xref: /openbmc/linux/drivers/acpi/osl.c (revision 020c5260)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "internal.h"
49 
50 #define _COMPONENT		ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52 
53 struct acpi_os_dpc {
54 	acpi_osd_exec_callback function;
55 	void *context;
56 	struct work_struct work;
57 };
58 
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61 
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif				/*ENABLE_DEBUGGER */
66 
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 				      u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 				      u32 val_b);
71 
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 bool acpi_permanent_mmap = false;
80 
81 /*
82  * This list of permanent mappings is for memory that may be accessed from
83  * interrupt context, where we can't do the ioremap().
84  */
85 struct acpi_ioremap {
86 	struct list_head list;
87 	void __iomem *virt;
88 	acpi_physical_address phys;
89 	acpi_size size;
90 	unsigned long refcount;
91 };
92 
93 static LIST_HEAD(acpi_ioremaps);
94 static DEFINE_MUTEX(acpi_ioremap_lock);
95 
96 static void __init acpi_request_region (struct acpi_generic_address *gas,
97 	unsigned int length, char *desc)
98 {
99 	u64 addr;
100 
101 	/* Handle possible alignment issues */
102 	memcpy(&addr, &gas->address, sizeof(addr));
103 	if (!addr || !length)
104 		return;
105 
106 	/* Resources are never freed */
107 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 		request_region(addr, length, desc);
109 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 		request_mem_region(addr, length, desc);
111 }
112 
113 static int __init acpi_reserve_resources(void)
114 {
115 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 		"ACPI PM1a_EVT_BLK");
117 
118 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 		"ACPI PM1b_EVT_BLK");
120 
121 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 		"ACPI PM1a_CNT_BLK");
123 
124 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 		"ACPI PM1b_CNT_BLK");
126 
127 	if (acpi_gbl_FADT.pm_timer_length == 4)
128 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129 
130 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 		"ACPI PM2_CNT_BLK");
132 
133 	/* Length of GPE blocks must be a non-negative multiple of 2 */
134 
135 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138 
139 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142 
143 	return 0;
144 }
145 fs_initcall_sync(acpi_reserve_resources);
146 
147 void acpi_os_printf(const char *fmt, ...)
148 {
149 	va_list args;
150 	va_start(args, fmt);
151 	acpi_os_vprintf(fmt, args);
152 	va_end(args);
153 }
154 EXPORT_SYMBOL(acpi_os_printf);
155 
156 void acpi_os_vprintf(const char *fmt, va_list args)
157 {
158 	static char buffer[512];
159 
160 	vsprintf(buffer, fmt, args);
161 
162 #ifdef ENABLE_DEBUGGER
163 	if (acpi_in_debugger) {
164 		kdb_printf("%s", buffer);
165 	} else {
166 		if (printk_get_level(buffer))
167 			printk("%s", buffer);
168 		else
169 			printk(KERN_CONT "%s", buffer);
170 	}
171 #else
172 	if (acpi_debugger_write_log(buffer) < 0) {
173 		if (printk_get_level(buffer))
174 			printk("%s", buffer);
175 		else
176 			printk(KERN_CONT "%s", buffer);
177 	}
178 #endif
179 }
180 
181 #ifdef CONFIG_KEXEC
182 static unsigned long acpi_rsdp;
183 static int __init setup_acpi_rsdp(char *arg)
184 {
185 	return kstrtoul(arg, 16, &acpi_rsdp);
186 }
187 early_param("acpi_rsdp", setup_acpi_rsdp);
188 #endif
189 
190 acpi_physical_address __init acpi_os_get_root_pointer(void)
191 {
192 	acpi_physical_address pa = 0;
193 
194 #ifdef CONFIG_KEXEC
195 	if (acpi_rsdp)
196 		return acpi_rsdp;
197 #endif
198 
199 	if (efi_enabled(EFI_CONFIG_TABLES)) {
200 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
201 			return efi.acpi20;
202 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
203 			return efi.acpi;
204 		pr_err(PREFIX "System description tables not found\n");
205 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
206 		acpi_find_root_pointer(&pa);
207 	}
208 
209 	return pa;
210 }
211 
212 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
213 static struct acpi_ioremap *
214 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
215 {
216 	struct acpi_ioremap *map;
217 
218 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
219 		if (map->phys <= phys &&
220 		    phys + size <= map->phys + map->size)
221 			return map;
222 
223 	return NULL;
224 }
225 
226 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
227 static void __iomem *
228 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
229 {
230 	struct acpi_ioremap *map;
231 
232 	map = acpi_map_lookup(phys, size);
233 	if (map)
234 		return map->virt + (phys - map->phys);
235 
236 	return NULL;
237 }
238 
239 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
240 {
241 	struct acpi_ioremap *map;
242 	void __iomem *virt = NULL;
243 
244 	mutex_lock(&acpi_ioremap_lock);
245 	map = acpi_map_lookup(phys, size);
246 	if (map) {
247 		virt = map->virt + (phys - map->phys);
248 		map->refcount++;
249 	}
250 	mutex_unlock(&acpi_ioremap_lock);
251 	return virt;
252 }
253 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
254 
255 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
256 static struct acpi_ioremap *
257 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
258 {
259 	struct acpi_ioremap *map;
260 
261 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
262 		if (map->virt <= virt &&
263 		    virt + size <= map->virt + map->size)
264 			return map;
265 
266 	return NULL;
267 }
268 
269 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
270 /* ioremap will take care of cache attributes */
271 #define should_use_kmap(pfn)   0
272 #else
273 #define should_use_kmap(pfn)   page_is_ram(pfn)
274 #endif
275 
276 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
277 {
278 	unsigned long pfn;
279 
280 	pfn = pg_off >> PAGE_SHIFT;
281 	if (should_use_kmap(pfn)) {
282 		if (pg_sz > PAGE_SIZE)
283 			return NULL;
284 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
285 	} else
286 		return acpi_os_ioremap(pg_off, pg_sz);
287 }
288 
289 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
290 {
291 	unsigned long pfn;
292 
293 	pfn = pg_off >> PAGE_SHIFT;
294 	if (should_use_kmap(pfn))
295 		kunmap(pfn_to_page(pfn));
296 	else
297 		iounmap(vaddr);
298 }
299 
300 /**
301  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
302  * @phys: Start of the physical address range to map.
303  * @size: Size of the physical address range to map.
304  *
305  * Look up the given physical address range in the list of existing ACPI memory
306  * mappings.  If found, get a reference to it and return a pointer to it (its
307  * virtual address).  If not found, map it, add it to that list and return a
308  * pointer to it.
309  *
310  * During early init (when acpi_permanent_mmap has not been set yet) this
311  * routine simply calls __acpi_map_table() to get the job done.
312  */
313 void __iomem *__ref
314 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
315 {
316 	struct acpi_ioremap *map;
317 	void __iomem *virt;
318 	acpi_physical_address pg_off;
319 	acpi_size pg_sz;
320 
321 	if (phys > ULONG_MAX) {
322 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
323 		return NULL;
324 	}
325 
326 	if (!acpi_permanent_mmap)
327 		return __acpi_map_table((unsigned long)phys, size);
328 
329 	mutex_lock(&acpi_ioremap_lock);
330 	/* Check if there's a suitable mapping already. */
331 	map = acpi_map_lookup(phys, size);
332 	if (map) {
333 		map->refcount++;
334 		goto out;
335 	}
336 
337 	map = kzalloc(sizeof(*map), GFP_KERNEL);
338 	if (!map) {
339 		mutex_unlock(&acpi_ioremap_lock);
340 		return NULL;
341 	}
342 
343 	pg_off = round_down(phys, PAGE_SIZE);
344 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
345 	virt = acpi_map(pg_off, pg_sz);
346 	if (!virt) {
347 		mutex_unlock(&acpi_ioremap_lock);
348 		kfree(map);
349 		return NULL;
350 	}
351 
352 	INIT_LIST_HEAD(&map->list);
353 	map->virt = virt;
354 	map->phys = pg_off;
355 	map->size = pg_sz;
356 	map->refcount = 1;
357 
358 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
359 
360 out:
361 	mutex_unlock(&acpi_ioremap_lock);
362 	return map->virt + (phys - map->phys);
363 }
364 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
365 
366 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
367 {
368 	return (void *)acpi_os_map_iomem(phys, size);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
371 
372 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
373 {
374 	if (!--map->refcount)
375 		list_del_rcu(&map->list);
376 }
377 
378 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
379 {
380 	if (!map->refcount) {
381 		synchronize_rcu_expedited();
382 		acpi_unmap(map->phys, map->virt);
383 		kfree(map);
384 	}
385 }
386 
387 /**
388  * acpi_os_unmap_iomem - Drop a memory mapping reference.
389  * @virt: Start of the address range to drop a reference to.
390  * @size: Size of the address range to drop a reference to.
391  *
392  * Look up the given virtual address range in the list of existing ACPI memory
393  * mappings, drop a reference to it and unmap it if there are no more active
394  * references to it.
395  *
396  * During early init (when acpi_permanent_mmap has not been set yet) this
397  * routine simply calls __acpi_unmap_table() to get the job done.  Since
398  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
399  * here.
400  */
401 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
402 {
403 	struct acpi_ioremap *map;
404 
405 	if (!acpi_permanent_mmap) {
406 		__acpi_unmap_table(virt, size);
407 		return;
408 	}
409 
410 	mutex_lock(&acpi_ioremap_lock);
411 	map = acpi_map_lookup_virt(virt, size);
412 	if (!map) {
413 		mutex_unlock(&acpi_ioremap_lock);
414 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
415 		return;
416 	}
417 	acpi_os_drop_map_ref(map);
418 	mutex_unlock(&acpi_ioremap_lock);
419 
420 	acpi_os_map_cleanup(map);
421 }
422 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
423 
424 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
425 {
426 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
429 
430 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
431 {
432 	u64 addr;
433 	void __iomem *virt;
434 
435 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
436 		return 0;
437 
438 	/* Handle possible alignment issues */
439 	memcpy(&addr, &gas->address, sizeof(addr));
440 	if (!addr || !gas->bit_width)
441 		return -EINVAL;
442 
443 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
444 	if (!virt)
445 		return -EIO;
446 
447 	return 0;
448 }
449 EXPORT_SYMBOL(acpi_os_map_generic_address);
450 
451 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
452 {
453 	u64 addr;
454 	struct acpi_ioremap *map;
455 
456 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 		return;
458 
459 	/* Handle possible alignment issues */
460 	memcpy(&addr, &gas->address, sizeof(addr));
461 	if (!addr || !gas->bit_width)
462 		return;
463 
464 	mutex_lock(&acpi_ioremap_lock);
465 	map = acpi_map_lookup(addr, gas->bit_width / 8);
466 	if (!map) {
467 		mutex_unlock(&acpi_ioremap_lock);
468 		return;
469 	}
470 	acpi_os_drop_map_ref(map);
471 	mutex_unlock(&acpi_ioremap_lock);
472 
473 	acpi_os_map_cleanup(map);
474 }
475 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
476 
477 #ifdef ACPI_FUTURE_USAGE
478 acpi_status
479 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
480 {
481 	if (!phys || !virt)
482 		return AE_BAD_PARAMETER;
483 
484 	*phys = virt_to_phys(virt);
485 
486 	return AE_OK;
487 }
488 #endif
489 
490 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
491 static bool acpi_rev_override;
492 
493 int __init acpi_rev_override_setup(char *str)
494 {
495 	acpi_rev_override = true;
496 	return 1;
497 }
498 __setup("acpi_rev_override", acpi_rev_override_setup);
499 #else
500 #define acpi_rev_override	false
501 #endif
502 
503 #define ACPI_MAX_OVERRIDE_LEN 100
504 
505 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
506 
507 acpi_status
508 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
509 			    acpi_string *new_val)
510 {
511 	if (!init_val || !new_val)
512 		return AE_BAD_PARAMETER;
513 
514 	*new_val = NULL;
515 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
516 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
517 		       acpi_os_name);
518 		*new_val = acpi_os_name;
519 	}
520 
521 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
522 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
523 		*new_val = (char *)5;
524 	}
525 
526 	return AE_OK;
527 }
528 
529 static irqreturn_t acpi_irq(int irq, void *dev_id)
530 {
531 	u32 handled;
532 
533 	handled = (*acpi_irq_handler) (acpi_irq_context);
534 
535 	if (handled) {
536 		acpi_irq_handled++;
537 		return IRQ_HANDLED;
538 	} else {
539 		acpi_irq_not_handled++;
540 		return IRQ_NONE;
541 	}
542 }
543 
544 acpi_status
545 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
546 				  void *context)
547 {
548 	unsigned int irq;
549 
550 	acpi_irq_stats_init();
551 
552 	/*
553 	 * ACPI interrupts different from the SCI in our copy of the FADT are
554 	 * not supported.
555 	 */
556 	if (gsi != acpi_gbl_FADT.sci_interrupt)
557 		return AE_BAD_PARAMETER;
558 
559 	if (acpi_irq_handler)
560 		return AE_ALREADY_ACQUIRED;
561 
562 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
563 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
564 		       gsi);
565 		return AE_OK;
566 	}
567 
568 	acpi_irq_handler = handler;
569 	acpi_irq_context = context;
570 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
571 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
572 		acpi_irq_handler = NULL;
573 		return AE_NOT_ACQUIRED;
574 	}
575 	acpi_sci_irq = irq;
576 
577 	return AE_OK;
578 }
579 
580 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
581 {
582 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
583 		return AE_BAD_PARAMETER;
584 
585 	free_irq(acpi_sci_irq, acpi_irq);
586 	acpi_irq_handler = NULL;
587 	acpi_sci_irq = INVALID_ACPI_IRQ;
588 
589 	return AE_OK;
590 }
591 
592 /*
593  * Running in interpreter thread context, safe to sleep
594  */
595 
596 void acpi_os_sleep(u64 ms)
597 {
598 	msleep(ms);
599 }
600 
601 void acpi_os_stall(u32 us)
602 {
603 	while (us) {
604 		u32 delay = 1000;
605 
606 		if (delay > us)
607 			delay = us;
608 		udelay(delay);
609 		touch_nmi_watchdog();
610 		us -= delay;
611 	}
612 }
613 
614 /*
615  * Support ACPI 3.0 AML Timer operand
616  * Returns 64-bit free-running, monotonically increasing timer
617  * with 100ns granularity
618  */
619 u64 acpi_os_get_timer(void)
620 {
621 	u64 time_ns = ktime_to_ns(ktime_get());
622 	do_div(time_ns, 100);
623 	return time_ns;
624 }
625 
626 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
627 {
628 	u32 dummy;
629 
630 	if (!value)
631 		value = &dummy;
632 
633 	*value = 0;
634 	if (width <= 8) {
635 		*(u8 *) value = inb(port);
636 	} else if (width <= 16) {
637 		*(u16 *) value = inw(port);
638 	} else if (width <= 32) {
639 		*(u32 *) value = inl(port);
640 	} else {
641 		BUG();
642 	}
643 
644 	return AE_OK;
645 }
646 
647 EXPORT_SYMBOL(acpi_os_read_port);
648 
649 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
650 {
651 	if (width <= 8) {
652 		outb(value, port);
653 	} else if (width <= 16) {
654 		outw(value, port);
655 	} else if (width <= 32) {
656 		outl(value, port);
657 	} else {
658 		BUG();
659 	}
660 
661 	return AE_OK;
662 }
663 
664 EXPORT_SYMBOL(acpi_os_write_port);
665 
666 acpi_status
667 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
668 {
669 	void __iomem *virt_addr;
670 	unsigned int size = width / 8;
671 	bool unmap = false;
672 	u64 dummy;
673 
674 	rcu_read_lock();
675 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
676 	if (!virt_addr) {
677 		rcu_read_unlock();
678 		virt_addr = acpi_os_ioremap(phys_addr, size);
679 		if (!virt_addr)
680 			return AE_BAD_ADDRESS;
681 		unmap = true;
682 	}
683 
684 	if (!value)
685 		value = &dummy;
686 
687 	switch (width) {
688 	case 8:
689 		*(u8 *) value = readb(virt_addr);
690 		break;
691 	case 16:
692 		*(u16 *) value = readw(virt_addr);
693 		break;
694 	case 32:
695 		*(u32 *) value = readl(virt_addr);
696 		break;
697 	case 64:
698 		*(u64 *) value = readq(virt_addr);
699 		break;
700 	default:
701 		BUG();
702 	}
703 
704 	if (unmap)
705 		iounmap(virt_addr);
706 	else
707 		rcu_read_unlock();
708 
709 	return AE_OK;
710 }
711 
712 acpi_status
713 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
714 {
715 	void __iomem *virt_addr;
716 	unsigned int size = width / 8;
717 	bool unmap = false;
718 
719 	rcu_read_lock();
720 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
721 	if (!virt_addr) {
722 		rcu_read_unlock();
723 		virt_addr = acpi_os_ioremap(phys_addr, size);
724 		if (!virt_addr)
725 			return AE_BAD_ADDRESS;
726 		unmap = true;
727 	}
728 
729 	switch (width) {
730 	case 8:
731 		writeb(value, virt_addr);
732 		break;
733 	case 16:
734 		writew(value, virt_addr);
735 		break;
736 	case 32:
737 		writel(value, virt_addr);
738 		break;
739 	case 64:
740 		writeq(value, virt_addr);
741 		break;
742 	default:
743 		BUG();
744 	}
745 
746 	if (unmap)
747 		iounmap(virt_addr);
748 	else
749 		rcu_read_unlock();
750 
751 	return AE_OK;
752 }
753 
754 acpi_status
755 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
756 			       u64 *value, u32 width)
757 {
758 	int result, size;
759 	u32 value32;
760 
761 	if (!value)
762 		return AE_BAD_PARAMETER;
763 
764 	switch (width) {
765 	case 8:
766 		size = 1;
767 		break;
768 	case 16:
769 		size = 2;
770 		break;
771 	case 32:
772 		size = 4;
773 		break;
774 	default:
775 		return AE_ERROR;
776 	}
777 
778 	result = raw_pci_read(pci_id->segment, pci_id->bus,
779 				PCI_DEVFN(pci_id->device, pci_id->function),
780 				reg, size, &value32);
781 	*value = value32;
782 
783 	return (result ? AE_ERROR : AE_OK);
784 }
785 
786 acpi_status
787 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
788 				u64 value, u32 width)
789 {
790 	int result, size;
791 
792 	switch (width) {
793 	case 8:
794 		size = 1;
795 		break;
796 	case 16:
797 		size = 2;
798 		break;
799 	case 32:
800 		size = 4;
801 		break;
802 	default:
803 		return AE_ERROR;
804 	}
805 
806 	result = raw_pci_write(pci_id->segment, pci_id->bus,
807 				PCI_DEVFN(pci_id->device, pci_id->function),
808 				reg, size, value);
809 
810 	return (result ? AE_ERROR : AE_OK);
811 }
812 
813 static void acpi_os_execute_deferred(struct work_struct *work)
814 {
815 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
816 
817 	dpc->function(dpc->context);
818 	kfree(dpc);
819 }
820 
821 #ifdef CONFIG_ACPI_DEBUGGER
822 static struct acpi_debugger acpi_debugger;
823 static bool acpi_debugger_initialized;
824 
825 int acpi_register_debugger(struct module *owner,
826 			   const struct acpi_debugger_ops *ops)
827 {
828 	int ret = 0;
829 
830 	mutex_lock(&acpi_debugger.lock);
831 	if (acpi_debugger.ops) {
832 		ret = -EBUSY;
833 		goto err_lock;
834 	}
835 
836 	acpi_debugger.owner = owner;
837 	acpi_debugger.ops = ops;
838 
839 err_lock:
840 	mutex_unlock(&acpi_debugger.lock);
841 	return ret;
842 }
843 EXPORT_SYMBOL(acpi_register_debugger);
844 
845 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
846 {
847 	mutex_lock(&acpi_debugger.lock);
848 	if (ops == acpi_debugger.ops) {
849 		acpi_debugger.ops = NULL;
850 		acpi_debugger.owner = NULL;
851 	}
852 	mutex_unlock(&acpi_debugger.lock);
853 }
854 EXPORT_SYMBOL(acpi_unregister_debugger);
855 
856 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
857 {
858 	int ret;
859 	int (*func)(acpi_osd_exec_callback, void *);
860 	struct module *owner;
861 
862 	if (!acpi_debugger_initialized)
863 		return -ENODEV;
864 	mutex_lock(&acpi_debugger.lock);
865 	if (!acpi_debugger.ops) {
866 		ret = -ENODEV;
867 		goto err_lock;
868 	}
869 	if (!try_module_get(acpi_debugger.owner)) {
870 		ret = -ENODEV;
871 		goto err_lock;
872 	}
873 	func = acpi_debugger.ops->create_thread;
874 	owner = acpi_debugger.owner;
875 	mutex_unlock(&acpi_debugger.lock);
876 
877 	ret = func(function, context);
878 
879 	mutex_lock(&acpi_debugger.lock);
880 	module_put(owner);
881 err_lock:
882 	mutex_unlock(&acpi_debugger.lock);
883 	return ret;
884 }
885 
886 ssize_t acpi_debugger_write_log(const char *msg)
887 {
888 	ssize_t ret;
889 	ssize_t (*func)(const char *);
890 	struct module *owner;
891 
892 	if (!acpi_debugger_initialized)
893 		return -ENODEV;
894 	mutex_lock(&acpi_debugger.lock);
895 	if (!acpi_debugger.ops) {
896 		ret = -ENODEV;
897 		goto err_lock;
898 	}
899 	if (!try_module_get(acpi_debugger.owner)) {
900 		ret = -ENODEV;
901 		goto err_lock;
902 	}
903 	func = acpi_debugger.ops->write_log;
904 	owner = acpi_debugger.owner;
905 	mutex_unlock(&acpi_debugger.lock);
906 
907 	ret = func(msg);
908 
909 	mutex_lock(&acpi_debugger.lock);
910 	module_put(owner);
911 err_lock:
912 	mutex_unlock(&acpi_debugger.lock);
913 	return ret;
914 }
915 
916 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
917 {
918 	ssize_t ret;
919 	ssize_t (*func)(char *, size_t);
920 	struct module *owner;
921 
922 	if (!acpi_debugger_initialized)
923 		return -ENODEV;
924 	mutex_lock(&acpi_debugger.lock);
925 	if (!acpi_debugger.ops) {
926 		ret = -ENODEV;
927 		goto err_lock;
928 	}
929 	if (!try_module_get(acpi_debugger.owner)) {
930 		ret = -ENODEV;
931 		goto err_lock;
932 	}
933 	func = acpi_debugger.ops->read_cmd;
934 	owner = acpi_debugger.owner;
935 	mutex_unlock(&acpi_debugger.lock);
936 
937 	ret = func(buffer, buffer_length);
938 
939 	mutex_lock(&acpi_debugger.lock);
940 	module_put(owner);
941 err_lock:
942 	mutex_unlock(&acpi_debugger.lock);
943 	return ret;
944 }
945 
946 int acpi_debugger_wait_command_ready(void)
947 {
948 	int ret;
949 	int (*func)(bool, char *, size_t);
950 	struct module *owner;
951 
952 	if (!acpi_debugger_initialized)
953 		return -ENODEV;
954 	mutex_lock(&acpi_debugger.lock);
955 	if (!acpi_debugger.ops) {
956 		ret = -ENODEV;
957 		goto err_lock;
958 	}
959 	if (!try_module_get(acpi_debugger.owner)) {
960 		ret = -ENODEV;
961 		goto err_lock;
962 	}
963 	func = acpi_debugger.ops->wait_command_ready;
964 	owner = acpi_debugger.owner;
965 	mutex_unlock(&acpi_debugger.lock);
966 
967 	ret = func(acpi_gbl_method_executing,
968 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
969 
970 	mutex_lock(&acpi_debugger.lock);
971 	module_put(owner);
972 err_lock:
973 	mutex_unlock(&acpi_debugger.lock);
974 	return ret;
975 }
976 
977 int acpi_debugger_notify_command_complete(void)
978 {
979 	int ret;
980 	int (*func)(void);
981 	struct module *owner;
982 
983 	if (!acpi_debugger_initialized)
984 		return -ENODEV;
985 	mutex_lock(&acpi_debugger.lock);
986 	if (!acpi_debugger.ops) {
987 		ret = -ENODEV;
988 		goto err_lock;
989 	}
990 	if (!try_module_get(acpi_debugger.owner)) {
991 		ret = -ENODEV;
992 		goto err_lock;
993 	}
994 	func = acpi_debugger.ops->notify_command_complete;
995 	owner = acpi_debugger.owner;
996 	mutex_unlock(&acpi_debugger.lock);
997 
998 	ret = func();
999 
1000 	mutex_lock(&acpi_debugger.lock);
1001 	module_put(owner);
1002 err_lock:
1003 	mutex_unlock(&acpi_debugger.lock);
1004 	return ret;
1005 }
1006 
1007 int __init acpi_debugger_init(void)
1008 {
1009 	mutex_init(&acpi_debugger.lock);
1010 	acpi_debugger_initialized = true;
1011 	return 0;
1012 }
1013 #endif
1014 
1015 /*******************************************************************************
1016  *
1017  * FUNCTION:    acpi_os_execute
1018  *
1019  * PARAMETERS:  Type               - Type of the callback
1020  *              Function           - Function to be executed
1021  *              Context            - Function parameters
1022  *
1023  * RETURN:      Status
1024  *
1025  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1026  *              immediately executes function on a separate thread.
1027  *
1028  ******************************************************************************/
1029 
1030 acpi_status acpi_os_execute(acpi_execute_type type,
1031 			    acpi_osd_exec_callback function, void *context)
1032 {
1033 	acpi_status status = AE_OK;
1034 	struct acpi_os_dpc *dpc;
1035 	struct workqueue_struct *queue;
1036 	int ret;
1037 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1038 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1039 			  function, context));
1040 
1041 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1042 		ret = acpi_debugger_create_thread(function, context);
1043 		if (ret) {
1044 			pr_err("Call to kthread_create() failed.\n");
1045 			status = AE_ERROR;
1046 		}
1047 		goto out_thread;
1048 	}
1049 
1050 	/*
1051 	 * Allocate/initialize DPC structure.  Note that this memory will be
1052 	 * freed by the callee.  The kernel handles the work_struct list  in a
1053 	 * way that allows us to also free its memory inside the callee.
1054 	 * Because we may want to schedule several tasks with different
1055 	 * parameters we can't use the approach some kernel code uses of
1056 	 * having a static work_struct.
1057 	 */
1058 
1059 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1060 	if (!dpc)
1061 		return AE_NO_MEMORY;
1062 
1063 	dpc->function = function;
1064 	dpc->context = context;
1065 
1066 	/*
1067 	 * To prevent lockdep from complaining unnecessarily, make sure that
1068 	 * there is a different static lockdep key for each workqueue by using
1069 	 * INIT_WORK() for each of them separately.
1070 	 */
1071 	if (type == OSL_NOTIFY_HANDLER) {
1072 		queue = kacpi_notify_wq;
1073 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1074 	} else if (type == OSL_GPE_HANDLER) {
1075 		queue = kacpid_wq;
1076 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1077 	} else {
1078 		pr_err("Unsupported os_execute type %d.\n", type);
1079 		status = AE_ERROR;
1080 	}
1081 
1082 	if (ACPI_FAILURE(status))
1083 		goto err_workqueue;
1084 
1085 	/*
1086 	 * On some machines, a software-initiated SMI causes corruption unless
1087 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1088 	 * typically it's done in GPE-related methods that are run via
1089 	 * workqueues, so we can avoid the known corruption cases by always
1090 	 * queueing on CPU 0.
1091 	 */
1092 	ret = queue_work_on(0, queue, &dpc->work);
1093 	if (!ret) {
1094 		printk(KERN_ERR PREFIX
1095 			  "Call to queue_work() failed.\n");
1096 		status = AE_ERROR;
1097 	}
1098 err_workqueue:
1099 	if (ACPI_FAILURE(status))
1100 		kfree(dpc);
1101 out_thread:
1102 	return status;
1103 }
1104 EXPORT_SYMBOL(acpi_os_execute);
1105 
1106 void acpi_os_wait_events_complete(void)
1107 {
1108 	/*
1109 	 * Make sure the GPE handler or the fixed event handler is not used
1110 	 * on another CPU after removal.
1111 	 */
1112 	if (acpi_sci_irq_valid())
1113 		synchronize_hardirq(acpi_sci_irq);
1114 	flush_workqueue(kacpid_wq);
1115 	flush_workqueue(kacpi_notify_wq);
1116 }
1117 
1118 struct acpi_hp_work {
1119 	struct work_struct work;
1120 	struct acpi_device *adev;
1121 	u32 src;
1122 };
1123 
1124 static void acpi_hotplug_work_fn(struct work_struct *work)
1125 {
1126 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1127 
1128 	acpi_os_wait_events_complete();
1129 	acpi_device_hotplug(hpw->adev, hpw->src);
1130 	kfree(hpw);
1131 }
1132 
1133 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1134 {
1135 	struct acpi_hp_work *hpw;
1136 
1137 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1138 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1139 		  adev, src));
1140 
1141 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1142 	if (!hpw)
1143 		return AE_NO_MEMORY;
1144 
1145 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1146 	hpw->adev = adev;
1147 	hpw->src = src;
1148 	/*
1149 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1150 	 * the hotplug code may call driver .remove() functions, which may
1151 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1152 	 * these workqueues.
1153 	 */
1154 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1155 		kfree(hpw);
1156 		return AE_ERROR;
1157 	}
1158 	return AE_OK;
1159 }
1160 
1161 bool acpi_queue_hotplug_work(struct work_struct *work)
1162 {
1163 	return queue_work(kacpi_hotplug_wq, work);
1164 }
1165 
1166 acpi_status
1167 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1168 {
1169 	struct semaphore *sem = NULL;
1170 
1171 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1172 	if (!sem)
1173 		return AE_NO_MEMORY;
1174 
1175 	sema_init(sem, initial_units);
1176 
1177 	*handle = (acpi_handle *) sem;
1178 
1179 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1180 			  *handle, initial_units));
1181 
1182 	return AE_OK;
1183 }
1184 
1185 /*
1186  * TODO: A better way to delete semaphores?  Linux doesn't have a
1187  * 'delete_semaphore()' function -- may result in an invalid
1188  * pointer dereference for non-synchronized consumers.	Should
1189  * we at least check for blocked threads and signal/cancel them?
1190  */
1191 
1192 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1193 {
1194 	struct semaphore *sem = (struct semaphore *)handle;
1195 
1196 	if (!sem)
1197 		return AE_BAD_PARAMETER;
1198 
1199 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1200 
1201 	BUG_ON(!list_empty(&sem->wait_list));
1202 	kfree(sem);
1203 	sem = NULL;
1204 
1205 	return AE_OK;
1206 }
1207 
1208 /*
1209  * TODO: Support for units > 1?
1210  */
1211 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1212 {
1213 	acpi_status status = AE_OK;
1214 	struct semaphore *sem = (struct semaphore *)handle;
1215 	long jiffies;
1216 	int ret = 0;
1217 
1218 	if (!acpi_os_initialized)
1219 		return AE_OK;
1220 
1221 	if (!sem || (units < 1))
1222 		return AE_BAD_PARAMETER;
1223 
1224 	if (units > 1)
1225 		return AE_SUPPORT;
1226 
1227 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1228 			  handle, units, timeout));
1229 
1230 	if (timeout == ACPI_WAIT_FOREVER)
1231 		jiffies = MAX_SCHEDULE_TIMEOUT;
1232 	else
1233 		jiffies = msecs_to_jiffies(timeout);
1234 
1235 	ret = down_timeout(sem, jiffies);
1236 	if (ret)
1237 		status = AE_TIME;
1238 
1239 	if (ACPI_FAILURE(status)) {
1240 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1241 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1242 				  handle, units, timeout,
1243 				  acpi_format_exception(status)));
1244 	} else {
1245 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1246 				  "Acquired semaphore[%p|%d|%d]", handle,
1247 				  units, timeout));
1248 	}
1249 
1250 	return status;
1251 }
1252 
1253 /*
1254  * TODO: Support for units > 1?
1255  */
1256 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1257 {
1258 	struct semaphore *sem = (struct semaphore *)handle;
1259 
1260 	if (!acpi_os_initialized)
1261 		return AE_OK;
1262 
1263 	if (!sem || (units < 1))
1264 		return AE_BAD_PARAMETER;
1265 
1266 	if (units > 1)
1267 		return AE_SUPPORT;
1268 
1269 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1270 			  units));
1271 
1272 	up(sem);
1273 
1274 	return AE_OK;
1275 }
1276 
1277 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1278 {
1279 #ifdef ENABLE_DEBUGGER
1280 	if (acpi_in_debugger) {
1281 		u32 chars;
1282 
1283 		kdb_read(buffer, buffer_length);
1284 
1285 		/* remove the CR kdb includes */
1286 		chars = strlen(buffer) - 1;
1287 		buffer[chars] = '\0';
1288 	}
1289 #else
1290 	int ret;
1291 
1292 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1293 	if (ret < 0)
1294 		return AE_ERROR;
1295 	if (bytes_read)
1296 		*bytes_read = ret;
1297 #endif
1298 
1299 	return AE_OK;
1300 }
1301 EXPORT_SYMBOL(acpi_os_get_line);
1302 
1303 acpi_status acpi_os_wait_command_ready(void)
1304 {
1305 	int ret;
1306 
1307 	ret = acpi_debugger_wait_command_ready();
1308 	if (ret < 0)
1309 		return AE_ERROR;
1310 	return AE_OK;
1311 }
1312 
1313 acpi_status acpi_os_notify_command_complete(void)
1314 {
1315 	int ret;
1316 
1317 	ret = acpi_debugger_notify_command_complete();
1318 	if (ret < 0)
1319 		return AE_ERROR;
1320 	return AE_OK;
1321 }
1322 
1323 acpi_status acpi_os_signal(u32 function, void *info)
1324 {
1325 	switch (function) {
1326 	case ACPI_SIGNAL_FATAL:
1327 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1328 		break;
1329 	case ACPI_SIGNAL_BREAKPOINT:
1330 		/*
1331 		 * AML Breakpoint
1332 		 * ACPI spec. says to treat it as a NOP unless
1333 		 * you are debugging.  So if/when we integrate
1334 		 * AML debugger into the kernel debugger its
1335 		 * hook will go here.  But until then it is
1336 		 * not useful to print anything on breakpoints.
1337 		 */
1338 		break;
1339 	default:
1340 		break;
1341 	}
1342 
1343 	return AE_OK;
1344 }
1345 
1346 static int __init acpi_os_name_setup(char *str)
1347 {
1348 	char *p = acpi_os_name;
1349 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1350 
1351 	if (!str || !*str)
1352 		return 0;
1353 
1354 	for (; count-- && *str; str++) {
1355 		if (isalnum(*str) || *str == ' ' || *str == ':')
1356 			*p++ = *str;
1357 		else if (*str == '\'' || *str == '"')
1358 			continue;
1359 		else
1360 			break;
1361 	}
1362 	*p = 0;
1363 
1364 	return 1;
1365 
1366 }
1367 
1368 __setup("acpi_os_name=", acpi_os_name_setup);
1369 
1370 /*
1371  * Disable the auto-serialization of named objects creation methods.
1372  *
1373  * This feature is enabled by default.  It marks the AML control methods
1374  * that contain the opcodes to create named objects as "Serialized".
1375  */
1376 static int __init acpi_no_auto_serialize_setup(char *str)
1377 {
1378 	acpi_gbl_auto_serialize_methods = FALSE;
1379 	pr_info("ACPI: auto-serialization disabled\n");
1380 
1381 	return 1;
1382 }
1383 
1384 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1385 
1386 /* Check of resource interference between native drivers and ACPI
1387  * OperationRegions (SystemIO and System Memory only).
1388  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1389  * in arbitrary AML code and can interfere with legacy drivers.
1390  * acpi_enforce_resources= can be set to:
1391  *
1392  *   - strict (default) (2)
1393  *     -> further driver trying to access the resources will not load
1394  *   - lax              (1)
1395  *     -> further driver trying to access the resources will load, but you
1396  *     get a system message that something might go wrong...
1397  *
1398  *   - no               (0)
1399  *     -> ACPI Operation Region resources will not be registered
1400  *
1401  */
1402 #define ENFORCE_RESOURCES_STRICT 2
1403 #define ENFORCE_RESOURCES_LAX    1
1404 #define ENFORCE_RESOURCES_NO     0
1405 
1406 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1407 
1408 static int __init acpi_enforce_resources_setup(char *str)
1409 {
1410 	if (str == NULL || *str == '\0')
1411 		return 0;
1412 
1413 	if (!strcmp("strict", str))
1414 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1415 	else if (!strcmp("lax", str))
1416 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1417 	else if (!strcmp("no", str))
1418 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1419 
1420 	return 1;
1421 }
1422 
1423 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1424 
1425 /* Check for resource conflicts between ACPI OperationRegions and native
1426  * drivers */
1427 int acpi_check_resource_conflict(const struct resource *res)
1428 {
1429 	acpi_adr_space_type space_id;
1430 	acpi_size length;
1431 	u8 warn = 0;
1432 	int clash = 0;
1433 
1434 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1435 		return 0;
1436 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1437 		return 0;
1438 
1439 	if (res->flags & IORESOURCE_IO)
1440 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1441 	else
1442 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1443 
1444 	length = resource_size(res);
1445 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1446 		warn = 1;
1447 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1448 
1449 	if (clash) {
1450 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1451 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1452 				printk(KERN_NOTICE "ACPI: This conflict may"
1453 				       " cause random problems and system"
1454 				       " instability\n");
1455 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1456 			       " for this device, you should use it instead of"
1457 			       " the native driver\n");
1458 		}
1459 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1460 			return -EBUSY;
1461 	}
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL(acpi_check_resource_conflict);
1465 
1466 int acpi_check_region(resource_size_t start, resource_size_t n,
1467 		      const char *name)
1468 {
1469 	struct resource res = {
1470 		.start = start,
1471 		.end   = start + n - 1,
1472 		.name  = name,
1473 		.flags = IORESOURCE_IO,
1474 	};
1475 
1476 	return acpi_check_resource_conflict(&res);
1477 }
1478 EXPORT_SYMBOL(acpi_check_region);
1479 
1480 /*
1481  * Let drivers know whether the resource checks are effective
1482  */
1483 int acpi_resources_are_enforced(void)
1484 {
1485 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1486 }
1487 EXPORT_SYMBOL(acpi_resources_are_enforced);
1488 
1489 /*
1490  * Deallocate the memory for a spinlock.
1491  */
1492 void acpi_os_delete_lock(acpi_spinlock handle)
1493 {
1494 	ACPI_FREE(handle);
1495 }
1496 
1497 /*
1498  * Acquire a spinlock.
1499  *
1500  * handle is a pointer to the spinlock_t.
1501  */
1502 
1503 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1504 {
1505 	acpi_cpu_flags flags;
1506 	spin_lock_irqsave(lockp, flags);
1507 	return flags;
1508 }
1509 
1510 /*
1511  * Release a spinlock. See above.
1512  */
1513 
1514 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1515 {
1516 	spin_unlock_irqrestore(lockp, flags);
1517 }
1518 
1519 #ifndef ACPI_USE_LOCAL_CACHE
1520 
1521 /*******************************************************************************
1522  *
1523  * FUNCTION:    acpi_os_create_cache
1524  *
1525  * PARAMETERS:  name      - Ascii name for the cache
1526  *              size      - Size of each cached object
1527  *              depth     - Maximum depth of the cache (in objects) <ignored>
1528  *              cache     - Where the new cache object is returned
1529  *
1530  * RETURN:      status
1531  *
1532  * DESCRIPTION: Create a cache object
1533  *
1534  ******************************************************************************/
1535 
1536 acpi_status
1537 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1538 {
1539 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1540 	if (*cache == NULL)
1541 		return AE_ERROR;
1542 	else
1543 		return AE_OK;
1544 }
1545 
1546 /*******************************************************************************
1547  *
1548  * FUNCTION:    acpi_os_purge_cache
1549  *
1550  * PARAMETERS:  Cache           - Handle to cache object
1551  *
1552  * RETURN:      Status
1553  *
1554  * DESCRIPTION: Free all objects within the requested cache.
1555  *
1556  ******************************************************************************/
1557 
1558 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1559 {
1560 	kmem_cache_shrink(cache);
1561 	return (AE_OK);
1562 }
1563 
1564 /*******************************************************************************
1565  *
1566  * FUNCTION:    acpi_os_delete_cache
1567  *
1568  * PARAMETERS:  Cache           - Handle to cache object
1569  *
1570  * RETURN:      Status
1571  *
1572  * DESCRIPTION: Free all objects within the requested cache and delete the
1573  *              cache object.
1574  *
1575  ******************************************************************************/
1576 
1577 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1578 {
1579 	kmem_cache_destroy(cache);
1580 	return (AE_OK);
1581 }
1582 
1583 /*******************************************************************************
1584  *
1585  * FUNCTION:    acpi_os_release_object
1586  *
1587  * PARAMETERS:  Cache       - Handle to cache object
1588  *              Object      - The object to be released
1589  *
1590  * RETURN:      None
1591  *
1592  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1593  *              the object is deleted.
1594  *
1595  ******************************************************************************/
1596 
1597 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1598 {
1599 	kmem_cache_free(cache, object);
1600 	return (AE_OK);
1601 }
1602 #endif
1603 
1604 static int __init acpi_no_static_ssdt_setup(char *s)
1605 {
1606 	acpi_gbl_disable_ssdt_table_install = TRUE;
1607 	pr_info("ACPI: static SSDT installation disabled\n");
1608 
1609 	return 0;
1610 }
1611 
1612 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1613 
1614 static int __init acpi_disable_return_repair(char *s)
1615 {
1616 	printk(KERN_NOTICE PREFIX
1617 	       "ACPI: Predefined validation mechanism disabled\n");
1618 	acpi_gbl_disable_auto_repair = TRUE;
1619 
1620 	return 1;
1621 }
1622 
1623 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1624 
1625 acpi_status __init acpi_os_initialize(void)
1626 {
1627 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1628 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1629 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1630 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1631 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1632 		/*
1633 		 * Use acpi_os_map_generic_address to pre-map the reset
1634 		 * register if it's in system memory.
1635 		 */
1636 		int rv;
1637 
1638 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1639 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1640 	}
1641 	acpi_os_initialized = true;
1642 
1643 	return AE_OK;
1644 }
1645 
1646 acpi_status __init acpi_os_initialize1(void)
1647 {
1648 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1649 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1650 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1651 	BUG_ON(!kacpid_wq);
1652 	BUG_ON(!kacpi_notify_wq);
1653 	BUG_ON(!kacpi_hotplug_wq);
1654 	acpi_osi_init();
1655 	return AE_OK;
1656 }
1657 
1658 acpi_status acpi_os_terminate(void)
1659 {
1660 	if (acpi_irq_handler) {
1661 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1662 						 acpi_irq_handler);
1663 	}
1664 
1665 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1666 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1667 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1668 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1669 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1670 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1671 
1672 	destroy_workqueue(kacpid_wq);
1673 	destroy_workqueue(kacpi_notify_wq);
1674 	destroy_workqueue(kacpi_hotplug_wq);
1675 
1676 	return AE_OK;
1677 }
1678 
1679 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1680 				  u32 pm1b_control)
1681 {
1682 	int rc = 0;
1683 	if (__acpi_os_prepare_sleep)
1684 		rc = __acpi_os_prepare_sleep(sleep_state,
1685 					     pm1a_control, pm1b_control);
1686 	if (rc < 0)
1687 		return AE_ERROR;
1688 	else if (rc > 0)
1689 		return AE_CTRL_TERMINATE;
1690 
1691 	return AE_OK;
1692 }
1693 
1694 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1695 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1696 {
1697 	__acpi_os_prepare_sleep = func;
1698 }
1699 
1700 #if (ACPI_REDUCED_HARDWARE)
1701 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1702 				  u32 val_b)
1703 {
1704 	int rc = 0;
1705 	if (__acpi_os_prepare_extended_sleep)
1706 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1707 					     val_a, val_b);
1708 	if (rc < 0)
1709 		return AE_ERROR;
1710 	else if (rc > 0)
1711 		return AE_CTRL_TERMINATE;
1712 
1713 	return AE_OK;
1714 }
1715 #else
1716 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1717 				  u32 val_b)
1718 {
1719 	return AE_OK;
1720 }
1721 #endif
1722 
1723 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1724 			       u32 val_a, u32 val_b))
1725 {
1726 	__acpi_os_prepare_extended_sleep = func;
1727 }
1728 
1729 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1730 				u32 reg_a_value, u32 reg_b_value)
1731 {
1732 	acpi_status status;
1733 
1734 	if (acpi_gbl_reduced_hardware)
1735 		status = acpi_os_prepare_extended_sleep(sleep_state,
1736 							reg_a_value,
1737 							reg_b_value);
1738 	else
1739 		status = acpi_os_prepare_sleep(sleep_state,
1740 					       reg_a_value, reg_b_value);
1741 	return status;
1742 }
1743