1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019, Intel Corporation.
4 *
5 * Heterogeneous Memory Attributes Table (HMAT) representation
6 *
7 * This program parses and reports the platform's HMAT tables, and registers
8 * the applicable attributes with the node's interfaces.
9 */
10
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12
13 #include <linux/acpi.h>
14 #include <linux/bitops.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mm.h>
19 #include <linux/platform_device.h>
20 #include <linux/list_sort.h>
21 #include <linux/memregion.h>
22 #include <linux/memory.h>
23 #include <linux/mutex.h>
24 #include <linux/node.h>
25 #include <linux/sysfs.h>
26 #include <linux/dax.h>
27
28 static u8 hmat_revision;
29 static int hmat_disable __initdata;
30
disable_hmat(void)31 void __init disable_hmat(void)
32 {
33 hmat_disable = 1;
34 }
35
36 static LIST_HEAD(targets);
37 static LIST_HEAD(initiators);
38 static LIST_HEAD(localities);
39
40 static DEFINE_MUTEX(target_lock);
41
42 /*
43 * The defined enum order is used to prioritize attributes to break ties when
44 * selecting the best performing node.
45 */
46 enum locality_types {
47 WRITE_LATENCY,
48 READ_LATENCY,
49 WRITE_BANDWIDTH,
50 READ_BANDWIDTH,
51 };
52
53 static struct memory_locality *localities_types[4];
54
55 struct target_cache {
56 struct list_head node;
57 struct node_cache_attrs cache_attrs;
58 };
59
60 struct memory_target {
61 struct list_head node;
62 unsigned int memory_pxm;
63 unsigned int processor_pxm;
64 struct resource memregions;
65 struct node_hmem_attrs hmem_attrs[2];
66 struct list_head caches;
67 struct node_cache_attrs cache_attrs;
68 bool registered;
69 };
70
71 struct memory_initiator {
72 struct list_head node;
73 unsigned int processor_pxm;
74 bool has_cpu;
75 };
76
77 struct memory_locality {
78 struct list_head node;
79 struct acpi_hmat_locality *hmat_loc;
80 };
81
find_mem_initiator(unsigned int cpu_pxm)82 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
83 {
84 struct memory_initiator *initiator;
85
86 list_for_each_entry(initiator, &initiators, node)
87 if (initiator->processor_pxm == cpu_pxm)
88 return initiator;
89 return NULL;
90 }
91
find_mem_target(unsigned int mem_pxm)92 static struct memory_target *find_mem_target(unsigned int mem_pxm)
93 {
94 struct memory_target *target;
95
96 list_for_each_entry(target, &targets, node)
97 if (target->memory_pxm == mem_pxm)
98 return target;
99 return NULL;
100 }
101
alloc_memory_initiator(unsigned int cpu_pxm)102 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
103 {
104 struct memory_initiator *initiator;
105
106 if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
107 return;
108
109 initiator = find_mem_initiator(cpu_pxm);
110 if (initiator)
111 return;
112
113 initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
114 if (!initiator)
115 return;
116
117 initiator->processor_pxm = cpu_pxm;
118 initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
119 list_add_tail(&initiator->node, &initiators);
120 }
121
alloc_memory_target(unsigned int mem_pxm,resource_size_t start,resource_size_t len)122 static __init void alloc_memory_target(unsigned int mem_pxm,
123 resource_size_t start, resource_size_t len)
124 {
125 struct memory_target *target;
126
127 target = find_mem_target(mem_pxm);
128 if (!target) {
129 target = kzalloc(sizeof(*target), GFP_KERNEL);
130 if (!target)
131 return;
132 target->memory_pxm = mem_pxm;
133 target->processor_pxm = PXM_INVAL;
134 target->memregions = (struct resource) {
135 .name = "ACPI mem",
136 .start = 0,
137 .end = -1,
138 .flags = IORESOURCE_MEM,
139 };
140 list_add_tail(&target->node, &targets);
141 INIT_LIST_HEAD(&target->caches);
142 }
143
144 /*
145 * There are potentially multiple ranges per PXM, so record each
146 * in the per-target memregions resource tree.
147 */
148 if (!__request_region(&target->memregions, start, len, "memory target",
149 IORESOURCE_MEM))
150 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
151 start, start + len, mem_pxm);
152 }
153
hmat_data_type(u8 type)154 static __init const char *hmat_data_type(u8 type)
155 {
156 switch (type) {
157 case ACPI_HMAT_ACCESS_LATENCY:
158 return "Access Latency";
159 case ACPI_HMAT_READ_LATENCY:
160 return "Read Latency";
161 case ACPI_HMAT_WRITE_LATENCY:
162 return "Write Latency";
163 case ACPI_HMAT_ACCESS_BANDWIDTH:
164 return "Access Bandwidth";
165 case ACPI_HMAT_READ_BANDWIDTH:
166 return "Read Bandwidth";
167 case ACPI_HMAT_WRITE_BANDWIDTH:
168 return "Write Bandwidth";
169 default:
170 return "Reserved";
171 }
172 }
173
hmat_data_type_suffix(u8 type)174 static __init const char *hmat_data_type_suffix(u8 type)
175 {
176 switch (type) {
177 case ACPI_HMAT_ACCESS_LATENCY:
178 case ACPI_HMAT_READ_LATENCY:
179 case ACPI_HMAT_WRITE_LATENCY:
180 return " nsec";
181 case ACPI_HMAT_ACCESS_BANDWIDTH:
182 case ACPI_HMAT_READ_BANDWIDTH:
183 case ACPI_HMAT_WRITE_BANDWIDTH:
184 return " MB/s";
185 default:
186 return "";
187 }
188 }
189
hmat_normalize(u16 entry,u64 base,u8 type)190 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
191 {
192 u32 value;
193
194 /*
195 * Check for invalid and overflow values
196 */
197 if (entry == 0xffff || !entry)
198 return 0;
199 else if (base > (UINT_MAX / (entry)))
200 return 0;
201
202 /*
203 * Divide by the base unit for version 1, convert latency from
204 * picosenonds to nanoseconds if revision 2.
205 */
206 value = entry * base;
207 if (hmat_revision == 1) {
208 if (value < 10)
209 return 0;
210 value = DIV_ROUND_UP(value, 10);
211 } else if (hmat_revision == 2) {
212 switch (type) {
213 case ACPI_HMAT_ACCESS_LATENCY:
214 case ACPI_HMAT_READ_LATENCY:
215 case ACPI_HMAT_WRITE_LATENCY:
216 value = DIV_ROUND_UP(value, 1000);
217 break;
218 default:
219 break;
220 }
221 }
222 return value;
223 }
224
hmat_update_target_access(struct memory_target * target,u8 type,u32 value,int access)225 static void hmat_update_target_access(struct memory_target *target,
226 u8 type, u32 value, int access)
227 {
228 switch (type) {
229 case ACPI_HMAT_ACCESS_LATENCY:
230 target->hmem_attrs[access].read_latency = value;
231 target->hmem_attrs[access].write_latency = value;
232 break;
233 case ACPI_HMAT_READ_LATENCY:
234 target->hmem_attrs[access].read_latency = value;
235 break;
236 case ACPI_HMAT_WRITE_LATENCY:
237 target->hmem_attrs[access].write_latency = value;
238 break;
239 case ACPI_HMAT_ACCESS_BANDWIDTH:
240 target->hmem_attrs[access].read_bandwidth = value;
241 target->hmem_attrs[access].write_bandwidth = value;
242 break;
243 case ACPI_HMAT_READ_BANDWIDTH:
244 target->hmem_attrs[access].read_bandwidth = value;
245 break;
246 case ACPI_HMAT_WRITE_BANDWIDTH:
247 target->hmem_attrs[access].write_bandwidth = value;
248 break;
249 default:
250 break;
251 }
252 }
253
hmat_add_locality(struct acpi_hmat_locality * hmat_loc)254 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
255 {
256 struct memory_locality *loc;
257
258 loc = kzalloc(sizeof(*loc), GFP_KERNEL);
259 if (!loc) {
260 pr_notice_once("Failed to allocate HMAT locality\n");
261 return;
262 }
263
264 loc->hmat_loc = hmat_loc;
265 list_add_tail(&loc->node, &localities);
266
267 switch (hmat_loc->data_type) {
268 case ACPI_HMAT_ACCESS_LATENCY:
269 localities_types[READ_LATENCY] = loc;
270 localities_types[WRITE_LATENCY] = loc;
271 break;
272 case ACPI_HMAT_READ_LATENCY:
273 localities_types[READ_LATENCY] = loc;
274 break;
275 case ACPI_HMAT_WRITE_LATENCY:
276 localities_types[WRITE_LATENCY] = loc;
277 break;
278 case ACPI_HMAT_ACCESS_BANDWIDTH:
279 localities_types[READ_BANDWIDTH] = loc;
280 localities_types[WRITE_BANDWIDTH] = loc;
281 break;
282 case ACPI_HMAT_READ_BANDWIDTH:
283 localities_types[READ_BANDWIDTH] = loc;
284 break;
285 case ACPI_HMAT_WRITE_BANDWIDTH:
286 localities_types[WRITE_BANDWIDTH] = loc;
287 break;
288 default:
289 break;
290 }
291 }
292
hmat_parse_locality(union acpi_subtable_headers * header,const unsigned long end)293 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
294 const unsigned long end)
295 {
296 struct acpi_hmat_locality *hmat_loc = (void *)header;
297 struct memory_target *target;
298 unsigned int init, targ, total_size, ipds, tpds;
299 u32 *inits, *targs, value;
300 u16 *entries;
301 u8 type, mem_hier;
302
303 if (hmat_loc->header.length < sizeof(*hmat_loc)) {
304 pr_notice("Unexpected locality header length: %u\n",
305 hmat_loc->header.length);
306 return -EINVAL;
307 }
308
309 type = hmat_loc->data_type;
310 mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
311 ipds = hmat_loc->number_of_initiator_Pds;
312 tpds = hmat_loc->number_of_target_Pds;
313 total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
314 sizeof(*inits) * ipds + sizeof(*targs) * tpds;
315 if (hmat_loc->header.length < total_size) {
316 pr_notice("Unexpected locality header length:%u, minimum required:%u\n",
317 hmat_loc->header.length, total_size);
318 return -EINVAL;
319 }
320
321 pr_info("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
322 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
323 hmat_loc->entry_base_unit);
324
325 inits = (u32 *)(hmat_loc + 1);
326 targs = inits + ipds;
327 entries = (u16 *)(targs + tpds);
328 for (init = 0; init < ipds; init++) {
329 alloc_memory_initiator(inits[init]);
330 for (targ = 0; targ < tpds; targ++) {
331 value = hmat_normalize(entries[init * tpds + targ],
332 hmat_loc->entry_base_unit,
333 type);
334 pr_info(" Initiator-Target[%u-%u]:%u%s\n",
335 inits[init], targs[targ], value,
336 hmat_data_type_suffix(type));
337
338 if (mem_hier == ACPI_HMAT_MEMORY) {
339 target = find_mem_target(targs[targ]);
340 if (target && target->processor_pxm == inits[init]) {
341 hmat_update_target_access(target, type, value, 0);
342 /* If the node has a CPU, update access 1 */
343 if (node_state(pxm_to_node(inits[init]), N_CPU))
344 hmat_update_target_access(target, type, value, 1);
345 }
346 }
347 }
348 }
349
350 if (mem_hier == ACPI_HMAT_MEMORY)
351 hmat_add_locality(hmat_loc);
352
353 return 0;
354 }
355
hmat_parse_cache(union acpi_subtable_headers * header,const unsigned long end)356 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
357 const unsigned long end)
358 {
359 struct acpi_hmat_cache *cache = (void *)header;
360 struct memory_target *target;
361 struct target_cache *tcache;
362 u32 attrs;
363
364 if (cache->header.length < sizeof(*cache)) {
365 pr_notice("Unexpected cache header length: %u\n",
366 cache->header.length);
367 return -EINVAL;
368 }
369
370 attrs = cache->cache_attributes;
371 pr_info("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
372 cache->memory_PD, cache->cache_size, attrs,
373 cache->number_of_SMBIOShandles);
374
375 target = find_mem_target(cache->memory_PD);
376 if (!target)
377 return 0;
378
379 tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
380 if (!tcache) {
381 pr_notice_once("Failed to allocate HMAT cache info\n");
382 return 0;
383 }
384
385 tcache->cache_attrs.size = cache->cache_size;
386 tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
387 tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
388
389 switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
390 case ACPI_HMAT_CA_DIRECT_MAPPED:
391 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
392 break;
393 case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
394 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
395 break;
396 case ACPI_HMAT_CA_NONE:
397 default:
398 tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
399 break;
400 }
401
402 switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
403 case ACPI_HMAT_CP_WB:
404 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
405 break;
406 case ACPI_HMAT_CP_WT:
407 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
408 break;
409 case ACPI_HMAT_CP_NONE:
410 default:
411 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
412 break;
413 }
414 list_add_tail(&tcache->node, &target->caches);
415
416 return 0;
417 }
418
hmat_parse_proximity_domain(union acpi_subtable_headers * header,const unsigned long end)419 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
420 const unsigned long end)
421 {
422 struct acpi_hmat_proximity_domain *p = (void *)header;
423 struct memory_target *target = NULL;
424
425 if (p->header.length != sizeof(*p)) {
426 pr_notice("Unexpected address range header length: %u\n",
427 p->header.length);
428 return -EINVAL;
429 }
430
431 if (hmat_revision == 1)
432 pr_info("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
433 p->reserved3, p->reserved4, p->flags, p->processor_PD,
434 p->memory_PD);
435 else
436 pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
437 p->flags, p->processor_PD, p->memory_PD);
438
439 if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
440 hmat_revision > 1) {
441 target = find_mem_target(p->memory_PD);
442 if (!target) {
443 pr_debug("Memory Domain missing from SRAT\n");
444 return -EINVAL;
445 }
446 }
447 if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
448 int p_node = pxm_to_node(p->processor_PD);
449
450 if (p_node == NUMA_NO_NODE) {
451 pr_debug("Invalid Processor Domain\n");
452 return -EINVAL;
453 }
454 target->processor_pxm = p->processor_PD;
455 }
456
457 return 0;
458 }
459
hmat_parse_subtable(union acpi_subtable_headers * header,const unsigned long end)460 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
461 const unsigned long end)
462 {
463 struct acpi_hmat_structure *hdr = (void *)header;
464
465 if (!hdr)
466 return -EINVAL;
467
468 switch (hdr->type) {
469 case ACPI_HMAT_TYPE_PROXIMITY:
470 return hmat_parse_proximity_domain(header, end);
471 case ACPI_HMAT_TYPE_LOCALITY:
472 return hmat_parse_locality(header, end);
473 case ACPI_HMAT_TYPE_CACHE:
474 return hmat_parse_cache(header, end);
475 default:
476 return -EINVAL;
477 }
478 }
479
srat_parse_mem_affinity(union acpi_subtable_headers * header,const unsigned long end)480 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
481 const unsigned long end)
482 {
483 struct acpi_srat_mem_affinity *ma = (void *)header;
484
485 if (!ma)
486 return -EINVAL;
487 if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
488 return 0;
489 alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
490 return 0;
491 }
492
hmat_initiator_perf(struct memory_target * target,struct memory_initiator * initiator,struct acpi_hmat_locality * hmat_loc)493 static u32 hmat_initiator_perf(struct memory_target *target,
494 struct memory_initiator *initiator,
495 struct acpi_hmat_locality *hmat_loc)
496 {
497 unsigned int ipds, tpds, i, idx = 0, tdx = 0;
498 u32 *inits, *targs;
499 u16 *entries;
500
501 ipds = hmat_loc->number_of_initiator_Pds;
502 tpds = hmat_loc->number_of_target_Pds;
503 inits = (u32 *)(hmat_loc + 1);
504 targs = inits + ipds;
505 entries = (u16 *)(targs + tpds);
506
507 for (i = 0; i < ipds; i++) {
508 if (inits[i] == initiator->processor_pxm) {
509 idx = i;
510 break;
511 }
512 }
513
514 if (i == ipds)
515 return 0;
516
517 for (i = 0; i < tpds; i++) {
518 if (targs[i] == target->memory_pxm) {
519 tdx = i;
520 break;
521 }
522 }
523 if (i == tpds)
524 return 0;
525
526 return hmat_normalize(entries[idx * tpds + tdx],
527 hmat_loc->entry_base_unit,
528 hmat_loc->data_type);
529 }
530
hmat_update_best(u8 type,u32 value,u32 * best)531 static bool hmat_update_best(u8 type, u32 value, u32 *best)
532 {
533 bool updated = false;
534
535 if (!value)
536 return false;
537
538 switch (type) {
539 case ACPI_HMAT_ACCESS_LATENCY:
540 case ACPI_HMAT_READ_LATENCY:
541 case ACPI_HMAT_WRITE_LATENCY:
542 if (!*best || *best > value) {
543 *best = value;
544 updated = true;
545 }
546 break;
547 case ACPI_HMAT_ACCESS_BANDWIDTH:
548 case ACPI_HMAT_READ_BANDWIDTH:
549 case ACPI_HMAT_WRITE_BANDWIDTH:
550 if (!*best || *best < value) {
551 *best = value;
552 updated = true;
553 }
554 break;
555 }
556
557 return updated;
558 }
559
initiator_cmp(void * priv,const struct list_head * a,const struct list_head * b)560 static int initiator_cmp(void *priv, const struct list_head *a,
561 const struct list_head *b)
562 {
563 struct memory_initiator *ia;
564 struct memory_initiator *ib;
565
566 ia = list_entry(a, struct memory_initiator, node);
567 ib = list_entry(b, struct memory_initiator, node);
568
569 return ia->processor_pxm - ib->processor_pxm;
570 }
571
initiators_to_nodemask(unsigned long * p_nodes)572 static int initiators_to_nodemask(unsigned long *p_nodes)
573 {
574 struct memory_initiator *initiator;
575
576 if (list_empty(&initiators))
577 return -ENXIO;
578
579 list_for_each_entry(initiator, &initiators, node)
580 set_bit(initiator->processor_pxm, p_nodes);
581
582 return 0;
583 }
584
hmat_register_target_initiators(struct memory_target * target)585 static void hmat_register_target_initiators(struct memory_target *target)
586 {
587 static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
588 struct memory_initiator *initiator;
589 unsigned int mem_nid, cpu_nid;
590 struct memory_locality *loc = NULL;
591 u32 best = 0;
592 bool access0done = false;
593 int i;
594
595 mem_nid = pxm_to_node(target->memory_pxm);
596 /*
597 * If the Address Range Structure provides a local processor pxm, link
598 * only that one. Otherwise, find the best performance attributes and
599 * register all initiators that match.
600 */
601 if (target->processor_pxm != PXM_INVAL) {
602 cpu_nid = pxm_to_node(target->processor_pxm);
603 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
604 access0done = true;
605 if (node_state(cpu_nid, N_CPU)) {
606 register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
607 return;
608 }
609 }
610
611 if (list_empty(&localities))
612 return;
613
614 /*
615 * We need the initiator list sorted so we can use bitmap_clear for
616 * previously set initiators when we find a better memory accessor.
617 * We'll also use the sorting to prime the candidate nodes with known
618 * initiators.
619 */
620 bitmap_zero(p_nodes, MAX_NUMNODES);
621 list_sort(NULL, &initiators, initiator_cmp);
622 if (initiators_to_nodemask(p_nodes) < 0)
623 return;
624
625 if (!access0done) {
626 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
627 loc = localities_types[i];
628 if (!loc)
629 continue;
630
631 best = 0;
632 list_for_each_entry(initiator, &initiators, node) {
633 u32 value;
634
635 if (!test_bit(initiator->processor_pxm, p_nodes))
636 continue;
637
638 value = hmat_initiator_perf(target, initiator,
639 loc->hmat_loc);
640 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
641 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
642 if (value != best)
643 clear_bit(initiator->processor_pxm, p_nodes);
644 }
645 if (best)
646 hmat_update_target_access(target, loc->hmat_loc->data_type,
647 best, 0);
648 }
649
650 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
651 cpu_nid = pxm_to_node(i);
652 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
653 }
654 }
655
656 /* Access 1 ignores Generic Initiators */
657 bitmap_zero(p_nodes, MAX_NUMNODES);
658 if (initiators_to_nodemask(p_nodes) < 0)
659 return;
660
661 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
662 loc = localities_types[i];
663 if (!loc)
664 continue;
665
666 best = 0;
667 list_for_each_entry(initiator, &initiators, node) {
668 u32 value;
669
670 if (!initiator->has_cpu) {
671 clear_bit(initiator->processor_pxm, p_nodes);
672 continue;
673 }
674 if (!test_bit(initiator->processor_pxm, p_nodes))
675 continue;
676
677 value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
678 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
679 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
680 if (value != best)
681 clear_bit(initiator->processor_pxm, p_nodes);
682 }
683 if (best)
684 hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
685 }
686 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
687 cpu_nid = pxm_to_node(i);
688 register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
689 }
690 }
691
hmat_register_target_cache(struct memory_target * target)692 static void hmat_register_target_cache(struct memory_target *target)
693 {
694 unsigned mem_nid = pxm_to_node(target->memory_pxm);
695 struct target_cache *tcache;
696
697 list_for_each_entry(tcache, &target->caches, node)
698 node_add_cache(mem_nid, &tcache->cache_attrs);
699 }
700
hmat_register_target_perf(struct memory_target * target,int access)701 static void hmat_register_target_perf(struct memory_target *target, int access)
702 {
703 unsigned mem_nid = pxm_to_node(target->memory_pxm);
704 node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
705 }
706
hmat_register_target_devices(struct memory_target * target)707 static void hmat_register_target_devices(struct memory_target *target)
708 {
709 struct resource *res;
710
711 /*
712 * Do not bother creating devices if no driver is available to
713 * consume them.
714 */
715 if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
716 return;
717
718 for (res = target->memregions.child; res; res = res->sibling) {
719 int target_nid = pxm_to_node(target->memory_pxm);
720
721 hmem_register_resource(target_nid, res);
722 }
723 }
724
hmat_register_target(struct memory_target * target)725 static void hmat_register_target(struct memory_target *target)
726 {
727 int nid = pxm_to_node(target->memory_pxm);
728
729 /*
730 * Devices may belong to either an offline or online
731 * node, so unconditionally add them.
732 */
733 hmat_register_target_devices(target);
734
735 /*
736 * Skip offline nodes. This can happen when memory
737 * marked EFI_MEMORY_SP, "specific purpose", is applied
738 * to all the memory in a proximity domain leading to
739 * the node being marked offline / unplugged, or if
740 * memory-only "hotplug" node is offline.
741 */
742 if (nid == NUMA_NO_NODE || !node_online(nid))
743 return;
744
745 mutex_lock(&target_lock);
746 if (!target->registered) {
747 hmat_register_target_initiators(target);
748 hmat_register_target_cache(target);
749 hmat_register_target_perf(target, 0);
750 hmat_register_target_perf(target, 1);
751 target->registered = true;
752 }
753 mutex_unlock(&target_lock);
754 }
755
hmat_register_targets(void)756 static void hmat_register_targets(void)
757 {
758 struct memory_target *target;
759
760 list_for_each_entry(target, &targets, node)
761 hmat_register_target(target);
762 }
763
hmat_callback(struct notifier_block * self,unsigned long action,void * arg)764 static int hmat_callback(struct notifier_block *self,
765 unsigned long action, void *arg)
766 {
767 struct memory_target *target;
768 struct memory_notify *mnb = arg;
769 int pxm, nid = mnb->status_change_nid;
770
771 if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
772 return NOTIFY_OK;
773
774 pxm = node_to_pxm(nid);
775 target = find_mem_target(pxm);
776 if (!target)
777 return NOTIFY_OK;
778
779 hmat_register_target(target);
780 return NOTIFY_OK;
781 }
782
hmat_free_structures(void)783 static __init void hmat_free_structures(void)
784 {
785 struct memory_target *target, *tnext;
786 struct memory_locality *loc, *lnext;
787 struct memory_initiator *initiator, *inext;
788 struct target_cache *tcache, *cnext;
789
790 list_for_each_entry_safe(target, tnext, &targets, node) {
791 struct resource *res, *res_next;
792
793 list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
794 list_del(&tcache->node);
795 kfree(tcache);
796 }
797
798 list_del(&target->node);
799 res = target->memregions.child;
800 while (res) {
801 res_next = res->sibling;
802 __release_region(&target->memregions, res->start,
803 resource_size(res));
804 res = res_next;
805 }
806 kfree(target);
807 }
808
809 list_for_each_entry_safe(initiator, inext, &initiators, node) {
810 list_del(&initiator->node);
811 kfree(initiator);
812 }
813
814 list_for_each_entry_safe(loc, lnext, &localities, node) {
815 list_del(&loc->node);
816 kfree(loc);
817 }
818 }
819
hmat_init(void)820 static __init int hmat_init(void)
821 {
822 struct acpi_table_header *tbl;
823 enum acpi_hmat_type i;
824 acpi_status status;
825
826 if (srat_disabled() || hmat_disable)
827 return 0;
828
829 status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
830 if (ACPI_FAILURE(status))
831 return 0;
832
833 if (acpi_table_parse_entries(ACPI_SIG_SRAT,
834 sizeof(struct acpi_table_srat),
835 ACPI_SRAT_TYPE_MEMORY_AFFINITY,
836 srat_parse_mem_affinity, 0) < 0)
837 goto out_put;
838 acpi_put_table(tbl);
839
840 status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
841 if (ACPI_FAILURE(status))
842 goto out_put;
843
844 hmat_revision = tbl->revision;
845 switch (hmat_revision) {
846 case 1:
847 case 2:
848 break;
849 default:
850 pr_notice("Ignoring: Unknown revision:%d\n", hmat_revision);
851 goto out_put;
852 }
853
854 for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
855 if (acpi_table_parse_entries(ACPI_SIG_HMAT,
856 sizeof(struct acpi_table_hmat), i,
857 hmat_parse_subtable, 0) < 0) {
858 pr_notice("Ignoring: Invalid table");
859 goto out_put;
860 }
861 }
862 hmat_register_targets();
863
864 /* Keep the table and structures if the notifier may use them */
865 if (!hotplug_memory_notifier(hmat_callback, HMAT_CALLBACK_PRI))
866 return 0;
867 out_put:
868 hmat_free_structures();
869 acpi_put_table(tbl);
870 return 0;
871 }
872 subsys_initcall(hmat_init);
873