xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/ndctl.h>
10 #include <linux/sysfs.h>
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/acpi.h>
14 #include <linux/sort.h>
15 #include <linux/io.h>
16 #include <linux/nd.h>
17 #include <asm/cacheflush.h>
18 #include <acpi/nfit.h>
19 #include "intel.h"
20 #include "nfit.h"
21 
22 /*
23  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
24  * irrelevant.
25  */
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 
28 static bool force_enable_dimms;
29 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
30 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
31 
32 static bool disable_vendor_specific;
33 module_param(disable_vendor_specific, bool, S_IRUGO);
34 MODULE_PARM_DESC(disable_vendor_specific,
35 		"Limit commands to the publicly specified set");
36 
37 static unsigned long override_dsm_mask;
38 module_param(override_dsm_mask, ulong, S_IRUGO);
39 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
40 
41 static int default_dsm_family = -1;
42 module_param(default_dsm_family, int, S_IRUGO);
43 MODULE_PARM_DESC(default_dsm_family,
44 		"Try this DSM type first when identifying NVDIMM family");
45 
46 static bool no_init_ars;
47 module_param(no_init_ars, bool, 0644);
48 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
49 
50 static bool force_labels;
51 module_param(force_labels, bool, 0444);
52 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
53 
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56 
57 static struct workqueue_struct *nfit_wq;
58 
59 struct nfit_table_prev {
60 	struct list_head spas;
61 	struct list_head memdevs;
62 	struct list_head dcrs;
63 	struct list_head bdws;
64 	struct list_head idts;
65 	struct list_head flushes;
66 };
67 
68 static guid_t nfit_uuid[NFIT_UUID_MAX];
69 
70 const guid_t *to_nfit_uuid(enum nfit_uuids id)
71 {
72 	return &nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75 
76 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
77 {
78 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
79 
80 	/*
81 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
82 	 * acpi_device.
83 	 */
84 	if (!nd_desc->provider_name
85 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
86 		return NULL;
87 
88 	return to_acpi_device(acpi_desc->dev);
89 }
90 
91 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
92 {
93 	struct nd_cmd_clear_error *clear_err;
94 	struct nd_cmd_ars_status *ars_status;
95 	u16 flags;
96 
97 	switch (cmd) {
98 	case ND_CMD_ARS_CAP:
99 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
100 			return -ENOTTY;
101 
102 		/* Command failed */
103 		if (status & 0xffff)
104 			return -EIO;
105 
106 		/* No supported scan types for this range */
107 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
108 		if ((status >> 16 & flags) == 0)
109 			return -ENOTTY;
110 		return 0;
111 	case ND_CMD_ARS_START:
112 		/* ARS is in progress */
113 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
114 			return -EBUSY;
115 
116 		/* Command failed */
117 		if (status & 0xffff)
118 			return -EIO;
119 		return 0;
120 	case ND_CMD_ARS_STATUS:
121 		ars_status = buf;
122 		/* Command failed */
123 		if (status & 0xffff)
124 			return -EIO;
125 		/* Check extended status (Upper two bytes) */
126 		if (status == NFIT_ARS_STATUS_DONE)
127 			return 0;
128 
129 		/* ARS is in progress */
130 		if (status == NFIT_ARS_STATUS_BUSY)
131 			return -EBUSY;
132 
133 		/* No ARS performed for the current boot */
134 		if (status == NFIT_ARS_STATUS_NONE)
135 			return -EAGAIN;
136 
137 		/*
138 		 * ARS interrupted, either we overflowed or some other
139 		 * agent wants the scan to stop.  If we didn't overflow
140 		 * then just continue with the returned results.
141 		 */
142 		if (status == NFIT_ARS_STATUS_INTR) {
143 			if (ars_status->out_length >= 40 && (ars_status->flags
144 						& NFIT_ARS_F_OVERFLOW))
145 				return -ENOSPC;
146 			return 0;
147 		}
148 
149 		/* Unknown status */
150 		if (status >> 16)
151 			return -EIO;
152 		return 0;
153 	case ND_CMD_CLEAR_ERROR:
154 		clear_err = buf;
155 		if (status & 0xffff)
156 			return -EIO;
157 		if (!clear_err->cleared)
158 			return -EIO;
159 		if (clear_err->length > clear_err->cleared)
160 			return clear_err->cleared;
161 		return 0;
162 	default:
163 		break;
164 	}
165 
166 	/* all other non-zero status results in an error */
167 	if (status)
168 		return -EIO;
169 	return 0;
170 }
171 
172 #define ACPI_LABELS_LOCKED 3
173 
174 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
175 		u32 status)
176 {
177 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
178 
179 	switch (cmd) {
180 	case ND_CMD_GET_CONFIG_SIZE:
181 		/*
182 		 * In the _LSI, _LSR, _LSW case the locked status is
183 		 * communicated via the read/write commands
184 		 */
185 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
186 			break;
187 
188 		if (status >> 16 & ND_CONFIG_LOCKED)
189 			return -EACCES;
190 		break;
191 	case ND_CMD_GET_CONFIG_DATA:
192 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
193 				&& status == ACPI_LABELS_LOCKED)
194 			return -EACCES;
195 		break;
196 	case ND_CMD_SET_CONFIG_DATA:
197 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
198 				&& status == ACPI_LABELS_LOCKED)
199 			return -EACCES;
200 		break;
201 	default:
202 		break;
203 	}
204 
205 	/* all other non-zero status results in an error */
206 	if (status)
207 		return -EIO;
208 	return 0;
209 }
210 
211 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
212 		u32 status)
213 {
214 	if (!nvdimm)
215 		return xlat_bus_status(buf, cmd, status);
216 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
217 }
218 
219 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
220 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
221 {
222 	int i;
223 	void *dst;
224 	size_t size = 0;
225 	union acpi_object *buf = NULL;
226 
227 	if (pkg->type != ACPI_TYPE_PACKAGE) {
228 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
229 				pkg->type);
230 		goto err;
231 	}
232 
233 	for (i = 0; i < pkg->package.count; i++) {
234 		union acpi_object *obj = &pkg->package.elements[i];
235 
236 		if (obj->type == ACPI_TYPE_INTEGER)
237 			size += 4;
238 		else if (obj->type == ACPI_TYPE_BUFFER)
239 			size += obj->buffer.length;
240 		else {
241 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242 					obj->type);
243 			goto err;
244 		}
245 	}
246 
247 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
248 	if (!buf)
249 		goto err;
250 
251 	dst = buf + 1;
252 	buf->type = ACPI_TYPE_BUFFER;
253 	buf->buffer.length = size;
254 	buf->buffer.pointer = dst;
255 	for (i = 0; i < pkg->package.count; i++) {
256 		union acpi_object *obj = &pkg->package.elements[i];
257 
258 		if (obj->type == ACPI_TYPE_INTEGER) {
259 			memcpy(dst, &obj->integer.value, 4);
260 			dst += 4;
261 		} else if (obj->type == ACPI_TYPE_BUFFER) {
262 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
263 			dst += obj->buffer.length;
264 		}
265 	}
266 err:
267 	ACPI_FREE(pkg);
268 	return buf;
269 }
270 
271 static union acpi_object *int_to_buf(union acpi_object *integer)
272 {
273 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
274 	void *dst = NULL;
275 
276 	if (!buf)
277 		goto err;
278 
279 	if (integer->type != ACPI_TYPE_INTEGER) {
280 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
281 				integer->type);
282 		goto err;
283 	}
284 
285 	dst = buf + 1;
286 	buf->type = ACPI_TYPE_BUFFER;
287 	buf->buffer.length = 4;
288 	buf->buffer.pointer = dst;
289 	memcpy(dst, &integer->integer.value, 4);
290 err:
291 	ACPI_FREE(integer);
292 	return buf;
293 }
294 
295 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
296 		u32 len, void *data)
297 {
298 	acpi_status rc;
299 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
300 	struct acpi_object_list input = {
301 		.count = 3,
302 		.pointer = (union acpi_object []) {
303 			[0] = {
304 				.integer.type = ACPI_TYPE_INTEGER,
305 				.integer.value = offset,
306 			},
307 			[1] = {
308 				.integer.type = ACPI_TYPE_INTEGER,
309 				.integer.value = len,
310 			},
311 			[2] = {
312 				.buffer.type = ACPI_TYPE_BUFFER,
313 				.buffer.pointer = data,
314 				.buffer.length = len,
315 			},
316 		},
317 	};
318 
319 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
320 	if (ACPI_FAILURE(rc))
321 		return NULL;
322 	return int_to_buf(buf.pointer);
323 }
324 
325 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
326 		u32 len)
327 {
328 	acpi_status rc;
329 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
330 	struct acpi_object_list input = {
331 		.count = 2,
332 		.pointer = (union acpi_object []) {
333 			[0] = {
334 				.integer.type = ACPI_TYPE_INTEGER,
335 				.integer.value = offset,
336 			},
337 			[1] = {
338 				.integer.type = ACPI_TYPE_INTEGER,
339 				.integer.value = len,
340 			},
341 		},
342 	};
343 
344 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
345 	if (ACPI_FAILURE(rc))
346 		return NULL;
347 	return pkg_to_buf(buf.pointer);
348 }
349 
350 static union acpi_object *acpi_label_info(acpi_handle handle)
351 {
352 	acpi_status rc;
353 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
354 
355 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
356 	if (ACPI_FAILURE(rc))
357 		return NULL;
358 	return pkg_to_buf(buf.pointer);
359 }
360 
361 static u8 nfit_dsm_revid(unsigned family, unsigned func)
362 {
363 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
364 		[NVDIMM_FAMILY_INTEL] = {
365 			[NVDIMM_INTEL_GET_MODES] = 2,
366 			[NVDIMM_INTEL_GET_FWINFO] = 2,
367 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
368 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
369 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
370 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
371 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
372 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
373 			[NVDIMM_INTEL_GET_SECURITY_STATE] = 2,
374 			[NVDIMM_INTEL_SET_PASSPHRASE] = 2,
375 			[NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2,
376 			[NVDIMM_INTEL_UNLOCK_UNIT] = 2,
377 			[NVDIMM_INTEL_FREEZE_LOCK] = 2,
378 			[NVDIMM_INTEL_SECURE_ERASE] = 2,
379 			[NVDIMM_INTEL_OVERWRITE] = 2,
380 			[NVDIMM_INTEL_QUERY_OVERWRITE] = 2,
381 			[NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2,
382 			[NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2,
383 		},
384 	};
385 	u8 id;
386 
387 	if (family > NVDIMM_FAMILY_MAX)
388 		return 0;
389 	if (func > NVDIMM_CMD_MAX)
390 		return 0;
391 	id = revid_table[family][func];
392 	if (id == 0)
393 		return 1; /* default */
394 	return id;
395 }
396 
397 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
398 {
399 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
400 
401 	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
402 			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
403 			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
404 		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
405 	return true;
406 }
407 
408 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
409 		struct nd_cmd_pkg *call_pkg)
410 {
411 	if (call_pkg) {
412 		int i;
413 
414 		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
415 			return -ENOTTY;
416 
417 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
418 			if (call_pkg->nd_reserved2[i])
419 				return -EINVAL;
420 		return call_pkg->nd_command;
421 	}
422 
423 	/* In the !call_pkg case, bus commands == bus functions */
424 	if (!nfit_mem)
425 		return cmd;
426 
427 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
428 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
429 		return cmd;
430 
431 	/*
432 	 * Force function number validation to fail since 0 is never
433 	 * published as a valid function in dsm_mask.
434 	 */
435 	return 0;
436 }
437 
438 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
439 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
440 {
441 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
442 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
443 	union acpi_object in_obj, in_buf, *out_obj;
444 	const struct nd_cmd_desc *desc = NULL;
445 	struct device *dev = acpi_desc->dev;
446 	struct nd_cmd_pkg *call_pkg = NULL;
447 	const char *cmd_name, *dimm_name;
448 	unsigned long cmd_mask, dsm_mask;
449 	u32 offset, fw_status = 0;
450 	acpi_handle handle;
451 	const guid_t *guid;
452 	int func, rc, i;
453 
454 	if (cmd_rc)
455 		*cmd_rc = -EINVAL;
456 
457 	if (cmd == ND_CMD_CALL)
458 		call_pkg = buf;
459 	func = cmd_to_func(nfit_mem, cmd, call_pkg);
460 	if (func < 0)
461 		return func;
462 
463 	if (nvdimm) {
464 		struct acpi_device *adev = nfit_mem->adev;
465 
466 		if (!adev)
467 			return -ENOTTY;
468 
469 		dimm_name = nvdimm_name(nvdimm);
470 		cmd_name = nvdimm_cmd_name(cmd);
471 		cmd_mask = nvdimm_cmd_mask(nvdimm);
472 		dsm_mask = nfit_mem->dsm_mask;
473 		desc = nd_cmd_dimm_desc(cmd);
474 		guid = to_nfit_uuid(nfit_mem->family);
475 		handle = adev->handle;
476 	} else {
477 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
478 
479 		cmd_name = nvdimm_bus_cmd_name(cmd);
480 		cmd_mask = nd_desc->cmd_mask;
481 		dsm_mask = nd_desc->bus_dsm_mask;
482 		desc = nd_cmd_bus_desc(cmd);
483 		guid = to_nfit_uuid(NFIT_DEV_BUS);
484 		handle = adev->handle;
485 		dimm_name = "bus";
486 	}
487 
488 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
489 		return -ENOTTY;
490 
491 	/*
492 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
493 	 * make sure that the DSM function is supported.
494 	 */
495 	if (cmd == ND_CMD_CALL &&
496 	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
497 		return -ENOTTY;
498 	else if (!test_bit(cmd, &cmd_mask))
499 		return -ENOTTY;
500 
501 	in_obj.type = ACPI_TYPE_PACKAGE;
502 	in_obj.package.count = 1;
503 	in_obj.package.elements = &in_buf;
504 	in_buf.type = ACPI_TYPE_BUFFER;
505 	in_buf.buffer.pointer = buf;
506 	in_buf.buffer.length = 0;
507 
508 	/* libnvdimm has already validated the input envelope */
509 	for (i = 0; i < desc->in_num; i++)
510 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
511 				i, buf);
512 
513 	if (call_pkg) {
514 		/* skip over package wrapper */
515 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
516 		in_buf.buffer.length = call_pkg->nd_size_in;
517 	}
518 
519 	dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
520 		dimm_name, cmd, func, in_buf.buffer.length);
521 	if (payload_dumpable(nvdimm, func))
522 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
523 				in_buf.buffer.pointer,
524 				min_t(u32, 256, in_buf.buffer.length), true);
525 
526 	/* call the BIOS, prefer the named methods over _DSM if available */
527 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
528 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
529 		out_obj = acpi_label_info(handle);
530 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
531 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
532 		struct nd_cmd_get_config_data_hdr *p = buf;
533 
534 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
535 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
536 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
537 		struct nd_cmd_set_config_hdr *p = buf;
538 
539 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
540 				p->in_buf);
541 	} else {
542 		u8 revid;
543 
544 		if (nvdimm)
545 			revid = nfit_dsm_revid(nfit_mem->family, func);
546 		else
547 			revid = 1;
548 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
549 	}
550 
551 	if (!out_obj) {
552 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
553 		return -EINVAL;
554 	}
555 
556 	if (out_obj->type != ACPI_TYPE_BUFFER) {
557 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
558 				dimm_name, cmd_name, out_obj->type);
559 		rc = -EINVAL;
560 		goto out;
561 	}
562 
563 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
564 			cmd_name, out_obj->buffer.length);
565 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
566 			out_obj->buffer.pointer,
567 			min_t(u32, 128, out_obj->buffer.length), true);
568 
569 	if (call_pkg) {
570 		call_pkg->nd_fw_size = out_obj->buffer.length;
571 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
572 			out_obj->buffer.pointer,
573 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
574 
575 		ACPI_FREE(out_obj);
576 		/*
577 		 * Need to support FW function w/o known size in advance.
578 		 * Caller can determine required size based upon nd_fw_size.
579 		 * If we return an error (like elsewhere) then caller wouldn't
580 		 * be able to rely upon data returned to make calculation.
581 		 */
582 		if (cmd_rc)
583 			*cmd_rc = 0;
584 		return 0;
585 	}
586 
587 	for (i = 0, offset = 0; i < desc->out_num; i++) {
588 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
589 				(u32 *) out_obj->buffer.pointer,
590 				out_obj->buffer.length - offset);
591 
592 		if (offset + out_size > out_obj->buffer.length) {
593 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
594 					dimm_name, cmd_name, i);
595 			break;
596 		}
597 
598 		if (in_buf.buffer.length + offset + out_size > buf_len) {
599 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
600 					dimm_name, cmd_name, i);
601 			rc = -ENXIO;
602 			goto out;
603 		}
604 		memcpy(buf + in_buf.buffer.length + offset,
605 				out_obj->buffer.pointer + offset, out_size);
606 		offset += out_size;
607 	}
608 
609 	/*
610 	 * Set fw_status for all the commands with a known format to be
611 	 * later interpreted by xlat_status().
612 	 */
613 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
614 					&& cmd <= ND_CMD_CLEAR_ERROR)
615 				|| (nvdimm && cmd >= ND_CMD_SMART
616 					&& cmd <= ND_CMD_VENDOR)))
617 		fw_status = *(u32 *) out_obj->buffer.pointer;
618 
619 	if (offset + in_buf.buffer.length < buf_len) {
620 		if (i >= 1) {
621 			/*
622 			 * status valid, return the number of bytes left
623 			 * unfilled in the output buffer
624 			 */
625 			rc = buf_len - offset - in_buf.buffer.length;
626 			if (cmd_rc)
627 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
628 						fw_status);
629 		} else {
630 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
631 					__func__, dimm_name, cmd_name, buf_len,
632 					offset);
633 			rc = -ENXIO;
634 		}
635 	} else {
636 		rc = 0;
637 		if (cmd_rc)
638 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
639 	}
640 
641  out:
642 	ACPI_FREE(out_obj);
643 
644 	return rc;
645 }
646 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
647 
648 static const char *spa_type_name(u16 type)
649 {
650 	static const char *to_name[] = {
651 		[NFIT_SPA_VOLATILE] = "volatile",
652 		[NFIT_SPA_PM] = "pmem",
653 		[NFIT_SPA_DCR] = "dimm-control-region",
654 		[NFIT_SPA_BDW] = "block-data-window",
655 		[NFIT_SPA_VDISK] = "volatile-disk",
656 		[NFIT_SPA_VCD] = "volatile-cd",
657 		[NFIT_SPA_PDISK] = "persistent-disk",
658 		[NFIT_SPA_PCD] = "persistent-cd",
659 
660 	};
661 
662 	if (type > NFIT_SPA_PCD)
663 		return "unknown";
664 
665 	return to_name[type];
666 }
667 
668 int nfit_spa_type(struct acpi_nfit_system_address *spa)
669 {
670 	int i;
671 
672 	for (i = 0; i < NFIT_UUID_MAX; i++)
673 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
674 			return i;
675 	return -1;
676 }
677 
678 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
679 		struct nfit_table_prev *prev,
680 		struct acpi_nfit_system_address *spa)
681 {
682 	struct device *dev = acpi_desc->dev;
683 	struct nfit_spa *nfit_spa;
684 
685 	if (spa->header.length != sizeof(*spa))
686 		return false;
687 
688 	list_for_each_entry(nfit_spa, &prev->spas, list) {
689 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
690 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
691 			return true;
692 		}
693 	}
694 
695 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
696 			GFP_KERNEL);
697 	if (!nfit_spa)
698 		return false;
699 	INIT_LIST_HEAD(&nfit_spa->list);
700 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
701 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
702 	dev_dbg(dev, "spa index: %d type: %s\n",
703 			spa->range_index,
704 			spa_type_name(nfit_spa_type(spa)));
705 	return true;
706 }
707 
708 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
709 		struct nfit_table_prev *prev,
710 		struct acpi_nfit_memory_map *memdev)
711 {
712 	struct device *dev = acpi_desc->dev;
713 	struct nfit_memdev *nfit_memdev;
714 
715 	if (memdev->header.length != sizeof(*memdev))
716 		return false;
717 
718 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
719 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
720 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
721 			return true;
722 		}
723 
724 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
725 			GFP_KERNEL);
726 	if (!nfit_memdev)
727 		return false;
728 	INIT_LIST_HEAD(&nfit_memdev->list);
729 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
730 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
731 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
732 			memdev->device_handle, memdev->range_index,
733 			memdev->region_index, memdev->flags);
734 	return true;
735 }
736 
737 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
738 {
739 	struct acpi_nfit_memory_map *memdev;
740 	struct acpi_nfit_desc *acpi_desc;
741 	struct nfit_mem *nfit_mem;
742 	u16 physical_id;
743 
744 	mutex_lock(&acpi_desc_lock);
745 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
746 		mutex_lock(&acpi_desc->init_mutex);
747 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
748 			memdev = __to_nfit_memdev(nfit_mem);
749 			if (memdev->device_handle == device_handle) {
750 				*flags = memdev->flags;
751 				physical_id = memdev->physical_id;
752 				mutex_unlock(&acpi_desc->init_mutex);
753 				mutex_unlock(&acpi_desc_lock);
754 				return physical_id;
755 			}
756 		}
757 		mutex_unlock(&acpi_desc->init_mutex);
758 	}
759 	mutex_unlock(&acpi_desc_lock);
760 
761 	return -ENODEV;
762 }
763 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
764 
765 /*
766  * An implementation may provide a truncated control region if no block windows
767  * are defined.
768  */
769 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
770 {
771 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
772 				window_size))
773 		return 0;
774 	if (dcr->windows)
775 		return sizeof(*dcr);
776 	return offsetof(struct acpi_nfit_control_region, window_size);
777 }
778 
779 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
780 		struct nfit_table_prev *prev,
781 		struct acpi_nfit_control_region *dcr)
782 {
783 	struct device *dev = acpi_desc->dev;
784 	struct nfit_dcr *nfit_dcr;
785 
786 	if (!sizeof_dcr(dcr))
787 		return false;
788 
789 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
790 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
791 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
792 			return true;
793 		}
794 
795 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
796 			GFP_KERNEL);
797 	if (!nfit_dcr)
798 		return false;
799 	INIT_LIST_HEAD(&nfit_dcr->list);
800 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
801 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
802 	dev_dbg(dev, "dcr index: %d windows: %d\n",
803 			dcr->region_index, dcr->windows);
804 	return true;
805 }
806 
807 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
808 		struct nfit_table_prev *prev,
809 		struct acpi_nfit_data_region *bdw)
810 {
811 	struct device *dev = acpi_desc->dev;
812 	struct nfit_bdw *nfit_bdw;
813 
814 	if (bdw->header.length != sizeof(*bdw))
815 		return false;
816 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
817 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
818 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
819 			return true;
820 		}
821 
822 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
823 			GFP_KERNEL);
824 	if (!nfit_bdw)
825 		return false;
826 	INIT_LIST_HEAD(&nfit_bdw->list);
827 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
828 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
829 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
830 			bdw->region_index, bdw->windows);
831 	return true;
832 }
833 
834 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
835 {
836 	if (idt->header.length < sizeof(*idt))
837 		return 0;
838 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
839 }
840 
841 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
842 		struct nfit_table_prev *prev,
843 		struct acpi_nfit_interleave *idt)
844 {
845 	struct device *dev = acpi_desc->dev;
846 	struct nfit_idt *nfit_idt;
847 
848 	if (!sizeof_idt(idt))
849 		return false;
850 
851 	list_for_each_entry(nfit_idt, &prev->idts, list) {
852 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
853 			continue;
854 
855 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
856 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
857 			return true;
858 		}
859 	}
860 
861 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
862 			GFP_KERNEL);
863 	if (!nfit_idt)
864 		return false;
865 	INIT_LIST_HEAD(&nfit_idt->list);
866 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
867 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
868 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
869 			idt->interleave_index, idt->line_count);
870 	return true;
871 }
872 
873 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
874 {
875 	if (flush->header.length < sizeof(*flush))
876 		return 0;
877 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
878 }
879 
880 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
881 		struct nfit_table_prev *prev,
882 		struct acpi_nfit_flush_address *flush)
883 {
884 	struct device *dev = acpi_desc->dev;
885 	struct nfit_flush *nfit_flush;
886 
887 	if (!sizeof_flush(flush))
888 		return false;
889 
890 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
891 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
892 			continue;
893 
894 		if (memcmp(nfit_flush->flush, flush,
895 					sizeof_flush(flush)) == 0) {
896 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
897 			return true;
898 		}
899 	}
900 
901 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
902 			+ sizeof_flush(flush), GFP_KERNEL);
903 	if (!nfit_flush)
904 		return false;
905 	INIT_LIST_HEAD(&nfit_flush->list);
906 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
907 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
908 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
909 			flush->device_handle, flush->hint_count);
910 	return true;
911 }
912 
913 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
914 		struct acpi_nfit_capabilities *pcap)
915 {
916 	struct device *dev = acpi_desc->dev;
917 	u32 mask;
918 
919 	mask = (1 << (pcap->highest_capability + 1)) - 1;
920 	acpi_desc->platform_cap = pcap->capabilities & mask;
921 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
922 	return true;
923 }
924 
925 static void *add_table(struct acpi_nfit_desc *acpi_desc,
926 		struct nfit_table_prev *prev, void *table, const void *end)
927 {
928 	struct device *dev = acpi_desc->dev;
929 	struct acpi_nfit_header *hdr;
930 	void *err = ERR_PTR(-ENOMEM);
931 
932 	if (table >= end)
933 		return NULL;
934 
935 	hdr = table;
936 	if (!hdr->length) {
937 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
938 			hdr->type);
939 		return NULL;
940 	}
941 
942 	switch (hdr->type) {
943 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
944 		if (!add_spa(acpi_desc, prev, table))
945 			return err;
946 		break;
947 	case ACPI_NFIT_TYPE_MEMORY_MAP:
948 		if (!add_memdev(acpi_desc, prev, table))
949 			return err;
950 		break;
951 	case ACPI_NFIT_TYPE_CONTROL_REGION:
952 		if (!add_dcr(acpi_desc, prev, table))
953 			return err;
954 		break;
955 	case ACPI_NFIT_TYPE_DATA_REGION:
956 		if (!add_bdw(acpi_desc, prev, table))
957 			return err;
958 		break;
959 	case ACPI_NFIT_TYPE_INTERLEAVE:
960 		if (!add_idt(acpi_desc, prev, table))
961 			return err;
962 		break;
963 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
964 		if (!add_flush(acpi_desc, prev, table))
965 			return err;
966 		break;
967 	case ACPI_NFIT_TYPE_SMBIOS:
968 		dev_dbg(dev, "smbios\n");
969 		break;
970 	case ACPI_NFIT_TYPE_CAPABILITIES:
971 		if (!add_platform_cap(acpi_desc, table))
972 			return err;
973 		break;
974 	default:
975 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
976 		break;
977 	}
978 
979 	return table + hdr->length;
980 }
981 
982 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
983 		struct nfit_mem *nfit_mem)
984 {
985 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
986 	u16 dcr = nfit_mem->dcr->region_index;
987 	struct nfit_spa *nfit_spa;
988 
989 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
990 		u16 range_index = nfit_spa->spa->range_index;
991 		int type = nfit_spa_type(nfit_spa->spa);
992 		struct nfit_memdev *nfit_memdev;
993 
994 		if (type != NFIT_SPA_BDW)
995 			continue;
996 
997 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
998 			if (nfit_memdev->memdev->range_index != range_index)
999 				continue;
1000 			if (nfit_memdev->memdev->device_handle != device_handle)
1001 				continue;
1002 			if (nfit_memdev->memdev->region_index != dcr)
1003 				continue;
1004 
1005 			nfit_mem->spa_bdw = nfit_spa->spa;
1006 			return;
1007 		}
1008 	}
1009 
1010 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1011 			nfit_mem->spa_dcr->range_index);
1012 	nfit_mem->bdw = NULL;
1013 }
1014 
1015 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1016 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1017 {
1018 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1019 	struct nfit_memdev *nfit_memdev;
1020 	struct nfit_bdw *nfit_bdw;
1021 	struct nfit_idt *nfit_idt;
1022 	u16 idt_idx, range_index;
1023 
1024 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1025 		if (nfit_bdw->bdw->region_index != dcr)
1026 			continue;
1027 		nfit_mem->bdw = nfit_bdw->bdw;
1028 		break;
1029 	}
1030 
1031 	if (!nfit_mem->bdw)
1032 		return;
1033 
1034 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1035 
1036 	if (!nfit_mem->spa_bdw)
1037 		return;
1038 
1039 	range_index = nfit_mem->spa_bdw->range_index;
1040 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1041 		if (nfit_memdev->memdev->range_index != range_index ||
1042 				nfit_memdev->memdev->region_index != dcr)
1043 			continue;
1044 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
1045 		idt_idx = nfit_memdev->memdev->interleave_index;
1046 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1047 			if (nfit_idt->idt->interleave_index != idt_idx)
1048 				continue;
1049 			nfit_mem->idt_bdw = nfit_idt->idt;
1050 			break;
1051 		}
1052 		break;
1053 	}
1054 }
1055 
1056 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1057 		struct acpi_nfit_system_address *spa)
1058 {
1059 	struct nfit_mem *nfit_mem, *found;
1060 	struct nfit_memdev *nfit_memdev;
1061 	int type = spa ? nfit_spa_type(spa) : 0;
1062 
1063 	switch (type) {
1064 	case NFIT_SPA_DCR:
1065 	case NFIT_SPA_PM:
1066 		break;
1067 	default:
1068 		if (spa)
1069 			return 0;
1070 	}
1071 
1072 	/*
1073 	 * This loop runs in two modes, when a dimm is mapped the loop
1074 	 * adds memdev associations to an existing dimm, or creates a
1075 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1076 	 * instances with an invalid / zero range_index and adds those
1077 	 * dimms without spa associations.
1078 	 */
1079 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1080 		struct nfit_flush *nfit_flush;
1081 		struct nfit_dcr *nfit_dcr;
1082 		u32 device_handle;
1083 		u16 dcr;
1084 
1085 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1086 			continue;
1087 		if (!spa && nfit_memdev->memdev->range_index)
1088 			continue;
1089 		found = NULL;
1090 		dcr = nfit_memdev->memdev->region_index;
1091 		device_handle = nfit_memdev->memdev->device_handle;
1092 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1093 			if (__to_nfit_memdev(nfit_mem)->device_handle
1094 					== device_handle) {
1095 				found = nfit_mem;
1096 				break;
1097 			}
1098 
1099 		if (found)
1100 			nfit_mem = found;
1101 		else {
1102 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1103 					sizeof(*nfit_mem), GFP_KERNEL);
1104 			if (!nfit_mem)
1105 				return -ENOMEM;
1106 			INIT_LIST_HEAD(&nfit_mem->list);
1107 			nfit_mem->acpi_desc = acpi_desc;
1108 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1109 		}
1110 
1111 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1112 			if (nfit_dcr->dcr->region_index != dcr)
1113 				continue;
1114 			/*
1115 			 * Record the control region for the dimm.  For
1116 			 * the ACPI 6.1 case, where there are separate
1117 			 * control regions for the pmem vs blk
1118 			 * interfaces, be sure to record the extended
1119 			 * blk details.
1120 			 */
1121 			if (!nfit_mem->dcr)
1122 				nfit_mem->dcr = nfit_dcr->dcr;
1123 			else if (nfit_mem->dcr->windows == 0
1124 					&& nfit_dcr->dcr->windows)
1125 				nfit_mem->dcr = nfit_dcr->dcr;
1126 			break;
1127 		}
1128 
1129 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1130 			struct acpi_nfit_flush_address *flush;
1131 			u16 i;
1132 
1133 			if (nfit_flush->flush->device_handle != device_handle)
1134 				continue;
1135 			nfit_mem->nfit_flush = nfit_flush;
1136 			flush = nfit_flush->flush;
1137 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1138 					flush->hint_count,
1139 					sizeof(struct resource),
1140 					GFP_KERNEL);
1141 			if (!nfit_mem->flush_wpq)
1142 				return -ENOMEM;
1143 			for (i = 0; i < flush->hint_count; i++) {
1144 				struct resource *res = &nfit_mem->flush_wpq[i];
1145 
1146 				res->start = flush->hint_address[i];
1147 				res->end = res->start + 8 - 1;
1148 			}
1149 			break;
1150 		}
1151 
1152 		if (dcr && !nfit_mem->dcr) {
1153 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1154 					spa->range_index, dcr);
1155 			return -ENODEV;
1156 		}
1157 
1158 		if (type == NFIT_SPA_DCR) {
1159 			struct nfit_idt *nfit_idt;
1160 			u16 idt_idx;
1161 
1162 			/* multiple dimms may share a SPA when interleaved */
1163 			nfit_mem->spa_dcr = spa;
1164 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1165 			idt_idx = nfit_memdev->memdev->interleave_index;
1166 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1167 				if (nfit_idt->idt->interleave_index != idt_idx)
1168 					continue;
1169 				nfit_mem->idt_dcr = nfit_idt->idt;
1170 				break;
1171 			}
1172 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1173 		} else if (type == NFIT_SPA_PM) {
1174 			/*
1175 			 * A single dimm may belong to multiple SPA-PM
1176 			 * ranges, record at least one in addition to
1177 			 * any SPA-DCR range.
1178 			 */
1179 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1180 		} else
1181 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1188 {
1189 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1190 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1191 	u32 handleA, handleB;
1192 
1193 	handleA = __to_nfit_memdev(a)->device_handle;
1194 	handleB = __to_nfit_memdev(b)->device_handle;
1195 	if (handleA < handleB)
1196 		return -1;
1197 	else if (handleA > handleB)
1198 		return 1;
1199 	return 0;
1200 }
1201 
1202 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1203 {
1204 	struct nfit_spa *nfit_spa;
1205 	int rc;
1206 
1207 
1208 	/*
1209 	 * For each SPA-DCR or SPA-PMEM address range find its
1210 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1211 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1212 	 * try to find a SPA-BDW and a corresponding BDW that references
1213 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1214 	 * BDWs are optional.
1215 	 */
1216 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1217 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1218 		if (rc)
1219 			return rc;
1220 	}
1221 
1222 	/*
1223 	 * If a DIMM has failed to be mapped into SPA there will be no
1224 	 * SPA entries above. Find and register all the unmapped DIMMs
1225 	 * for reporting and recovery purposes.
1226 	 */
1227 	rc = __nfit_mem_init(acpi_desc, NULL);
1228 	if (rc)
1229 		return rc;
1230 
1231 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1232 
1233 	return 0;
1234 }
1235 
1236 static ssize_t bus_dsm_mask_show(struct device *dev,
1237 		struct device_attribute *attr, char *buf)
1238 {
1239 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1240 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1241 
1242 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1243 }
1244 static struct device_attribute dev_attr_bus_dsm_mask =
1245 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1246 
1247 static ssize_t revision_show(struct device *dev,
1248 		struct device_attribute *attr, char *buf)
1249 {
1250 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1251 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1252 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1253 
1254 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1255 }
1256 static DEVICE_ATTR_RO(revision);
1257 
1258 static ssize_t hw_error_scrub_show(struct device *dev,
1259 		struct device_attribute *attr, char *buf)
1260 {
1261 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1262 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1263 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1264 
1265 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1266 }
1267 
1268 /*
1269  * The 'hw_error_scrub' attribute can have the following values written to it:
1270  * '0': Switch to the default mode where an exception will only insert
1271  *      the address of the memory error into the poison and badblocks lists.
1272  * '1': Enable a full scrub to happen if an exception for a memory error is
1273  *      received.
1274  */
1275 static ssize_t hw_error_scrub_store(struct device *dev,
1276 		struct device_attribute *attr, const char *buf, size_t size)
1277 {
1278 	struct nvdimm_bus_descriptor *nd_desc;
1279 	ssize_t rc;
1280 	long val;
1281 
1282 	rc = kstrtol(buf, 0, &val);
1283 	if (rc)
1284 		return rc;
1285 
1286 	nfit_device_lock(dev);
1287 	nd_desc = dev_get_drvdata(dev);
1288 	if (nd_desc) {
1289 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1290 
1291 		switch (val) {
1292 		case HW_ERROR_SCRUB_ON:
1293 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1294 			break;
1295 		case HW_ERROR_SCRUB_OFF:
1296 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1297 			break;
1298 		default:
1299 			rc = -EINVAL;
1300 			break;
1301 		}
1302 	}
1303 	nfit_device_unlock(dev);
1304 	if (rc)
1305 		return rc;
1306 	return size;
1307 }
1308 static DEVICE_ATTR_RW(hw_error_scrub);
1309 
1310 /*
1311  * This shows the number of full Address Range Scrubs that have been
1312  * completed since driver load time. Userspace can wait on this using
1313  * select/poll etc. A '+' at the end indicates an ARS is in progress
1314  */
1315 static ssize_t scrub_show(struct device *dev,
1316 		struct device_attribute *attr, char *buf)
1317 {
1318 	struct nvdimm_bus_descriptor *nd_desc;
1319 	struct acpi_nfit_desc *acpi_desc;
1320 	ssize_t rc = -ENXIO;
1321 	bool busy;
1322 
1323 	nfit_device_lock(dev);
1324 	nd_desc = dev_get_drvdata(dev);
1325 	if (!nd_desc) {
1326 		nfit_device_unlock(dev);
1327 		return rc;
1328 	}
1329 	acpi_desc = to_acpi_desc(nd_desc);
1330 
1331 	mutex_lock(&acpi_desc->init_mutex);
1332 	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1333 		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1334 	rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1335 	/* Allow an admin to poll the busy state at a higher rate */
1336 	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1337 				&acpi_desc->scrub_flags)) {
1338 		acpi_desc->scrub_tmo = 1;
1339 		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1340 	}
1341 
1342 	mutex_unlock(&acpi_desc->init_mutex);
1343 	nfit_device_unlock(dev);
1344 	return rc;
1345 }
1346 
1347 static ssize_t scrub_store(struct device *dev,
1348 		struct device_attribute *attr, const char *buf, size_t size)
1349 {
1350 	struct nvdimm_bus_descriptor *nd_desc;
1351 	ssize_t rc;
1352 	long val;
1353 
1354 	rc = kstrtol(buf, 0, &val);
1355 	if (rc)
1356 		return rc;
1357 	if (val != 1)
1358 		return -EINVAL;
1359 
1360 	nfit_device_lock(dev);
1361 	nd_desc = dev_get_drvdata(dev);
1362 	if (nd_desc) {
1363 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1364 
1365 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1366 	}
1367 	nfit_device_unlock(dev);
1368 	if (rc)
1369 		return rc;
1370 	return size;
1371 }
1372 static DEVICE_ATTR_RW(scrub);
1373 
1374 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1375 {
1376 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1377 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1378 		| 1 << ND_CMD_ARS_STATUS;
1379 
1380 	return (nd_desc->cmd_mask & mask) == mask;
1381 }
1382 
1383 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1384 {
1385 	struct device *dev = container_of(kobj, struct device, kobj);
1386 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1387 
1388 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1389 		return 0;
1390 	return a->mode;
1391 }
1392 
1393 static struct attribute *acpi_nfit_attributes[] = {
1394 	&dev_attr_revision.attr,
1395 	&dev_attr_scrub.attr,
1396 	&dev_attr_hw_error_scrub.attr,
1397 	&dev_attr_bus_dsm_mask.attr,
1398 	NULL,
1399 };
1400 
1401 static const struct attribute_group acpi_nfit_attribute_group = {
1402 	.name = "nfit",
1403 	.attrs = acpi_nfit_attributes,
1404 	.is_visible = nfit_visible,
1405 };
1406 
1407 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1408 	&acpi_nfit_attribute_group,
1409 	NULL,
1410 };
1411 
1412 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1413 {
1414 	struct nvdimm *nvdimm = to_nvdimm(dev);
1415 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1416 
1417 	return __to_nfit_memdev(nfit_mem);
1418 }
1419 
1420 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1421 {
1422 	struct nvdimm *nvdimm = to_nvdimm(dev);
1423 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1424 
1425 	return nfit_mem->dcr;
1426 }
1427 
1428 static ssize_t handle_show(struct device *dev,
1429 		struct device_attribute *attr, char *buf)
1430 {
1431 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1432 
1433 	return sprintf(buf, "%#x\n", memdev->device_handle);
1434 }
1435 static DEVICE_ATTR_RO(handle);
1436 
1437 static ssize_t phys_id_show(struct device *dev,
1438 		struct device_attribute *attr, char *buf)
1439 {
1440 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1441 
1442 	return sprintf(buf, "%#x\n", memdev->physical_id);
1443 }
1444 static DEVICE_ATTR_RO(phys_id);
1445 
1446 static ssize_t vendor_show(struct device *dev,
1447 		struct device_attribute *attr, char *buf)
1448 {
1449 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1450 
1451 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1452 }
1453 static DEVICE_ATTR_RO(vendor);
1454 
1455 static ssize_t rev_id_show(struct device *dev,
1456 		struct device_attribute *attr, char *buf)
1457 {
1458 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1459 
1460 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1461 }
1462 static DEVICE_ATTR_RO(rev_id);
1463 
1464 static ssize_t device_show(struct device *dev,
1465 		struct device_attribute *attr, char *buf)
1466 {
1467 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1468 
1469 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1470 }
1471 static DEVICE_ATTR_RO(device);
1472 
1473 static ssize_t subsystem_vendor_show(struct device *dev,
1474 		struct device_attribute *attr, char *buf)
1475 {
1476 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1477 
1478 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1479 }
1480 static DEVICE_ATTR_RO(subsystem_vendor);
1481 
1482 static ssize_t subsystem_rev_id_show(struct device *dev,
1483 		struct device_attribute *attr, char *buf)
1484 {
1485 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1486 
1487 	return sprintf(buf, "0x%04x\n",
1488 			be16_to_cpu(dcr->subsystem_revision_id));
1489 }
1490 static DEVICE_ATTR_RO(subsystem_rev_id);
1491 
1492 static ssize_t subsystem_device_show(struct device *dev,
1493 		struct device_attribute *attr, char *buf)
1494 {
1495 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1496 
1497 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1498 }
1499 static DEVICE_ATTR_RO(subsystem_device);
1500 
1501 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1502 {
1503 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1504 	int formats = 0;
1505 
1506 	if (nfit_mem->memdev_pmem)
1507 		formats++;
1508 	if (nfit_mem->memdev_bdw)
1509 		formats++;
1510 	return formats;
1511 }
1512 
1513 static ssize_t format_show(struct device *dev,
1514 		struct device_attribute *attr, char *buf)
1515 {
1516 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1517 
1518 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1519 }
1520 static DEVICE_ATTR_RO(format);
1521 
1522 static ssize_t format1_show(struct device *dev,
1523 		struct device_attribute *attr, char *buf)
1524 {
1525 	u32 handle;
1526 	ssize_t rc = -ENXIO;
1527 	struct nfit_mem *nfit_mem;
1528 	struct nfit_memdev *nfit_memdev;
1529 	struct acpi_nfit_desc *acpi_desc;
1530 	struct nvdimm *nvdimm = to_nvdimm(dev);
1531 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1532 
1533 	nfit_mem = nvdimm_provider_data(nvdimm);
1534 	acpi_desc = nfit_mem->acpi_desc;
1535 	handle = to_nfit_memdev(dev)->device_handle;
1536 
1537 	/* assumes DIMMs have at most 2 published interface codes */
1538 	mutex_lock(&acpi_desc->init_mutex);
1539 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1540 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1541 		struct nfit_dcr *nfit_dcr;
1542 
1543 		if (memdev->device_handle != handle)
1544 			continue;
1545 
1546 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1547 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1548 				continue;
1549 			if (nfit_dcr->dcr->code == dcr->code)
1550 				continue;
1551 			rc = sprintf(buf, "0x%04x\n",
1552 					le16_to_cpu(nfit_dcr->dcr->code));
1553 			break;
1554 		}
1555 		if (rc != ENXIO)
1556 			break;
1557 	}
1558 	mutex_unlock(&acpi_desc->init_mutex);
1559 	return rc;
1560 }
1561 static DEVICE_ATTR_RO(format1);
1562 
1563 static ssize_t formats_show(struct device *dev,
1564 		struct device_attribute *attr, char *buf)
1565 {
1566 	struct nvdimm *nvdimm = to_nvdimm(dev);
1567 
1568 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1569 }
1570 static DEVICE_ATTR_RO(formats);
1571 
1572 static ssize_t serial_show(struct device *dev,
1573 		struct device_attribute *attr, char *buf)
1574 {
1575 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1576 
1577 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1578 }
1579 static DEVICE_ATTR_RO(serial);
1580 
1581 static ssize_t family_show(struct device *dev,
1582 		struct device_attribute *attr, char *buf)
1583 {
1584 	struct nvdimm *nvdimm = to_nvdimm(dev);
1585 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1586 
1587 	if (nfit_mem->family < 0)
1588 		return -ENXIO;
1589 	return sprintf(buf, "%d\n", nfit_mem->family);
1590 }
1591 static DEVICE_ATTR_RO(family);
1592 
1593 static ssize_t dsm_mask_show(struct device *dev,
1594 		struct device_attribute *attr, char *buf)
1595 {
1596 	struct nvdimm *nvdimm = to_nvdimm(dev);
1597 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1598 
1599 	if (nfit_mem->family < 0)
1600 		return -ENXIO;
1601 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1602 }
1603 static DEVICE_ATTR_RO(dsm_mask);
1604 
1605 static ssize_t flags_show(struct device *dev,
1606 		struct device_attribute *attr, char *buf)
1607 {
1608 	struct nvdimm *nvdimm = to_nvdimm(dev);
1609 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1610 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1611 
1612 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1613 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1614 
1615 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1616 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1617 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1618 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1619 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1620 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1621 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1622 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1623 }
1624 static DEVICE_ATTR_RO(flags);
1625 
1626 static ssize_t id_show(struct device *dev,
1627 		struct device_attribute *attr, char *buf)
1628 {
1629 	struct nvdimm *nvdimm = to_nvdimm(dev);
1630 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1631 
1632 	return sprintf(buf, "%s\n", nfit_mem->id);
1633 }
1634 static DEVICE_ATTR_RO(id);
1635 
1636 static ssize_t dirty_shutdown_show(struct device *dev,
1637 		struct device_attribute *attr, char *buf)
1638 {
1639 	struct nvdimm *nvdimm = to_nvdimm(dev);
1640 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1641 
1642 	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1643 }
1644 static DEVICE_ATTR_RO(dirty_shutdown);
1645 
1646 static struct attribute *acpi_nfit_dimm_attributes[] = {
1647 	&dev_attr_handle.attr,
1648 	&dev_attr_phys_id.attr,
1649 	&dev_attr_vendor.attr,
1650 	&dev_attr_device.attr,
1651 	&dev_attr_rev_id.attr,
1652 	&dev_attr_subsystem_vendor.attr,
1653 	&dev_attr_subsystem_device.attr,
1654 	&dev_attr_subsystem_rev_id.attr,
1655 	&dev_attr_format.attr,
1656 	&dev_attr_formats.attr,
1657 	&dev_attr_format1.attr,
1658 	&dev_attr_serial.attr,
1659 	&dev_attr_flags.attr,
1660 	&dev_attr_id.attr,
1661 	&dev_attr_family.attr,
1662 	&dev_attr_dsm_mask.attr,
1663 	&dev_attr_dirty_shutdown.attr,
1664 	NULL,
1665 };
1666 
1667 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1668 		struct attribute *a, int n)
1669 {
1670 	struct device *dev = container_of(kobj, struct device, kobj);
1671 	struct nvdimm *nvdimm = to_nvdimm(dev);
1672 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1673 
1674 	if (!to_nfit_dcr(dev)) {
1675 		/* Without a dcr only the memdev attributes can be surfaced */
1676 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1677 				|| a == &dev_attr_flags.attr
1678 				|| a == &dev_attr_family.attr
1679 				|| a == &dev_attr_dsm_mask.attr)
1680 			return a->mode;
1681 		return 0;
1682 	}
1683 
1684 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1685 		return 0;
1686 
1687 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1688 			&& a == &dev_attr_dirty_shutdown.attr)
1689 		return 0;
1690 
1691 	return a->mode;
1692 }
1693 
1694 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1695 	.name = "nfit",
1696 	.attrs = acpi_nfit_dimm_attributes,
1697 	.is_visible = acpi_nfit_dimm_attr_visible,
1698 };
1699 
1700 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1701 	&acpi_nfit_dimm_attribute_group,
1702 	NULL,
1703 };
1704 
1705 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1706 		u32 device_handle)
1707 {
1708 	struct nfit_mem *nfit_mem;
1709 
1710 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1711 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1712 			return nfit_mem->nvdimm;
1713 
1714 	return NULL;
1715 }
1716 
1717 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1718 {
1719 	struct nfit_mem *nfit_mem;
1720 	struct acpi_nfit_desc *acpi_desc;
1721 
1722 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1723 			event);
1724 
1725 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1726 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1727 				event);
1728 		return;
1729 	}
1730 
1731 	acpi_desc = dev_get_drvdata(dev->parent);
1732 	if (!acpi_desc)
1733 		return;
1734 
1735 	/*
1736 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1737 	 * is still valid.
1738 	 */
1739 	nfit_mem = dev_get_drvdata(dev);
1740 	if (nfit_mem && nfit_mem->flags_attr)
1741 		sysfs_notify_dirent(nfit_mem->flags_attr);
1742 }
1743 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1744 
1745 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1746 {
1747 	struct acpi_device *adev = data;
1748 	struct device *dev = &adev->dev;
1749 
1750 	nfit_device_lock(dev->parent);
1751 	__acpi_nvdimm_notify(dev, event);
1752 	nfit_device_unlock(dev->parent);
1753 }
1754 
1755 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1756 {
1757 	acpi_handle handle;
1758 	acpi_status status;
1759 
1760 	status = acpi_get_handle(adev->handle, method, &handle);
1761 
1762 	if (ACPI_SUCCESS(status))
1763 		return true;
1764 	return false;
1765 }
1766 
1767 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1768 {
1769 	struct device *dev = &nfit_mem->adev->dev;
1770 	struct nd_intel_smart smart = { 0 };
1771 	union acpi_object in_buf = {
1772 		.buffer.type = ACPI_TYPE_BUFFER,
1773 		.buffer.length = 0,
1774 	};
1775 	union acpi_object in_obj = {
1776 		.package.type = ACPI_TYPE_PACKAGE,
1777 		.package.count = 1,
1778 		.package.elements = &in_buf,
1779 	};
1780 	const u8 func = ND_INTEL_SMART;
1781 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1782 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1783 	struct acpi_device *adev = nfit_mem->adev;
1784 	acpi_handle handle = adev->handle;
1785 	union acpi_object *out_obj;
1786 
1787 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1788 		return;
1789 
1790 	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1791 	if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1792 			|| out_obj->buffer.length < sizeof(smart)) {
1793 		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1794 				dev_name(dev));
1795 		ACPI_FREE(out_obj);
1796 		return;
1797 	}
1798 	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1799 	ACPI_FREE(out_obj);
1800 
1801 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1802 		if (smart.shutdown_state)
1803 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1804 	}
1805 
1806 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1807 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1808 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1809 	}
1810 }
1811 
1812 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1813 {
1814 	/*
1815 	 * For DIMMs that provide a dynamic facility to retrieve a
1816 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1817 	 * these values in nfit_mem.
1818 	 */
1819 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1820 		nfit_intel_shutdown_status(nfit_mem);
1821 }
1822 
1823 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1824 		struct nfit_mem *nfit_mem, u32 device_handle)
1825 {
1826 	struct acpi_device *adev, *adev_dimm;
1827 	struct device *dev = acpi_desc->dev;
1828 	unsigned long dsm_mask, label_mask;
1829 	const guid_t *guid;
1830 	int i;
1831 	int family = -1;
1832 	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1833 
1834 	/* nfit test assumes 1:1 relationship between commands and dsms */
1835 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1836 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1837 
1838 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1839 		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1840 				be16_to_cpu(dcr->vendor_id),
1841 				dcr->manufacturing_location,
1842 				be16_to_cpu(dcr->manufacturing_date),
1843 				be32_to_cpu(dcr->serial_number));
1844 	else
1845 		sprintf(nfit_mem->id, "%04x-%08x",
1846 				be16_to_cpu(dcr->vendor_id),
1847 				be32_to_cpu(dcr->serial_number));
1848 
1849 	adev = to_acpi_dev(acpi_desc);
1850 	if (!adev) {
1851 		/* unit test case */
1852 		populate_shutdown_status(nfit_mem);
1853 		return 0;
1854 	}
1855 
1856 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1857 	nfit_mem->adev = adev_dimm;
1858 	if (!adev_dimm) {
1859 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1860 				device_handle);
1861 		return force_enable_dimms ? 0 : -ENODEV;
1862 	}
1863 
1864 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1865 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1866 		dev_err(dev, "%s: notification registration failed\n",
1867 				dev_name(&adev_dimm->dev));
1868 		return -ENXIO;
1869 	}
1870 	/*
1871 	 * Record nfit_mem for the notification path to track back to
1872 	 * the nfit sysfs attributes for this dimm device object.
1873 	 */
1874 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1875 
1876 	/*
1877 	 * There are 4 "legacy" NVDIMM command sets
1878 	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1879 	 * an EFI working group was established to constrain this
1880 	 * proliferation. The nfit driver probes for the supported command
1881 	 * set by GUID. Note, if you're a platform developer looking to add
1882 	 * a new command set to this probe, consider using an existing set,
1883 	 * or otherwise seek approval to publish the command set at
1884 	 * http://www.uefi.org/RFIC_LIST.
1885 	 *
1886 	 * Note, that checking for function0 (bit0) tells us if any commands
1887 	 * are reachable through this GUID.
1888 	 */
1889 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1890 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1891 			if (family < 0 || i == default_dsm_family)
1892 				family = i;
1893 
1894 	/* limit the supported commands to those that are publicly documented */
1895 	nfit_mem->family = family;
1896 	if (override_dsm_mask && !disable_vendor_specific)
1897 		dsm_mask = override_dsm_mask;
1898 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1899 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1900 		if (disable_vendor_specific)
1901 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1902 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1903 		dsm_mask = 0x1c3c76;
1904 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1905 		dsm_mask = 0x1fe;
1906 		if (disable_vendor_specific)
1907 			dsm_mask &= ~(1 << 8);
1908 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1909 		dsm_mask = 0xffffffff;
1910 	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1911 		dsm_mask = 0x1f;
1912 	} else {
1913 		dev_dbg(dev, "unknown dimm command family\n");
1914 		nfit_mem->family = -1;
1915 		/* DSMs are optional, continue loading the driver... */
1916 		return 0;
1917 	}
1918 
1919 	/*
1920 	 * Function 0 is the command interrogation function, don't
1921 	 * export it to potential userspace use, and enable it to be
1922 	 * used as an error value in acpi_nfit_ctl().
1923 	 */
1924 	dsm_mask &= ~1UL;
1925 
1926 	guid = to_nfit_uuid(nfit_mem->family);
1927 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1928 		if (acpi_check_dsm(adev_dimm->handle, guid,
1929 					nfit_dsm_revid(nfit_mem->family, i),
1930 					1ULL << i))
1931 			set_bit(i, &nfit_mem->dsm_mask);
1932 
1933 	/*
1934 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1935 	 * due to their better semantics handling locked capacity.
1936 	 */
1937 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1938 		| 1 << ND_CMD_SET_CONFIG_DATA;
1939 	if (family == NVDIMM_FAMILY_INTEL
1940 			&& (dsm_mask & label_mask) == label_mask)
1941 		/* skip _LS{I,R,W} enabling */;
1942 	else {
1943 		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1944 				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1945 			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1946 			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1947 		}
1948 
1949 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1950 				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1951 			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1952 			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1953 		}
1954 
1955 		/*
1956 		 * Quirk read-only label configurations to preserve
1957 		 * access to label-less namespaces by default.
1958 		 */
1959 		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1960 				&& !force_labels) {
1961 			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1962 					dev_name(&adev_dimm->dev));
1963 			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1964 		} else
1965 			dev_dbg(dev, "%s: Force enable labels\n",
1966 					dev_name(&adev_dimm->dev));
1967 	}
1968 
1969 	populate_shutdown_status(nfit_mem);
1970 
1971 	return 0;
1972 }
1973 
1974 static void shutdown_dimm_notify(void *data)
1975 {
1976 	struct acpi_nfit_desc *acpi_desc = data;
1977 	struct nfit_mem *nfit_mem;
1978 
1979 	mutex_lock(&acpi_desc->init_mutex);
1980 	/*
1981 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1982 	 * notifications.
1983 	 */
1984 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1985 		struct acpi_device *adev_dimm = nfit_mem->adev;
1986 
1987 		if (nfit_mem->flags_attr) {
1988 			sysfs_put(nfit_mem->flags_attr);
1989 			nfit_mem->flags_attr = NULL;
1990 		}
1991 		if (adev_dimm) {
1992 			acpi_remove_notify_handler(adev_dimm->handle,
1993 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1994 			dev_set_drvdata(&adev_dimm->dev, NULL);
1995 		}
1996 	}
1997 	mutex_unlock(&acpi_desc->init_mutex);
1998 }
1999 
2000 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
2001 {
2002 	switch (family) {
2003 	case NVDIMM_FAMILY_INTEL:
2004 		return intel_security_ops;
2005 	default:
2006 		return NULL;
2007 	}
2008 }
2009 
2010 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
2011 {
2012 	struct nfit_mem *nfit_mem;
2013 	int dimm_count = 0, rc;
2014 	struct nvdimm *nvdimm;
2015 
2016 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2017 		struct acpi_nfit_flush_address *flush;
2018 		unsigned long flags = 0, cmd_mask;
2019 		struct nfit_memdev *nfit_memdev;
2020 		u32 device_handle;
2021 		u16 mem_flags;
2022 
2023 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2024 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2025 		if (nvdimm) {
2026 			dimm_count++;
2027 			continue;
2028 		}
2029 
2030 		if (nfit_mem->bdw && nfit_mem->memdev_pmem) {
2031 			set_bit(NDD_ALIASING, &flags);
2032 			set_bit(NDD_LABELING, &flags);
2033 		}
2034 
2035 		/* collate flags across all memdevs for this dimm */
2036 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2037 			struct acpi_nfit_memory_map *dimm_memdev;
2038 
2039 			dimm_memdev = __to_nfit_memdev(nfit_mem);
2040 			if (dimm_memdev->device_handle
2041 					!= nfit_memdev->memdev->device_handle)
2042 				continue;
2043 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2044 		}
2045 
2046 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2047 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2048 			set_bit(NDD_UNARMED, &flags);
2049 
2050 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2051 		if (rc)
2052 			continue;
2053 
2054 		/*
2055 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2056 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2057 		 * userspace interface.
2058 		 */
2059 		cmd_mask = 1UL << ND_CMD_CALL;
2060 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2061 			/*
2062 			 * These commands have a 1:1 correspondence
2063 			 * between DSM payload and libnvdimm ioctl
2064 			 * payload format.
2065 			 */
2066 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2067 		}
2068 
2069 		/* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
2070 		if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
2071 			set_bit(NDD_NOBLK, &flags);
2072 
2073 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2074 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2075 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2076 		}
2077 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2078 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2079 
2080 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2081 			: NULL;
2082 		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2083 				acpi_nfit_dimm_attribute_groups,
2084 				flags, cmd_mask, flush ? flush->hint_count : 0,
2085 				nfit_mem->flush_wpq, &nfit_mem->id[0],
2086 				acpi_nfit_get_security_ops(nfit_mem->family));
2087 		if (!nvdimm)
2088 			return -ENOMEM;
2089 
2090 		nfit_mem->nvdimm = nvdimm;
2091 		dimm_count++;
2092 
2093 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2094 			continue;
2095 
2096 		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2097 				nvdimm_name(nvdimm),
2098 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2099 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2100 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2101 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2102 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2103 
2104 	}
2105 
2106 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2107 	if (rc)
2108 		return rc;
2109 
2110 	/*
2111 	 * Now that dimms are successfully registered, and async registration
2112 	 * is flushed, attempt to enable event notification.
2113 	 */
2114 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2115 		struct kernfs_node *nfit_kernfs;
2116 
2117 		nvdimm = nfit_mem->nvdimm;
2118 		if (!nvdimm)
2119 			continue;
2120 
2121 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2122 		if (nfit_kernfs)
2123 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2124 					"flags");
2125 		sysfs_put(nfit_kernfs);
2126 		if (!nfit_mem->flags_attr)
2127 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2128 					nvdimm_name(nvdimm));
2129 	}
2130 
2131 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2132 			acpi_desc);
2133 }
2134 
2135 /*
2136  * These constants are private because there are no kernel consumers of
2137  * these commands.
2138  */
2139 enum nfit_aux_cmds {
2140         NFIT_CMD_TRANSLATE_SPA = 5,
2141         NFIT_CMD_ARS_INJECT_SET = 7,
2142         NFIT_CMD_ARS_INJECT_CLEAR = 8,
2143         NFIT_CMD_ARS_INJECT_GET = 9,
2144 };
2145 
2146 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2147 {
2148 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2149 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2150 	struct acpi_device *adev;
2151 	unsigned long dsm_mask;
2152 	int i;
2153 
2154 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2155 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
2156 	adev = to_acpi_dev(acpi_desc);
2157 	if (!adev)
2158 		return;
2159 
2160 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2161 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2162 			set_bit(i, &nd_desc->cmd_mask);
2163 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2164 
2165 	dsm_mask =
2166 		(1 << ND_CMD_ARS_CAP) |
2167 		(1 << ND_CMD_ARS_START) |
2168 		(1 << ND_CMD_ARS_STATUS) |
2169 		(1 << ND_CMD_CLEAR_ERROR) |
2170 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2171 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2172 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2173 		(1 << NFIT_CMD_ARS_INJECT_GET);
2174 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2175 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2176 			set_bit(i, &nd_desc->bus_dsm_mask);
2177 }
2178 
2179 static ssize_t range_index_show(struct device *dev,
2180 		struct device_attribute *attr, char *buf)
2181 {
2182 	struct nd_region *nd_region = to_nd_region(dev);
2183 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2184 
2185 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2186 }
2187 static DEVICE_ATTR_RO(range_index);
2188 
2189 static struct attribute *acpi_nfit_region_attributes[] = {
2190 	&dev_attr_range_index.attr,
2191 	NULL,
2192 };
2193 
2194 static const struct attribute_group acpi_nfit_region_attribute_group = {
2195 	.name = "nfit",
2196 	.attrs = acpi_nfit_region_attributes,
2197 };
2198 
2199 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2200 	&acpi_nfit_region_attribute_group,
2201 	NULL,
2202 };
2203 
2204 /* enough info to uniquely specify an interleave set */
2205 struct nfit_set_info {
2206 	struct nfit_set_info_map {
2207 		u64 region_offset;
2208 		u32 serial_number;
2209 		u32 pad;
2210 	} mapping[0];
2211 };
2212 
2213 struct nfit_set_info2 {
2214 	struct nfit_set_info_map2 {
2215 		u64 region_offset;
2216 		u32 serial_number;
2217 		u16 vendor_id;
2218 		u16 manufacturing_date;
2219 		u8  manufacturing_location;
2220 		u8  reserved[31];
2221 	} mapping[0];
2222 };
2223 
2224 static size_t sizeof_nfit_set_info(int num_mappings)
2225 {
2226 	return sizeof(struct nfit_set_info)
2227 		+ num_mappings * sizeof(struct nfit_set_info_map);
2228 }
2229 
2230 static size_t sizeof_nfit_set_info2(int num_mappings)
2231 {
2232 	return sizeof(struct nfit_set_info2)
2233 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2234 }
2235 
2236 static int cmp_map_compat(const void *m0, const void *m1)
2237 {
2238 	const struct nfit_set_info_map *map0 = m0;
2239 	const struct nfit_set_info_map *map1 = m1;
2240 
2241 	return memcmp(&map0->region_offset, &map1->region_offset,
2242 			sizeof(u64));
2243 }
2244 
2245 static int cmp_map(const void *m0, const void *m1)
2246 {
2247 	const struct nfit_set_info_map *map0 = m0;
2248 	const struct nfit_set_info_map *map1 = m1;
2249 
2250 	if (map0->region_offset < map1->region_offset)
2251 		return -1;
2252 	else if (map0->region_offset > map1->region_offset)
2253 		return 1;
2254 	return 0;
2255 }
2256 
2257 static int cmp_map2(const void *m0, const void *m1)
2258 {
2259 	const struct nfit_set_info_map2 *map0 = m0;
2260 	const struct nfit_set_info_map2 *map1 = m1;
2261 
2262 	if (map0->region_offset < map1->region_offset)
2263 		return -1;
2264 	else if (map0->region_offset > map1->region_offset)
2265 		return 1;
2266 	return 0;
2267 }
2268 
2269 /* Retrieve the nth entry referencing this spa */
2270 static struct acpi_nfit_memory_map *memdev_from_spa(
2271 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2272 {
2273 	struct nfit_memdev *nfit_memdev;
2274 
2275 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2276 		if (nfit_memdev->memdev->range_index == range_index)
2277 			if (n-- == 0)
2278 				return nfit_memdev->memdev;
2279 	return NULL;
2280 }
2281 
2282 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2283 		struct nd_region_desc *ndr_desc,
2284 		struct acpi_nfit_system_address *spa)
2285 {
2286 	struct device *dev = acpi_desc->dev;
2287 	struct nd_interleave_set *nd_set;
2288 	u16 nr = ndr_desc->num_mappings;
2289 	struct nfit_set_info2 *info2;
2290 	struct nfit_set_info *info;
2291 	int i;
2292 
2293 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2294 	if (!nd_set)
2295 		return -ENOMEM;
2296 	import_guid(&nd_set->type_guid, spa->range_guid);
2297 
2298 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2299 	if (!info)
2300 		return -ENOMEM;
2301 
2302 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2303 	if (!info2)
2304 		return -ENOMEM;
2305 
2306 	for (i = 0; i < nr; i++) {
2307 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2308 		struct nfit_set_info_map *map = &info->mapping[i];
2309 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2310 		struct nvdimm *nvdimm = mapping->nvdimm;
2311 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2312 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2313 				spa->range_index, i);
2314 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2315 
2316 		if (!memdev || !nfit_mem->dcr) {
2317 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2318 			return -ENODEV;
2319 		}
2320 
2321 		map->region_offset = memdev->region_offset;
2322 		map->serial_number = dcr->serial_number;
2323 
2324 		map2->region_offset = memdev->region_offset;
2325 		map2->serial_number = dcr->serial_number;
2326 		map2->vendor_id = dcr->vendor_id;
2327 		map2->manufacturing_date = dcr->manufacturing_date;
2328 		map2->manufacturing_location = dcr->manufacturing_location;
2329 	}
2330 
2331 	/* v1.1 namespaces */
2332 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2333 			cmp_map, NULL);
2334 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2335 
2336 	/* v1.2 namespaces */
2337 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2338 			cmp_map2, NULL);
2339 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2340 
2341 	/* support v1.1 namespaces created with the wrong sort order */
2342 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2343 			cmp_map_compat, NULL);
2344 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2345 
2346 	/* record the result of the sort for the mapping position */
2347 	for (i = 0; i < nr; i++) {
2348 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2349 		int j;
2350 
2351 		for (j = 0; j < nr; j++) {
2352 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2353 			struct nvdimm *nvdimm = mapping->nvdimm;
2354 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2355 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2356 
2357 			if (map2->serial_number == dcr->serial_number &&
2358 			    map2->vendor_id == dcr->vendor_id &&
2359 			    map2->manufacturing_date == dcr->manufacturing_date &&
2360 			    map2->manufacturing_location
2361 				    == dcr->manufacturing_location) {
2362 				mapping->position = i;
2363 				break;
2364 			}
2365 		}
2366 	}
2367 
2368 	ndr_desc->nd_set = nd_set;
2369 	devm_kfree(dev, info);
2370 	devm_kfree(dev, info2);
2371 
2372 	return 0;
2373 }
2374 
2375 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2376 {
2377 	struct acpi_nfit_interleave *idt = mmio->idt;
2378 	u32 sub_line_offset, line_index, line_offset;
2379 	u64 line_no, table_skip_count, table_offset;
2380 
2381 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2382 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2383 	line_offset = idt->line_offset[line_index]
2384 		* mmio->line_size;
2385 	table_offset = table_skip_count * mmio->table_size;
2386 
2387 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2388 }
2389 
2390 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2391 {
2392 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2393 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2394 	const u32 STATUS_MASK = 0x80000037;
2395 
2396 	if (mmio->num_lines)
2397 		offset = to_interleave_offset(offset, mmio);
2398 
2399 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2400 }
2401 
2402 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2403 		resource_size_t dpa, unsigned int len, unsigned int write)
2404 {
2405 	u64 cmd, offset;
2406 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2407 
2408 	enum {
2409 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2410 		BCW_LEN_SHIFT = 48,
2411 		BCW_LEN_MASK = (1ULL << 8) - 1,
2412 		BCW_CMD_SHIFT = 56,
2413 	};
2414 
2415 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2416 	len = len >> L1_CACHE_SHIFT;
2417 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2418 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2419 
2420 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2421 	if (mmio->num_lines)
2422 		offset = to_interleave_offset(offset, mmio);
2423 
2424 	writeq(cmd, mmio->addr.base + offset);
2425 	nvdimm_flush(nfit_blk->nd_region, NULL);
2426 
2427 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2428 		readq(mmio->addr.base + offset);
2429 }
2430 
2431 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2432 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2433 		unsigned int lane)
2434 {
2435 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2436 	unsigned int copied = 0;
2437 	u64 base_offset;
2438 	int rc;
2439 
2440 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2441 		+ lane * mmio->size;
2442 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2443 	while (len) {
2444 		unsigned int c;
2445 		u64 offset;
2446 
2447 		if (mmio->num_lines) {
2448 			u32 line_offset;
2449 
2450 			offset = to_interleave_offset(base_offset + copied,
2451 					mmio);
2452 			div_u64_rem(offset, mmio->line_size, &line_offset);
2453 			c = min_t(size_t, len, mmio->line_size - line_offset);
2454 		} else {
2455 			offset = base_offset + nfit_blk->bdw_offset;
2456 			c = len;
2457 		}
2458 
2459 		if (rw)
2460 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2461 		else {
2462 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2463 				arch_invalidate_pmem((void __force *)
2464 					mmio->addr.aperture + offset, c);
2465 
2466 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2467 		}
2468 
2469 		copied += c;
2470 		len -= c;
2471 	}
2472 
2473 	if (rw)
2474 		nvdimm_flush(nfit_blk->nd_region, NULL);
2475 
2476 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2477 	return rc;
2478 }
2479 
2480 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2481 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2482 {
2483 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2484 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2485 	struct nd_region *nd_region = nfit_blk->nd_region;
2486 	unsigned int lane, copied = 0;
2487 	int rc = 0;
2488 
2489 	lane = nd_region_acquire_lane(nd_region);
2490 	while (len) {
2491 		u64 c = min(len, mmio->size);
2492 
2493 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2494 				iobuf + copied, c, rw, lane);
2495 		if (rc)
2496 			break;
2497 
2498 		copied += c;
2499 		len -= c;
2500 	}
2501 	nd_region_release_lane(nd_region, lane);
2502 
2503 	return rc;
2504 }
2505 
2506 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2507 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2508 {
2509 	if (idt) {
2510 		mmio->num_lines = idt->line_count;
2511 		mmio->line_size = idt->line_size;
2512 		if (interleave_ways == 0)
2513 			return -ENXIO;
2514 		mmio->table_size = mmio->num_lines * interleave_ways
2515 			* mmio->line_size;
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2522 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2523 {
2524 	struct nd_cmd_dimm_flags flags;
2525 	int rc;
2526 
2527 	memset(&flags, 0, sizeof(flags));
2528 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2529 			sizeof(flags), NULL);
2530 
2531 	if (rc >= 0 && flags.status == 0)
2532 		nfit_blk->dimm_flags = flags.flags;
2533 	else if (rc == -ENOTTY) {
2534 		/* fall back to a conservative default */
2535 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2536 		rc = 0;
2537 	} else
2538 		rc = -ENXIO;
2539 
2540 	return rc;
2541 }
2542 
2543 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2544 		struct device *dev)
2545 {
2546 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2547 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2548 	struct nfit_blk_mmio *mmio;
2549 	struct nfit_blk *nfit_blk;
2550 	struct nfit_mem *nfit_mem;
2551 	struct nvdimm *nvdimm;
2552 	int rc;
2553 
2554 	nvdimm = nd_blk_region_to_dimm(ndbr);
2555 	nfit_mem = nvdimm_provider_data(nvdimm);
2556 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2557 		dev_dbg(dev, "missing%s%s%s\n",
2558 				nfit_mem ? "" : " nfit_mem",
2559 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2560 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2561 		return -ENXIO;
2562 	}
2563 
2564 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2565 	if (!nfit_blk)
2566 		return -ENOMEM;
2567 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2568 	nfit_blk->nd_region = to_nd_region(dev);
2569 
2570 	/* map block aperture memory */
2571 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2572 	mmio = &nfit_blk->mmio[BDW];
2573 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2574                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2575 	if (!mmio->addr.base) {
2576 		dev_dbg(dev, "%s failed to map bdw\n",
2577 				nvdimm_name(nvdimm));
2578 		return -ENOMEM;
2579 	}
2580 	mmio->size = nfit_mem->bdw->size;
2581 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2582 	mmio->idt = nfit_mem->idt_bdw;
2583 	mmio->spa = nfit_mem->spa_bdw;
2584 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2585 			nfit_mem->memdev_bdw->interleave_ways);
2586 	if (rc) {
2587 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2588 				nvdimm_name(nvdimm));
2589 		return rc;
2590 	}
2591 
2592 	/* map block control memory */
2593 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2594 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2595 	mmio = &nfit_blk->mmio[DCR];
2596 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2597 			nfit_mem->spa_dcr->length);
2598 	if (!mmio->addr.base) {
2599 		dev_dbg(dev, "%s failed to map dcr\n",
2600 				nvdimm_name(nvdimm));
2601 		return -ENOMEM;
2602 	}
2603 	mmio->size = nfit_mem->dcr->window_size;
2604 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2605 	mmio->idt = nfit_mem->idt_dcr;
2606 	mmio->spa = nfit_mem->spa_dcr;
2607 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2608 			nfit_mem->memdev_dcr->interleave_ways);
2609 	if (rc) {
2610 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2611 				nvdimm_name(nvdimm));
2612 		return rc;
2613 	}
2614 
2615 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2616 	if (rc < 0) {
2617 		dev_dbg(dev, "%s failed get DIMM flags\n",
2618 				nvdimm_name(nvdimm));
2619 		return rc;
2620 	}
2621 
2622 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2623 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2624 
2625 	if (mmio->line_size == 0)
2626 		return 0;
2627 
2628 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2629 			+ 8 > mmio->line_size) {
2630 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2631 		return -ENXIO;
2632 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2633 			+ 8 > mmio->line_size) {
2634 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2635 		return -ENXIO;
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2642 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2643 {
2644 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2645 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2646 	int cmd_rc, rc;
2647 
2648 	cmd->address = spa->address;
2649 	cmd->length = spa->length;
2650 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2651 			sizeof(*cmd), &cmd_rc);
2652 	if (rc < 0)
2653 		return rc;
2654 	return cmd_rc;
2655 }
2656 
2657 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2658 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2659 {
2660 	int rc;
2661 	int cmd_rc;
2662 	struct nd_cmd_ars_start ars_start;
2663 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2664 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2665 
2666 	memset(&ars_start, 0, sizeof(ars_start));
2667 	ars_start.address = spa->address;
2668 	ars_start.length = spa->length;
2669 	if (req_type == ARS_REQ_SHORT)
2670 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2671 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2672 		ars_start.type = ND_ARS_PERSISTENT;
2673 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2674 		ars_start.type = ND_ARS_VOLATILE;
2675 	else
2676 		return -ENOTTY;
2677 
2678 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2679 			sizeof(ars_start), &cmd_rc);
2680 
2681 	if (rc < 0)
2682 		return rc;
2683 	if (cmd_rc < 0)
2684 		return cmd_rc;
2685 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2686 	return 0;
2687 }
2688 
2689 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2690 {
2691 	int rc, cmd_rc;
2692 	struct nd_cmd_ars_start ars_start;
2693 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2694 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2695 
2696 	ars_start = (struct nd_cmd_ars_start) {
2697 		.address = ars_status->restart_address,
2698 		.length = ars_status->restart_length,
2699 		.type = ars_status->type,
2700 	};
2701 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2702 			sizeof(ars_start), &cmd_rc);
2703 	if (rc < 0)
2704 		return rc;
2705 	return cmd_rc;
2706 }
2707 
2708 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2709 {
2710 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2711 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2712 	int rc, cmd_rc;
2713 
2714 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2715 			acpi_desc->max_ars, &cmd_rc);
2716 	if (rc < 0)
2717 		return rc;
2718 	return cmd_rc;
2719 }
2720 
2721 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2722 		struct nfit_spa *nfit_spa)
2723 {
2724 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2725 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2726 	struct nd_region *nd_region = nfit_spa->nd_region;
2727 	struct device *dev;
2728 
2729 	lockdep_assert_held(&acpi_desc->init_mutex);
2730 	/*
2731 	 * Only advance the ARS state for ARS runs initiated by the
2732 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2733 	 * completion tracking.
2734 	 */
2735 	if (acpi_desc->scrub_spa != nfit_spa)
2736 		return;
2737 
2738 	if ((ars_status->address >= spa->address && ars_status->address
2739 				< spa->address + spa->length)
2740 			|| (ars_status->address < spa->address)) {
2741 		/*
2742 		 * Assume that if a scrub starts at an offset from the
2743 		 * start of nfit_spa that we are in the continuation
2744 		 * case.
2745 		 *
2746 		 * Otherwise, if the scrub covers the spa range, mark
2747 		 * any pending request complete.
2748 		 */
2749 		if (ars_status->address + ars_status->length
2750 				>= spa->address + spa->length)
2751 				/* complete */;
2752 		else
2753 			return;
2754 	} else
2755 		return;
2756 
2757 	acpi_desc->scrub_spa = NULL;
2758 	if (nd_region) {
2759 		dev = nd_region_dev(nd_region);
2760 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2761 	} else
2762 		dev = acpi_desc->dev;
2763 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2764 }
2765 
2766 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2767 {
2768 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2769 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2770 	int rc;
2771 	u32 i;
2772 
2773 	/*
2774 	 * First record starts at 44 byte offset from the start of the
2775 	 * payload.
2776 	 */
2777 	if (ars_status->out_length < 44)
2778 		return 0;
2779 
2780 	/*
2781 	 * Ignore potentially stale results that are only refreshed
2782 	 * after a start-ARS event.
2783 	 */
2784 	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2785 		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2786 				ars_status->num_records);
2787 		return 0;
2788 	}
2789 
2790 	for (i = 0; i < ars_status->num_records; i++) {
2791 		/* only process full records */
2792 		if (ars_status->out_length
2793 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2794 			break;
2795 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2796 				ars_status->records[i].err_address,
2797 				ars_status->records[i].length);
2798 		if (rc)
2799 			return rc;
2800 	}
2801 	if (i < ars_status->num_records)
2802 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2803 
2804 	return 0;
2805 }
2806 
2807 static void acpi_nfit_remove_resource(void *data)
2808 {
2809 	struct resource *res = data;
2810 
2811 	remove_resource(res);
2812 }
2813 
2814 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2815 		struct nd_region_desc *ndr_desc)
2816 {
2817 	struct resource *res, *nd_res = ndr_desc->res;
2818 	int is_pmem, ret;
2819 
2820 	/* No operation if the region is already registered as PMEM */
2821 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2822 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2823 	if (is_pmem == REGION_INTERSECTS)
2824 		return 0;
2825 
2826 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2827 	if (!res)
2828 		return -ENOMEM;
2829 
2830 	res->name = "Persistent Memory";
2831 	res->start = nd_res->start;
2832 	res->end = nd_res->end;
2833 	res->flags = IORESOURCE_MEM;
2834 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2835 
2836 	ret = insert_resource(&iomem_resource, res);
2837 	if (ret)
2838 		return ret;
2839 
2840 	ret = devm_add_action_or_reset(acpi_desc->dev,
2841 					acpi_nfit_remove_resource,
2842 					res);
2843 	if (ret)
2844 		return ret;
2845 
2846 	return 0;
2847 }
2848 
2849 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2850 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2851 		struct acpi_nfit_memory_map *memdev,
2852 		struct nfit_spa *nfit_spa)
2853 {
2854 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2855 			memdev->device_handle);
2856 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2857 	struct nd_blk_region_desc *ndbr_desc;
2858 	struct nfit_mem *nfit_mem;
2859 	int rc;
2860 
2861 	if (!nvdimm) {
2862 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2863 				spa->range_index, memdev->device_handle);
2864 		return -ENODEV;
2865 	}
2866 
2867 	mapping->nvdimm = nvdimm;
2868 	switch (nfit_spa_type(spa)) {
2869 	case NFIT_SPA_PM:
2870 	case NFIT_SPA_VOLATILE:
2871 		mapping->start = memdev->address;
2872 		mapping->size = memdev->region_size;
2873 		break;
2874 	case NFIT_SPA_DCR:
2875 		nfit_mem = nvdimm_provider_data(nvdimm);
2876 		if (!nfit_mem || !nfit_mem->bdw) {
2877 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2878 					spa->range_index, nvdimm_name(nvdimm));
2879 			break;
2880 		}
2881 
2882 		mapping->size = nfit_mem->bdw->capacity;
2883 		mapping->start = nfit_mem->bdw->start_address;
2884 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2885 		ndr_desc->mapping = mapping;
2886 		ndr_desc->num_mappings = 1;
2887 		ndbr_desc = to_blk_region_desc(ndr_desc);
2888 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2889 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2890 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2891 		if (rc)
2892 			return rc;
2893 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2894 				ndr_desc);
2895 		if (!nfit_spa->nd_region)
2896 			return -ENOMEM;
2897 		break;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2904 {
2905 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2906 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2907 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2908 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2909 }
2910 
2911 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2912 {
2913 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2914 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2915 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2916 }
2917 
2918 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2919 		struct nfit_spa *nfit_spa)
2920 {
2921 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2922 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2923 	struct nd_blk_region_desc ndbr_desc;
2924 	struct nd_region_desc *ndr_desc;
2925 	struct nfit_memdev *nfit_memdev;
2926 	struct nvdimm_bus *nvdimm_bus;
2927 	struct resource res;
2928 	int count = 0, rc;
2929 
2930 	if (nfit_spa->nd_region)
2931 		return 0;
2932 
2933 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2934 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2935 		return 0;
2936 	}
2937 
2938 	memset(&res, 0, sizeof(res));
2939 	memset(&mappings, 0, sizeof(mappings));
2940 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2941 	res.start = spa->address;
2942 	res.end = res.start + spa->length - 1;
2943 	ndr_desc = &ndbr_desc.ndr_desc;
2944 	ndr_desc->res = &res;
2945 	ndr_desc->provider_data = nfit_spa;
2946 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2947 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2948 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2949 						spa->proximity_domain);
2950 		ndr_desc->target_node = acpi_map_pxm_to_node(
2951 				spa->proximity_domain);
2952 	} else {
2953 		ndr_desc->numa_node = NUMA_NO_NODE;
2954 		ndr_desc->target_node = NUMA_NO_NODE;
2955 	}
2956 
2957 	/*
2958 	 * Persistence domain bits are hierarchical, if
2959 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2960 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2961 	 */
2962 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2963 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2964 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2965 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2966 
2967 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2968 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2969 		struct nd_mapping_desc *mapping;
2970 
2971 		if (memdev->range_index != spa->range_index)
2972 			continue;
2973 		if (count >= ND_MAX_MAPPINGS) {
2974 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2975 					spa->range_index, ND_MAX_MAPPINGS);
2976 			return -ENXIO;
2977 		}
2978 		mapping = &mappings[count++];
2979 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2980 				memdev, nfit_spa);
2981 		if (rc)
2982 			goto out;
2983 	}
2984 
2985 	ndr_desc->mapping = mappings;
2986 	ndr_desc->num_mappings = count;
2987 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2988 	if (rc)
2989 		goto out;
2990 
2991 	nvdimm_bus = acpi_desc->nvdimm_bus;
2992 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2993 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2994 		if (rc) {
2995 			dev_warn(acpi_desc->dev,
2996 				"failed to insert pmem resource to iomem: %d\n",
2997 				rc);
2998 			goto out;
2999 		}
3000 
3001 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3002 				ndr_desc);
3003 		if (!nfit_spa->nd_region)
3004 			rc = -ENOMEM;
3005 	} else if (nfit_spa_is_volatile(spa)) {
3006 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
3007 				ndr_desc);
3008 		if (!nfit_spa->nd_region)
3009 			rc = -ENOMEM;
3010 	} else if (nfit_spa_is_virtual(spa)) {
3011 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3012 				ndr_desc);
3013 		if (!nfit_spa->nd_region)
3014 			rc = -ENOMEM;
3015 	}
3016 
3017  out:
3018 	if (rc)
3019 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
3020 				nfit_spa->spa->range_index);
3021 	return rc;
3022 }
3023 
3024 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
3025 {
3026 	struct device *dev = acpi_desc->dev;
3027 	struct nd_cmd_ars_status *ars_status;
3028 
3029 	if (acpi_desc->ars_status) {
3030 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3031 		return 0;
3032 	}
3033 
3034 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
3035 	if (!ars_status)
3036 		return -ENOMEM;
3037 	acpi_desc->ars_status = ars_status;
3038 	return 0;
3039 }
3040 
3041 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
3042 {
3043 	int rc;
3044 
3045 	if (ars_status_alloc(acpi_desc))
3046 		return -ENOMEM;
3047 
3048 	rc = ars_get_status(acpi_desc);
3049 
3050 	if (rc < 0 && rc != -ENOSPC)
3051 		return rc;
3052 
3053 	if (ars_status_process_records(acpi_desc))
3054 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
3055 
3056 	return rc;
3057 }
3058 
3059 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3060 		struct nfit_spa *nfit_spa)
3061 {
3062 	int rc;
3063 
3064 	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3065 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
3066 
3067 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3068 	if (!no_init_ars)
3069 		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3070 
3071 	switch (acpi_nfit_query_poison(acpi_desc)) {
3072 	case 0:
3073 	case -ENOSPC:
3074 	case -EAGAIN:
3075 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3076 		/* shouldn't happen, try again later */
3077 		if (rc == -EBUSY)
3078 			break;
3079 		if (rc) {
3080 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
3081 			break;
3082 		}
3083 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3084 		rc = acpi_nfit_query_poison(acpi_desc);
3085 		if (rc)
3086 			break;
3087 		acpi_desc->scrub_spa = nfit_spa;
3088 		ars_complete(acpi_desc, nfit_spa);
3089 		/*
3090 		 * If ars_complete() says we didn't complete the
3091 		 * short scrub, we'll try again with a long
3092 		 * request.
3093 		 */
3094 		acpi_desc->scrub_spa = NULL;
3095 		break;
3096 	case -EBUSY:
3097 	case -ENOMEM:
3098 		/*
3099 		 * BIOS was using ARS, wait for it to complete (or
3100 		 * resources to become available) and then perform our
3101 		 * own scrubs.
3102 		 */
3103 		break;
3104 	default:
3105 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3106 		break;
3107 	}
3108 
3109 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
3110 }
3111 
3112 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3113 {
3114 	struct nfit_spa *nfit_spa;
3115 
3116 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3117 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3118 			continue;
3119 		ars_complete(acpi_desc, nfit_spa);
3120 	}
3121 }
3122 
3123 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3124 		int query_rc)
3125 {
3126 	unsigned int tmo = acpi_desc->scrub_tmo;
3127 	struct device *dev = acpi_desc->dev;
3128 	struct nfit_spa *nfit_spa;
3129 
3130 	lockdep_assert_held(&acpi_desc->init_mutex);
3131 
3132 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
3133 		return 0;
3134 
3135 	if (query_rc == -EBUSY) {
3136 		dev_dbg(dev, "ARS: ARS busy\n");
3137 		return min(30U * 60U, tmo * 2);
3138 	}
3139 	if (query_rc == -ENOSPC) {
3140 		dev_dbg(dev, "ARS: ARS continue\n");
3141 		ars_continue(acpi_desc);
3142 		return 1;
3143 	}
3144 	if (query_rc && query_rc != -EAGAIN) {
3145 		unsigned long long addr, end;
3146 
3147 		addr = acpi_desc->ars_status->address;
3148 		end = addr + acpi_desc->ars_status->length;
3149 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3150 				query_rc);
3151 	}
3152 
3153 	ars_complete_all(acpi_desc);
3154 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3155 		enum nfit_ars_state req_type;
3156 		int rc;
3157 
3158 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3159 			continue;
3160 
3161 		/* prefer short ARS requests first */
3162 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3163 			req_type = ARS_REQ_SHORT;
3164 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3165 			req_type = ARS_REQ_LONG;
3166 		else
3167 			continue;
3168 		rc = ars_start(acpi_desc, nfit_spa, req_type);
3169 
3170 		dev = nd_region_dev(nfit_spa->nd_region);
3171 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3172 				nfit_spa->spa->range_index,
3173 				req_type == ARS_REQ_SHORT ? "short" : "long",
3174 				rc);
3175 		/*
3176 		 * Hmm, we raced someone else starting ARS? Try again in
3177 		 * a bit.
3178 		 */
3179 		if (rc == -EBUSY)
3180 			return 1;
3181 		if (rc == 0) {
3182 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3183 					"scrub start while range %d active\n",
3184 					acpi_desc->scrub_spa->spa->range_index);
3185 			clear_bit(req_type, &nfit_spa->ars_state);
3186 			acpi_desc->scrub_spa = nfit_spa;
3187 			/*
3188 			 * Consider this spa last for future scrub
3189 			 * requests
3190 			 */
3191 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3192 			return 1;
3193 		}
3194 
3195 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3196 				nfit_spa->spa->range_index, rc);
3197 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3198 	}
3199 	return 0;
3200 }
3201 
3202 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3203 {
3204 	lockdep_assert_held(&acpi_desc->init_mutex);
3205 
3206 	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3207 	/* note this should only be set from within the workqueue */
3208 	if (tmo)
3209 		acpi_desc->scrub_tmo = tmo;
3210 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3211 }
3212 
3213 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3214 {
3215 	__sched_ars(acpi_desc, 0);
3216 }
3217 
3218 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3219 {
3220 	lockdep_assert_held(&acpi_desc->init_mutex);
3221 
3222 	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3223 	acpi_desc->scrub_count++;
3224 	if (acpi_desc->scrub_count_state)
3225 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3226 }
3227 
3228 static void acpi_nfit_scrub(struct work_struct *work)
3229 {
3230 	struct acpi_nfit_desc *acpi_desc;
3231 	unsigned int tmo;
3232 	int query_rc;
3233 
3234 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3235 	mutex_lock(&acpi_desc->init_mutex);
3236 	query_rc = acpi_nfit_query_poison(acpi_desc);
3237 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3238 	if (tmo)
3239 		__sched_ars(acpi_desc, tmo);
3240 	else
3241 		notify_ars_done(acpi_desc);
3242 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3243 	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3244 	mutex_unlock(&acpi_desc->init_mutex);
3245 }
3246 
3247 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3248 		struct nfit_spa *nfit_spa)
3249 {
3250 	int type = nfit_spa_type(nfit_spa->spa);
3251 	struct nd_cmd_ars_cap ars_cap;
3252 	int rc;
3253 
3254 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
3255 	memset(&ars_cap, 0, sizeof(ars_cap));
3256 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3257 	if (rc < 0)
3258 		return;
3259 	/* check that the supported scrub types match the spa type */
3260 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3261 				& ND_ARS_VOLATILE) == 0)
3262 		return;
3263 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3264 				& ND_ARS_PERSISTENT) == 0)
3265 		return;
3266 
3267 	nfit_spa->max_ars = ars_cap.max_ars_out;
3268 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3269 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3270 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3271 }
3272 
3273 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3274 {
3275 	struct nfit_spa *nfit_spa;
3276 	int rc;
3277 
3278 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3279 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3280 		switch (nfit_spa_type(nfit_spa->spa)) {
3281 		case NFIT_SPA_VOLATILE:
3282 		case NFIT_SPA_PM:
3283 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3284 			break;
3285 		}
3286 	}
3287 
3288 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3289 		switch (nfit_spa_type(nfit_spa->spa)) {
3290 		case NFIT_SPA_VOLATILE:
3291 		case NFIT_SPA_PM:
3292 			/* register regions and kick off initial ARS run */
3293 			rc = ars_register(acpi_desc, nfit_spa);
3294 			if (rc)
3295 				return rc;
3296 			break;
3297 		case NFIT_SPA_BDW:
3298 			/* nothing to register */
3299 			break;
3300 		case NFIT_SPA_DCR:
3301 		case NFIT_SPA_VDISK:
3302 		case NFIT_SPA_VCD:
3303 		case NFIT_SPA_PDISK:
3304 		case NFIT_SPA_PCD:
3305 			/* register known regions that don't support ARS */
3306 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3307 			if (rc)
3308 				return rc;
3309 			break;
3310 		default:
3311 			/* don't register unknown regions */
3312 			break;
3313 		}
3314 
3315 	sched_ars(acpi_desc);
3316 	return 0;
3317 }
3318 
3319 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3320 		struct nfit_table_prev *prev)
3321 {
3322 	struct device *dev = acpi_desc->dev;
3323 
3324 	if (!list_empty(&prev->spas) ||
3325 			!list_empty(&prev->memdevs) ||
3326 			!list_empty(&prev->dcrs) ||
3327 			!list_empty(&prev->bdws) ||
3328 			!list_empty(&prev->idts) ||
3329 			!list_empty(&prev->flushes)) {
3330 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3331 		return -ENXIO;
3332 	}
3333 	return 0;
3334 }
3335 
3336 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3337 {
3338 	struct device *dev = acpi_desc->dev;
3339 	struct kernfs_node *nfit;
3340 	struct device *bus_dev;
3341 
3342 	if (!ars_supported(acpi_desc->nvdimm_bus))
3343 		return 0;
3344 
3345 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3346 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3347 	if (!nfit) {
3348 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3349 		return -ENODEV;
3350 	}
3351 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3352 	sysfs_put(nfit);
3353 	if (!acpi_desc->scrub_count_state) {
3354 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3355 		return -ENODEV;
3356 	}
3357 
3358 	return 0;
3359 }
3360 
3361 static void acpi_nfit_unregister(void *data)
3362 {
3363 	struct acpi_nfit_desc *acpi_desc = data;
3364 
3365 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3366 }
3367 
3368 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3369 {
3370 	struct device *dev = acpi_desc->dev;
3371 	struct nfit_table_prev prev;
3372 	const void *end;
3373 	int rc;
3374 
3375 	if (!acpi_desc->nvdimm_bus) {
3376 		acpi_nfit_init_dsms(acpi_desc);
3377 
3378 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3379 				&acpi_desc->nd_desc);
3380 		if (!acpi_desc->nvdimm_bus)
3381 			return -ENOMEM;
3382 
3383 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3384 				acpi_desc);
3385 		if (rc)
3386 			return rc;
3387 
3388 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3389 		if (rc)
3390 			return rc;
3391 
3392 		/* register this acpi_desc for mce notifications */
3393 		mutex_lock(&acpi_desc_lock);
3394 		list_add_tail(&acpi_desc->list, &acpi_descs);
3395 		mutex_unlock(&acpi_desc_lock);
3396 	}
3397 
3398 	mutex_lock(&acpi_desc->init_mutex);
3399 
3400 	INIT_LIST_HEAD(&prev.spas);
3401 	INIT_LIST_HEAD(&prev.memdevs);
3402 	INIT_LIST_HEAD(&prev.dcrs);
3403 	INIT_LIST_HEAD(&prev.bdws);
3404 	INIT_LIST_HEAD(&prev.idts);
3405 	INIT_LIST_HEAD(&prev.flushes);
3406 
3407 	list_cut_position(&prev.spas, &acpi_desc->spas,
3408 				acpi_desc->spas.prev);
3409 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3410 				acpi_desc->memdevs.prev);
3411 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3412 				acpi_desc->dcrs.prev);
3413 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3414 				acpi_desc->bdws.prev);
3415 	list_cut_position(&prev.idts, &acpi_desc->idts,
3416 				acpi_desc->idts.prev);
3417 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3418 				acpi_desc->flushes.prev);
3419 
3420 	end = data + sz;
3421 	while (!IS_ERR_OR_NULL(data))
3422 		data = add_table(acpi_desc, &prev, data, end);
3423 
3424 	if (IS_ERR(data)) {
3425 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3426 		rc = PTR_ERR(data);
3427 		goto out_unlock;
3428 	}
3429 
3430 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3431 	if (rc)
3432 		goto out_unlock;
3433 
3434 	rc = nfit_mem_init(acpi_desc);
3435 	if (rc)
3436 		goto out_unlock;
3437 
3438 	rc = acpi_nfit_register_dimms(acpi_desc);
3439 	if (rc)
3440 		goto out_unlock;
3441 
3442 	rc = acpi_nfit_register_regions(acpi_desc);
3443 
3444  out_unlock:
3445 	mutex_unlock(&acpi_desc->init_mutex);
3446 	return rc;
3447 }
3448 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3449 
3450 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3451 {
3452 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3453 	struct device *dev = acpi_desc->dev;
3454 
3455 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3456 	nfit_device_lock(dev);
3457 	nfit_device_unlock(dev);
3458 
3459 	/* Bounce the init_mutex to complete initial registration */
3460 	mutex_lock(&acpi_desc->init_mutex);
3461 	mutex_unlock(&acpi_desc->init_mutex);
3462 
3463 	return 0;
3464 }
3465 
3466 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3467 		struct nvdimm *nvdimm, unsigned int cmd)
3468 {
3469 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3470 
3471 	if (nvdimm)
3472 		return 0;
3473 	if (cmd != ND_CMD_ARS_START)
3474 		return 0;
3475 
3476 	/*
3477 	 * The kernel and userspace may race to initiate a scrub, but
3478 	 * the scrub thread is prepared to lose that initial race.  It
3479 	 * just needs guarantees that any ARS it initiates are not
3480 	 * interrupted by any intervening start requests from userspace.
3481 	 */
3482 	if (work_busy(&acpi_desc->dwork.work))
3483 		return -EBUSY;
3484 
3485 	return 0;
3486 }
3487 
3488 /* prevent security commands from being issued via ioctl */
3489 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3490 		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3491 {
3492 	struct nd_cmd_pkg *call_pkg = buf;
3493 	unsigned int func;
3494 
3495 	if (nvdimm && cmd == ND_CMD_CALL &&
3496 			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3497 		func = call_pkg->nd_command;
3498 		if (func > NVDIMM_CMD_MAX ||
3499 		    (1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK)
3500 			return -EOPNOTSUPP;
3501 	}
3502 
3503 	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3504 }
3505 
3506 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3507 		enum nfit_ars_state req_type)
3508 {
3509 	struct device *dev = acpi_desc->dev;
3510 	int scheduled = 0, busy = 0;
3511 	struct nfit_spa *nfit_spa;
3512 
3513 	mutex_lock(&acpi_desc->init_mutex);
3514 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3515 		mutex_unlock(&acpi_desc->init_mutex);
3516 		return 0;
3517 	}
3518 
3519 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3520 		int type = nfit_spa_type(nfit_spa->spa);
3521 
3522 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3523 			continue;
3524 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3525 			continue;
3526 
3527 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3528 			busy++;
3529 		else
3530 			scheduled++;
3531 	}
3532 	if (scheduled) {
3533 		sched_ars(acpi_desc);
3534 		dev_dbg(dev, "ars_scan triggered\n");
3535 	}
3536 	mutex_unlock(&acpi_desc->init_mutex);
3537 
3538 	if (scheduled)
3539 		return 0;
3540 	if (busy)
3541 		return -EBUSY;
3542 	return -ENOTTY;
3543 }
3544 
3545 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3546 {
3547 	struct nvdimm_bus_descriptor *nd_desc;
3548 
3549 	dev_set_drvdata(dev, acpi_desc);
3550 	acpi_desc->dev = dev;
3551 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3552 	nd_desc = &acpi_desc->nd_desc;
3553 	nd_desc->provider_name = "ACPI.NFIT";
3554 	nd_desc->module = THIS_MODULE;
3555 	nd_desc->ndctl = acpi_nfit_ctl;
3556 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3557 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3558 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3559 
3560 	INIT_LIST_HEAD(&acpi_desc->spas);
3561 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3562 	INIT_LIST_HEAD(&acpi_desc->bdws);
3563 	INIT_LIST_HEAD(&acpi_desc->idts);
3564 	INIT_LIST_HEAD(&acpi_desc->flushes);
3565 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3566 	INIT_LIST_HEAD(&acpi_desc->dimms);
3567 	INIT_LIST_HEAD(&acpi_desc->list);
3568 	mutex_init(&acpi_desc->init_mutex);
3569 	acpi_desc->scrub_tmo = 1;
3570 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3571 }
3572 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3573 
3574 static void acpi_nfit_put_table(void *table)
3575 {
3576 	acpi_put_table(table);
3577 }
3578 
3579 void acpi_nfit_shutdown(void *data)
3580 {
3581 	struct acpi_nfit_desc *acpi_desc = data;
3582 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3583 
3584 	/*
3585 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3586 	 * race teardown
3587 	 */
3588 	mutex_lock(&acpi_desc_lock);
3589 	list_del(&acpi_desc->list);
3590 	mutex_unlock(&acpi_desc_lock);
3591 
3592 	mutex_lock(&acpi_desc->init_mutex);
3593 	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3594 	cancel_delayed_work_sync(&acpi_desc->dwork);
3595 	mutex_unlock(&acpi_desc->init_mutex);
3596 
3597 	/*
3598 	 * Bounce the nvdimm bus lock to make sure any in-flight
3599 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3600 	 * either submit or see ->cancel set.
3601 	 */
3602 	nfit_device_lock(bus_dev);
3603 	nfit_device_unlock(bus_dev);
3604 
3605 	flush_workqueue(nfit_wq);
3606 }
3607 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3608 
3609 static int acpi_nfit_add(struct acpi_device *adev)
3610 {
3611 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3612 	struct acpi_nfit_desc *acpi_desc;
3613 	struct device *dev = &adev->dev;
3614 	struct acpi_table_header *tbl;
3615 	acpi_status status = AE_OK;
3616 	acpi_size sz;
3617 	int rc = 0;
3618 
3619 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3620 	if (ACPI_FAILURE(status)) {
3621 		/* The NVDIMM root device allows OS to trigger enumeration of
3622 		 * NVDIMMs through NFIT at boot time and re-enumeration at
3623 		 * root level via the _FIT method during runtime.
3624 		 * This is ok to return 0 here, we could have an nvdimm
3625 		 * hotplugged later and evaluate _FIT method which returns
3626 		 * data in the format of a series of NFIT Structures.
3627 		 */
3628 		dev_dbg(dev, "failed to find NFIT at startup\n");
3629 		return 0;
3630 	}
3631 
3632 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3633 	if (rc)
3634 		return rc;
3635 	sz = tbl->length;
3636 
3637 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3638 	if (!acpi_desc)
3639 		return -ENOMEM;
3640 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3641 
3642 	/* Save the acpi header for exporting the revision via sysfs */
3643 	acpi_desc->acpi_header = *tbl;
3644 
3645 	/* Evaluate _FIT and override with that if present */
3646 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3647 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3648 		union acpi_object *obj = buf.pointer;
3649 
3650 		if (obj->type == ACPI_TYPE_BUFFER)
3651 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3652 					obj->buffer.length);
3653 		else
3654 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3655 				(int) obj->type);
3656 		kfree(buf.pointer);
3657 	} else
3658 		/* skip over the lead-in header table */
3659 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3660 				+ sizeof(struct acpi_table_nfit),
3661 				sz - sizeof(struct acpi_table_nfit));
3662 
3663 	if (rc)
3664 		return rc;
3665 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3666 }
3667 
3668 static int acpi_nfit_remove(struct acpi_device *adev)
3669 {
3670 	/* see acpi_nfit_unregister */
3671 	return 0;
3672 }
3673 
3674 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3675 {
3676 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3677 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3678 	union acpi_object *obj;
3679 	acpi_status status;
3680 	int ret;
3681 
3682 	if (!dev->driver) {
3683 		/* dev->driver may be null if we're being removed */
3684 		dev_dbg(dev, "no driver found for dev\n");
3685 		return;
3686 	}
3687 
3688 	if (!acpi_desc) {
3689 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3690 		if (!acpi_desc)
3691 			return;
3692 		acpi_nfit_desc_init(acpi_desc, dev);
3693 	} else {
3694 		/*
3695 		 * Finish previous registration before considering new
3696 		 * regions.
3697 		 */
3698 		flush_workqueue(nfit_wq);
3699 	}
3700 
3701 	/* Evaluate _FIT */
3702 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3703 	if (ACPI_FAILURE(status)) {
3704 		dev_err(dev, "failed to evaluate _FIT\n");
3705 		return;
3706 	}
3707 
3708 	obj = buf.pointer;
3709 	if (obj->type == ACPI_TYPE_BUFFER) {
3710 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3711 				obj->buffer.length);
3712 		if (ret)
3713 			dev_err(dev, "failed to merge updated NFIT\n");
3714 	} else
3715 		dev_err(dev, "Invalid _FIT\n");
3716 	kfree(buf.pointer);
3717 }
3718 
3719 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3720 {
3721 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3722 
3723 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3724 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3725 	else
3726 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3727 }
3728 
3729 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3730 {
3731 	dev_dbg(dev, "event: 0x%x\n", event);
3732 
3733 	switch (event) {
3734 	case NFIT_NOTIFY_UPDATE:
3735 		return acpi_nfit_update_notify(dev, handle);
3736 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3737 		return acpi_nfit_uc_error_notify(dev, handle);
3738 	default:
3739 		return;
3740 	}
3741 }
3742 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3743 
3744 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3745 {
3746 	nfit_device_lock(&adev->dev);
3747 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3748 	nfit_device_unlock(&adev->dev);
3749 }
3750 
3751 static const struct acpi_device_id acpi_nfit_ids[] = {
3752 	{ "ACPI0012", 0 },
3753 	{ "", 0 },
3754 };
3755 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3756 
3757 static struct acpi_driver acpi_nfit_driver = {
3758 	.name = KBUILD_MODNAME,
3759 	.ids = acpi_nfit_ids,
3760 	.ops = {
3761 		.add = acpi_nfit_add,
3762 		.remove = acpi_nfit_remove,
3763 		.notify = acpi_nfit_notify,
3764 	},
3765 };
3766 
3767 static __init int nfit_init(void)
3768 {
3769 	int ret;
3770 
3771 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3772 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3773 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3774 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3775 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3776 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3777 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3778 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3779 
3780 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3781 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3782 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3783 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3784 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3785 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3786 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3787 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3788 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3789 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3790 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3791 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3792 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3793 	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3794 
3795 	nfit_wq = create_singlethread_workqueue("nfit");
3796 	if (!nfit_wq)
3797 		return -ENOMEM;
3798 
3799 	nfit_mce_register();
3800 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3801 	if (ret) {
3802 		nfit_mce_unregister();
3803 		destroy_workqueue(nfit_wq);
3804 	}
3805 
3806 	return ret;
3807 
3808 }
3809 
3810 static __exit void nfit_exit(void)
3811 {
3812 	nfit_mce_unregister();
3813 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3814 	destroy_workqueue(nfit_wq);
3815 	WARN_ON(!list_empty(&acpi_descs));
3816 }
3817 
3818 module_init(nfit_init);
3819 module_exit(nfit_exit);
3820 MODULE_LICENSE("GPL v2");
3821 MODULE_AUTHOR("Intel Corporation");
3822