xref: /openbmc/linux/drivers/acpi/osl.c (revision 0edbfea5)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "internal.h"
49 
50 #define _COMPONENT		ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52 
53 struct acpi_os_dpc {
54 	acpi_osd_exec_callback function;
55 	void *context;
56 	struct work_struct work;
57 };
58 
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61 
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif				/*ENABLE_DEBUGGER */
66 
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 				      u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 				      u32 val_b);
71 
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 
80 /*
81  * This list of permanent mappings is for memory that may be accessed from
82  * interrupt context, where we can't do the ioremap().
83  */
84 struct acpi_ioremap {
85 	struct list_head list;
86 	void __iomem *virt;
87 	acpi_physical_address phys;
88 	acpi_size size;
89 	unsigned long refcount;
90 };
91 
92 static LIST_HEAD(acpi_ioremaps);
93 static DEFINE_MUTEX(acpi_ioremap_lock);
94 
95 static void __init acpi_request_region (struct acpi_generic_address *gas,
96 	unsigned int length, char *desc)
97 {
98 	u64 addr;
99 
100 	/* Handle possible alignment issues */
101 	memcpy(&addr, &gas->address, sizeof(addr));
102 	if (!addr || !length)
103 		return;
104 
105 	/* Resources are never freed */
106 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
107 		request_region(addr, length, desc);
108 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
109 		request_mem_region(addr, length, desc);
110 }
111 
112 static int __init acpi_reserve_resources(void)
113 {
114 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
115 		"ACPI PM1a_EVT_BLK");
116 
117 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
118 		"ACPI PM1b_EVT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
121 		"ACPI PM1a_CNT_BLK");
122 
123 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
124 		"ACPI PM1b_CNT_BLK");
125 
126 	if (acpi_gbl_FADT.pm_timer_length == 4)
127 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
128 
129 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130 		"ACPI PM2_CNT_BLK");
131 
132 	/* Length of GPE blocks must be a non-negative multiple of 2 */
133 
134 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
135 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
136 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
137 
138 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
139 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
140 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
141 
142 	return 0;
143 }
144 fs_initcall_sync(acpi_reserve_resources);
145 
146 void acpi_os_printf(const char *fmt, ...)
147 {
148 	va_list args;
149 	va_start(args, fmt);
150 	acpi_os_vprintf(fmt, args);
151 	va_end(args);
152 }
153 EXPORT_SYMBOL(acpi_os_printf);
154 
155 void acpi_os_vprintf(const char *fmt, va_list args)
156 {
157 	static char buffer[512];
158 
159 	vsprintf(buffer, fmt, args);
160 
161 #ifdef ENABLE_DEBUGGER
162 	if (acpi_in_debugger) {
163 		kdb_printf("%s", buffer);
164 	} else {
165 		printk(KERN_CONT "%s", buffer);
166 	}
167 #else
168 	if (acpi_debugger_write_log(buffer) < 0)
169 		printk(KERN_CONT "%s", buffer);
170 #endif
171 }
172 
173 #ifdef CONFIG_KEXEC
174 static unsigned long acpi_rsdp;
175 static int __init setup_acpi_rsdp(char *arg)
176 {
177 	if (kstrtoul(arg, 16, &acpi_rsdp))
178 		return -EINVAL;
179 	return 0;
180 }
181 early_param("acpi_rsdp", setup_acpi_rsdp);
182 #endif
183 
184 acpi_physical_address __init acpi_os_get_root_pointer(void)
185 {
186 #ifdef CONFIG_KEXEC
187 	if (acpi_rsdp)
188 		return acpi_rsdp;
189 #endif
190 
191 	if (efi_enabled(EFI_CONFIG_TABLES)) {
192 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
193 			return efi.acpi20;
194 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
195 			return efi.acpi;
196 		else {
197 			printk(KERN_ERR PREFIX
198 			       "System description tables not found\n");
199 			return 0;
200 		}
201 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
202 		acpi_physical_address pa = 0;
203 
204 		acpi_find_root_pointer(&pa);
205 		return pa;
206 	}
207 
208 	return 0;
209 }
210 
211 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
212 static struct acpi_ioremap *
213 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
214 {
215 	struct acpi_ioremap *map;
216 
217 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
218 		if (map->phys <= phys &&
219 		    phys + size <= map->phys + map->size)
220 			return map;
221 
222 	return NULL;
223 }
224 
225 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
226 static void __iomem *
227 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
228 {
229 	struct acpi_ioremap *map;
230 
231 	map = acpi_map_lookup(phys, size);
232 	if (map)
233 		return map->virt + (phys - map->phys);
234 
235 	return NULL;
236 }
237 
238 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
239 {
240 	struct acpi_ioremap *map;
241 	void __iomem *virt = NULL;
242 
243 	mutex_lock(&acpi_ioremap_lock);
244 	map = acpi_map_lookup(phys, size);
245 	if (map) {
246 		virt = map->virt + (phys - map->phys);
247 		map->refcount++;
248 	}
249 	mutex_unlock(&acpi_ioremap_lock);
250 	return virt;
251 }
252 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
253 
254 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
255 static struct acpi_ioremap *
256 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
257 {
258 	struct acpi_ioremap *map;
259 
260 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
261 		if (map->virt <= virt &&
262 		    virt + size <= map->virt + map->size)
263 			return map;
264 
265 	return NULL;
266 }
267 
268 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
269 /* ioremap will take care of cache attributes */
270 #define should_use_kmap(pfn)   0
271 #else
272 #define should_use_kmap(pfn)   page_is_ram(pfn)
273 #endif
274 
275 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
276 {
277 	unsigned long pfn;
278 
279 	pfn = pg_off >> PAGE_SHIFT;
280 	if (should_use_kmap(pfn)) {
281 		if (pg_sz > PAGE_SIZE)
282 			return NULL;
283 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
284 	} else
285 		return acpi_os_ioremap(pg_off, pg_sz);
286 }
287 
288 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
289 {
290 	unsigned long pfn;
291 
292 	pfn = pg_off >> PAGE_SHIFT;
293 	if (should_use_kmap(pfn))
294 		kunmap(pfn_to_page(pfn));
295 	else
296 		iounmap(vaddr);
297 }
298 
299 /**
300  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
301  * @phys: Start of the physical address range to map.
302  * @size: Size of the physical address range to map.
303  *
304  * Look up the given physical address range in the list of existing ACPI memory
305  * mappings.  If found, get a reference to it and return a pointer to it (its
306  * virtual address).  If not found, map it, add it to that list and return a
307  * pointer to it.
308  *
309  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
310  * routine simply calls __acpi_map_table() to get the job done.
311  */
312 void __iomem *__init_refok
313 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
314 {
315 	struct acpi_ioremap *map;
316 	void __iomem *virt;
317 	acpi_physical_address pg_off;
318 	acpi_size pg_sz;
319 
320 	if (phys > ULONG_MAX) {
321 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
322 		return NULL;
323 	}
324 
325 	if (!acpi_gbl_permanent_mmap)
326 		return __acpi_map_table((unsigned long)phys, size);
327 
328 	mutex_lock(&acpi_ioremap_lock);
329 	/* Check if there's a suitable mapping already. */
330 	map = acpi_map_lookup(phys, size);
331 	if (map) {
332 		map->refcount++;
333 		goto out;
334 	}
335 
336 	map = kzalloc(sizeof(*map), GFP_KERNEL);
337 	if (!map) {
338 		mutex_unlock(&acpi_ioremap_lock);
339 		return NULL;
340 	}
341 
342 	pg_off = round_down(phys, PAGE_SIZE);
343 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
344 	virt = acpi_map(pg_off, pg_sz);
345 	if (!virt) {
346 		mutex_unlock(&acpi_ioremap_lock);
347 		kfree(map);
348 		return NULL;
349 	}
350 
351 	INIT_LIST_HEAD(&map->list);
352 	map->virt = virt;
353 	map->phys = pg_off;
354 	map->size = pg_sz;
355 	map->refcount = 1;
356 
357 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
358 
359 out:
360 	mutex_unlock(&acpi_ioremap_lock);
361 	return map->virt + (phys - map->phys);
362 }
363 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
364 
365 void *__init_refok
366 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
367 {
368 	return (void *)acpi_os_map_iomem(phys, size);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
371 
372 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
373 {
374 	if (!--map->refcount)
375 		list_del_rcu(&map->list);
376 }
377 
378 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
379 {
380 	if (!map->refcount) {
381 		synchronize_rcu_expedited();
382 		acpi_unmap(map->phys, map->virt);
383 		kfree(map);
384 	}
385 }
386 
387 /**
388  * acpi_os_unmap_iomem - Drop a memory mapping reference.
389  * @virt: Start of the address range to drop a reference to.
390  * @size: Size of the address range to drop a reference to.
391  *
392  * Look up the given virtual address range in the list of existing ACPI memory
393  * mappings, drop a reference to it and unmap it if there are no more active
394  * references to it.
395  *
396  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
397  * routine simply calls __acpi_unmap_table() to get the job done.  Since
398  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
399  * here.
400  */
401 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
402 {
403 	struct acpi_ioremap *map;
404 
405 	if (!acpi_gbl_permanent_mmap) {
406 		__acpi_unmap_table(virt, size);
407 		return;
408 	}
409 
410 	mutex_lock(&acpi_ioremap_lock);
411 	map = acpi_map_lookup_virt(virt, size);
412 	if (!map) {
413 		mutex_unlock(&acpi_ioremap_lock);
414 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
415 		return;
416 	}
417 	acpi_os_drop_map_ref(map);
418 	mutex_unlock(&acpi_ioremap_lock);
419 
420 	acpi_os_map_cleanup(map);
421 }
422 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
423 
424 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
425 {
426 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
429 
430 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
431 {
432 	if (!acpi_gbl_permanent_mmap)
433 		__acpi_unmap_table(virt, size);
434 }
435 
436 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
437 {
438 	u64 addr;
439 	void __iomem *virt;
440 
441 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
442 		return 0;
443 
444 	/* Handle possible alignment issues */
445 	memcpy(&addr, &gas->address, sizeof(addr));
446 	if (!addr || !gas->bit_width)
447 		return -EINVAL;
448 
449 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
450 	if (!virt)
451 		return -EIO;
452 
453 	return 0;
454 }
455 EXPORT_SYMBOL(acpi_os_map_generic_address);
456 
457 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
458 {
459 	u64 addr;
460 	struct acpi_ioremap *map;
461 
462 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
463 		return;
464 
465 	/* Handle possible alignment issues */
466 	memcpy(&addr, &gas->address, sizeof(addr));
467 	if (!addr || !gas->bit_width)
468 		return;
469 
470 	mutex_lock(&acpi_ioremap_lock);
471 	map = acpi_map_lookup(addr, gas->bit_width / 8);
472 	if (!map) {
473 		mutex_unlock(&acpi_ioremap_lock);
474 		return;
475 	}
476 	acpi_os_drop_map_ref(map);
477 	mutex_unlock(&acpi_ioremap_lock);
478 
479 	acpi_os_map_cleanup(map);
480 }
481 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
482 
483 #ifdef ACPI_FUTURE_USAGE
484 acpi_status
485 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
486 {
487 	if (!phys || !virt)
488 		return AE_BAD_PARAMETER;
489 
490 	*phys = virt_to_phys(virt);
491 
492 	return AE_OK;
493 }
494 #endif
495 
496 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
497 static bool acpi_rev_override;
498 
499 int __init acpi_rev_override_setup(char *str)
500 {
501 	acpi_rev_override = true;
502 	return 1;
503 }
504 __setup("acpi_rev_override", acpi_rev_override_setup);
505 #else
506 #define acpi_rev_override	false
507 #endif
508 
509 #define ACPI_MAX_OVERRIDE_LEN 100
510 
511 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
512 
513 acpi_status
514 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
515 			    acpi_string *new_val)
516 {
517 	if (!init_val || !new_val)
518 		return AE_BAD_PARAMETER;
519 
520 	*new_val = NULL;
521 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
522 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
523 		       acpi_os_name);
524 		*new_val = acpi_os_name;
525 	}
526 
527 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
528 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
529 		*new_val = (char *)5;
530 	}
531 
532 	return AE_OK;
533 }
534 
535 static irqreturn_t acpi_irq(int irq, void *dev_id)
536 {
537 	u32 handled;
538 
539 	handled = (*acpi_irq_handler) (acpi_irq_context);
540 
541 	if (handled) {
542 		acpi_irq_handled++;
543 		return IRQ_HANDLED;
544 	} else {
545 		acpi_irq_not_handled++;
546 		return IRQ_NONE;
547 	}
548 }
549 
550 acpi_status
551 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
552 				  void *context)
553 {
554 	unsigned int irq;
555 
556 	acpi_irq_stats_init();
557 
558 	/*
559 	 * ACPI interrupts different from the SCI in our copy of the FADT are
560 	 * not supported.
561 	 */
562 	if (gsi != acpi_gbl_FADT.sci_interrupt)
563 		return AE_BAD_PARAMETER;
564 
565 	if (acpi_irq_handler)
566 		return AE_ALREADY_ACQUIRED;
567 
568 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
569 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
570 		       gsi);
571 		return AE_OK;
572 	}
573 
574 	acpi_irq_handler = handler;
575 	acpi_irq_context = context;
576 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
577 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
578 		acpi_irq_handler = NULL;
579 		return AE_NOT_ACQUIRED;
580 	}
581 	acpi_sci_irq = irq;
582 
583 	return AE_OK;
584 }
585 
586 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
587 {
588 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
589 		return AE_BAD_PARAMETER;
590 
591 	free_irq(acpi_sci_irq, acpi_irq);
592 	acpi_irq_handler = NULL;
593 	acpi_sci_irq = INVALID_ACPI_IRQ;
594 
595 	return AE_OK;
596 }
597 
598 /*
599  * Running in interpreter thread context, safe to sleep
600  */
601 
602 void acpi_os_sleep(u64 ms)
603 {
604 	msleep(ms);
605 }
606 
607 void acpi_os_stall(u32 us)
608 {
609 	while (us) {
610 		u32 delay = 1000;
611 
612 		if (delay > us)
613 			delay = us;
614 		udelay(delay);
615 		touch_nmi_watchdog();
616 		us -= delay;
617 	}
618 }
619 
620 /*
621  * Support ACPI 3.0 AML Timer operand
622  * Returns 64-bit free-running, monotonically increasing timer
623  * with 100ns granularity
624  */
625 u64 acpi_os_get_timer(void)
626 {
627 	u64 time_ns = ktime_to_ns(ktime_get());
628 	do_div(time_ns, 100);
629 	return time_ns;
630 }
631 
632 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
633 {
634 	u32 dummy;
635 
636 	if (!value)
637 		value = &dummy;
638 
639 	*value = 0;
640 	if (width <= 8) {
641 		*(u8 *) value = inb(port);
642 	} else if (width <= 16) {
643 		*(u16 *) value = inw(port);
644 	} else if (width <= 32) {
645 		*(u32 *) value = inl(port);
646 	} else {
647 		BUG();
648 	}
649 
650 	return AE_OK;
651 }
652 
653 EXPORT_SYMBOL(acpi_os_read_port);
654 
655 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
656 {
657 	if (width <= 8) {
658 		outb(value, port);
659 	} else if (width <= 16) {
660 		outw(value, port);
661 	} else if (width <= 32) {
662 		outl(value, port);
663 	} else {
664 		BUG();
665 	}
666 
667 	return AE_OK;
668 }
669 
670 EXPORT_SYMBOL(acpi_os_write_port);
671 
672 acpi_status
673 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
674 {
675 	void __iomem *virt_addr;
676 	unsigned int size = width / 8;
677 	bool unmap = false;
678 	u64 dummy;
679 
680 	rcu_read_lock();
681 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
682 	if (!virt_addr) {
683 		rcu_read_unlock();
684 		virt_addr = acpi_os_ioremap(phys_addr, size);
685 		if (!virt_addr)
686 			return AE_BAD_ADDRESS;
687 		unmap = true;
688 	}
689 
690 	if (!value)
691 		value = &dummy;
692 
693 	switch (width) {
694 	case 8:
695 		*(u8 *) value = readb(virt_addr);
696 		break;
697 	case 16:
698 		*(u16 *) value = readw(virt_addr);
699 		break;
700 	case 32:
701 		*(u32 *) value = readl(virt_addr);
702 		break;
703 	case 64:
704 		*(u64 *) value = readq(virt_addr);
705 		break;
706 	default:
707 		BUG();
708 	}
709 
710 	if (unmap)
711 		iounmap(virt_addr);
712 	else
713 		rcu_read_unlock();
714 
715 	return AE_OK;
716 }
717 
718 acpi_status
719 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
720 {
721 	void __iomem *virt_addr;
722 	unsigned int size = width / 8;
723 	bool unmap = false;
724 
725 	rcu_read_lock();
726 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
727 	if (!virt_addr) {
728 		rcu_read_unlock();
729 		virt_addr = acpi_os_ioremap(phys_addr, size);
730 		if (!virt_addr)
731 			return AE_BAD_ADDRESS;
732 		unmap = true;
733 	}
734 
735 	switch (width) {
736 	case 8:
737 		writeb(value, virt_addr);
738 		break;
739 	case 16:
740 		writew(value, virt_addr);
741 		break;
742 	case 32:
743 		writel(value, virt_addr);
744 		break;
745 	case 64:
746 		writeq(value, virt_addr);
747 		break;
748 	default:
749 		BUG();
750 	}
751 
752 	if (unmap)
753 		iounmap(virt_addr);
754 	else
755 		rcu_read_unlock();
756 
757 	return AE_OK;
758 }
759 
760 acpi_status
761 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
762 			       u64 *value, u32 width)
763 {
764 	int result, size;
765 	u32 value32;
766 
767 	if (!value)
768 		return AE_BAD_PARAMETER;
769 
770 	switch (width) {
771 	case 8:
772 		size = 1;
773 		break;
774 	case 16:
775 		size = 2;
776 		break;
777 	case 32:
778 		size = 4;
779 		break;
780 	default:
781 		return AE_ERROR;
782 	}
783 
784 	result = raw_pci_read(pci_id->segment, pci_id->bus,
785 				PCI_DEVFN(pci_id->device, pci_id->function),
786 				reg, size, &value32);
787 	*value = value32;
788 
789 	return (result ? AE_ERROR : AE_OK);
790 }
791 
792 acpi_status
793 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
794 				u64 value, u32 width)
795 {
796 	int result, size;
797 
798 	switch (width) {
799 	case 8:
800 		size = 1;
801 		break;
802 	case 16:
803 		size = 2;
804 		break;
805 	case 32:
806 		size = 4;
807 		break;
808 	default:
809 		return AE_ERROR;
810 	}
811 
812 	result = raw_pci_write(pci_id->segment, pci_id->bus,
813 				PCI_DEVFN(pci_id->device, pci_id->function),
814 				reg, size, value);
815 
816 	return (result ? AE_ERROR : AE_OK);
817 }
818 
819 static void acpi_os_execute_deferred(struct work_struct *work)
820 {
821 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
822 
823 	dpc->function(dpc->context);
824 	kfree(dpc);
825 }
826 
827 #ifdef CONFIG_ACPI_DEBUGGER
828 static struct acpi_debugger acpi_debugger;
829 static bool acpi_debugger_initialized;
830 
831 int acpi_register_debugger(struct module *owner,
832 			   const struct acpi_debugger_ops *ops)
833 {
834 	int ret = 0;
835 
836 	mutex_lock(&acpi_debugger.lock);
837 	if (acpi_debugger.ops) {
838 		ret = -EBUSY;
839 		goto err_lock;
840 	}
841 
842 	acpi_debugger.owner = owner;
843 	acpi_debugger.ops = ops;
844 
845 err_lock:
846 	mutex_unlock(&acpi_debugger.lock);
847 	return ret;
848 }
849 EXPORT_SYMBOL(acpi_register_debugger);
850 
851 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
852 {
853 	mutex_lock(&acpi_debugger.lock);
854 	if (ops == acpi_debugger.ops) {
855 		acpi_debugger.ops = NULL;
856 		acpi_debugger.owner = NULL;
857 	}
858 	mutex_unlock(&acpi_debugger.lock);
859 }
860 EXPORT_SYMBOL(acpi_unregister_debugger);
861 
862 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
863 {
864 	int ret;
865 	int (*func)(acpi_osd_exec_callback, void *);
866 	struct module *owner;
867 
868 	if (!acpi_debugger_initialized)
869 		return -ENODEV;
870 	mutex_lock(&acpi_debugger.lock);
871 	if (!acpi_debugger.ops) {
872 		ret = -ENODEV;
873 		goto err_lock;
874 	}
875 	if (!try_module_get(acpi_debugger.owner)) {
876 		ret = -ENODEV;
877 		goto err_lock;
878 	}
879 	func = acpi_debugger.ops->create_thread;
880 	owner = acpi_debugger.owner;
881 	mutex_unlock(&acpi_debugger.lock);
882 
883 	ret = func(function, context);
884 
885 	mutex_lock(&acpi_debugger.lock);
886 	module_put(owner);
887 err_lock:
888 	mutex_unlock(&acpi_debugger.lock);
889 	return ret;
890 }
891 
892 ssize_t acpi_debugger_write_log(const char *msg)
893 {
894 	ssize_t ret;
895 	ssize_t (*func)(const char *);
896 	struct module *owner;
897 
898 	if (!acpi_debugger_initialized)
899 		return -ENODEV;
900 	mutex_lock(&acpi_debugger.lock);
901 	if (!acpi_debugger.ops) {
902 		ret = -ENODEV;
903 		goto err_lock;
904 	}
905 	if (!try_module_get(acpi_debugger.owner)) {
906 		ret = -ENODEV;
907 		goto err_lock;
908 	}
909 	func = acpi_debugger.ops->write_log;
910 	owner = acpi_debugger.owner;
911 	mutex_unlock(&acpi_debugger.lock);
912 
913 	ret = func(msg);
914 
915 	mutex_lock(&acpi_debugger.lock);
916 	module_put(owner);
917 err_lock:
918 	mutex_unlock(&acpi_debugger.lock);
919 	return ret;
920 }
921 
922 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
923 {
924 	ssize_t ret;
925 	ssize_t (*func)(char *, size_t);
926 	struct module *owner;
927 
928 	if (!acpi_debugger_initialized)
929 		return -ENODEV;
930 	mutex_lock(&acpi_debugger.lock);
931 	if (!acpi_debugger.ops) {
932 		ret = -ENODEV;
933 		goto err_lock;
934 	}
935 	if (!try_module_get(acpi_debugger.owner)) {
936 		ret = -ENODEV;
937 		goto err_lock;
938 	}
939 	func = acpi_debugger.ops->read_cmd;
940 	owner = acpi_debugger.owner;
941 	mutex_unlock(&acpi_debugger.lock);
942 
943 	ret = func(buffer, buffer_length);
944 
945 	mutex_lock(&acpi_debugger.lock);
946 	module_put(owner);
947 err_lock:
948 	mutex_unlock(&acpi_debugger.lock);
949 	return ret;
950 }
951 
952 int acpi_debugger_wait_command_ready(void)
953 {
954 	int ret;
955 	int (*func)(bool, char *, size_t);
956 	struct module *owner;
957 
958 	if (!acpi_debugger_initialized)
959 		return -ENODEV;
960 	mutex_lock(&acpi_debugger.lock);
961 	if (!acpi_debugger.ops) {
962 		ret = -ENODEV;
963 		goto err_lock;
964 	}
965 	if (!try_module_get(acpi_debugger.owner)) {
966 		ret = -ENODEV;
967 		goto err_lock;
968 	}
969 	func = acpi_debugger.ops->wait_command_ready;
970 	owner = acpi_debugger.owner;
971 	mutex_unlock(&acpi_debugger.lock);
972 
973 	ret = func(acpi_gbl_method_executing,
974 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
975 
976 	mutex_lock(&acpi_debugger.lock);
977 	module_put(owner);
978 err_lock:
979 	mutex_unlock(&acpi_debugger.lock);
980 	return ret;
981 }
982 
983 int acpi_debugger_notify_command_complete(void)
984 {
985 	int ret;
986 	int (*func)(void);
987 	struct module *owner;
988 
989 	if (!acpi_debugger_initialized)
990 		return -ENODEV;
991 	mutex_lock(&acpi_debugger.lock);
992 	if (!acpi_debugger.ops) {
993 		ret = -ENODEV;
994 		goto err_lock;
995 	}
996 	if (!try_module_get(acpi_debugger.owner)) {
997 		ret = -ENODEV;
998 		goto err_lock;
999 	}
1000 	func = acpi_debugger.ops->notify_command_complete;
1001 	owner = acpi_debugger.owner;
1002 	mutex_unlock(&acpi_debugger.lock);
1003 
1004 	ret = func();
1005 
1006 	mutex_lock(&acpi_debugger.lock);
1007 	module_put(owner);
1008 err_lock:
1009 	mutex_unlock(&acpi_debugger.lock);
1010 	return ret;
1011 }
1012 
1013 int __init acpi_debugger_init(void)
1014 {
1015 	mutex_init(&acpi_debugger.lock);
1016 	acpi_debugger_initialized = true;
1017 	return 0;
1018 }
1019 #endif
1020 
1021 /*******************************************************************************
1022  *
1023  * FUNCTION:    acpi_os_execute
1024  *
1025  * PARAMETERS:  Type               - Type of the callback
1026  *              Function           - Function to be executed
1027  *              Context            - Function parameters
1028  *
1029  * RETURN:      Status
1030  *
1031  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1032  *              immediately executes function on a separate thread.
1033  *
1034  ******************************************************************************/
1035 
1036 acpi_status acpi_os_execute(acpi_execute_type type,
1037 			    acpi_osd_exec_callback function, void *context)
1038 {
1039 	acpi_status status = AE_OK;
1040 	struct acpi_os_dpc *dpc;
1041 	struct workqueue_struct *queue;
1042 	int ret;
1043 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1044 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1045 			  function, context));
1046 
1047 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1048 		ret = acpi_debugger_create_thread(function, context);
1049 		if (ret) {
1050 			pr_err("Call to kthread_create() failed.\n");
1051 			status = AE_ERROR;
1052 		}
1053 		goto out_thread;
1054 	}
1055 
1056 	/*
1057 	 * Allocate/initialize DPC structure.  Note that this memory will be
1058 	 * freed by the callee.  The kernel handles the work_struct list  in a
1059 	 * way that allows us to also free its memory inside the callee.
1060 	 * Because we may want to schedule several tasks with different
1061 	 * parameters we can't use the approach some kernel code uses of
1062 	 * having a static work_struct.
1063 	 */
1064 
1065 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1066 	if (!dpc)
1067 		return AE_NO_MEMORY;
1068 
1069 	dpc->function = function;
1070 	dpc->context = context;
1071 
1072 	/*
1073 	 * To prevent lockdep from complaining unnecessarily, make sure that
1074 	 * there is a different static lockdep key for each workqueue by using
1075 	 * INIT_WORK() for each of them separately.
1076 	 */
1077 	if (type == OSL_NOTIFY_HANDLER) {
1078 		queue = kacpi_notify_wq;
1079 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1080 	} else if (type == OSL_GPE_HANDLER) {
1081 		queue = kacpid_wq;
1082 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1083 	} else {
1084 		pr_err("Unsupported os_execute type %d.\n", type);
1085 		status = AE_ERROR;
1086 	}
1087 
1088 	if (ACPI_FAILURE(status))
1089 		goto err_workqueue;
1090 
1091 	/*
1092 	 * On some machines, a software-initiated SMI causes corruption unless
1093 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1094 	 * typically it's done in GPE-related methods that are run via
1095 	 * workqueues, so we can avoid the known corruption cases by always
1096 	 * queueing on CPU 0.
1097 	 */
1098 	ret = queue_work_on(0, queue, &dpc->work);
1099 	if (!ret) {
1100 		printk(KERN_ERR PREFIX
1101 			  "Call to queue_work() failed.\n");
1102 		status = AE_ERROR;
1103 	}
1104 err_workqueue:
1105 	if (ACPI_FAILURE(status))
1106 		kfree(dpc);
1107 out_thread:
1108 	return status;
1109 }
1110 EXPORT_SYMBOL(acpi_os_execute);
1111 
1112 void acpi_os_wait_events_complete(void)
1113 {
1114 	/*
1115 	 * Make sure the GPE handler or the fixed event handler is not used
1116 	 * on another CPU after removal.
1117 	 */
1118 	if (acpi_sci_irq_valid())
1119 		synchronize_hardirq(acpi_sci_irq);
1120 	flush_workqueue(kacpid_wq);
1121 	flush_workqueue(kacpi_notify_wq);
1122 }
1123 
1124 struct acpi_hp_work {
1125 	struct work_struct work;
1126 	struct acpi_device *adev;
1127 	u32 src;
1128 };
1129 
1130 static void acpi_hotplug_work_fn(struct work_struct *work)
1131 {
1132 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1133 
1134 	acpi_os_wait_events_complete();
1135 	acpi_device_hotplug(hpw->adev, hpw->src);
1136 	kfree(hpw);
1137 }
1138 
1139 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1140 {
1141 	struct acpi_hp_work *hpw;
1142 
1143 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1144 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1145 		  adev, src));
1146 
1147 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1148 	if (!hpw)
1149 		return AE_NO_MEMORY;
1150 
1151 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1152 	hpw->adev = adev;
1153 	hpw->src = src;
1154 	/*
1155 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1156 	 * the hotplug code may call driver .remove() functions, which may
1157 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1158 	 * these workqueues.
1159 	 */
1160 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1161 		kfree(hpw);
1162 		return AE_ERROR;
1163 	}
1164 	return AE_OK;
1165 }
1166 
1167 bool acpi_queue_hotplug_work(struct work_struct *work)
1168 {
1169 	return queue_work(kacpi_hotplug_wq, work);
1170 }
1171 
1172 acpi_status
1173 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1174 {
1175 	struct semaphore *sem = NULL;
1176 
1177 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1178 	if (!sem)
1179 		return AE_NO_MEMORY;
1180 
1181 	sema_init(sem, initial_units);
1182 
1183 	*handle = (acpi_handle *) sem;
1184 
1185 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1186 			  *handle, initial_units));
1187 
1188 	return AE_OK;
1189 }
1190 
1191 /*
1192  * TODO: A better way to delete semaphores?  Linux doesn't have a
1193  * 'delete_semaphore()' function -- may result in an invalid
1194  * pointer dereference for non-synchronized consumers.	Should
1195  * we at least check for blocked threads and signal/cancel them?
1196  */
1197 
1198 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1199 {
1200 	struct semaphore *sem = (struct semaphore *)handle;
1201 
1202 	if (!sem)
1203 		return AE_BAD_PARAMETER;
1204 
1205 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1206 
1207 	BUG_ON(!list_empty(&sem->wait_list));
1208 	kfree(sem);
1209 	sem = NULL;
1210 
1211 	return AE_OK;
1212 }
1213 
1214 /*
1215  * TODO: Support for units > 1?
1216  */
1217 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1218 {
1219 	acpi_status status = AE_OK;
1220 	struct semaphore *sem = (struct semaphore *)handle;
1221 	long jiffies;
1222 	int ret = 0;
1223 
1224 	if (!acpi_os_initialized)
1225 		return AE_OK;
1226 
1227 	if (!sem || (units < 1))
1228 		return AE_BAD_PARAMETER;
1229 
1230 	if (units > 1)
1231 		return AE_SUPPORT;
1232 
1233 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1234 			  handle, units, timeout));
1235 
1236 	if (timeout == ACPI_WAIT_FOREVER)
1237 		jiffies = MAX_SCHEDULE_TIMEOUT;
1238 	else
1239 		jiffies = msecs_to_jiffies(timeout);
1240 
1241 	ret = down_timeout(sem, jiffies);
1242 	if (ret)
1243 		status = AE_TIME;
1244 
1245 	if (ACPI_FAILURE(status)) {
1246 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1247 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1248 				  handle, units, timeout,
1249 				  acpi_format_exception(status)));
1250 	} else {
1251 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1252 				  "Acquired semaphore[%p|%d|%d]", handle,
1253 				  units, timeout));
1254 	}
1255 
1256 	return status;
1257 }
1258 
1259 /*
1260  * TODO: Support for units > 1?
1261  */
1262 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1263 {
1264 	struct semaphore *sem = (struct semaphore *)handle;
1265 
1266 	if (!acpi_os_initialized)
1267 		return AE_OK;
1268 
1269 	if (!sem || (units < 1))
1270 		return AE_BAD_PARAMETER;
1271 
1272 	if (units > 1)
1273 		return AE_SUPPORT;
1274 
1275 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1276 			  units));
1277 
1278 	up(sem);
1279 
1280 	return AE_OK;
1281 }
1282 
1283 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1284 {
1285 #ifdef ENABLE_DEBUGGER
1286 	if (acpi_in_debugger) {
1287 		u32 chars;
1288 
1289 		kdb_read(buffer, buffer_length);
1290 
1291 		/* remove the CR kdb includes */
1292 		chars = strlen(buffer) - 1;
1293 		buffer[chars] = '\0';
1294 	}
1295 #else
1296 	int ret;
1297 
1298 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1299 	if (ret < 0)
1300 		return AE_ERROR;
1301 	if (bytes_read)
1302 		*bytes_read = ret;
1303 #endif
1304 
1305 	return AE_OK;
1306 }
1307 EXPORT_SYMBOL(acpi_os_get_line);
1308 
1309 acpi_status acpi_os_wait_command_ready(void)
1310 {
1311 	int ret;
1312 
1313 	ret = acpi_debugger_wait_command_ready();
1314 	if (ret < 0)
1315 		return AE_ERROR;
1316 	return AE_OK;
1317 }
1318 
1319 acpi_status acpi_os_notify_command_complete(void)
1320 {
1321 	int ret;
1322 
1323 	ret = acpi_debugger_notify_command_complete();
1324 	if (ret < 0)
1325 		return AE_ERROR;
1326 	return AE_OK;
1327 }
1328 
1329 acpi_status acpi_os_signal(u32 function, void *info)
1330 {
1331 	switch (function) {
1332 	case ACPI_SIGNAL_FATAL:
1333 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1334 		break;
1335 	case ACPI_SIGNAL_BREAKPOINT:
1336 		/*
1337 		 * AML Breakpoint
1338 		 * ACPI spec. says to treat it as a NOP unless
1339 		 * you are debugging.  So if/when we integrate
1340 		 * AML debugger into the kernel debugger its
1341 		 * hook will go here.  But until then it is
1342 		 * not useful to print anything on breakpoints.
1343 		 */
1344 		break;
1345 	default:
1346 		break;
1347 	}
1348 
1349 	return AE_OK;
1350 }
1351 
1352 static int __init acpi_os_name_setup(char *str)
1353 {
1354 	char *p = acpi_os_name;
1355 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1356 
1357 	if (!str || !*str)
1358 		return 0;
1359 
1360 	for (; count-- && *str; str++) {
1361 		if (isalnum(*str) || *str == ' ' || *str == ':')
1362 			*p++ = *str;
1363 		else if (*str == '\'' || *str == '"')
1364 			continue;
1365 		else
1366 			break;
1367 	}
1368 	*p = 0;
1369 
1370 	return 1;
1371 
1372 }
1373 
1374 __setup("acpi_os_name=", acpi_os_name_setup);
1375 
1376 /*
1377  * Disable the auto-serialization of named objects creation methods.
1378  *
1379  * This feature is enabled by default.  It marks the AML control methods
1380  * that contain the opcodes to create named objects as "Serialized".
1381  */
1382 static int __init acpi_no_auto_serialize_setup(char *str)
1383 {
1384 	acpi_gbl_auto_serialize_methods = FALSE;
1385 	pr_info("ACPI: auto-serialization disabled\n");
1386 
1387 	return 1;
1388 }
1389 
1390 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1391 
1392 /* Check of resource interference between native drivers and ACPI
1393  * OperationRegions (SystemIO and System Memory only).
1394  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1395  * in arbitrary AML code and can interfere with legacy drivers.
1396  * acpi_enforce_resources= can be set to:
1397  *
1398  *   - strict (default) (2)
1399  *     -> further driver trying to access the resources will not load
1400  *   - lax              (1)
1401  *     -> further driver trying to access the resources will load, but you
1402  *     get a system message that something might go wrong...
1403  *
1404  *   - no               (0)
1405  *     -> ACPI Operation Region resources will not be registered
1406  *
1407  */
1408 #define ENFORCE_RESOURCES_STRICT 2
1409 #define ENFORCE_RESOURCES_LAX    1
1410 #define ENFORCE_RESOURCES_NO     0
1411 
1412 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1413 
1414 static int __init acpi_enforce_resources_setup(char *str)
1415 {
1416 	if (str == NULL || *str == '\0')
1417 		return 0;
1418 
1419 	if (!strcmp("strict", str))
1420 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1421 	else if (!strcmp("lax", str))
1422 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1423 	else if (!strcmp("no", str))
1424 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1425 
1426 	return 1;
1427 }
1428 
1429 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1430 
1431 /* Check for resource conflicts between ACPI OperationRegions and native
1432  * drivers */
1433 int acpi_check_resource_conflict(const struct resource *res)
1434 {
1435 	acpi_adr_space_type space_id;
1436 	acpi_size length;
1437 	u8 warn = 0;
1438 	int clash = 0;
1439 
1440 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1441 		return 0;
1442 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1443 		return 0;
1444 
1445 	if (res->flags & IORESOURCE_IO)
1446 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1447 	else
1448 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1449 
1450 	length = resource_size(res);
1451 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1452 		warn = 1;
1453 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1454 
1455 	if (clash) {
1456 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1457 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1458 				printk(KERN_NOTICE "ACPI: This conflict may"
1459 				       " cause random problems and system"
1460 				       " instability\n");
1461 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1462 			       " for this device, you should use it instead of"
1463 			       " the native driver\n");
1464 		}
1465 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1466 			return -EBUSY;
1467 	}
1468 	return 0;
1469 }
1470 EXPORT_SYMBOL(acpi_check_resource_conflict);
1471 
1472 int acpi_check_region(resource_size_t start, resource_size_t n,
1473 		      const char *name)
1474 {
1475 	struct resource res = {
1476 		.start = start,
1477 		.end   = start + n - 1,
1478 		.name  = name,
1479 		.flags = IORESOURCE_IO,
1480 	};
1481 
1482 	return acpi_check_resource_conflict(&res);
1483 }
1484 EXPORT_SYMBOL(acpi_check_region);
1485 
1486 /*
1487  * Let drivers know whether the resource checks are effective
1488  */
1489 int acpi_resources_are_enforced(void)
1490 {
1491 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1492 }
1493 EXPORT_SYMBOL(acpi_resources_are_enforced);
1494 
1495 /*
1496  * Deallocate the memory for a spinlock.
1497  */
1498 void acpi_os_delete_lock(acpi_spinlock handle)
1499 {
1500 	ACPI_FREE(handle);
1501 }
1502 
1503 /*
1504  * Acquire a spinlock.
1505  *
1506  * handle is a pointer to the spinlock_t.
1507  */
1508 
1509 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1510 {
1511 	acpi_cpu_flags flags;
1512 	spin_lock_irqsave(lockp, flags);
1513 	return flags;
1514 }
1515 
1516 /*
1517  * Release a spinlock. See above.
1518  */
1519 
1520 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1521 {
1522 	spin_unlock_irqrestore(lockp, flags);
1523 }
1524 
1525 #ifndef ACPI_USE_LOCAL_CACHE
1526 
1527 /*******************************************************************************
1528  *
1529  * FUNCTION:    acpi_os_create_cache
1530  *
1531  * PARAMETERS:  name      - Ascii name for the cache
1532  *              size      - Size of each cached object
1533  *              depth     - Maximum depth of the cache (in objects) <ignored>
1534  *              cache     - Where the new cache object is returned
1535  *
1536  * RETURN:      status
1537  *
1538  * DESCRIPTION: Create a cache object
1539  *
1540  ******************************************************************************/
1541 
1542 acpi_status
1543 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1544 {
1545 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1546 	if (*cache == NULL)
1547 		return AE_ERROR;
1548 	else
1549 		return AE_OK;
1550 }
1551 
1552 /*******************************************************************************
1553  *
1554  * FUNCTION:    acpi_os_purge_cache
1555  *
1556  * PARAMETERS:  Cache           - Handle to cache object
1557  *
1558  * RETURN:      Status
1559  *
1560  * DESCRIPTION: Free all objects within the requested cache.
1561  *
1562  ******************************************************************************/
1563 
1564 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1565 {
1566 	kmem_cache_shrink(cache);
1567 	return (AE_OK);
1568 }
1569 
1570 /*******************************************************************************
1571  *
1572  * FUNCTION:    acpi_os_delete_cache
1573  *
1574  * PARAMETERS:  Cache           - Handle to cache object
1575  *
1576  * RETURN:      Status
1577  *
1578  * DESCRIPTION: Free all objects within the requested cache and delete the
1579  *              cache object.
1580  *
1581  ******************************************************************************/
1582 
1583 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1584 {
1585 	kmem_cache_destroy(cache);
1586 	return (AE_OK);
1587 }
1588 
1589 /*******************************************************************************
1590  *
1591  * FUNCTION:    acpi_os_release_object
1592  *
1593  * PARAMETERS:  Cache       - Handle to cache object
1594  *              Object      - The object to be released
1595  *
1596  * RETURN:      None
1597  *
1598  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1599  *              the object is deleted.
1600  *
1601  ******************************************************************************/
1602 
1603 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1604 {
1605 	kmem_cache_free(cache, object);
1606 	return (AE_OK);
1607 }
1608 #endif
1609 
1610 static int __init acpi_no_static_ssdt_setup(char *s)
1611 {
1612 	acpi_gbl_disable_ssdt_table_install = TRUE;
1613 	pr_info("ACPI: static SSDT installation disabled\n");
1614 
1615 	return 0;
1616 }
1617 
1618 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1619 
1620 static int __init acpi_disable_return_repair(char *s)
1621 {
1622 	printk(KERN_NOTICE PREFIX
1623 	       "ACPI: Predefined validation mechanism disabled\n");
1624 	acpi_gbl_disable_auto_repair = TRUE;
1625 
1626 	return 1;
1627 }
1628 
1629 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1630 
1631 acpi_status __init acpi_os_initialize(void)
1632 {
1633 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1634 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1635 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1636 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1637 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1638 		/*
1639 		 * Use acpi_os_map_generic_address to pre-map the reset
1640 		 * register if it's in system memory.
1641 		 */
1642 		int rv;
1643 
1644 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1645 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1646 	}
1647 	acpi_os_initialized = true;
1648 
1649 	return AE_OK;
1650 }
1651 
1652 acpi_status __init acpi_os_initialize1(void)
1653 {
1654 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1655 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1656 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1657 	BUG_ON(!kacpid_wq);
1658 	BUG_ON(!kacpi_notify_wq);
1659 	BUG_ON(!kacpi_hotplug_wq);
1660 	acpi_osi_init();
1661 	return AE_OK;
1662 }
1663 
1664 acpi_status acpi_os_terminate(void)
1665 {
1666 	if (acpi_irq_handler) {
1667 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1668 						 acpi_irq_handler);
1669 	}
1670 
1671 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1672 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1673 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1674 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1675 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1676 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1677 
1678 	destroy_workqueue(kacpid_wq);
1679 	destroy_workqueue(kacpi_notify_wq);
1680 	destroy_workqueue(kacpi_hotplug_wq);
1681 
1682 	return AE_OK;
1683 }
1684 
1685 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1686 				  u32 pm1b_control)
1687 {
1688 	int rc = 0;
1689 	if (__acpi_os_prepare_sleep)
1690 		rc = __acpi_os_prepare_sleep(sleep_state,
1691 					     pm1a_control, pm1b_control);
1692 	if (rc < 0)
1693 		return AE_ERROR;
1694 	else if (rc > 0)
1695 		return AE_CTRL_SKIP;
1696 
1697 	return AE_OK;
1698 }
1699 
1700 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1701 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1702 {
1703 	__acpi_os_prepare_sleep = func;
1704 }
1705 
1706 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1707 				  u32 val_b)
1708 {
1709 	int rc = 0;
1710 	if (__acpi_os_prepare_extended_sleep)
1711 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1712 					     val_a, val_b);
1713 	if (rc < 0)
1714 		return AE_ERROR;
1715 	else if (rc > 0)
1716 		return AE_CTRL_SKIP;
1717 
1718 	return AE_OK;
1719 }
1720 
1721 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1722 			       u32 val_a, u32 val_b))
1723 {
1724 	__acpi_os_prepare_extended_sleep = func;
1725 }
1726