xref: /openbmc/linux/drivers/acpi/osl.c (revision 12fbfc4c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 #include <linux/security.h>
31 
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 #include <linux/io-64-nonatomic-lo-hi.h>
35 
36 #include "acpica/accommon.h"
37 #include "acpica/acnamesp.h"
38 #include "internal.h"
39 
40 #define _COMPONENT		ACPI_OS_SERVICES
41 ACPI_MODULE_NAME("osl");
42 
43 struct acpi_os_dpc {
44 	acpi_osd_exec_callback function;
45 	void *context;
46 	struct work_struct work;
47 };
48 
49 #ifdef ENABLE_DEBUGGER
50 #include <linux/kdb.h>
51 
52 /* stuff for debugger support */
53 int acpi_in_debugger;
54 EXPORT_SYMBOL(acpi_in_debugger);
55 #endif				/*ENABLE_DEBUGGER */
56 
57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 				      u32 pm1b_ctrl);
59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 				      u32 val_b);
61 
62 static acpi_osd_handler acpi_irq_handler;
63 static void *acpi_irq_context;
64 static struct workqueue_struct *kacpid_wq;
65 static struct workqueue_struct *kacpi_notify_wq;
66 static struct workqueue_struct *kacpi_hotplug_wq;
67 static bool acpi_os_initialized;
68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69 bool acpi_permanent_mmap = false;
70 
71 /*
72  * This list of permanent mappings is for memory that may be accessed from
73  * interrupt context, where we can't do the ioremap().
74  */
75 struct acpi_ioremap {
76 	struct list_head list;
77 	void __iomem *virt;
78 	acpi_physical_address phys;
79 	acpi_size size;
80 	union {
81 		unsigned long refcount;
82 		struct rcu_work rwork;
83 	} track;
84 };
85 
86 static LIST_HEAD(acpi_ioremaps);
87 static DEFINE_MUTEX(acpi_ioremap_lock);
88 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89 
90 static void __init acpi_request_region (struct acpi_generic_address *gas,
91 	unsigned int length, char *desc)
92 {
93 	u64 addr;
94 
95 	/* Handle possible alignment issues */
96 	memcpy(&addr, &gas->address, sizeof(addr));
97 	if (!addr || !length)
98 		return;
99 
100 	/* Resources are never freed */
101 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102 		request_region(addr, length, desc);
103 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104 		request_mem_region(addr, length, desc);
105 }
106 
107 static int __init acpi_reserve_resources(void)
108 {
109 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110 		"ACPI PM1a_EVT_BLK");
111 
112 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113 		"ACPI PM1b_EVT_BLK");
114 
115 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116 		"ACPI PM1a_CNT_BLK");
117 
118 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119 		"ACPI PM1b_CNT_BLK");
120 
121 	if (acpi_gbl_FADT.pm_timer_length == 4)
122 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123 
124 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125 		"ACPI PM2_CNT_BLK");
126 
127 	/* Length of GPE blocks must be a non-negative multiple of 2 */
128 
129 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132 
133 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136 
137 	return 0;
138 }
139 fs_initcall_sync(acpi_reserve_resources);
140 
141 void acpi_os_printf(const char *fmt, ...)
142 {
143 	va_list args;
144 	va_start(args, fmt);
145 	acpi_os_vprintf(fmt, args);
146 	va_end(args);
147 }
148 EXPORT_SYMBOL(acpi_os_printf);
149 
150 void acpi_os_vprintf(const char *fmt, va_list args)
151 {
152 	static char buffer[512];
153 
154 	vsprintf(buffer, fmt, args);
155 
156 #ifdef ENABLE_DEBUGGER
157 	if (acpi_in_debugger) {
158 		kdb_printf("%s", buffer);
159 	} else {
160 		if (printk_get_level(buffer))
161 			printk("%s", buffer);
162 		else
163 			printk(KERN_CONT "%s", buffer);
164 	}
165 #else
166 	if (acpi_debugger_write_log(buffer) < 0) {
167 		if (printk_get_level(buffer))
168 			printk("%s", buffer);
169 		else
170 			printk(KERN_CONT "%s", buffer);
171 	}
172 #endif
173 }
174 
175 #ifdef CONFIG_KEXEC
176 static unsigned long acpi_rsdp;
177 static int __init setup_acpi_rsdp(char *arg)
178 {
179 	return kstrtoul(arg, 16, &acpi_rsdp);
180 }
181 early_param("acpi_rsdp", setup_acpi_rsdp);
182 #endif
183 
184 acpi_physical_address __init acpi_os_get_root_pointer(void)
185 {
186 	acpi_physical_address pa;
187 
188 #ifdef CONFIG_KEXEC
189 	/*
190 	 * We may have been provided with an RSDP on the command line,
191 	 * but if a malicious user has done so they may be pointing us
192 	 * at modified ACPI tables that could alter kernel behaviour -
193 	 * so, we check the lockdown status before making use of
194 	 * it. If we trust it then also stash it in an architecture
195 	 * specific location (if appropriate) so it can be carried
196 	 * over further kexec()s.
197 	 */
198 	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199 		acpi_arch_set_root_pointer(acpi_rsdp);
200 		return acpi_rsdp;
201 	}
202 #endif
203 	pa = acpi_arch_get_root_pointer();
204 	if (pa)
205 		return pa;
206 
207 	if (efi_enabled(EFI_CONFIG_TABLES)) {
208 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209 			return efi.acpi20;
210 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211 			return efi.acpi;
212 		pr_err(PREFIX "System description tables not found\n");
213 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214 		acpi_find_root_pointer(&pa);
215 	}
216 
217 	return pa;
218 }
219 
220 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221 static struct acpi_ioremap *
222 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223 {
224 	struct acpi_ioremap *map;
225 
226 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227 		if (map->phys <= phys &&
228 		    phys + size <= map->phys + map->size)
229 			return map;
230 
231 	return NULL;
232 }
233 
234 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235 static void __iomem *
236 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237 {
238 	struct acpi_ioremap *map;
239 
240 	map = acpi_map_lookup(phys, size);
241 	if (map)
242 		return map->virt + (phys - map->phys);
243 
244 	return NULL;
245 }
246 
247 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248 {
249 	struct acpi_ioremap *map;
250 	void __iomem *virt = NULL;
251 
252 	mutex_lock(&acpi_ioremap_lock);
253 	map = acpi_map_lookup(phys, size);
254 	if (map) {
255 		virt = map->virt + (phys - map->phys);
256 		map->track.refcount++;
257 	}
258 	mutex_unlock(&acpi_ioremap_lock);
259 	return virt;
260 }
261 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262 
263 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264 static struct acpi_ioremap *
265 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266 {
267 	struct acpi_ioremap *map;
268 
269 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270 		if (map->virt <= virt &&
271 		    virt + size <= map->virt + map->size)
272 			return map;
273 
274 	return NULL;
275 }
276 
277 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278 /* ioremap will take care of cache attributes */
279 #define should_use_kmap(pfn)   0
280 #else
281 #define should_use_kmap(pfn)   page_is_ram(pfn)
282 #endif
283 
284 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285 {
286 	unsigned long pfn;
287 
288 	pfn = pg_off >> PAGE_SHIFT;
289 	if (should_use_kmap(pfn)) {
290 		if (pg_sz > PAGE_SIZE)
291 			return NULL;
292 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
293 	} else
294 		return acpi_os_ioremap(pg_off, pg_sz);
295 }
296 
297 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298 {
299 	unsigned long pfn;
300 
301 	pfn = pg_off >> PAGE_SHIFT;
302 	if (should_use_kmap(pfn))
303 		kunmap(pfn_to_page(pfn));
304 	else
305 		iounmap(vaddr);
306 }
307 
308 /**
309  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310  * @phys: Start of the physical address range to map.
311  * @size: Size of the physical address range to map.
312  *
313  * Look up the given physical address range in the list of existing ACPI memory
314  * mappings.  If found, get a reference to it and return a pointer to it (its
315  * virtual address).  If not found, map it, add it to that list and return a
316  * pointer to it.
317  *
318  * During early init (when acpi_permanent_mmap has not been set yet) this
319  * routine simply calls __acpi_map_table() to get the job done.
320  */
321 void __iomem __ref
322 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323 {
324 	struct acpi_ioremap *map;
325 	void __iomem *virt;
326 	acpi_physical_address pg_off;
327 	acpi_size pg_sz;
328 
329 	if (phys > ULONG_MAX) {
330 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331 		return NULL;
332 	}
333 
334 	if (!acpi_permanent_mmap)
335 		return __acpi_map_table((unsigned long)phys, size);
336 
337 	mutex_lock(&acpi_ioremap_lock);
338 	/* Check if there's a suitable mapping already. */
339 	map = acpi_map_lookup(phys, size);
340 	if (map) {
341 		map->track.refcount++;
342 		goto out;
343 	}
344 
345 	map = kzalloc(sizeof(*map), GFP_KERNEL);
346 	if (!map) {
347 		mutex_unlock(&acpi_ioremap_lock);
348 		return NULL;
349 	}
350 
351 	pg_off = round_down(phys, PAGE_SIZE);
352 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353 	virt = acpi_map(phys, size);
354 	if (!virt) {
355 		mutex_unlock(&acpi_ioremap_lock);
356 		kfree(map);
357 		return NULL;
358 	}
359 
360 	INIT_LIST_HEAD(&map->list);
361 	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362 	map->phys = pg_off;
363 	map->size = pg_sz;
364 	map->track.refcount = 1;
365 
366 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
367 
368 out:
369 	mutex_unlock(&acpi_ioremap_lock);
370 	return map->virt + (phys - map->phys);
371 }
372 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373 
374 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375 {
376 	return (void *)acpi_os_map_iomem(phys, size);
377 }
378 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379 
380 static void acpi_os_map_remove(struct work_struct *work)
381 {
382 	struct acpi_ioremap *map = container_of(to_rcu_work(work),
383 						struct acpi_ioremap,
384 						track.rwork);
385 
386 	acpi_unmap(map->phys, map->virt);
387 	kfree(map);
388 }
389 
390 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
391 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392 {
393 	if (--map->track.refcount)
394 		return;
395 
396 	list_del_rcu(&map->list);
397 
398 	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399 	queue_rcu_work(system_wq, &map->track.rwork);
400 }
401 
402 /**
403  * acpi_os_unmap_iomem - Drop a memory mapping reference.
404  * @virt: Start of the address range to drop a reference to.
405  * @size: Size of the address range to drop a reference to.
406  *
407  * Look up the given virtual address range in the list of existing ACPI memory
408  * mappings, drop a reference to it and if there are no more active references
409  * to it, queue it up for later removal.
410  *
411  * During early init (when acpi_permanent_mmap has not been set yet) this
412  * routine simply calls __acpi_unmap_table() to get the job done.  Since
413  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414  * here.
415  */
416 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417 {
418 	struct acpi_ioremap *map;
419 
420 	if (!acpi_permanent_mmap) {
421 		__acpi_unmap_table(virt, size);
422 		return;
423 	}
424 
425 	mutex_lock(&acpi_ioremap_lock);
426 
427 	map = acpi_map_lookup_virt(virt, size);
428 	if (!map) {
429 		mutex_unlock(&acpi_ioremap_lock);
430 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431 		return;
432 	}
433 	acpi_os_drop_map_ref(map);
434 
435 	mutex_unlock(&acpi_ioremap_lock);
436 }
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438 
439 /**
440  * acpi_os_unmap_memory - Drop a memory mapping reference.
441  * @virt: Start of the address range to drop a reference to.
442  * @size: Size of the address range to drop a reference to.
443  */
444 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445 {
446 	acpi_os_unmap_iomem((void __iomem *)virt, size);
447 }
448 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449 
450 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
451 {
452 	u64 addr;
453 	void __iomem *virt;
454 
455 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
456 		return 0;
457 
458 	/* Handle possible alignment issues */
459 	memcpy(&addr, &gas->address, sizeof(addr));
460 	if (!addr || !gas->bit_width)
461 		return -EINVAL;
462 
463 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
464 	if (!virt)
465 		return -EIO;
466 
467 	return 0;
468 }
469 EXPORT_SYMBOL(acpi_os_map_generic_address);
470 
471 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
472 {
473 	u64 addr;
474 	struct acpi_ioremap *map;
475 
476 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
477 		return;
478 
479 	/* Handle possible alignment issues */
480 	memcpy(&addr, &gas->address, sizeof(addr));
481 	if (!addr || !gas->bit_width)
482 		return;
483 
484 	mutex_lock(&acpi_ioremap_lock);
485 
486 	map = acpi_map_lookup(addr, gas->bit_width / 8);
487 	if (!map) {
488 		mutex_unlock(&acpi_ioremap_lock);
489 		return;
490 	}
491 	acpi_os_drop_map_ref(map);
492 
493 	mutex_unlock(&acpi_ioremap_lock);
494 }
495 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
496 
497 #ifdef ACPI_FUTURE_USAGE
498 acpi_status
499 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
500 {
501 	if (!phys || !virt)
502 		return AE_BAD_PARAMETER;
503 
504 	*phys = virt_to_phys(virt);
505 
506 	return AE_OK;
507 }
508 #endif
509 
510 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
511 static bool acpi_rev_override;
512 
513 int __init acpi_rev_override_setup(char *str)
514 {
515 	acpi_rev_override = true;
516 	return 1;
517 }
518 __setup("acpi_rev_override", acpi_rev_override_setup);
519 #else
520 #define acpi_rev_override	false
521 #endif
522 
523 #define ACPI_MAX_OVERRIDE_LEN 100
524 
525 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
526 
527 acpi_status
528 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
529 			    acpi_string *new_val)
530 {
531 	if (!init_val || !new_val)
532 		return AE_BAD_PARAMETER;
533 
534 	*new_val = NULL;
535 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
536 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
537 		       acpi_os_name);
538 		*new_val = acpi_os_name;
539 	}
540 
541 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
542 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
543 		*new_val = (char *)5;
544 	}
545 
546 	return AE_OK;
547 }
548 
549 static irqreturn_t acpi_irq(int irq, void *dev_id)
550 {
551 	u32 handled;
552 
553 	handled = (*acpi_irq_handler) (acpi_irq_context);
554 
555 	if (handled) {
556 		acpi_irq_handled++;
557 		return IRQ_HANDLED;
558 	} else {
559 		acpi_irq_not_handled++;
560 		return IRQ_NONE;
561 	}
562 }
563 
564 acpi_status
565 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
566 				  void *context)
567 {
568 	unsigned int irq;
569 
570 	acpi_irq_stats_init();
571 
572 	/*
573 	 * ACPI interrupts different from the SCI in our copy of the FADT are
574 	 * not supported.
575 	 */
576 	if (gsi != acpi_gbl_FADT.sci_interrupt)
577 		return AE_BAD_PARAMETER;
578 
579 	if (acpi_irq_handler)
580 		return AE_ALREADY_ACQUIRED;
581 
582 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
583 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
584 		       gsi);
585 		return AE_OK;
586 	}
587 
588 	acpi_irq_handler = handler;
589 	acpi_irq_context = context;
590 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
591 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
592 		acpi_irq_handler = NULL;
593 		return AE_NOT_ACQUIRED;
594 	}
595 	acpi_sci_irq = irq;
596 
597 	return AE_OK;
598 }
599 
600 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
601 {
602 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
603 		return AE_BAD_PARAMETER;
604 
605 	free_irq(acpi_sci_irq, acpi_irq);
606 	acpi_irq_handler = NULL;
607 	acpi_sci_irq = INVALID_ACPI_IRQ;
608 
609 	return AE_OK;
610 }
611 
612 /*
613  * Running in interpreter thread context, safe to sleep
614  */
615 
616 void acpi_os_sleep(u64 ms)
617 {
618 	msleep(ms);
619 }
620 
621 void acpi_os_stall(u32 us)
622 {
623 	while (us) {
624 		u32 delay = 1000;
625 
626 		if (delay > us)
627 			delay = us;
628 		udelay(delay);
629 		touch_nmi_watchdog();
630 		us -= delay;
631 	}
632 }
633 
634 /*
635  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
636  * monotonically increasing timer with 100ns granularity. Do not use
637  * ktime_get() to implement this function because this function may get
638  * called after timekeeping has been suspended. Note: calling this function
639  * after timekeeping has been suspended may lead to unexpected results
640  * because when timekeeping is suspended the jiffies counter is not
641  * incremented. See also timekeeping_suspend().
642  */
643 u64 acpi_os_get_timer(void)
644 {
645 	return (get_jiffies_64() - INITIAL_JIFFIES) *
646 		(ACPI_100NSEC_PER_SEC / HZ);
647 }
648 
649 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
650 {
651 	u32 dummy;
652 
653 	if (!value)
654 		value = &dummy;
655 
656 	*value = 0;
657 	if (width <= 8) {
658 		*(u8 *) value = inb(port);
659 	} else if (width <= 16) {
660 		*(u16 *) value = inw(port);
661 	} else if (width <= 32) {
662 		*(u32 *) value = inl(port);
663 	} else {
664 		BUG();
665 	}
666 
667 	return AE_OK;
668 }
669 
670 EXPORT_SYMBOL(acpi_os_read_port);
671 
672 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
673 {
674 	if (width <= 8) {
675 		outb(value, port);
676 	} else if (width <= 16) {
677 		outw(value, port);
678 	} else if (width <= 32) {
679 		outl(value, port);
680 	} else {
681 		BUG();
682 	}
683 
684 	return AE_OK;
685 }
686 
687 EXPORT_SYMBOL(acpi_os_write_port);
688 
689 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
690 {
691 
692 	switch (width) {
693 	case 8:
694 		*(u8 *) value = readb(virt_addr);
695 		break;
696 	case 16:
697 		*(u16 *) value = readw(virt_addr);
698 		break;
699 	case 32:
700 		*(u32 *) value = readl(virt_addr);
701 		break;
702 	case 64:
703 		*(u64 *) value = readq(virt_addr);
704 		break;
705 	default:
706 		return -EINVAL;
707 	}
708 
709 	return 0;
710 }
711 
712 acpi_status
713 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
714 {
715 	void __iomem *virt_addr;
716 	unsigned int size = width / 8;
717 	bool unmap = false;
718 	u64 dummy;
719 	int error;
720 
721 	rcu_read_lock();
722 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
723 	if (!virt_addr) {
724 		rcu_read_unlock();
725 		virt_addr = acpi_os_ioremap(phys_addr, size);
726 		if (!virt_addr)
727 			return AE_BAD_ADDRESS;
728 		unmap = true;
729 	}
730 
731 	if (!value)
732 		value = &dummy;
733 
734 	error = acpi_os_read_iomem(virt_addr, value, width);
735 	BUG_ON(error);
736 
737 	if (unmap)
738 		iounmap(virt_addr);
739 	else
740 		rcu_read_unlock();
741 
742 	return AE_OK;
743 }
744 
745 acpi_status
746 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
747 {
748 	void __iomem *virt_addr;
749 	unsigned int size = width / 8;
750 	bool unmap = false;
751 
752 	rcu_read_lock();
753 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
754 	if (!virt_addr) {
755 		rcu_read_unlock();
756 		virt_addr = acpi_os_ioremap(phys_addr, size);
757 		if (!virt_addr)
758 			return AE_BAD_ADDRESS;
759 		unmap = true;
760 	}
761 
762 	switch (width) {
763 	case 8:
764 		writeb(value, virt_addr);
765 		break;
766 	case 16:
767 		writew(value, virt_addr);
768 		break;
769 	case 32:
770 		writel(value, virt_addr);
771 		break;
772 	case 64:
773 		writeq(value, virt_addr);
774 		break;
775 	default:
776 		BUG();
777 	}
778 
779 	if (unmap)
780 		iounmap(virt_addr);
781 	else
782 		rcu_read_unlock();
783 
784 	return AE_OK;
785 }
786 
787 #ifdef CONFIG_PCI
788 acpi_status
789 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
790 			       u64 *value, u32 width)
791 {
792 	int result, size;
793 	u32 value32;
794 
795 	if (!value)
796 		return AE_BAD_PARAMETER;
797 
798 	switch (width) {
799 	case 8:
800 		size = 1;
801 		break;
802 	case 16:
803 		size = 2;
804 		break;
805 	case 32:
806 		size = 4;
807 		break;
808 	default:
809 		return AE_ERROR;
810 	}
811 
812 	result = raw_pci_read(pci_id->segment, pci_id->bus,
813 				PCI_DEVFN(pci_id->device, pci_id->function),
814 				reg, size, &value32);
815 	*value = value32;
816 
817 	return (result ? AE_ERROR : AE_OK);
818 }
819 
820 acpi_status
821 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
822 				u64 value, u32 width)
823 {
824 	int result, size;
825 
826 	switch (width) {
827 	case 8:
828 		size = 1;
829 		break;
830 	case 16:
831 		size = 2;
832 		break;
833 	case 32:
834 		size = 4;
835 		break;
836 	default:
837 		return AE_ERROR;
838 	}
839 
840 	result = raw_pci_write(pci_id->segment, pci_id->bus,
841 				PCI_DEVFN(pci_id->device, pci_id->function),
842 				reg, size, value);
843 
844 	return (result ? AE_ERROR : AE_OK);
845 }
846 #endif
847 
848 static void acpi_os_execute_deferred(struct work_struct *work)
849 {
850 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
851 
852 	dpc->function(dpc->context);
853 	kfree(dpc);
854 }
855 
856 #ifdef CONFIG_ACPI_DEBUGGER
857 static struct acpi_debugger acpi_debugger;
858 static bool acpi_debugger_initialized;
859 
860 int acpi_register_debugger(struct module *owner,
861 			   const struct acpi_debugger_ops *ops)
862 {
863 	int ret = 0;
864 
865 	mutex_lock(&acpi_debugger.lock);
866 	if (acpi_debugger.ops) {
867 		ret = -EBUSY;
868 		goto err_lock;
869 	}
870 
871 	acpi_debugger.owner = owner;
872 	acpi_debugger.ops = ops;
873 
874 err_lock:
875 	mutex_unlock(&acpi_debugger.lock);
876 	return ret;
877 }
878 EXPORT_SYMBOL(acpi_register_debugger);
879 
880 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
881 {
882 	mutex_lock(&acpi_debugger.lock);
883 	if (ops == acpi_debugger.ops) {
884 		acpi_debugger.ops = NULL;
885 		acpi_debugger.owner = NULL;
886 	}
887 	mutex_unlock(&acpi_debugger.lock);
888 }
889 EXPORT_SYMBOL(acpi_unregister_debugger);
890 
891 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
892 {
893 	int ret;
894 	int (*func)(acpi_osd_exec_callback, void *);
895 	struct module *owner;
896 
897 	if (!acpi_debugger_initialized)
898 		return -ENODEV;
899 	mutex_lock(&acpi_debugger.lock);
900 	if (!acpi_debugger.ops) {
901 		ret = -ENODEV;
902 		goto err_lock;
903 	}
904 	if (!try_module_get(acpi_debugger.owner)) {
905 		ret = -ENODEV;
906 		goto err_lock;
907 	}
908 	func = acpi_debugger.ops->create_thread;
909 	owner = acpi_debugger.owner;
910 	mutex_unlock(&acpi_debugger.lock);
911 
912 	ret = func(function, context);
913 
914 	mutex_lock(&acpi_debugger.lock);
915 	module_put(owner);
916 err_lock:
917 	mutex_unlock(&acpi_debugger.lock);
918 	return ret;
919 }
920 
921 ssize_t acpi_debugger_write_log(const char *msg)
922 {
923 	ssize_t ret;
924 	ssize_t (*func)(const char *);
925 	struct module *owner;
926 
927 	if (!acpi_debugger_initialized)
928 		return -ENODEV;
929 	mutex_lock(&acpi_debugger.lock);
930 	if (!acpi_debugger.ops) {
931 		ret = -ENODEV;
932 		goto err_lock;
933 	}
934 	if (!try_module_get(acpi_debugger.owner)) {
935 		ret = -ENODEV;
936 		goto err_lock;
937 	}
938 	func = acpi_debugger.ops->write_log;
939 	owner = acpi_debugger.owner;
940 	mutex_unlock(&acpi_debugger.lock);
941 
942 	ret = func(msg);
943 
944 	mutex_lock(&acpi_debugger.lock);
945 	module_put(owner);
946 err_lock:
947 	mutex_unlock(&acpi_debugger.lock);
948 	return ret;
949 }
950 
951 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
952 {
953 	ssize_t ret;
954 	ssize_t (*func)(char *, size_t);
955 	struct module *owner;
956 
957 	if (!acpi_debugger_initialized)
958 		return -ENODEV;
959 	mutex_lock(&acpi_debugger.lock);
960 	if (!acpi_debugger.ops) {
961 		ret = -ENODEV;
962 		goto err_lock;
963 	}
964 	if (!try_module_get(acpi_debugger.owner)) {
965 		ret = -ENODEV;
966 		goto err_lock;
967 	}
968 	func = acpi_debugger.ops->read_cmd;
969 	owner = acpi_debugger.owner;
970 	mutex_unlock(&acpi_debugger.lock);
971 
972 	ret = func(buffer, buffer_length);
973 
974 	mutex_lock(&acpi_debugger.lock);
975 	module_put(owner);
976 err_lock:
977 	mutex_unlock(&acpi_debugger.lock);
978 	return ret;
979 }
980 
981 int acpi_debugger_wait_command_ready(void)
982 {
983 	int ret;
984 	int (*func)(bool, char *, size_t);
985 	struct module *owner;
986 
987 	if (!acpi_debugger_initialized)
988 		return -ENODEV;
989 	mutex_lock(&acpi_debugger.lock);
990 	if (!acpi_debugger.ops) {
991 		ret = -ENODEV;
992 		goto err_lock;
993 	}
994 	if (!try_module_get(acpi_debugger.owner)) {
995 		ret = -ENODEV;
996 		goto err_lock;
997 	}
998 	func = acpi_debugger.ops->wait_command_ready;
999 	owner = acpi_debugger.owner;
1000 	mutex_unlock(&acpi_debugger.lock);
1001 
1002 	ret = func(acpi_gbl_method_executing,
1003 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1004 
1005 	mutex_lock(&acpi_debugger.lock);
1006 	module_put(owner);
1007 err_lock:
1008 	mutex_unlock(&acpi_debugger.lock);
1009 	return ret;
1010 }
1011 
1012 int acpi_debugger_notify_command_complete(void)
1013 {
1014 	int ret;
1015 	int (*func)(void);
1016 	struct module *owner;
1017 
1018 	if (!acpi_debugger_initialized)
1019 		return -ENODEV;
1020 	mutex_lock(&acpi_debugger.lock);
1021 	if (!acpi_debugger.ops) {
1022 		ret = -ENODEV;
1023 		goto err_lock;
1024 	}
1025 	if (!try_module_get(acpi_debugger.owner)) {
1026 		ret = -ENODEV;
1027 		goto err_lock;
1028 	}
1029 	func = acpi_debugger.ops->notify_command_complete;
1030 	owner = acpi_debugger.owner;
1031 	mutex_unlock(&acpi_debugger.lock);
1032 
1033 	ret = func();
1034 
1035 	mutex_lock(&acpi_debugger.lock);
1036 	module_put(owner);
1037 err_lock:
1038 	mutex_unlock(&acpi_debugger.lock);
1039 	return ret;
1040 }
1041 
1042 int __init acpi_debugger_init(void)
1043 {
1044 	mutex_init(&acpi_debugger.lock);
1045 	acpi_debugger_initialized = true;
1046 	return 0;
1047 }
1048 #endif
1049 
1050 /*******************************************************************************
1051  *
1052  * FUNCTION:    acpi_os_execute
1053  *
1054  * PARAMETERS:  Type               - Type of the callback
1055  *              Function           - Function to be executed
1056  *              Context            - Function parameters
1057  *
1058  * RETURN:      Status
1059  *
1060  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1061  *              immediately executes function on a separate thread.
1062  *
1063  ******************************************************************************/
1064 
1065 acpi_status acpi_os_execute(acpi_execute_type type,
1066 			    acpi_osd_exec_callback function, void *context)
1067 {
1068 	acpi_status status = AE_OK;
1069 	struct acpi_os_dpc *dpc;
1070 	struct workqueue_struct *queue;
1071 	int ret;
1072 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1073 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1074 			  function, context));
1075 
1076 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1077 		ret = acpi_debugger_create_thread(function, context);
1078 		if (ret) {
1079 			pr_err("Call to kthread_create() failed.\n");
1080 			status = AE_ERROR;
1081 		}
1082 		goto out_thread;
1083 	}
1084 
1085 	/*
1086 	 * Allocate/initialize DPC structure.  Note that this memory will be
1087 	 * freed by the callee.  The kernel handles the work_struct list  in a
1088 	 * way that allows us to also free its memory inside the callee.
1089 	 * Because we may want to schedule several tasks with different
1090 	 * parameters we can't use the approach some kernel code uses of
1091 	 * having a static work_struct.
1092 	 */
1093 
1094 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1095 	if (!dpc)
1096 		return AE_NO_MEMORY;
1097 
1098 	dpc->function = function;
1099 	dpc->context = context;
1100 
1101 	/*
1102 	 * To prevent lockdep from complaining unnecessarily, make sure that
1103 	 * there is a different static lockdep key for each workqueue by using
1104 	 * INIT_WORK() for each of them separately.
1105 	 */
1106 	if (type == OSL_NOTIFY_HANDLER) {
1107 		queue = kacpi_notify_wq;
1108 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109 	} else if (type == OSL_GPE_HANDLER) {
1110 		queue = kacpid_wq;
1111 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1112 	} else {
1113 		pr_err("Unsupported os_execute type %d.\n", type);
1114 		status = AE_ERROR;
1115 	}
1116 
1117 	if (ACPI_FAILURE(status))
1118 		goto err_workqueue;
1119 
1120 	/*
1121 	 * On some machines, a software-initiated SMI causes corruption unless
1122 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1123 	 * typically it's done in GPE-related methods that are run via
1124 	 * workqueues, so we can avoid the known corruption cases by always
1125 	 * queueing on CPU 0.
1126 	 */
1127 	ret = queue_work_on(0, queue, &dpc->work);
1128 	if (!ret) {
1129 		printk(KERN_ERR PREFIX
1130 			  "Call to queue_work() failed.\n");
1131 		status = AE_ERROR;
1132 	}
1133 err_workqueue:
1134 	if (ACPI_FAILURE(status))
1135 		kfree(dpc);
1136 out_thread:
1137 	return status;
1138 }
1139 EXPORT_SYMBOL(acpi_os_execute);
1140 
1141 void acpi_os_wait_events_complete(void)
1142 {
1143 	/*
1144 	 * Make sure the GPE handler or the fixed event handler is not used
1145 	 * on another CPU after removal.
1146 	 */
1147 	if (acpi_sci_irq_valid())
1148 		synchronize_hardirq(acpi_sci_irq);
1149 	flush_workqueue(kacpid_wq);
1150 	flush_workqueue(kacpi_notify_wq);
1151 }
1152 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1153 
1154 struct acpi_hp_work {
1155 	struct work_struct work;
1156 	struct acpi_device *adev;
1157 	u32 src;
1158 };
1159 
1160 static void acpi_hotplug_work_fn(struct work_struct *work)
1161 {
1162 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1163 
1164 	acpi_os_wait_events_complete();
1165 	acpi_device_hotplug(hpw->adev, hpw->src);
1166 	kfree(hpw);
1167 }
1168 
1169 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1170 {
1171 	struct acpi_hp_work *hpw;
1172 
1173 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1174 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1175 		  adev, src));
1176 
1177 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1178 	if (!hpw)
1179 		return AE_NO_MEMORY;
1180 
1181 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1182 	hpw->adev = adev;
1183 	hpw->src = src;
1184 	/*
1185 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1186 	 * the hotplug code may call driver .remove() functions, which may
1187 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1188 	 * these workqueues.
1189 	 */
1190 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1191 		kfree(hpw);
1192 		return AE_ERROR;
1193 	}
1194 	return AE_OK;
1195 }
1196 
1197 bool acpi_queue_hotplug_work(struct work_struct *work)
1198 {
1199 	return queue_work(kacpi_hotplug_wq, work);
1200 }
1201 
1202 acpi_status
1203 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1204 {
1205 	struct semaphore *sem = NULL;
1206 
1207 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1208 	if (!sem)
1209 		return AE_NO_MEMORY;
1210 
1211 	sema_init(sem, initial_units);
1212 
1213 	*handle = (acpi_handle *) sem;
1214 
1215 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1216 			  *handle, initial_units));
1217 
1218 	return AE_OK;
1219 }
1220 
1221 /*
1222  * TODO: A better way to delete semaphores?  Linux doesn't have a
1223  * 'delete_semaphore()' function -- may result in an invalid
1224  * pointer dereference for non-synchronized consumers.	Should
1225  * we at least check for blocked threads and signal/cancel them?
1226  */
1227 
1228 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1229 {
1230 	struct semaphore *sem = (struct semaphore *)handle;
1231 
1232 	if (!sem)
1233 		return AE_BAD_PARAMETER;
1234 
1235 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1236 
1237 	BUG_ON(!list_empty(&sem->wait_list));
1238 	kfree(sem);
1239 	sem = NULL;
1240 
1241 	return AE_OK;
1242 }
1243 
1244 /*
1245  * TODO: Support for units > 1?
1246  */
1247 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1248 {
1249 	acpi_status status = AE_OK;
1250 	struct semaphore *sem = (struct semaphore *)handle;
1251 	long jiffies;
1252 	int ret = 0;
1253 
1254 	if (!acpi_os_initialized)
1255 		return AE_OK;
1256 
1257 	if (!sem || (units < 1))
1258 		return AE_BAD_PARAMETER;
1259 
1260 	if (units > 1)
1261 		return AE_SUPPORT;
1262 
1263 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1264 			  handle, units, timeout));
1265 
1266 	if (timeout == ACPI_WAIT_FOREVER)
1267 		jiffies = MAX_SCHEDULE_TIMEOUT;
1268 	else
1269 		jiffies = msecs_to_jiffies(timeout);
1270 
1271 	ret = down_timeout(sem, jiffies);
1272 	if (ret)
1273 		status = AE_TIME;
1274 
1275 	if (ACPI_FAILURE(status)) {
1276 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1278 				  handle, units, timeout,
1279 				  acpi_format_exception(status)));
1280 	} else {
1281 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1282 				  "Acquired semaphore[%p|%d|%d]", handle,
1283 				  units, timeout));
1284 	}
1285 
1286 	return status;
1287 }
1288 
1289 /*
1290  * TODO: Support for units > 1?
1291  */
1292 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1293 {
1294 	struct semaphore *sem = (struct semaphore *)handle;
1295 
1296 	if (!acpi_os_initialized)
1297 		return AE_OK;
1298 
1299 	if (!sem || (units < 1))
1300 		return AE_BAD_PARAMETER;
1301 
1302 	if (units > 1)
1303 		return AE_SUPPORT;
1304 
1305 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1306 			  units));
1307 
1308 	up(sem);
1309 
1310 	return AE_OK;
1311 }
1312 
1313 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1314 {
1315 #ifdef ENABLE_DEBUGGER
1316 	if (acpi_in_debugger) {
1317 		u32 chars;
1318 
1319 		kdb_read(buffer, buffer_length);
1320 
1321 		/* remove the CR kdb includes */
1322 		chars = strlen(buffer) - 1;
1323 		buffer[chars] = '\0';
1324 	}
1325 #else
1326 	int ret;
1327 
1328 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1329 	if (ret < 0)
1330 		return AE_ERROR;
1331 	if (bytes_read)
1332 		*bytes_read = ret;
1333 #endif
1334 
1335 	return AE_OK;
1336 }
1337 EXPORT_SYMBOL(acpi_os_get_line);
1338 
1339 acpi_status acpi_os_wait_command_ready(void)
1340 {
1341 	int ret;
1342 
1343 	ret = acpi_debugger_wait_command_ready();
1344 	if (ret < 0)
1345 		return AE_ERROR;
1346 	return AE_OK;
1347 }
1348 
1349 acpi_status acpi_os_notify_command_complete(void)
1350 {
1351 	int ret;
1352 
1353 	ret = acpi_debugger_notify_command_complete();
1354 	if (ret < 0)
1355 		return AE_ERROR;
1356 	return AE_OK;
1357 }
1358 
1359 acpi_status acpi_os_signal(u32 function, void *info)
1360 {
1361 	switch (function) {
1362 	case ACPI_SIGNAL_FATAL:
1363 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1364 		break;
1365 	case ACPI_SIGNAL_BREAKPOINT:
1366 		/*
1367 		 * AML Breakpoint
1368 		 * ACPI spec. says to treat it as a NOP unless
1369 		 * you are debugging.  So if/when we integrate
1370 		 * AML debugger into the kernel debugger its
1371 		 * hook will go here.  But until then it is
1372 		 * not useful to print anything on breakpoints.
1373 		 */
1374 		break;
1375 	default:
1376 		break;
1377 	}
1378 
1379 	return AE_OK;
1380 }
1381 
1382 static int __init acpi_os_name_setup(char *str)
1383 {
1384 	char *p = acpi_os_name;
1385 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1386 
1387 	if (!str || !*str)
1388 		return 0;
1389 
1390 	for (; count-- && *str; str++) {
1391 		if (isalnum(*str) || *str == ' ' || *str == ':')
1392 			*p++ = *str;
1393 		else if (*str == '\'' || *str == '"')
1394 			continue;
1395 		else
1396 			break;
1397 	}
1398 	*p = 0;
1399 
1400 	return 1;
1401 
1402 }
1403 
1404 __setup("acpi_os_name=", acpi_os_name_setup);
1405 
1406 /*
1407  * Disable the auto-serialization of named objects creation methods.
1408  *
1409  * This feature is enabled by default.  It marks the AML control methods
1410  * that contain the opcodes to create named objects as "Serialized".
1411  */
1412 static int __init acpi_no_auto_serialize_setup(char *str)
1413 {
1414 	acpi_gbl_auto_serialize_methods = FALSE;
1415 	pr_info("ACPI: auto-serialization disabled\n");
1416 
1417 	return 1;
1418 }
1419 
1420 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1421 
1422 /* Check of resource interference between native drivers and ACPI
1423  * OperationRegions (SystemIO and System Memory only).
1424  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1425  * in arbitrary AML code and can interfere with legacy drivers.
1426  * acpi_enforce_resources= can be set to:
1427  *
1428  *   - strict (default) (2)
1429  *     -> further driver trying to access the resources will not load
1430  *   - lax              (1)
1431  *     -> further driver trying to access the resources will load, but you
1432  *     get a system message that something might go wrong...
1433  *
1434  *   - no               (0)
1435  *     -> ACPI Operation Region resources will not be registered
1436  *
1437  */
1438 #define ENFORCE_RESOURCES_STRICT 2
1439 #define ENFORCE_RESOURCES_LAX    1
1440 #define ENFORCE_RESOURCES_NO     0
1441 
1442 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1443 
1444 static int __init acpi_enforce_resources_setup(char *str)
1445 {
1446 	if (str == NULL || *str == '\0')
1447 		return 0;
1448 
1449 	if (!strcmp("strict", str))
1450 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1451 	else if (!strcmp("lax", str))
1452 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1453 	else if (!strcmp("no", str))
1454 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1455 
1456 	return 1;
1457 }
1458 
1459 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1460 
1461 /* Check for resource conflicts between ACPI OperationRegions and native
1462  * drivers */
1463 int acpi_check_resource_conflict(const struct resource *res)
1464 {
1465 	acpi_adr_space_type space_id;
1466 	acpi_size length;
1467 	u8 warn = 0;
1468 	int clash = 0;
1469 
1470 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 		return 0;
1472 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1473 		return 0;
1474 
1475 	if (res->flags & IORESOURCE_IO)
1476 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1477 	else
1478 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1479 
1480 	length = resource_size(res);
1481 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1482 		warn = 1;
1483 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1484 
1485 	if (clash) {
1486 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1487 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1488 				printk(KERN_NOTICE "ACPI: This conflict may"
1489 				       " cause random problems and system"
1490 				       " instability\n");
1491 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1492 			       " for this device, you should use it instead of"
1493 			       " the native driver\n");
1494 		}
1495 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1496 			return -EBUSY;
1497 	}
1498 	return 0;
1499 }
1500 EXPORT_SYMBOL(acpi_check_resource_conflict);
1501 
1502 int acpi_check_region(resource_size_t start, resource_size_t n,
1503 		      const char *name)
1504 {
1505 	struct resource res = {
1506 		.start = start,
1507 		.end   = start + n - 1,
1508 		.name  = name,
1509 		.flags = IORESOURCE_IO,
1510 	};
1511 
1512 	return acpi_check_resource_conflict(&res);
1513 }
1514 EXPORT_SYMBOL(acpi_check_region);
1515 
1516 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1517 					      void *_res, void **return_value)
1518 {
1519 	struct acpi_mem_space_context **mem_ctx;
1520 	union acpi_operand_object *handler_obj;
1521 	union acpi_operand_object *region_obj2;
1522 	union acpi_operand_object *region_obj;
1523 	struct resource *res = _res;
1524 	acpi_status status;
1525 
1526 	region_obj = acpi_ns_get_attached_object(handle);
1527 	if (!region_obj)
1528 		return AE_OK;
1529 
1530 	handler_obj = region_obj->region.handler;
1531 	if (!handler_obj)
1532 		return AE_OK;
1533 
1534 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1535 		return AE_OK;
1536 
1537 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1538 		return AE_OK;
1539 
1540 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1541 	if (!region_obj2)
1542 		return AE_OK;
1543 
1544 	mem_ctx = (void *)&region_obj2->extra.region_context;
1545 
1546 	if (!(mem_ctx[0]->address >= res->start &&
1547 	      mem_ctx[0]->address < res->end))
1548 		return AE_OK;
1549 
1550 	status = handler_obj->address_space.setup(region_obj,
1551 						  ACPI_REGION_DEACTIVATE,
1552 						  NULL, (void **)mem_ctx);
1553 	if (ACPI_SUCCESS(status))
1554 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1555 
1556 	return status;
1557 }
1558 
1559 /**
1560  * acpi_release_memory - Release any mappings done to a memory region
1561  * @handle: Handle to namespace node
1562  * @res: Memory resource
1563  * @level: A level that terminates the search
1564  *
1565  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1566  * overlap with @res and that have already been activated (mapped).
1567  *
1568  * This is a helper that allows drivers to place special requirements on memory
1569  * region that may overlap with operation regions, primarily allowing them to
1570  * safely map the region as non-cached memory.
1571  *
1572  * The unmapped Operation Regions will be automatically remapped next time they
1573  * are called, so the drivers do not need to do anything else.
1574  */
1575 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1576 				u32 level)
1577 {
1578 	acpi_status status;
1579 
1580 	if (!(res->flags & IORESOURCE_MEM))
1581 		return AE_TYPE;
1582 
1583 	status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1584 				     acpi_deactivate_mem_region, NULL,
1585 				     res, NULL);
1586 	if (ACPI_FAILURE(status))
1587 		return status;
1588 
1589 	/*
1590 	 * Wait for all of the mappings queued up for removal by
1591 	 * acpi_deactivate_mem_region() to actually go away.
1592 	 */
1593 	synchronize_rcu();
1594 	rcu_barrier();
1595 	flush_scheduled_work();
1596 
1597 	return AE_OK;
1598 }
1599 EXPORT_SYMBOL_GPL(acpi_release_memory);
1600 
1601 /*
1602  * Let drivers know whether the resource checks are effective
1603  */
1604 int acpi_resources_are_enforced(void)
1605 {
1606 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1607 }
1608 EXPORT_SYMBOL(acpi_resources_are_enforced);
1609 
1610 /*
1611  * Deallocate the memory for a spinlock.
1612  */
1613 void acpi_os_delete_lock(acpi_spinlock handle)
1614 {
1615 	ACPI_FREE(handle);
1616 }
1617 
1618 /*
1619  * Acquire a spinlock.
1620  *
1621  * handle is a pointer to the spinlock_t.
1622  */
1623 
1624 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1625 	__acquires(lockp)
1626 {
1627 	acpi_cpu_flags flags;
1628 	spin_lock_irqsave(lockp, flags);
1629 	return flags;
1630 }
1631 
1632 /*
1633  * Release a spinlock. See above.
1634  */
1635 
1636 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1637 	__releases(lockp)
1638 {
1639 	spin_unlock_irqrestore(lockp, flags);
1640 }
1641 
1642 #ifndef ACPI_USE_LOCAL_CACHE
1643 
1644 /*******************************************************************************
1645  *
1646  * FUNCTION:    acpi_os_create_cache
1647  *
1648  * PARAMETERS:  name      - Ascii name for the cache
1649  *              size      - Size of each cached object
1650  *              depth     - Maximum depth of the cache (in objects) <ignored>
1651  *              cache     - Where the new cache object is returned
1652  *
1653  * RETURN:      status
1654  *
1655  * DESCRIPTION: Create a cache object
1656  *
1657  ******************************************************************************/
1658 
1659 acpi_status
1660 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1661 {
1662 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1663 	if (*cache == NULL)
1664 		return AE_ERROR;
1665 	else
1666 		return AE_OK;
1667 }
1668 
1669 /*******************************************************************************
1670  *
1671  * FUNCTION:    acpi_os_purge_cache
1672  *
1673  * PARAMETERS:  Cache           - Handle to cache object
1674  *
1675  * RETURN:      Status
1676  *
1677  * DESCRIPTION: Free all objects within the requested cache.
1678  *
1679  ******************************************************************************/
1680 
1681 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1682 {
1683 	kmem_cache_shrink(cache);
1684 	return (AE_OK);
1685 }
1686 
1687 /*******************************************************************************
1688  *
1689  * FUNCTION:    acpi_os_delete_cache
1690  *
1691  * PARAMETERS:  Cache           - Handle to cache object
1692  *
1693  * RETURN:      Status
1694  *
1695  * DESCRIPTION: Free all objects within the requested cache and delete the
1696  *              cache object.
1697  *
1698  ******************************************************************************/
1699 
1700 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1701 {
1702 	kmem_cache_destroy(cache);
1703 	return (AE_OK);
1704 }
1705 
1706 /*******************************************************************************
1707  *
1708  * FUNCTION:    acpi_os_release_object
1709  *
1710  * PARAMETERS:  Cache       - Handle to cache object
1711  *              Object      - The object to be released
1712  *
1713  * RETURN:      None
1714  *
1715  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1716  *              the object is deleted.
1717  *
1718  ******************************************************************************/
1719 
1720 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1721 {
1722 	kmem_cache_free(cache, object);
1723 	return (AE_OK);
1724 }
1725 #endif
1726 
1727 static int __init acpi_no_static_ssdt_setup(char *s)
1728 {
1729 	acpi_gbl_disable_ssdt_table_install = TRUE;
1730 	pr_info("ACPI: static SSDT installation disabled\n");
1731 
1732 	return 0;
1733 }
1734 
1735 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1736 
1737 static int __init acpi_disable_return_repair(char *s)
1738 {
1739 	printk(KERN_NOTICE PREFIX
1740 	       "ACPI: Predefined validation mechanism disabled\n");
1741 	acpi_gbl_disable_auto_repair = TRUE;
1742 
1743 	return 1;
1744 }
1745 
1746 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1747 
1748 acpi_status __init acpi_os_initialize(void)
1749 {
1750 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1752 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1753 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1755 		/*
1756 		 * Use acpi_os_map_generic_address to pre-map the reset
1757 		 * register if it's in system memory.
1758 		 */
1759 		int rv;
1760 
1761 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1762 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1763 	}
1764 	acpi_os_initialized = true;
1765 
1766 	return AE_OK;
1767 }
1768 
1769 acpi_status __init acpi_os_initialize1(void)
1770 {
1771 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774 	BUG_ON(!kacpid_wq);
1775 	BUG_ON(!kacpi_notify_wq);
1776 	BUG_ON(!kacpi_hotplug_wq);
1777 	acpi_osi_init();
1778 	return AE_OK;
1779 }
1780 
1781 acpi_status acpi_os_terminate(void)
1782 {
1783 	if (acpi_irq_handler) {
1784 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785 						 acpi_irq_handler);
1786 	}
1787 
1788 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1791 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1792 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1793 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1794 
1795 	destroy_workqueue(kacpid_wq);
1796 	destroy_workqueue(kacpi_notify_wq);
1797 	destroy_workqueue(kacpi_hotplug_wq);
1798 
1799 	return AE_OK;
1800 }
1801 
1802 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1803 				  u32 pm1b_control)
1804 {
1805 	int rc = 0;
1806 	if (__acpi_os_prepare_sleep)
1807 		rc = __acpi_os_prepare_sleep(sleep_state,
1808 					     pm1a_control, pm1b_control);
1809 	if (rc < 0)
1810 		return AE_ERROR;
1811 	else if (rc > 0)
1812 		return AE_CTRL_TERMINATE;
1813 
1814 	return AE_OK;
1815 }
1816 
1817 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1818 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1819 {
1820 	__acpi_os_prepare_sleep = func;
1821 }
1822 
1823 #if (ACPI_REDUCED_HARDWARE)
1824 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1825 				  u32 val_b)
1826 {
1827 	int rc = 0;
1828 	if (__acpi_os_prepare_extended_sleep)
1829 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1830 					     val_a, val_b);
1831 	if (rc < 0)
1832 		return AE_ERROR;
1833 	else if (rc > 0)
1834 		return AE_CTRL_TERMINATE;
1835 
1836 	return AE_OK;
1837 }
1838 #else
1839 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1840 				  u32 val_b)
1841 {
1842 	return AE_OK;
1843 }
1844 #endif
1845 
1846 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1847 			       u32 val_a, u32 val_b))
1848 {
1849 	__acpi_os_prepare_extended_sleep = func;
1850 }
1851 
1852 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1853 				u32 reg_a_value, u32 reg_b_value)
1854 {
1855 	acpi_status status;
1856 
1857 	if (acpi_gbl_reduced_hardware)
1858 		status = acpi_os_prepare_extended_sleep(sleep_state,
1859 							reg_a_value,
1860 							reg_b_value);
1861 	else
1862 		status = acpi_os_prepare_sleep(sleep_state,
1863 					       reg_a_value, reg_b_value);
1864 	return status;
1865 }
1866