xref: /openbmc/linux/drivers/acpi/osl.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51 
52 #define _COMPONENT		ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54 
55 struct acpi_os_dpc {
56 	acpi_osd_exec_callback function;
57 	void *context;
58 	struct work_struct work;
59 };
60 
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63 
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif				/*ENABLE_DEBUGGER */
68 
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 				      u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 				      u32 val_b);
73 
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82 
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88 	struct list_head list;
89 	void __iomem *virt;
90 	acpi_physical_address phys;
91 	acpi_size size;
92 	unsigned long refcount;
93 };
94 
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97 
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99 	unsigned int length, char *desc)
100 {
101 	u64 addr;
102 
103 	/* Handle possible alignment issues */
104 	memcpy(&addr, &gas->address, sizeof(addr));
105 	if (!addr || !length)
106 		return;
107 
108 	/* Resources are never freed */
109 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 		request_region(addr, length, desc);
111 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 		request_mem_region(addr, length, desc);
113 }
114 
115 static int __init acpi_reserve_resources(void)
116 {
117 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 		"ACPI PM1a_EVT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 		"ACPI PM1b_EVT_BLK");
122 
123 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 		"ACPI PM1a_CNT_BLK");
125 
126 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 		"ACPI PM1b_CNT_BLK");
128 
129 	if (acpi_gbl_FADT.pm_timer_length == 4)
130 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131 
132 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 		"ACPI PM2_CNT_BLK");
134 
135 	/* Length of GPE blocks must be a non-negative multiple of 2 */
136 
137 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140 
141 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144 
145 	return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148 
149 void acpi_os_printf(const char *fmt, ...)
150 {
151 	va_list args;
152 	va_start(args, fmt);
153 	acpi_os_vprintf(fmt, args);
154 	va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157 
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160 	static char buffer[512];
161 
162 	vsprintf(buffer, fmt, args);
163 
164 #ifdef ENABLE_DEBUGGER
165 	if (acpi_in_debugger) {
166 		kdb_printf("%s", buffer);
167 	} else {
168 		if (printk_get_level(buffer))
169 			printk("%s", buffer);
170 		else
171 			printk(KERN_CONT "%s", buffer);
172 	}
173 #else
174 	if (acpi_debugger_write_log(buffer) < 0) {
175 		if (printk_get_level(buffer))
176 			printk("%s", buffer);
177 		else
178 			printk(KERN_CONT "%s", buffer);
179 	}
180 #endif
181 }
182 
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187 	return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191 
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194 	acpi_physical_address pa;
195 
196 #ifdef CONFIG_KEXEC
197 	if (acpi_rsdp)
198 		return acpi_rsdp;
199 #endif
200 	pa = acpi_arch_get_root_pointer();
201 	if (pa)
202 		return pa;
203 
204 	if (efi_enabled(EFI_CONFIG_TABLES)) {
205 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 			return efi.acpi20;
207 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 			return efi.acpi;
209 		pr_err(PREFIX "System description tables not found\n");
210 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 		acpi_find_root_pointer(&pa);
212 	}
213 
214 	return pa;
215 }
216 
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221 	struct acpi_ioremap *map;
222 
223 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224 		if (map->phys <= phys &&
225 		    phys + size <= map->phys + map->size)
226 			return map;
227 
228 	return NULL;
229 }
230 
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235 	struct acpi_ioremap *map;
236 
237 	map = acpi_map_lookup(phys, size);
238 	if (map)
239 		return map->virt + (phys - map->phys);
240 
241 	return NULL;
242 }
243 
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246 	struct acpi_ioremap *map;
247 	void __iomem *virt = NULL;
248 
249 	mutex_lock(&acpi_ioremap_lock);
250 	map = acpi_map_lookup(phys, size);
251 	if (map) {
252 		virt = map->virt + (phys - map->phys);
253 		map->refcount++;
254 	}
255 	mutex_unlock(&acpi_ioremap_lock);
256 	return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259 
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264 	struct acpi_ioremap *map;
265 
266 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 		if (map->virt <= virt &&
268 		    virt + size <= map->virt + map->size)
269 			return map;
270 
271 	return NULL;
272 }
273 
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280 
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283 	unsigned long pfn;
284 
285 	pfn = pg_off >> PAGE_SHIFT;
286 	if (should_use_kmap(pfn)) {
287 		if (pg_sz > PAGE_SIZE)
288 			return NULL;
289 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 	} else
291 		return acpi_os_ioremap(pg_off, pg_sz);
292 }
293 
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296 	unsigned long pfn;
297 
298 	pfn = pg_off >> PAGE_SHIFT;
299 	if (should_use_kmap(pfn))
300 		kunmap(pfn_to_page(pfn));
301 	else
302 		iounmap(vaddr);
303 }
304 
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem *__ref
319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321 	struct acpi_ioremap *map;
322 	void __iomem *virt;
323 	acpi_physical_address pg_off;
324 	acpi_size pg_sz;
325 
326 	if (phys > ULONG_MAX) {
327 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 		return NULL;
329 	}
330 
331 	if (!acpi_permanent_mmap)
332 		return __acpi_map_table((unsigned long)phys, size);
333 
334 	mutex_lock(&acpi_ioremap_lock);
335 	/* Check if there's a suitable mapping already. */
336 	map = acpi_map_lookup(phys, size);
337 	if (map) {
338 		map->refcount++;
339 		goto out;
340 	}
341 
342 	map = kzalloc(sizeof(*map), GFP_KERNEL);
343 	if (!map) {
344 		mutex_unlock(&acpi_ioremap_lock);
345 		return NULL;
346 	}
347 
348 	pg_off = round_down(phys, PAGE_SIZE);
349 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 	virt = acpi_map(pg_off, pg_sz);
351 	if (!virt) {
352 		mutex_unlock(&acpi_ioremap_lock);
353 		kfree(map);
354 		return NULL;
355 	}
356 
357 	INIT_LIST_HEAD(&map->list);
358 	map->virt = virt;
359 	map->phys = pg_off;
360 	map->size = pg_sz;
361 	map->refcount = 1;
362 
363 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
364 
365 out:
366 	mutex_unlock(&acpi_ioremap_lock);
367 	return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370 
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373 	return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376 
377 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378 {
379 	if (!--map->refcount)
380 		list_del_rcu(&map->list);
381 }
382 
383 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384 {
385 	if (!map->refcount) {
386 		synchronize_rcu_expedited();
387 		acpi_unmap(map->phys, map->virt);
388 		kfree(map);
389 	}
390 }
391 
392 /**
393  * acpi_os_unmap_iomem - Drop a memory mapping reference.
394  * @virt: Start of the address range to drop a reference to.
395  * @size: Size of the address range to drop a reference to.
396  *
397  * Look up the given virtual address range in the list of existing ACPI memory
398  * mappings, drop a reference to it and unmap it if there are no more active
399  * references to it.
400  *
401  * During early init (when acpi_permanent_mmap has not been set yet) this
402  * routine simply calls __acpi_unmap_table() to get the job done.  Since
403  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404  * here.
405  */
406 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407 {
408 	struct acpi_ioremap *map;
409 
410 	if (!acpi_permanent_mmap) {
411 		__acpi_unmap_table(virt, size);
412 		return;
413 	}
414 
415 	mutex_lock(&acpi_ioremap_lock);
416 	map = acpi_map_lookup_virt(virt, size);
417 	if (!map) {
418 		mutex_unlock(&acpi_ioremap_lock);
419 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 		return;
421 	}
422 	acpi_os_drop_map_ref(map);
423 	mutex_unlock(&acpi_ioremap_lock);
424 
425 	acpi_os_map_cleanup(map);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428 
429 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430 {
431 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434 
435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437 	u64 addr;
438 	void __iomem *virt;
439 
440 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 		return 0;
442 
443 	/* Handle possible alignment issues */
444 	memcpy(&addr, &gas->address, sizeof(addr));
445 	if (!addr || !gas->bit_width)
446 		return -EINVAL;
447 
448 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 	if (!virt)
450 		return -EIO;
451 
452 	return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455 
456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458 	u64 addr;
459 	struct acpi_ioremap *map;
460 
461 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 		return;
463 
464 	/* Handle possible alignment issues */
465 	memcpy(&addr, &gas->address, sizeof(addr));
466 	if (!addr || !gas->bit_width)
467 		return;
468 
469 	mutex_lock(&acpi_ioremap_lock);
470 	map = acpi_map_lookup(addr, gas->bit_width / 8);
471 	if (!map) {
472 		mutex_unlock(&acpi_ioremap_lock);
473 		return;
474 	}
475 	acpi_os_drop_map_ref(map);
476 	mutex_unlock(&acpi_ioremap_lock);
477 
478 	acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481 
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486 	if (!phys || !virt)
487 		return AE_BAD_PARAMETER;
488 
489 	*phys = virt_to_phys(virt);
490 
491 	return AE_OK;
492 }
493 #endif
494 
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497 
498 int __init acpi_rev_override_setup(char *str)
499 {
500 	acpi_rev_override = true;
501 	return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override	false
506 #endif
507 
508 #define ACPI_MAX_OVERRIDE_LEN 100
509 
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511 
512 acpi_status
513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 			    acpi_string *new_val)
515 {
516 	if (!init_val || !new_val)
517 		return AE_BAD_PARAMETER;
518 
519 	*new_val = NULL;
520 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 		       acpi_os_name);
523 		*new_val = acpi_os_name;
524 	}
525 
526 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 		*new_val = (char *)5;
529 	}
530 
531 	return AE_OK;
532 }
533 
534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536 	u32 handled;
537 
538 	handled = (*acpi_irq_handler) (acpi_irq_context);
539 
540 	if (handled) {
541 		acpi_irq_handled++;
542 		return IRQ_HANDLED;
543 	} else {
544 		acpi_irq_not_handled++;
545 		return IRQ_NONE;
546 	}
547 }
548 
549 acpi_status
550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 				  void *context)
552 {
553 	unsigned int irq;
554 
555 	acpi_irq_stats_init();
556 
557 	/*
558 	 * ACPI interrupts different from the SCI in our copy of the FADT are
559 	 * not supported.
560 	 */
561 	if (gsi != acpi_gbl_FADT.sci_interrupt)
562 		return AE_BAD_PARAMETER;
563 
564 	if (acpi_irq_handler)
565 		return AE_ALREADY_ACQUIRED;
566 
567 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 		       gsi);
570 		return AE_OK;
571 	}
572 
573 	acpi_irq_handler = handler;
574 	acpi_irq_context = context;
575 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 		acpi_irq_handler = NULL;
578 		return AE_NOT_ACQUIRED;
579 	}
580 	acpi_sci_irq = irq;
581 
582 	return AE_OK;
583 }
584 
585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 		return AE_BAD_PARAMETER;
589 
590 	free_irq(acpi_sci_irq, acpi_irq);
591 	acpi_irq_handler = NULL;
592 	acpi_sci_irq = INVALID_ACPI_IRQ;
593 
594 	return AE_OK;
595 }
596 
597 /*
598  * Running in interpreter thread context, safe to sleep
599  */
600 
601 void acpi_os_sleep(u64 ms)
602 {
603 	msleep(ms);
604 }
605 
606 void acpi_os_stall(u32 us)
607 {
608 	while (us) {
609 		u32 delay = 1000;
610 
611 		if (delay > us)
612 			delay = us;
613 		udelay(delay);
614 		touch_nmi_watchdog();
615 		us -= delay;
616 	}
617 }
618 
619 /*
620  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621  * monotonically increasing timer with 100ns granularity. Do not use
622  * ktime_get() to implement this function because this function may get
623  * called after timekeeping has been suspended. Note: calling this function
624  * after timekeeping has been suspended may lead to unexpected results
625  * because when timekeeping is suspended the jiffies counter is not
626  * incremented. See also timekeeping_suspend().
627  */
628 u64 acpi_os_get_timer(void)
629 {
630 	return (get_jiffies_64() - INITIAL_JIFFIES) *
631 		(ACPI_100NSEC_PER_SEC / HZ);
632 }
633 
634 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635 {
636 	u32 dummy;
637 
638 	if (!value)
639 		value = &dummy;
640 
641 	*value = 0;
642 	if (width <= 8) {
643 		*(u8 *) value = inb(port);
644 	} else if (width <= 16) {
645 		*(u16 *) value = inw(port);
646 	} else if (width <= 32) {
647 		*(u32 *) value = inl(port);
648 	} else {
649 		BUG();
650 	}
651 
652 	return AE_OK;
653 }
654 
655 EXPORT_SYMBOL(acpi_os_read_port);
656 
657 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658 {
659 	if (width <= 8) {
660 		outb(value, port);
661 	} else if (width <= 16) {
662 		outw(value, port);
663 	} else if (width <= 32) {
664 		outl(value, port);
665 	} else {
666 		BUG();
667 	}
668 
669 	return AE_OK;
670 }
671 
672 EXPORT_SYMBOL(acpi_os_write_port);
673 
674 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675 {
676 
677 	switch (width) {
678 	case 8:
679 		*(u8 *) value = readb(virt_addr);
680 		break;
681 	case 16:
682 		*(u16 *) value = readw(virt_addr);
683 		break;
684 	case 32:
685 		*(u32 *) value = readl(virt_addr);
686 		break;
687 	case 64:
688 		*(u64 *) value = readq(virt_addr);
689 		break;
690 	default:
691 		return -EINVAL;
692 	}
693 
694 	return 0;
695 }
696 
697 acpi_status
698 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699 {
700 	void __iomem *virt_addr;
701 	unsigned int size = width / 8;
702 	bool unmap = false;
703 	u64 dummy;
704 	int error;
705 
706 	rcu_read_lock();
707 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708 	if (!virt_addr) {
709 		rcu_read_unlock();
710 		virt_addr = acpi_os_ioremap(phys_addr, size);
711 		if (!virt_addr)
712 			return AE_BAD_ADDRESS;
713 		unmap = true;
714 	}
715 
716 	if (!value)
717 		value = &dummy;
718 
719 	error = acpi_os_read_iomem(virt_addr, value, width);
720 	BUG_ON(error);
721 
722 	if (unmap)
723 		iounmap(virt_addr);
724 	else
725 		rcu_read_unlock();
726 
727 	return AE_OK;
728 }
729 
730 acpi_status
731 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732 {
733 	void __iomem *virt_addr;
734 	unsigned int size = width / 8;
735 	bool unmap = false;
736 
737 	rcu_read_lock();
738 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 	if (!virt_addr) {
740 		rcu_read_unlock();
741 		virt_addr = acpi_os_ioremap(phys_addr, size);
742 		if (!virt_addr)
743 			return AE_BAD_ADDRESS;
744 		unmap = true;
745 	}
746 
747 	switch (width) {
748 	case 8:
749 		writeb(value, virt_addr);
750 		break;
751 	case 16:
752 		writew(value, virt_addr);
753 		break;
754 	case 32:
755 		writel(value, virt_addr);
756 		break;
757 	case 64:
758 		writeq(value, virt_addr);
759 		break;
760 	default:
761 		BUG();
762 	}
763 
764 	if (unmap)
765 		iounmap(virt_addr);
766 	else
767 		rcu_read_unlock();
768 
769 	return AE_OK;
770 }
771 
772 #ifdef CONFIG_PCI
773 acpi_status
774 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
775 			       u64 *value, u32 width)
776 {
777 	int result, size;
778 	u32 value32;
779 
780 	if (!value)
781 		return AE_BAD_PARAMETER;
782 
783 	switch (width) {
784 	case 8:
785 		size = 1;
786 		break;
787 	case 16:
788 		size = 2;
789 		break;
790 	case 32:
791 		size = 4;
792 		break;
793 	default:
794 		return AE_ERROR;
795 	}
796 
797 	result = raw_pci_read(pci_id->segment, pci_id->bus,
798 				PCI_DEVFN(pci_id->device, pci_id->function),
799 				reg, size, &value32);
800 	*value = value32;
801 
802 	return (result ? AE_ERROR : AE_OK);
803 }
804 
805 acpi_status
806 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
807 				u64 value, u32 width)
808 {
809 	int result, size;
810 
811 	switch (width) {
812 	case 8:
813 		size = 1;
814 		break;
815 	case 16:
816 		size = 2;
817 		break;
818 	case 32:
819 		size = 4;
820 		break;
821 	default:
822 		return AE_ERROR;
823 	}
824 
825 	result = raw_pci_write(pci_id->segment, pci_id->bus,
826 				PCI_DEVFN(pci_id->device, pci_id->function),
827 				reg, size, value);
828 
829 	return (result ? AE_ERROR : AE_OK);
830 }
831 #endif
832 
833 static void acpi_os_execute_deferred(struct work_struct *work)
834 {
835 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
836 
837 	dpc->function(dpc->context);
838 	kfree(dpc);
839 }
840 
841 #ifdef CONFIG_ACPI_DEBUGGER
842 static struct acpi_debugger acpi_debugger;
843 static bool acpi_debugger_initialized;
844 
845 int acpi_register_debugger(struct module *owner,
846 			   const struct acpi_debugger_ops *ops)
847 {
848 	int ret = 0;
849 
850 	mutex_lock(&acpi_debugger.lock);
851 	if (acpi_debugger.ops) {
852 		ret = -EBUSY;
853 		goto err_lock;
854 	}
855 
856 	acpi_debugger.owner = owner;
857 	acpi_debugger.ops = ops;
858 
859 err_lock:
860 	mutex_unlock(&acpi_debugger.lock);
861 	return ret;
862 }
863 EXPORT_SYMBOL(acpi_register_debugger);
864 
865 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
866 {
867 	mutex_lock(&acpi_debugger.lock);
868 	if (ops == acpi_debugger.ops) {
869 		acpi_debugger.ops = NULL;
870 		acpi_debugger.owner = NULL;
871 	}
872 	mutex_unlock(&acpi_debugger.lock);
873 }
874 EXPORT_SYMBOL(acpi_unregister_debugger);
875 
876 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
877 {
878 	int ret;
879 	int (*func)(acpi_osd_exec_callback, void *);
880 	struct module *owner;
881 
882 	if (!acpi_debugger_initialized)
883 		return -ENODEV;
884 	mutex_lock(&acpi_debugger.lock);
885 	if (!acpi_debugger.ops) {
886 		ret = -ENODEV;
887 		goto err_lock;
888 	}
889 	if (!try_module_get(acpi_debugger.owner)) {
890 		ret = -ENODEV;
891 		goto err_lock;
892 	}
893 	func = acpi_debugger.ops->create_thread;
894 	owner = acpi_debugger.owner;
895 	mutex_unlock(&acpi_debugger.lock);
896 
897 	ret = func(function, context);
898 
899 	mutex_lock(&acpi_debugger.lock);
900 	module_put(owner);
901 err_lock:
902 	mutex_unlock(&acpi_debugger.lock);
903 	return ret;
904 }
905 
906 ssize_t acpi_debugger_write_log(const char *msg)
907 {
908 	ssize_t ret;
909 	ssize_t (*func)(const char *);
910 	struct module *owner;
911 
912 	if (!acpi_debugger_initialized)
913 		return -ENODEV;
914 	mutex_lock(&acpi_debugger.lock);
915 	if (!acpi_debugger.ops) {
916 		ret = -ENODEV;
917 		goto err_lock;
918 	}
919 	if (!try_module_get(acpi_debugger.owner)) {
920 		ret = -ENODEV;
921 		goto err_lock;
922 	}
923 	func = acpi_debugger.ops->write_log;
924 	owner = acpi_debugger.owner;
925 	mutex_unlock(&acpi_debugger.lock);
926 
927 	ret = func(msg);
928 
929 	mutex_lock(&acpi_debugger.lock);
930 	module_put(owner);
931 err_lock:
932 	mutex_unlock(&acpi_debugger.lock);
933 	return ret;
934 }
935 
936 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
937 {
938 	ssize_t ret;
939 	ssize_t (*func)(char *, size_t);
940 	struct module *owner;
941 
942 	if (!acpi_debugger_initialized)
943 		return -ENODEV;
944 	mutex_lock(&acpi_debugger.lock);
945 	if (!acpi_debugger.ops) {
946 		ret = -ENODEV;
947 		goto err_lock;
948 	}
949 	if (!try_module_get(acpi_debugger.owner)) {
950 		ret = -ENODEV;
951 		goto err_lock;
952 	}
953 	func = acpi_debugger.ops->read_cmd;
954 	owner = acpi_debugger.owner;
955 	mutex_unlock(&acpi_debugger.lock);
956 
957 	ret = func(buffer, buffer_length);
958 
959 	mutex_lock(&acpi_debugger.lock);
960 	module_put(owner);
961 err_lock:
962 	mutex_unlock(&acpi_debugger.lock);
963 	return ret;
964 }
965 
966 int acpi_debugger_wait_command_ready(void)
967 {
968 	int ret;
969 	int (*func)(bool, char *, size_t);
970 	struct module *owner;
971 
972 	if (!acpi_debugger_initialized)
973 		return -ENODEV;
974 	mutex_lock(&acpi_debugger.lock);
975 	if (!acpi_debugger.ops) {
976 		ret = -ENODEV;
977 		goto err_lock;
978 	}
979 	if (!try_module_get(acpi_debugger.owner)) {
980 		ret = -ENODEV;
981 		goto err_lock;
982 	}
983 	func = acpi_debugger.ops->wait_command_ready;
984 	owner = acpi_debugger.owner;
985 	mutex_unlock(&acpi_debugger.lock);
986 
987 	ret = func(acpi_gbl_method_executing,
988 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
989 
990 	mutex_lock(&acpi_debugger.lock);
991 	module_put(owner);
992 err_lock:
993 	mutex_unlock(&acpi_debugger.lock);
994 	return ret;
995 }
996 
997 int acpi_debugger_notify_command_complete(void)
998 {
999 	int ret;
1000 	int (*func)(void);
1001 	struct module *owner;
1002 
1003 	if (!acpi_debugger_initialized)
1004 		return -ENODEV;
1005 	mutex_lock(&acpi_debugger.lock);
1006 	if (!acpi_debugger.ops) {
1007 		ret = -ENODEV;
1008 		goto err_lock;
1009 	}
1010 	if (!try_module_get(acpi_debugger.owner)) {
1011 		ret = -ENODEV;
1012 		goto err_lock;
1013 	}
1014 	func = acpi_debugger.ops->notify_command_complete;
1015 	owner = acpi_debugger.owner;
1016 	mutex_unlock(&acpi_debugger.lock);
1017 
1018 	ret = func();
1019 
1020 	mutex_lock(&acpi_debugger.lock);
1021 	module_put(owner);
1022 err_lock:
1023 	mutex_unlock(&acpi_debugger.lock);
1024 	return ret;
1025 }
1026 
1027 int __init acpi_debugger_init(void)
1028 {
1029 	mutex_init(&acpi_debugger.lock);
1030 	acpi_debugger_initialized = true;
1031 	return 0;
1032 }
1033 #endif
1034 
1035 /*******************************************************************************
1036  *
1037  * FUNCTION:    acpi_os_execute
1038  *
1039  * PARAMETERS:  Type               - Type of the callback
1040  *              Function           - Function to be executed
1041  *              Context            - Function parameters
1042  *
1043  * RETURN:      Status
1044  *
1045  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046  *              immediately executes function on a separate thread.
1047  *
1048  ******************************************************************************/
1049 
1050 acpi_status acpi_os_execute(acpi_execute_type type,
1051 			    acpi_osd_exec_callback function, void *context)
1052 {
1053 	acpi_status status = AE_OK;
1054 	struct acpi_os_dpc *dpc;
1055 	struct workqueue_struct *queue;
1056 	int ret;
1057 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1059 			  function, context));
1060 
1061 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062 		ret = acpi_debugger_create_thread(function, context);
1063 		if (ret) {
1064 			pr_err("Call to kthread_create() failed.\n");
1065 			status = AE_ERROR;
1066 		}
1067 		goto out_thread;
1068 	}
1069 
1070 	/*
1071 	 * Allocate/initialize DPC structure.  Note that this memory will be
1072 	 * freed by the callee.  The kernel handles the work_struct list  in a
1073 	 * way that allows us to also free its memory inside the callee.
1074 	 * Because we may want to schedule several tasks with different
1075 	 * parameters we can't use the approach some kernel code uses of
1076 	 * having a static work_struct.
1077 	 */
1078 
1079 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080 	if (!dpc)
1081 		return AE_NO_MEMORY;
1082 
1083 	dpc->function = function;
1084 	dpc->context = context;
1085 
1086 	/*
1087 	 * To prevent lockdep from complaining unnecessarily, make sure that
1088 	 * there is a different static lockdep key for each workqueue by using
1089 	 * INIT_WORK() for each of them separately.
1090 	 */
1091 	if (type == OSL_NOTIFY_HANDLER) {
1092 		queue = kacpi_notify_wq;
1093 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094 	} else if (type == OSL_GPE_HANDLER) {
1095 		queue = kacpid_wq;
1096 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097 	} else {
1098 		pr_err("Unsupported os_execute type %d.\n", type);
1099 		status = AE_ERROR;
1100 	}
1101 
1102 	if (ACPI_FAILURE(status))
1103 		goto err_workqueue;
1104 
1105 	/*
1106 	 * On some machines, a software-initiated SMI causes corruption unless
1107 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1108 	 * typically it's done in GPE-related methods that are run via
1109 	 * workqueues, so we can avoid the known corruption cases by always
1110 	 * queueing on CPU 0.
1111 	 */
1112 	ret = queue_work_on(0, queue, &dpc->work);
1113 	if (!ret) {
1114 		printk(KERN_ERR PREFIX
1115 			  "Call to queue_work() failed.\n");
1116 		status = AE_ERROR;
1117 	}
1118 err_workqueue:
1119 	if (ACPI_FAILURE(status))
1120 		kfree(dpc);
1121 out_thread:
1122 	return status;
1123 }
1124 EXPORT_SYMBOL(acpi_os_execute);
1125 
1126 void acpi_os_wait_events_complete(void)
1127 {
1128 	/*
1129 	 * Make sure the GPE handler or the fixed event handler is not used
1130 	 * on another CPU after removal.
1131 	 */
1132 	if (acpi_sci_irq_valid())
1133 		synchronize_hardirq(acpi_sci_irq);
1134 	flush_workqueue(kacpid_wq);
1135 	flush_workqueue(kacpi_notify_wq);
1136 }
1137 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138 
1139 struct acpi_hp_work {
1140 	struct work_struct work;
1141 	struct acpi_device *adev;
1142 	u32 src;
1143 };
1144 
1145 static void acpi_hotplug_work_fn(struct work_struct *work)
1146 {
1147 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148 
1149 	acpi_os_wait_events_complete();
1150 	acpi_device_hotplug(hpw->adev, hpw->src);
1151 	kfree(hpw);
1152 }
1153 
1154 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155 {
1156 	struct acpi_hp_work *hpw;
1157 
1158 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160 		  adev, src));
1161 
1162 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163 	if (!hpw)
1164 		return AE_NO_MEMORY;
1165 
1166 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167 	hpw->adev = adev;
1168 	hpw->src = src;
1169 	/*
1170 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171 	 * the hotplug code may call driver .remove() functions, which may
1172 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173 	 * these workqueues.
1174 	 */
1175 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176 		kfree(hpw);
1177 		return AE_ERROR;
1178 	}
1179 	return AE_OK;
1180 }
1181 
1182 bool acpi_queue_hotplug_work(struct work_struct *work)
1183 {
1184 	return queue_work(kacpi_hotplug_wq, work);
1185 }
1186 
1187 acpi_status
1188 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189 {
1190 	struct semaphore *sem = NULL;
1191 
1192 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193 	if (!sem)
1194 		return AE_NO_MEMORY;
1195 
1196 	sema_init(sem, initial_units);
1197 
1198 	*handle = (acpi_handle *) sem;
1199 
1200 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201 			  *handle, initial_units));
1202 
1203 	return AE_OK;
1204 }
1205 
1206 /*
1207  * TODO: A better way to delete semaphores?  Linux doesn't have a
1208  * 'delete_semaphore()' function -- may result in an invalid
1209  * pointer dereference for non-synchronized consumers.	Should
1210  * we at least check for blocked threads and signal/cancel them?
1211  */
1212 
1213 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214 {
1215 	struct semaphore *sem = (struct semaphore *)handle;
1216 
1217 	if (!sem)
1218 		return AE_BAD_PARAMETER;
1219 
1220 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221 
1222 	BUG_ON(!list_empty(&sem->wait_list));
1223 	kfree(sem);
1224 	sem = NULL;
1225 
1226 	return AE_OK;
1227 }
1228 
1229 /*
1230  * TODO: Support for units > 1?
1231  */
1232 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233 {
1234 	acpi_status status = AE_OK;
1235 	struct semaphore *sem = (struct semaphore *)handle;
1236 	long jiffies;
1237 	int ret = 0;
1238 
1239 	if (!acpi_os_initialized)
1240 		return AE_OK;
1241 
1242 	if (!sem || (units < 1))
1243 		return AE_BAD_PARAMETER;
1244 
1245 	if (units > 1)
1246 		return AE_SUPPORT;
1247 
1248 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249 			  handle, units, timeout));
1250 
1251 	if (timeout == ACPI_WAIT_FOREVER)
1252 		jiffies = MAX_SCHEDULE_TIMEOUT;
1253 	else
1254 		jiffies = msecs_to_jiffies(timeout);
1255 
1256 	ret = down_timeout(sem, jiffies);
1257 	if (ret)
1258 		status = AE_TIME;
1259 
1260 	if (ACPI_FAILURE(status)) {
1261 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1263 				  handle, units, timeout,
1264 				  acpi_format_exception(status)));
1265 	} else {
1266 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267 				  "Acquired semaphore[%p|%d|%d]", handle,
1268 				  units, timeout));
1269 	}
1270 
1271 	return status;
1272 }
1273 
1274 /*
1275  * TODO: Support for units > 1?
1276  */
1277 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278 {
1279 	struct semaphore *sem = (struct semaphore *)handle;
1280 
1281 	if (!acpi_os_initialized)
1282 		return AE_OK;
1283 
1284 	if (!sem || (units < 1))
1285 		return AE_BAD_PARAMETER;
1286 
1287 	if (units > 1)
1288 		return AE_SUPPORT;
1289 
1290 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291 			  units));
1292 
1293 	up(sem);
1294 
1295 	return AE_OK;
1296 }
1297 
1298 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299 {
1300 #ifdef ENABLE_DEBUGGER
1301 	if (acpi_in_debugger) {
1302 		u32 chars;
1303 
1304 		kdb_read(buffer, buffer_length);
1305 
1306 		/* remove the CR kdb includes */
1307 		chars = strlen(buffer) - 1;
1308 		buffer[chars] = '\0';
1309 	}
1310 #else
1311 	int ret;
1312 
1313 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314 	if (ret < 0)
1315 		return AE_ERROR;
1316 	if (bytes_read)
1317 		*bytes_read = ret;
1318 #endif
1319 
1320 	return AE_OK;
1321 }
1322 EXPORT_SYMBOL(acpi_os_get_line);
1323 
1324 acpi_status acpi_os_wait_command_ready(void)
1325 {
1326 	int ret;
1327 
1328 	ret = acpi_debugger_wait_command_ready();
1329 	if (ret < 0)
1330 		return AE_ERROR;
1331 	return AE_OK;
1332 }
1333 
1334 acpi_status acpi_os_notify_command_complete(void)
1335 {
1336 	int ret;
1337 
1338 	ret = acpi_debugger_notify_command_complete();
1339 	if (ret < 0)
1340 		return AE_ERROR;
1341 	return AE_OK;
1342 }
1343 
1344 acpi_status acpi_os_signal(u32 function, void *info)
1345 {
1346 	switch (function) {
1347 	case ACPI_SIGNAL_FATAL:
1348 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349 		break;
1350 	case ACPI_SIGNAL_BREAKPOINT:
1351 		/*
1352 		 * AML Breakpoint
1353 		 * ACPI spec. says to treat it as a NOP unless
1354 		 * you are debugging.  So if/when we integrate
1355 		 * AML debugger into the kernel debugger its
1356 		 * hook will go here.  But until then it is
1357 		 * not useful to print anything on breakpoints.
1358 		 */
1359 		break;
1360 	default:
1361 		break;
1362 	}
1363 
1364 	return AE_OK;
1365 }
1366 
1367 static int __init acpi_os_name_setup(char *str)
1368 {
1369 	char *p = acpi_os_name;
1370 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371 
1372 	if (!str || !*str)
1373 		return 0;
1374 
1375 	for (; count-- && *str; str++) {
1376 		if (isalnum(*str) || *str == ' ' || *str == ':')
1377 			*p++ = *str;
1378 		else if (*str == '\'' || *str == '"')
1379 			continue;
1380 		else
1381 			break;
1382 	}
1383 	*p = 0;
1384 
1385 	return 1;
1386 
1387 }
1388 
1389 __setup("acpi_os_name=", acpi_os_name_setup);
1390 
1391 /*
1392  * Disable the auto-serialization of named objects creation methods.
1393  *
1394  * This feature is enabled by default.  It marks the AML control methods
1395  * that contain the opcodes to create named objects as "Serialized".
1396  */
1397 static int __init acpi_no_auto_serialize_setup(char *str)
1398 {
1399 	acpi_gbl_auto_serialize_methods = FALSE;
1400 	pr_info("ACPI: auto-serialization disabled\n");
1401 
1402 	return 1;
1403 }
1404 
1405 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406 
1407 /* Check of resource interference between native drivers and ACPI
1408  * OperationRegions (SystemIO and System Memory only).
1409  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410  * in arbitrary AML code and can interfere with legacy drivers.
1411  * acpi_enforce_resources= can be set to:
1412  *
1413  *   - strict (default) (2)
1414  *     -> further driver trying to access the resources will not load
1415  *   - lax              (1)
1416  *     -> further driver trying to access the resources will load, but you
1417  *     get a system message that something might go wrong...
1418  *
1419  *   - no               (0)
1420  *     -> ACPI Operation Region resources will not be registered
1421  *
1422  */
1423 #define ENFORCE_RESOURCES_STRICT 2
1424 #define ENFORCE_RESOURCES_LAX    1
1425 #define ENFORCE_RESOURCES_NO     0
1426 
1427 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428 
1429 static int __init acpi_enforce_resources_setup(char *str)
1430 {
1431 	if (str == NULL || *str == '\0')
1432 		return 0;
1433 
1434 	if (!strcmp("strict", str))
1435 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436 	else if (!strcmp("lax", str))
1437 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438 	else if (!strcmp("no", str))
1439 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440 
1441 	return 1;
1442 }
1443 
1444 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445 
1446 /* Check for resource conflicts between ACPI OperationRegions and native
1447  * drivers */
1448 int acpi_check_resource_conflict(const struct resource *res)
1449 {
1450 	acpi_adr_space_type space_id;
1451 	acpi_size length;
1452 	u8 warn = 0;
1453 	int clash = 0;
1454 
1455 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456 		return 0;
1457 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458 		return 0;
1459 
1460 	if (res->flags & IORESOURCE_IO)
1461 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462 	else
1463 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464 
1465 	length = resource_size(res);
1466 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467 		warn = 1;
1468 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1469 
1470 	if (clash) {
1471 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473 				printk(KERN_NOTICE "ACPI: This conflict may"
1474 				       " cause random problems and system"
1475 				       " instability\n");
1476 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477 			       " for this device, you should use it instead of"
1478 			       " the native driver\n");
1479 		}
1480 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481 			return -EBUSY;
1482 	}
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL(acpi_check_resource_conflict);
1486 
1487 int acpi_check_region(resource_size_t start, resource_size_t n,
1488 		      const char *name)
1489 {
1490 	struct resource res = {
1491 		.start = start,
1492 		.end   = start + n - 1,
1493 		.name  = name,
1494 		.flags = IORESOURCE_IO,
1495 	};
1496 
1497 	return acpi_check_resource_conflict(&res);
1498 }
1499 EXPORT_SYMBOL(acpi_check_region);
1500 
1501 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502 					      void *_res, void **return_value)
1503 {
1504 	struct acpi_mem_space_context **mem_ctx;
1505 	union acpi_operand_object *handler_obj;
1506 	union acpi_operand_object *region_obj2;
1507 	union acpi_operand_object *region_obj;
1508 	struct resource *res = _res;
1509 	acpi_status status;
1510 
1511 	region_obj = acpi_ns_get_attached_object(handle);
1512 	if (!region_obj)
1513 		return AE_OK;
1514 
1515 	handler_obj = region_obj->region.handler;
1516 	if (!handler_obj)
1517 		return AE_OK;
1518 
1519 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520 		return AE_OK;
1521 
1522 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523 		return AE_OK;
1524 
1525 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526 	if (!region_obj2)
1527 		return AE_OK;
1528 
1529 	mem_ctx = (void *)&region_obj2->extra.region_context;
1530 
1531 	if (!(mem_ctx[0]->address >= res->start &&
1532 	      mem_ctx[0]->address < res->end))
1533 		return AE_OK;
1534 
1535 	status = handler_obj->address_space.setup(region_obj,
1536 						  ACPI_REGION_DEACTIVATE,
1537 						  NULL, (void **)mem_ctx);
1538 	if (ACPI_SUCCESS(status))
1539 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540 
1541 	return status;
1542 }
1543 
1544 /**
1545  * acpi_release_memory - Release any mappings done to a memory region
1546  * @handle: Handle to namespace node
1547  * @res: Memory resource
1548  * @level: A level that terminates the search
1549  *
1550  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551  * overlap with @res and that have already been activated (mapped).
1552  *
1553  * This is a helper that allows drivers to place special requirements on memory
1554  * region that may overlap with operation regions, primarily allowing them to
1555  * safely map the region as non-cached memory.
1556  *
1557  * The unmapped Operation Regions will be automatically remapped next time they
1558  * are called, so the drivers do not need to do anything else.
1559  */
1560 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561 				u32 level)
1562 {
1563 	if (!(res->flags & IORESOURCE_MEM))
1564 		return AE_TYPE;
1565 
1566 	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567 				   acpi_deactivate_mem_region, NULL, res, NULL);
1568 }
1569 EXPORT_SYMBOL_GPL(acpi_release_memory);
1570 
1571 /*
1572  * Let drivers know whether the resource checks are effective
1573  */
1574 int acpi_resources_are_enforced(void)
1575 {
1576 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577 }
1578 EXPORT_SYMBOL(acpi_resources_are_enforced);
1579 
1580 /*
1581  * Deallocate the memory for a spinlock.
1582  */
1583 void acpi_os_delete_lock(acpi_spinlock handle)
1584 {
1585 	ACPI_FREE(handle);
1586 }
1587 
1588 /*
1589  * Acquire a spinlock.
1590  *
1591  * handle is a pointer to the spinlock_t.
1592  */
1593 
1594 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595 {
1596 	acpi_cpu_flags flags;
1597 	spin_lock_irqsave(lockp, flags);
1598 	return flags;
1599 }
1600 
1601 /*
1602  * Release a spinlock. See above.
1603  */
1604 
1605 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606 {
1607 	spin_unlock_irqrestore(lockp, flags);
1608 }
1609 
1610 #ifndef ACPI_USE_LOCAL_CACHE
1611 
1612 /*******************************************************************************
1613  *
1614  * FUNCTION:    acpi_os_create_cache
1615  *
1616  * PARAMETERS:  name      - Ascii name for the cache
1617  *              size      - Size of each cached object
1618  *              depth     - Maximum depth of the cache (in objects) <ignored>
1619  *              cache     - Where the new cache object is returned
1620  *
1621  * RETURN:      status
1622  *
1623  * DESCRIPTION: Create a cache object
1624  *
1625  ******************************************************************************/
1626 
1627 acpi_status
1628 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629 {
1630 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1631 	if (*cache == NULL)
1632 		return AE_ERROR;
1633 	else
1634 		return AE_OK;
1635 }
1636 
1637 /*******************************************************************************
1638  *
1639  * FUNCTION:    acpi_os_purge_cache
1640  *
1641  * PARAMETERS:  Cache           - Handle to cache object
1642  *
1643  * RETURN:      Status
1644  *
1645  * DESCRIPTION: Free all objects within the requested cache.
1646  *
1647  ******************************************************************************/
1648 
1649 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650 {
1651 	kmem_cache_shrink(cache);
1652 	return (AE_OK);
1653 }
1654 
1655 /*******************************************************************************
1656  *
1657  * FUNCTION:    acpi_os_delete_cache
1658  *
1659  * PARAMETERS:  Cache           - Handle to cache object
1660  *
1661  * RETURN:      Status
1662  *
1663  * DESCRIPTION: Free all objects within the requested cache and delete the
1664  *              cache object.
1665  *
1666  ******************************************************************************/
1667 
1668 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669 {
1670 	kmem_cache_destroy(cache);
1671 	return (AE_OK);
1672 }
1673 
1674 /*******************************************************************************
1675  *
1676  * FUNCTION:    acpi_os_release_object
1677  *
1678  * PARAMETERS:  Cache       - Handle to cache object
1679  *              Object      - The object to be released
1680  *
1681  * RETURN:      None
1682  *
1683  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1684  *              the object is deleted.
1685  *
1686  ******************************************************************************/
1687 
1688 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689 {
1690 	kmem_cache_free(cache, object);
1691 	return (AE_OK);
1692 }
1693 #endif
1694 
1695 static int __init acpi_no_static_ssdt_setup(char *s)
1696 {
1697 	acpi_gbl_disable_ssdt_table_install = TRUE;
1698 	pr_info("ACPI: static SSDT installation disabled\n");
1699 
1700 	return 0;
1701 }
1702 
1703 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704 
1705 static int __init acpi_disable_return_repair(char *s)
1706 {
1707 	printk(KERN_NOTICE PREFIX
1708 	       "ACPI: Predefined validation mechanism disabled\n");
1709 	acpi_gbl_disable_auto_repair = TRUE;
1710 
1711 	return 1;
1712 }
1713 
1714 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1715 
1716 acpi_status __init acpi_os_initialize(void)
1717 {
1718 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723 		/*
1724 		 * Use acpi_os_map_generic_address to pre-map the reset
1725 		 * register if it's in system memory.
1726 		 */
1727 		int rv;
1728 
1729 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731 	}
1732 	acpi_os_initialized = true;
1733 
1734 	return AE_OK;
1735 }
1736 
1737 acpi_status __init acpi_os_initialize1(void)
1738 {
1739 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742 	BUG_ON(!kacpid_wq);
1743 	BUG_ON(!kacpi_notify_wq);
1744 	BUG_ON(!kacpi_hotplug_wq);
1745 	acpi_osi_init();
1746 	return AE_OK;
1747 }
1748 
1749 acpi_status acpi_os_terminate(void)
1750 {
1751 	if (acpi_irq_handler) {
1752 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753 						 acpi_irq_handler);
1754 	}
1755 
1756 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762 
1763 	destroy_workqueue(kacpid_wq);
1764 	destroy_workqueue(kacpi_notify_wq);
1765 	destroy_workqueue(kacpi_hotplug_wq);
1766 
1767 	return AE_OK;
1768 }
1769 
1770 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771 				  u32 pm1b_control)
1772 {
1773 	int rc = 0;
1774 	if (__acpi_os_prepare_sleep)
1775 		rc = __acpi_os_prepare_sleep(sleep_state,
1776 					     pm1a_control, pm1b_control);
1777 	if (rc < 0)
1778 		return AE_ERROR;
1779 	else if (rc > 0)
1780 		return AE_CTRL_TERMINATE;
1781 
1782 	return AE_OK;
1783 }
1784 
1785 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1787 {
1788 	__acpi_os_prepare_sleep = func;
1789 }
1790 
1791 #if (ACPI_REDUCED_HARDWARE)
1792 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793 				  u32 val_b)
1794 {
1795 	int rc = 0;
1796 	if (__acpi_os_prepare_extended_sleep)
1797 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798 					     val_a, val_b);
1799 	if (rc < 0)
1800 		return AE_ERROR;
1801 	else if (rc > 0)
1802 		return AE_CTRL_TERMINATE;
1803 
1804 	return AE_OK;
1805 }
1806 #else
1807 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808 				  u32 val_b)
1809 {
1810 	return AE_OK;
1811 }
1812 #endif
1813 
1814 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815 			       u32 val_a, u32 val_b))
1816 {
1817 	__acpi_os_prepare_extended_sleep = func;
1818 }
1819 
1820 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821 				u32 reg_a_value, u32 reg_b_value)
1822 {
1823 	acpi_status status;
1824 
1825 	if (acpi_gbl_reduced_hardware)
1826 		status = acpi_os_prepare_extended_sleep(sleep_state,
1827 							reg_a_value,
1828 							reg_b_value);
1829 	else
1830 		status = acpi_os_prepare_sleep(sleep_state,
1831 					       reg_a_value, reg_b_value);
1832 	return status;
1833 }
1834