);
152 
153 #ifdef ENABLE_DEBUGGER
154 	if (acpi_in_debugger) {
155 		kdb_printf("%s", buffer);
156 	} else {
157 		if (printk_get_level(buffer))
158 			printk("%s", buffer);
159 		else
160 			printk(KERN_CONT "%s", buffer);
161 	}
162 #else
163 	if (acpi_debugger_write_log(buffer) < 0) {
164 		if (printk_get_level(buffer))
165 			printk("%s", buffer);
166 		else
167 			printk(KERN_CONT "%s", buffer);
168 	}
169 #endif
170 }
171 
172 #ifdef CONFIG_KEXEC
173 static unsigned long acpi_rsdp;
174 static int __init setup_acpi_rsdp(char *arg)
175 {
176 	return kstrtoul(arg, 16, &acpi_rsdp);
177 }
178 early_param("acpi_rsdp", setup_acpi_rsdp);
179 #endif
180 
181 acpi_physical_address __init acpi_os_get_root_pointer(void)
182 {
183 	acpi_physical_address pa;
184 
185 #ifdef CONFIG_KEXEC
186 	/*
187 	 * We may have been provided with an RSDP on the command line,
188 	 * but if a malicious user has done so they may be pointing us
189 	 * at modified ACPI tables that could alter kernel behaviour -
190 	 * so, we check the lockdown status before making use of
191 	 * it. If we trust it then also stash it in an architecture
192 	 * specific location (if appropriate) so it can be carried
193 	 * over further kexec()s.
194 	 */
195 	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
196 		acpi_arch_set_root_pointer(acpi_rsdp);
197 		return acpi_rsdp;
198 	}
199 #endif
200 	pa = acpi_arch_get_root_pointer();
201 	if (pa)
202 		return pa;
203 
204 	if (efi_enabled(EFI_CONFIG_TABLES)) {
205 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 			return efi.acpi20;
207 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 			return efi.acpi;
209 		pr_err(PREFIX "System description tables not found\n");
210 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 		acpi_find_root_pointer(&pa);
212 	}
213 
214 	return pa;
215 }
216 
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221 	struct acpi_ioremap *map;
222 
223 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
224 		if (map->phys <= phys &&
225 		    phys + size <= map->phys + map->size)
226 			return map;
227 
228 	return NULL;
229 }
230 
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235 	struct acpi_ioremap *map;
236 
237 	map = acpi_map_lookup(phys, size);
238 	if (map)
239 		return map->virt + (phys - map->phys);
240 
241 	return NULL;
242 }
243 
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246 	struct acpi_ioremap *map;
247 	void __iomem *virt = NULL;
248 
249 	mutex_lock(&acpi_ioremap_lock);
250 	map = acpi_map_lookup(phys, size);
251 	if (map) {
252 		virt = map->virt + (phys - map->phys);
253 		map->refcount++;
254 	}
255 	mutex_unlock(&acpi_ioremap_lock);
256 	return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259 
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264 	struct acpi_ioremap *map;
265 
266 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
267 		if (map->virt <= virt &&
268 		    virt + size <= map->virt + map->size)
269 			return map;
270 
271 	return NULL;
272 }
273 
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280 
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283 	unsigned long pfn;
284 
285 	pfn = pg_off >> PAGE_SHIFT;
286 	if (should_use_kmap(pfn)) {
287 		if (pg_sz > PAGE_SIZE)
288 			return NULL;
289 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 	} else
291 		return acpi_os_ioremap(pg_off, pg_sz);
292 }
293 
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296 	unsigned long pfn;
297 
298 	pfn = pg_off >> PAGE_SHIFT;
299 	if (should_use_kmap(pfn))
300 		kunmap(pfn_to_page(pfn));
301 	else
302 		iounmap(vaddr);
303 }
304 
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem __ref
319 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321 	struct acpi_ioremap *map;
322 	void __iomem *virt;
323 	acpi_physical_address pg_off;
324 	acpi_size pg_sz;
325 
326 	if (phys > ULONG_MAX) {
327 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 		return NULL;
329 	}
330 
331 	if (!acpi_permanent_mmap)
332 		return __acpi_map_table((unsigned long)phys, size);
333 
334 	mutex_lock(&acpi_ioremap_lock);
335 	/* Check if there's a suitable mapping already. */
336 	map = acpi_map_lookup(phys, size);
337 	if (map) {
338 		map->refcount++;
339 		goto out;
340 	}
341 
342 	map = kzalloc(sizeof(*map), GFP_KERNEL);
343 	if (!map) {
344 		mutex_unlock(&acpi_ioremap_lock);
345 		return NULL;
346 	}
347 
348 	pg_off = round_down(phys, PAGE_SIZE);
349 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 	virt = acpi_map(pg_off, pg_sz);
351 	if (!virt) {
352 		mutex_unlock(&acpi_ioremap_lock);
353 		kfree(map);
354 		return NULL;
355 	}
356 
357 	INIT_LIST_HEAD(&map->list);
358 	map->virt = virt;
359 	map->phys = pg_off;
360 	map->size = pg_sz;
361 	map->refcount = 1;
362 
363 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
364 
365 out:
366 	mutex_unlock(&acpi_ioremap_lock);
367 	return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370 
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373 	return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376 
377 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
378 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
379 {
380 	unsigned long refcount = --map->refcount;
381 
382 	if (!refcount)
383 		list_del_rcu(&map->list);
384 	return refcount;
385 }
386 
387 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
388 {
389 	synchronize_rcu_expedited();
390 	acpi_unmap(map->phys, map->virt);
391 	kfree(map);
392 }
393 
394 /**
395  * acpi_os_unmap_iomem - Drop a memory mapping reference.
396  * @virt: Start of the address range to drop a reference to.
397  * @size: Size of the address range to drop a reference to.
398  *
399  * Look up the given virtual address range in the list of existing ACPI memory
400  * mappings, drop a reference to it and unmap it if there are no more active
401  * references to it.
402  *
403  * During early init (when acpi_permanent_mmap has not been set yet) this
404  * routine simply calls __acpi_unmap_table() to get the job done.  Since
405  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
406  * here.
407  */
408 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
409 {
410 	struct acpi_ioremap *map;
411 	unsigned long refcount;
412 
413 	if (!acpi_permanent_mmap) {
414 		__acpi_unmap_table(virt, size);
415 		return;
416 	}
417 
418 	mutex_lock(&acpi_ioremap_lock);
419 	map = acpi_map_lookup_virt(virt, size);
420 	if (!map) {
421 		mutex_unlock(&acpi_ioremap_lock);
422 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
423 		return;
424 	}
425 	refcount = acpi_os_drop_map_ref(map);
426 	mutex_unlock(&acpi_ioremap_lock);
427 
428 	if (!refcount)
429 		acpi_os_map_cleanup(map);
430 }
431 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
432 
433 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
434 {
435 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
436 }
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
438 
439 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
440 {
441 	u64 addr;
442 	void __iomem *virt;
443 
444 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
445 		return 0;
446 
447 	/* Handle possible alignment issues */
448 	memcpy(&addr, &gas->address, sizeof(addr));
449 	if (!addr || !gas->bit_width)
450 		return -EINVAL;
451 
452 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
453 	if (!virt)
454 		return -EIO;
455 
456 	return 0;
457 }
458 EXPORT_SYMBOL(acpi_os_map_generic_address);
459 
460 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
461 {
462 	u64 addr;
463 	struct acpi_ioremap *map;
464 	unsigned long refcount;
465 
466 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
467 		return;
468 
469 	/* Handle possible alignment issues */
470 	memcpy(&addr, &gas->address, sizeof(addr));
471 	if (!addr || !gas->bit_width)
472 		return;
473 
474 	mutex_lock(&acpi_ioremap_lock);
475 	map = acpi_map_lookup(addr, gas->bit_width / 8);
476 	if (!map) {
477 		mutex_unlock(&acpi_ioremap_lock);
478 		return;
479 	}
480 	refcount = acpi_os_drop_map_ref(map);
481 	mutex_unlock(&acpi_ioremap_lock);
482 
483 	if (!refcount)
484 		acpi_os_map_cleanup(map);
485 }
486 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
487 
488 #ifdef ACPI_FUTURE_USAGE
489 acpi_status
490 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
491 {
492 	if (!phys || !virt)
493 		return AE_BAD_PARAMETER;
494 
495 	*phys = virt_to_phys(virt);
496 
497 	return AE_OK;
498 }
499 #endif
500 
501 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
502 static bool acpi_rev_override;
503 
504 int __init acpi_rev_override_setup(char *str)
505 {
506 	acpi_rev_override = true;
507 	return 1;
508 }
509 __setup("acpi_rev_override", acpi_rev_override_setup);
510 #else
511 #define acpi_rev_override	false
512 #endif
513 
514 #define ACPI_MAX_OVERRIDE_LEN 100
515 
516 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
517 
518 acpi_status
519 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
520 			    acpi_string *new_val)
521 {
522 	if (!init_val || !new_val)
523 		return AE_BAD_PARAMETER;
524 
525 	*new_val = NULL;
526 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
527 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
528 		       acpi_os_name);
529 		*new_val = acpi_os_name;
530 	}
531 
532 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
533 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
534 		*new_val = (char *)5;
535 	}
536 
537 	return AE_OK;
538 }
539 
540 static irqreturn_t acpi_irq(int irq, void *dev_id)
541 {
542 	u32 handled;
543 
544 	handled = (*acpi_irq_handler) (acpi_irq_context);
545 
546 	if (handled) {
547 		acpi_irq_handled++;
548 		return IRQ_HANDLED;
549 	} else {
550 		acpi_irq_not_handled++;
551 		return IRQ_NONE;
552 	}
553 }
554 
555 acpi_status
556 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
557 				  void *context)
558 {
559 	unsigned int irq;
560 
561 	acpi_irq_stats_init();
562 
563 	/*
564 	 * ACPI interrupts different from the SCI in our copy of the FADT are
565 	 * not supported.
566 	 */
567 	if (gsi != acpi_gbl_FADT.sci_interrupt)
568 		return AE_BAD_PARAMETER;
569 
570 	if (acpi_irq_handler)
571 		return AE_ALREADY_ACQUIRED;
572 
573 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
574 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
575 		       gsi);
576 		return AE_OK;
577 	}
578 
579 	acpi_irq_handler = handler;
580 	acpi_irq_context = context;
581 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
582 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
583 		acpi_irq_handler = NULL;
584 		return AE_NOT_ACQUIRED;
585 	}
586 	acpi_sci_irq = irq;
587 
588 	return AE_OK;
589 }
590 
591 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
592 {
593 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
594 		return AE_BAD_PARAMETER;
595 
596 	free_irq(acpi_sci_irq, acpi_irq);
597 	acpi_irq_handler = NULL;
598 	acpi_sci_irq = INVALID_ACPI_IRQ;
599 
600 	return AE_OK;
601 }
602 
603 /*
604  * Running in interpreter thread context, safe to sleep
605  */
606 
607 void acpi_os_sleep(u64 ms)
608 {
609 	msleep(ms);
610 }
611 
612 void acpi_os_stall(u32 us)
613 {
614 	while (us) {
615 		u32 delay = 1000;
616 
617 		if (delay > us)
618 			delay = us;
619 		udelay(delay);
620 		touch_nmi_watchdog();
621 		us -= delay;
622 	}
623 }
624 
625 /*
626  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
627  * monotonically increasing timer with 100ns granularity. Do not use
628  * ktime_get() to implement this function because this function may get
629  * called after timekeeping has been suspended. Note: calling this function
630  * after timekeeping has been suspended may lead to unexpected results
631  * because when timekeeping is suspended the jiffies counter is not
632  * incremented. See also timekeeping_suspend().
633  */
634 u64 acpi_os_get_timer(void)
635 {
636 	return (get_jiffies_64() - INITIAL_JIFFIES) *
637 		(ACPI_100NSEC_PER_SEC / HZ);
638 }
639 
640 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
641 {
642 	u32 dummy;
643 
644 	if (!value)
645 		value = &dummy;
646 
647 	*value = 0;
648 	if (width <= 8) {
649 		*(u8 *) value = inb(port);
650 	} else if (width <= 16) {
651 		*(u16 *) value = inw(port);
652 	} else if (width <= 32) {
653 		*(u32 *) value = inl(port);
654 	} else {
655 		BUG();
656 	}
657 
658 	return AE_OK;
659 }
660 
661 EXPORT_SYMBOL(acpi_os_read_port);
662 
663 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
664 {
665 	if (width <= 8) {
666 		outb(value, port);
667 	} else if (width <= 16) {
668 		outw(value, port);
669 	} else if (width <= 32) {
670 		outl(value, port);
671 	} else {
672 		BUG();
673 	}
674 
675 	return AE_OK;
676 }
677 
678 EXPORT_SYMBOL(acpi_os_write_port);
679 
680 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
681 {
682 
683 	switch (width) {
684 	case 8:
685 		*(u8 *) value = readb(virt_addr);
686 		break;
687 	case 16:
688 		*(u16 *) value = readw(virt_addr);
689 		break;
690 	case 32:
691 		*(u32 *) value = readl(virt_addr);
692 		break;
693 	case 64:
694 		*(u64 *) value = readq(virt_addr);
695 		break;
696 	default:
697 		return -EINVAL;
698 	}
699 
700 	return 0;
701 }
702 
703 acpi_status
704 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
705 {
706 	void __iomem *virt_addr;
707 	unsigned int size = width / 8;
708 	bool unmap = false;
709 	u64 dummy;
710 	int error;
711 
712 	rcu_read_lock();
713 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
714 	if (!virt_addr) {
715 		rcu_read_unlock();
716 		virt_addr = acpi_os_ioremap(phys_addr, size);
717 		if (!virt_addr)
718 			return AE_BAD_ADDRESS;
719 		unmap = true;
720 	}
721 
722 	if (!value)
723 		value = &dummy;
724 
725 	error = acpi_os_read_iomem(virt_addr, value, width);
726 	BUG_ON(error);
727 
728 	if (unmap)
729 		iounmap(virt_addr);
730 	else
731 		rcu_read_unlock();
732 
733 	return AE_OK;
734 }
735 
736 acpi_status
737 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
738 {
739 	void __iomem *virt_addr;
740 	unsigned int size = width / 8;
741 	bool unmap = false;
742 
743 	rcu_read_lock();
744 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
745 	if (!virt_addr) {
746 		rcu_read_unlock();
747 		virt_addr = acpi_os_ioremap(phys_addr, size);
748 		if (!virt_addr)
749 			return AE_BAD_ADDRESS;
750 		unmap = true;
751 	}
752 
753 	switch (width) {
754 	case 8:
755 		writeb(value, virt_addr);
756 		break;
757 	case 16:
758 		writew(value, virt_addr);
759 		break;
760 	case 32:
761 		writel(value, virt_addr);
762 		break;
763 	case 64:
764 		writeq(value, virt_addr);
765 		break;
766 	default:
767 		BUG();
768 	}
769 
770 	if (unmap)
771 		iounmap(virt_addr);
772 	else
773 		rcu_read_unlock();
774 
775 	return AE_OK;
776 }
777 
778 #ifdef CONFIG_PCI
779 acpi_status
780 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
781 			       u64 *value, u32 width)
782 {
783 	int result, size;
784 	u32 value32;
785 
786 	if (!value)
787 		return AE_BAD_PARAMETER;
788 
789 	switch (width) {
790 	case 8:
791 		size = 1;
792 		break;
793 	case 16:
794 		size = 2;
795 		break;
796 	case 32:
797 		size = 4;
798 		break;
799 	default:
800 		return AE_ERROR;
801 	}
802 
803 	result = raw_pci_read(pci_id->segment, pci_id->bus,
804 				PCI_DEVFN(pci_id->device, pci_id->function),
805 				reg, size, &value32);
806 	*value = value32;
807 
808 	return (result ? AE_ERROR : AE_OK);
809 }
810 
811 acpi_status
812 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
813 				u64 value, u32 width)
814 {
815 	int result, size;
816 
817 	switch (width) {
818 	case 8:
819 		size = 1;
820 		break;
821 	case 16:
822 		size = 2;
823 		break;
824 	case 32:
825 		size = 4;
826 		break;
827 	default:
828 		return AE_ERROR;
829 	}
830 
831 	result = raw_pci_write(pci_id->segment, pci_id->bus,
832 				PCI_DEVFN(pci_id->device, pci_id->function),
833 				reg, size, value);
834 
835 	return (result ? AE_ERROR : AE_OK);
836 }
837 #endif
838 
839 static void acpi_os_execute_deferred(struct work_struct *work)
840 {
841 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
842 
843 	dpc->function(dpc->context);
844 	kfree(dpc);
845 }
846 
847 #ifdef CONFIG_ACPI_DEBUGGER
848 static struct acpi_debugger acpi_debugger;
849 static bool acpi_debugger_initialized;
850 
851 int acpi_register_debugger(struct module *owner,
852 			   const struct acpi_debugger_ops *ops)
853 {
854 	int ret = 0;
855 
856 	mutex_lock(&acpi_debugger.lock);
857 	if (acpi_debugger.ops) {
858 		ret = -EBUSY;
859 		goto err_lock;
860 	}
861 
862 	acpi_debugger.owner = owner;
863 	acpi_debugger.ops = ops;
864 
865 err_lock:
866 	mutex_unlock(&acpi_debugger.lock);
867 	return ret;
868 }
869 EXPORT_SYMBOL(acpi_register_debugger);
870 
871 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
872 {
873 	mutex_lock(&acpi_debugger.lock);
874 	if (ops == acpi_debugger.ops) {
875 		acpi_debugger.ops = NULL;
876 		acpi_debugger.owner = NULL;
877 	}
878 	mutex_unlock(&acpi_debugger.lock);
879 }
880 EXPORT_SYMBOL(acpi_unregister_debugger);
881 
882 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
883 {
884 	int ret;
885 	int (*func)(acpi_osd_exec_callback, void *);
886 	struct module *owner;
887 
888 	if (!acpi_debugger_initialized)
889 		return -ENODEV;
890 	mutex_lock(&acpi_debugger.lock);
891 	if (!acpi_debugger.ops) {
892 		ret = -ENODEV;
893 		goto err_lock;
894 	}
895 	if (!try_module_get(acpi_debugger.owner)) {
896 		ret = -ENODEV;
897 		goto err_lock;
898 	}
899 	func = acpi_debugger.ops->create_thread;
900 	owner = acpi_debugger.owner;
901 	mutex_unlock(&acpi_debugger.lock);
902 
903 	ret = func(function, context);
904 
905 	mutex_lock(&acpi_debugger.lock);
906 	module_put(owner);
907 err_lock:
908 	mutex_unlock(&acpi_debugger.lock);
909 	return ret;
910 }
911 
912 ssize_t acpi_debugger_write_log(const char *msg)
913 {
914 	ssize_t ret;
915 	ssize_t (*func)(const char *);
916 	struct module *owner;
917 
918 	if (!acpi_debugger_initialized)
919 		return -ENODEV;
920 	mutex_lock(&acpi_debugger.lock);
921 	if (!acpi_debugger.ops) {
922 		ret = -ENODEV;
923 		goto err_lock;
924 	}
925 	if (!try_module_get(acpi_debugger.owner)) {
926 		ret = -ENODEV;
927 		goto err_lock;
928 	}
929 	func = acpi_debugger.ops->write_log;
930 	owner = acpi_debugger.owner;
931 	mutex_unlock(&acpi_debugger.lock);
932 
933 	ret = func(msg);
934 
935 	mutex_lock(&acpi_debugger.lock);
936 	module_put(owner);
937 err_lock:
938 	mutex_unlock(&acpi_debugger.lock);
939 	return ret;
940 }
941 
942 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
943 {
944 	ssize_t ret;
945 	ssize_t (*func)(char *, size_t);
946 	struct module *owner;
947 
948 	if (!acpi_debugger_initialized)
949 		return -ENODEV;
950 	mutex_lock(&acpi_debugger.lock);
951 	if (!acpi_debugger.ops) {
952 		ret = -ENODEV;
953 		goto err_lock;
954 	}
955 	if (!try_module_get(acpi_debugger.owner)) {
956 		ret = -ENODEV;
957 		goto err_lock;
958 	}
959 	func = acpi_debugger.ops->read_cmd;
960 	owner = acpi_debugger.owner;
961 	mutex_unlock(&acpi_debugger.lock);
962 
963 	ret = func(buffer, buffer_length);
964 
965 	mutex_lock(&acpi_debugger.lock);
966 	module_put(owner);
967 err_lock:
968 	mutex_unlock(&acpi_debugger.lock);
969 	return ret;
970 }
971 
972 int acpi_debugger_wait_command_ready(void)
973 {
974 	int ret;
975 	int (*func)(bool, char *, size_t);
976 	struct module *owner;
977 
978 	if (!acpi_debugger_initialized)
979 		return -ENODEV;
980 	mutex_lock(&acpi_debugger.lock);
981 	if (!acpi_debugger.ops) {
982 		ret = -ENODEV;
983 		goto err_lock;
984 	}
985 	if (!try_module_get(acpi_debugger.owner)) {
986 		ret = -ENODEV;
987 		goto err_lock;
988 	}
989 	func = acpi_debugger.ops->wait_command_ready;
990 	owner = acpi_debugger.owner;
991 	mutex_unlock(&acpi_debugger.lock);
992 
993 	ret = func(acpi_gbl_method_executing,
994 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
995 
996 	mutex_lock(&acpi_debugger.lock);
997 	module_put(owner);
998 err_lock:
999 	mutex_unlock(&acpi_debugger.lock);
1000 	return ret;
1001 }
1002 
1003 int acpi_debugger_notify_command_complete(void)
1004 {
1005 	int ret;
1006 	int (*func)(void);
1007 	struct module *owner;
1008 
1009 	if (!acpi_debugger_initialized)
1010 		return -ENODEV;
1011 	mutex_lock(&acpi_debugger.lock);
1012 	if (!acpi_debugger.ops) {
1013 		ret = -ENODEV;
1014 		goto err_lock;
1015 	}
1016 	if (!try_module_get(acpi_debugger.owner)) {
1017 		ret = -ENODEV;
1018 		goto err_lock;
1019 	}
1020 	func = acpi_debugger.ops->notify_command_complete;
1021 	owner = acpi_debugger.owner;
1022 	mutex_unlock(&acpi_debugger.lock);
1023 
1024 	ret = func();
1025 
1026 	mutex_lock(&acpi_debugger.lock);
1027 	module_put(owner);
1028 err_lock:
1029 	mutex_unlock(&acpi_debugger.lock);
1030 	return ret;
1031 }
1032 
1033 int __init acpi_debugger_init(void)
1034 {
1035 	mutex_init(&acpi_debugger.lock);
1036 	acpi_debugger_initialized = true;
1037 	return 0;
1038 }
1039 #endif
1040 
1041 /*******************************************************************************
1042  *
1043  * FUNCTION:    acpi_os_execute
1044  *
1045  * PARAMETERS:  Type               - Type of the callback
1046  *              Function           - Function to be executed
1047  *              Context            - Function parameters
1048  *
1049  * RETURN:      Status
1050  *
1051  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1052  *              immediately executes function on a separate thread.
1053  *
1054  ******************************************************************************/
1055 
1056 acpi_status acpi_os_execute(acpi_execute_type type,
1057 			    acpi_osd_exec_callback function, void *context)
1058 {
1059 	acpi_status status = AE_OK;
1060 	struct acpi_os_dpc *dpc;
1061 	struct workqueue_struct *queue;
1062 	int ret;
1063 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1064 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1065 			  function, context));
1066 
1067 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1068 		ret = acpi_debugger_create_thread(function, context);
1069 		if (ret) {
1070 			pr_err("Call to kthread_create() failed.\n");
1071 			status = AE_ERROR;
1072 		}
1073 		goto out_thread;
1074 	}
1075 
1076 	/*
1077 	 * Allocate/initialize DPC structure.  Note that this memory will be
1078 	 * freed by the callee.  The kernel handles the work_struct list  in a
1079 	 * way that allows us to also free its memory inside the callee.
1080 	 * Because we may want to schedule several tasks with different
1081 	 * parameters we can't use the approach some kernel code uses of
1082 	 * having a static work_struct.
1083 	 */
1084 
1085 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1086 	if (!dpc)
1087 		return AE_NO_MEMORY;
1088 
1089 	dpc->function = function;
1090 	dpc->context = context;
1091 
1092 	/*
1093 	 * To prevent lockdep from complaining unnecessarily, make sure that
1094 	 * there is a different static lockdep key for each workqueue by using
1095 	 * INIT_WORK() for each of them separately.
1096 	 */
1097 	if (type == OSL_NOTIFY_HANDLER) {
1098 		queue = kacpi_notify_wq;
1099 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1100 	} else if (type == OSL_GPE_HANDLER) {
1101 		queue = kacpid_wq;
1102 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1103 	} else {
1104 		pr_err("Unsupported os_execute type %d.\n", type);
1105 		status = AE_ERROR;
1106 	}
1107 
1108 	if (ACPI_FAILURE(status))
1109 		goto err_workqueue;
1110 
1111 	/*
1112 	 * On some machines, a software-initiated SMI causes corruption unless
1113 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1114 	 * typically it's done in GPE-related methods that are run via
1115 	 * workqueues, so we can avoid the known corruption cases by always
1116 	 * queueing on CPU 0.
1117 	 */
1118 	ret = queue_work_on(0, queue, &dpc->work);
1119 	if (!ret) {
1120 		printk(KERN_ERR PREFIX
1121 			  "Call to queue_work() failed.\n");
1122 		status = AE_ERROR;
1123 	}
1124 err_workqueue:
1125 	if (ACPI_FAILURE(status))
1126 		kfree(dpc);
1127 out_thread:
1128 	return status;
1129 }
1130 EXPORT_SYMBOL(acpi_os_execute);
1131 
1132 void acpi_os_wait_events_complete(void)
1133 {
1134 	/*
1135 	 * Make sure the GPE handler or the fixed event handler is not used
1136 	 * on another CPU after removal.
1137 	 */
1138 	if (acpi_sci_irq_valid())
1139 		synchronize_hardirq(acpi_sci_irq);
1140 	flush_workqueue(kacpid_wq);
1141 	flush_workqueue(kacpi_notify_wq);
1142 }
1143 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144 
1145 struct acpi_hp_work {
1146 	struct work_struct work;
1147 	struct acpi_device *adev;
1148 	u32 src;
1149 };
1150 
1151 static void acpi_hotplug_work_fn(struct work_struct *work)
1152 {
1153 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154 
1155 	acpi_os_wait_events_complete();
1156 	acpi_device_hotplug(hpw->adev, hpw->src);
1157 	kfree(hpw);
1158 }
1159 
1160 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161 {
1162 	struct acpi_hp_work *hpw;
1163 
1164 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1165 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1166 		  adev, src));
1167 
1168 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169 	if (!hpw)
1170 		return AE_NO_MEMORY;
1171 
1172 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173 	hpw->adev = adev;
1174 	hpw->src = src;
1175 	/*
1176 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177 	 * the hotplug code may call driver .remove() functions, which may
1178 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179 	 * these workqueues.
1180 	 */
1181 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182 		kfree(hpw);
1183 		return AE_ERROR;
1184 	}
1185 	return AE_OK;
1186 }
1187 
1188 bool acpi_queue_hotplug_work(struct work_struct *work)
1189 {
1190 	return queue_work(kacpi_hotplug_wq, work);
1191 }
1192 
1193 acpi_status
1194 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1195 {
1196 	struct semaphore *sem = NULL;
1197 
1198 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199 	if (!sem)
1200 		return AE_NO_MEMORY;
1201 
1202 	sema_init(sem, initial_units);
1203 
1204 	*handle = (acpi_handle *) sem;
1205 
1206 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207 			  *handle, initial_units));
1208 
1209 	return AE_OK;
1210 }
1211 
1212 /*
1213  * TODO: A better way to delete semaphores?  Linux doesn't have a
1214  * 'delete_semaphore()' function -- may result in an invalid
1215  * pointer dereference for non-synchronized consumers.	Should
1216  * we at least check for blocked threads and signal/cancel them?
1217  */
1218 
1219 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220 {
1221 	struct semaphore *sem = (struct semaphore *)handle;
1222 
1223 	if (!sem)
1224 		return AE_BAD_PARAMETER;
1225 
1226 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227 
1228 	BUG_ON(!list_empty(&sem->wait_list));
1229 	kfree(sem);
1230 	sem = NULL;
1231 
1232 	return AE_OK;
1233 }
1234 
1235 /*
1236  * TODO: Support for units > 1?
1237  */
1238 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239 {
1240 	acpi_status status = AE_OK;
1241 	struct semaphore *sem = (struct semaphore *)handle;
1242 	long jiffies;
1243 	int ret = 0;
1244 
1245 	if (!acpi_os_initialized)
1246 		return AE_OK;
1247 
1248 	if (!sem || (units < 1))
1249 		return AE_BAD_PARAMETER;
1250 
1251 	if (units > 1)
1252 		return AE_SUPPORT;
1253 
1254 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255 			  handle, units, timeout));
1256 
1257 	if (timeout == ACPI_WAIT_FOREVER)
1258 		jiffies = MAX_SCHEDULE_TIMEOUT;
1259 	else
1260 		jiffies = msecs_to_jiffies(timeout);
1261 
1262 	ret = down_timeout(sem, jiffies);
1263 	if (ret)
1264 		status = AE_TIME;
1265 
1266 	if (ACPI_FAILURE(status)) {
1267 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1269 				  handle, units, timeout,
1270 				  acpi_format_exception(status)));
1271 	} else {
1272 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273 				  "Acquired semaphore[%p|%d|%d]", handle,
1274 				  units, timeout));
1275 	}
1276 
1277 	return status;
1278 }
1279 
1280 /*
1281  * TODO: Support for units > 1?
1282  */
1283 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284 {
1285 	struct semaphore *sem = (struct semaphore *)handle;
1286 
1287 	if (!acpi_os_initialized)
1288 		return AE_OK;
1289 
1290 	if (!sem || (units < 1))
1291 		return AE_BAD_PARAMETER;
1292 
1293 	if (units > 1)
1294 		return AE_SUPPORT;
1295 
1296 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297 			  units));
1298 
1299 	up(sem);
1300 
1301 	return AE_OK;
1302 }
1303 
1304 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305 {
1306 #ifdef ENABLE_DEBUGGER
1307 	if (acpi_in_debugger) {
1308 		u32 chars;
1309 
1310 		kdb_read(buffer, buffer_length);
1311 
1312 		/* remove the CR kdb includes */
1313 		chars = strlen(buffer) - 1;
1314 		buffer[chars] = '\0';
1315 	}
1316 #else
1317 	int ret;
1318 
1319 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320 	if (ret < 0)
1321 		return AE_ERROR;
1322 	if (bytes_read)
1323 		*bytes_read = ret;
1324 #endif
1325 
1326 	return AE_OK;
1327 }
1328 EXPORT_SYMBOL(acpi_os_get_line);
1329 
1330 acpi_status acpi_os_wait_command_ready(void)
1331 {
1332 	int ret;
1333 
1334 	ret = acpi_debugger_wait_command_ready();
1335 	if (ret < 0)
1336 		return AE_ERROR;
1337 	return AE_OK;
1338 }
1339 
1340 acpi_status acpi_os_notify_command_complete(void)
1341 {
1342 	int ret;
1343 
1344 	ret = acpi_debugger_notify_command_complete();
1345 	if (ret < 0)
1346 		return AE_ERROR;
1347 	return AE_OK;
1348 }
1349 
1350 acpi_status acpi_os_signal(u32 function, void *info)
1351 {
1352 	switch (function) {
1353 	case ACPI_SIGNAL_FATAL:
1354 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1355 		break;
1356 	case ACPI_SIGNAL_BREAKPOINT:
1357 		/*
1358 		 * AML Breakpoint
1359 		 * ACPI spec. says to treat it as a NOP unless
1360 		 * you are debugging.  So if/when we integrate
1361 		 * AML debugger into the kernel debugger its
1362 		 * hook will go here.  But until then it is
1363 		 * not useful to print anything on breakpoints.
1364 		 */
1365 		break;
1366 	default:
1367 		break;
1368 	}
1369 
1370 	return AE_OK;
1371 }
1372 
1373 static int __init acpi_os_name_setup(char *str)
1374 {
1375 	char *p = acpi_os_name;
1376 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377 
1378 	if (!str || !*str)
1379 		return 0;
1380 
1381 	for (; count-- && *str; str++) {
1382 		if (isalnum(*str) || *str == ' ' || *str == ':')
1383 			*p++ = *str;
1384 		else if (*str == '\'' || *str == '"')
1385 			continue;
1386 		else
1387 			break;
1388 	}
1389 	*p = 0;
1390 
1391 	return 1;
1392 
1393 }
1394 
1395 __setup("acpi_os_name=", acpi_os_name_setup);
1396 
1397 /*
1398  * Disable the auto-serialization of named objects creation methods.
1399  *
1400  * This feature is enabled by default.  It marks the AML control methods
1401  * that contain the opcodes to create named objects as "Serialized".
1402  */
1403 static int __init acpi_no_auto_serialize_setup(char *str)
1404 {
1405 	acpi_gbl_auto_serialize_methods = FALSE;
1406 	pr_info("ACPI: auto-serialization disabled\n");
1407 
1408 	return 1;
1409 }
1410 
1411 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412 
1413 /* Check of resource interference between native drivers and ACPI
1414  * OperationRegions (SystemIO and System Memory only).
1415  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416  * in arbitrary AML code and can interfere with legacy drivers.
1417  * acpi_enforce_resources= can be set to:
1418  *
1419  *   - strict (default) (2)
1420  *     -> further driver trying to access the resources will not load
1421  *   - lax              (1)
1422  *     -> further driver trying to access the resources will load, but you
1423  *     get a system message that something might go wrong...
1424  *
1425  *   - no               (0)
1426  *     -> ACPI Operation Region resources will not be registered
1427  *
1428  */
1429 #define ENFORCE_RESOURCES_STRICT 2
1430 #define ENFORCE_RESOURCES_LAX    1
1431 #define ENFORCE_RESOURCES_NO     0
1432 
1433 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434 
1435 static int __init acpi_enforce_resources_setup(char *str)
1436 {
1437 	if (str == NULL || *str == '\0')
1438 		return 0;
1439 
1440 	if (!strcmp("strict", str))
1441 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442 	else if (!strcmp("lax", str))
1443 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444 	else if (!strcmp("no", str))
1445 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446 
1447 	return 1;
1448 }
1449 
1450 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451 
1452 /* Check for resource conflicts between ACPI OperationRegions and native
1453  * drivers */
1454 int acpi_check_resource_conflict(const struct resource *res)
1455 {
1456 	acpi_adr_space_type space_id;
1457 	acpi_size length;
1458 	u8 warn = 0;
1459 	int clash = 0;
1460 
1461 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1462 		return 0;
1463 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1464 		return 0;
1465 
1466 	if (res->flags & IORESOURCE_IO)
1467 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1468 	else
1469 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1470 
1471 	length = resource_size(res);
1472 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1473 		warn = 1;
1474 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1475 
1476 	if (clash) {
1477 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1478 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1479 				printk(KERN_NOTICE "ACPI: This conflict may"
1480 				       " cause random problems and system"
1481 				       " instability\n");
1482 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1483 			       " for this device, you should use it instead of"
1484 			       " the native driver\n");
1485 		}
1486 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1487 			return -EBUSY;
1488 	}
1489 	return 0;
1490 }
1491 EXPORT_SYMBOL(acpi_check_resource_conflict);
1492 
1493 int acpi_check_region(resource_size_t start, resource_size_t n,
1494 		      const char *name)
1495 {
1496 	struct resource res = {
1497 		.start = start,
1498 		.end   = start + n - 1,
1499 		.name  = name,
1500 		.flags = IORESOURCE_IO,
1501 	};
1502 
1503 	return acpi_check_resource_conflict(&res);
1504 }
1505 EXPORT_SYMBOL(acpi_check_region);
1506 
1507 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1508 					      void *_res, void **return_value)
1509 {
1510 	struct acpi_mem_space_context **mem_ctx;
1511 	union acpi_operand_object *handler_obj;
1512 	union acpi_operand_object *region_obj2;
1513 	union acpi_operand_object *region_obj;
1514 	struct resource *res = _res;
1515 	acpi_status status;
1516 
1517 	region_obj = acpi_ns_get_attached_object(handle);
1518 	if (!region_obj)
1519 		return AE_OK;
1520 
1521 	handler_obj = region_obj->region.handler;
1522 	if (!handler_obj)
1523 		return AE_OK;
1524 
1525 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1526 		return AE_OK;
1527 
1528 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1529 		return AE_OK;
1530 
1531 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1532 	if (!region_obj2)
1533 		return AE_OK;
1534 
1535 	mem_ctx = (void *)&region_obj2->extra.region_context;
1536 
1537 	if (!(mem_ctx[0]->address >= res->start &&
1538 	      mem_ctx[0]->address < res->end))
1539 		return AE_OK;
1540 
1541 	status = handler_obj->address_space.setup(region_obj,
1542 						  ACPI_REGION_DEACTIVATE,
1543 						  NULL, (void **)mem_ctx);
1544 	if (ACPI_SUCCESS(status))
1545 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1546 
1547 	return status;
1548 }
1549 
1550 /**
1551  * acpi_release_memory - Release any mappings done to a memory region
1552  * @handle: Handle to namespace node
1553  * @res: Memory resource
1554  * @level: A level that terminates the search
1555  *
1556  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1557  * overlap with @res and that have already been activated (mapped).
1558  *
1559  * This is a helper that allows drivers to place special requirements on memory
1560  * region that may overlap with operation regions, primarily allowing them to
1561  * safely map the region as non-cached memory.
1562  *
1563  * The unmapped Operation Regions will be automatically remapped next time they
1564  * are called, so the drivers do not need to do anything else.
1565  */
1566 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1567 				u32 level)
1568 {
1569 	if (!(res->flags & IORESOURCE_MEM))
1570 		return AE_TYPE;
1571 
1572 	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1573 				   acpi_deactivate_mem_region, NULL, res, NULL);
1574 }
1575 EXPORT_SYMBOL_GPL(acpi_release_memory);
1576 
1577 /*
1578  * Let drivers know whether the resource checks are effective
1579  */
1580 int acpi_resources_are_enforced(void)
1581 {
1582 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1583 }
1584 EXPORT_SYMBOL(acpi_resources_are_enforced);
1585 
1586 /*
1587  * Deallocate the memory for a spinlock.
1588  */
1589 void acpi_os_delete_lock(acpi_spinlock handle)
1590 {
1591 	ACPI_FREE(handle);
1592 }
1593 
1594 /*
1595  * Acquire a spinlock.
1596  *
1597  * handle is a pointer to the spinlock_t.
1598  */
1599 
1600 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1601 	__acquires(lockp)
1602 {
1603 	acpi_cpu_flags flags;
1604 	spin_lock_irqsave(lockp, flags);
1605 	return flags;
1606 }
1607 
1608 /*
1609  * Release a spinlock. See above.
1610  */
1611 
1612 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1613 	__releases(lockp)
1614 {
1615 	spin_unlock_irqrestore(lockp, flags);
1616 }
1617 
1618 #ifndef ACPI_USE_LOCAL_CACHE
1619 
1620 /*******************************************************************************
1621  *
1622  * FUNCTION:    acpi_os_create_cache
1623  *
1624  * PARAMETERS:  name      - Ascii name for the cache
1625  *              size      - Size of each cached object
1626  *              depth     - Maximum depth of the cache (in objects) <ignored>
1627  *              cache     - Where the new cache object is returned
1628  *
1629  * RETURN:      status
1630  *
1631  * DESCRIPTION: Create a cache object
1632  *
1633  ******************************************************************************/
1634 
1635 acpi_status
1636 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1637 {
1638 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1639 	if (*cache == NULL)
1640 		return AE_ERROR;
1641 	else
1642 		return AE_OK;
1643 }
1644 
1645 /*******************************************************************************
1646  *
1647  * FUNCTION:    acpi_os_purge_cache
1648  *
1649  * PARAMETERS:  Cache           - Handle to cache object
1650  *
1651  * RETURN:      Status
1652  *
1653  * DESCRIPTION: Free all objects within the requested cache.
1654  *
1655  ******************************************************************************/
1656 
1657 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1658 {
1659 	kmem_cache_shrink(cache);
1660 	return (AE_OK);
1661 }
1662 
1663 /*******************************************************************************
1664  *
1665  * FUNCTION:    acpi_os_delete_cache
1666  *
1667  * PARAMETERS:  Cache           - Handle to cache object
1668  *
1669  * RETURN:      Status
1670  *
1671  * DESCRIPTION: Free all objects within the requested cache and delete the
1672  *              cache object.
1673  *
1674  ******************************************************************************/
1675 
1676 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1677 {
1678 	kmem_cache_destroy(cache);
1679 	return (AE_OK);
1680 }
1681 
1682 /*******************************************************************************
1683  *
1684  * FUNCTION:    acpi_os_release_object
1685  *
1686  * PARAMETERS:  Cache       - Handle to cache object
1687  *              Object      - The object to be released
1688  *
1689  * RETURN:      None
1690  *
1691  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1692  *              the object is deleted.
1693  *
1694  ******************************************************************************/
1695 
1696 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1697 {
1698 	kmem_cache_free(cache, object);
1699 	return (AE_OK);
1700 }
1701 #endif
1702 
1703 static int __init acpi_no_static_ssdt_setup(char *s)
1704 {
1705 	acpi_gbl_disable_ssdt_table_install = TRUE;
1706 	pr_info("ACPI: static SSDT installation disabled\n");
1707 
1708 	return 0;
1709 }
1710 
1711 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1712 
1713 static int __init acpi_disable_return_repair(char *s)
1714 {
1715 	printk(KERN_NOTICE PREFIX
1716 	       "ACPI: Predefined validation mechanism disabled\n");
1717 	acpi_gbl_disable_auto_repair = TRUE;
1718 
1719 	return 1;
1720 }
1721 
1722 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1723 
1724 acpi_status __init acpi_os_initialize(void)
1725 {
1726 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1727 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1728 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1729 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1730 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1731 		/*
1732 		 * Use acpi_os_map_generic_address to pre-map the reset
1733 		 * register if it's in system memory.
1734 		 */
1735 		int rv;
1736 
1737 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1738 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1739 	}
1740 	acpi_os_initialized = true;
1741 
1742 	return AE_OK;
1743 }
1744 
1745 acpi_status __init acpi_os_initialize1(void)
1746 {
1747 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1748 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1749 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1750 	BUG_ON(!kacpid_wq);
1751 	BUG_ON(!kacpi_notify_wq);
1752 	BUG_ON(!kacpi_hotplug_wq);
1753 	acpi_osi_init();
1754 	return AE_OK;
1755 }
1756 
1757 acpi_status acpi_os_terminate(void)
1758 {
1759 	if (acpi_irq_handler) {
1760 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1761 						 acpi_irq_handler);
1762 	}
1763 
1764 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1765 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1766 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1767 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1768 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1769 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1770 
1771 	destroy_workqueue(kacpid_wq);
1772 	destroy_workqueue(kacpi_notify_wq);
1773 	destroy_workqueue(kacpi_hotplug_wq);
1774 
1775 	return AE_OK;
1776 }
1777 
1778 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1779 				  u32 pm1b_control)
1780 {
1781 	int rc = 0;
1782 	if (__acpi_os_prepare_sleep)
1783 		rc = __acpi_os_prepare_sleep(sleep_state,
1784 					     pm1a_control, pm1b_control);
1785 	if (rc < 0)
1786 		return AE_ERROR;
1787 	else if (rc > 0)
1788 		return AE_CTRL_TERMINATE;
1789 
1790 	return AE_OK;
1791 }
1792 
1793 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1794 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1795 {
1796 	__acpi_os_prepare_sleep = func;
1797 }
1798 
1799 #if (ACPI_REDUCED_HARDWARE)
1800 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1801 				  u32 val_b)
1802 {
1803 	int rc = 0;
1804 	if (__acpi_os_prepare_extended_sleep)
1805 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1806 					     val_a, val_b);
1807 	if (rc < 0)
1808 		return AE_ERROR;
1809 	else if (rc > 0)
1810 		return AE_CTRL_TERMINATE;
1811 
1812 	return AE_OK;
1813 }
1814 #else
1815 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1816 				  u32 val_b)
1817 {
1818 	return AE_OK;
1819 }
1820 #endif
1821 
1822 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1823 			       u32 val_a, u32 val_b))
1824 {
1825 	__acpi_os_prepare_extended_sleep = func;
1826 }
1827 
1828 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1829 				u32 reg_a_value, u32 reg_b_value)
1830 {
1831 	acpi_status status;
1832 
1833 	if (acpi_gbl_reduced_hardware)
1834 		status = acpi_os_prepare_extended_sleep(sleep_state,
1835 							reg_a_value,
1836 							reg_b_value);
1837 	else
1838 		status = acpi_os_prepare_sleep(sleep_state,
1839 					       reg_a_value, reg_b_value);
1840 	return status;
1841 }
1842