1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/list_sort.h> 14 #include <linux/libnvdimm.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/ndctl.h> 18 #include <linux/sysfs.h> 19 #include <linux/delay.h> 20 #include <linux/list.h> 21 #include <linux/acpi.h> 22 #include <linux/sort.h> 23 #include <linux/io.h> 24 #include <linux/nd.h> 25 #include <asm/cacheflush.h> 26 #include "nfit.h" 27 28 /* 29 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 30 * irrelevant. 31 */ 32 #include <linux/io-64-nonatomic-hi-lo.h> 33 34 static bool force_enable_dimms; 35 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); 36 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); 37 38 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT; 39 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR); 40 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds"); 41 42 /* after three payloads of overflow, it's dead jim */ 43 static unsigned int scrub_overflow_abort = 3; 44 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR); 45 MODULE_PARM_DESC(scrub_overflow_abort, 46 "Number of times we overflow ARS results before abort"); 47 48 static bool disable_vendor_specific; 49 module_param(disable_vendor_specific, bool, S_IRUGO); 50 MODULE_PARM_DESC(disable_vendor_specific, 51 "Limit commands to the publicly specified set"); 52 53 static unsigned long override_dsm_mask; 54 module_param(override_dsm_mask, ulong, S_IRUGO); 55 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); 56 57 static int default_dsm_family = -1; 58 module_param(default_dsm_family, int, S_IRUGO); 59 MODULE_PARM_DESC(default_dsm_family, 60 "Try this DSM type first when identifying NVDIMM family"); 61 62 LIST_HEAD(acpi_descs); 63 DEFINE_MUTEX(acpi_desc_lock); 64 65 static struct workqueue_struct *nfit_wq; 66 67 struct nfit_table_prev { 68 struct list_head spas; 69 struct list_head memdevs; 70 struct list_head dcrs; 71 struct list_head bdws; 72 struct list_head idts; 73 struct list_head flushes; 74 }; 75 76 static guid_t nfit_uuid[NFIT_UUID_MAX]; 77 78 const guid_t *to_nfit_uuid(enum nfit_uuids id) 79 { 80 return &nfit_uuid[id]; 81 } 82 EXPORT_SYMBOL(to_nfit_uuid); 83 84 static struct acpi_nfit_desc *to_acpi_nfit_desc( 85 struct nvdimm_bus_descriptor *nd_desc) 86 { 87 return container_of(nd_desc, struct acpi_nfit_desc, nd_desc); 88 } 89 90 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) 91 { 92 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 93 94 /* 95 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct 96 * acpi_device. 97 */ 98 if (!nd_desc->provider_name 99 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) 100 return NULL; 101 102 return to_acpi_device(acpi_desc->dev); 103 } 104 105 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) 106 { 107 struct nd_cmd_clear_error *clear_err; 108 struct nd_cmd_ars_status *ars_status; 109 u16 flags; 110 111 switch (cmd) { 112 case ND_CMD_ARS_CAP: 113 if ((status & 0xffff) == NFIT_ARS_CAP_NONE) 114 return -ENOTTY; 115 116 /* Command failed */ 117 if (status & 0xffff) 118 return -EIO; 119 120 /* No supported scan types for this range */ 121 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; 122 if ((status >> 16 & flags) == 0) 123 return -ENOTTY; 124 return 0; 125 case ND_CMD_ARS_START: 126 /* ARS is in progress */ 127 if ((status & 0xffff) == NFIT_ARS_START_BUSY) 128 return -EBUSY; 129 130 /* Command failed */ 131 if (status & 0xffff) 132 return -EIO; 133 return 0; 134 case ND_CMD_ARS_STATUS: 135 ars_status = buf; 136 /* Command failed */ 137 if (status & 0xffff) 138 return -EIO; 139 /* Check extended status (Upper two bytes) */ 140 if (status == NFIT_ARS_STATUS_DONE) 141 return 0; 142 143 /* ARS is in progress */ 144 if (status == NFIT_ARS_STATUS_BUSY) 145 return -EBUSY; 146 147 /* No ARS performed for the current boot */ 148 if (status == NFIT_ARS_STATUS_NONE) 149 return -EAGAIN; 150 151 /* 152 * ARS interrupted, either we overflowed or some other 153 * agent wants the scan to stop. If we didn't overflow 154 * then just continue with the returned results. 155 */ 156 if (status == NFIT_ARS_STATUS_INTR) { 157 if (ars_status->out_length >= 40 && (ars_status->flags 158 & NFIT_ARS_F_OVERFLOW)) 159 return -ENOSPC; 160 return 0; 161 } 162 163 /* Unknown status */ 164 if (status >> 16) 165 return -EIO; 166 return 0; 167 case ND_CMD_CLEAR_ERROR: 168 clear_err = buf; 169 if (status & 0xffff) 170 return -EIO; 171 if (!clear_err->cleared) 172 return -EIO; 173 if (clear_err->length > clear_err->cleared) 174 return clear_err->cleared; 175 return 0; 176 default: 177 break; 178 } 179 180 /* all other non-zero status results in an error */ 181 if (status) 182 return -EIO; 183 return 0; 184 } 185 186 static int xlat_nvdimm_status(void *buf, unsigned int cmd, u32 status) 187 { 188 switch (cmd) { 189 case ND_CMD_GET_CONFIG_SIZE: 190 if (status >> 16 & ND_CONFIG_LOCKED) 191 return -EACCES; 192 break; 193 default: 194 break; 195 } 196 197 /* all other non-zero status results in an error */ 198 if (status) 199 return -EIO; 200 return 0; 201 } 202 203 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 204 u32 status) 205 { 206 if (!nvdimm) 207 return xlat_bus_status(buf, cmd, status); 208 return xlat_nvdimm_status(buf, cmd, status); 209 } 210 211 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, 212 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) 213 { 214 struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); 215 union acpi_object in_obj, in_buf, *out_obj; 216 const struct nd_cmd_desc *desc = NULL; 217 struct device *dev = acpi_desc->dev; 218 struct nd_cmd_pkg *call_pkg = NULL; 219 const char *cmd_name, *dimm_name; 220 unsigned long cmd_mask, dsm_mask; 221 u32 offset, fw_status = 0; 222 acpi_handle handle; 223 unsigned int func; 224 const guid_t *guid; 225 int rc, i; 226 227 func = cmd; 228 if (cmd == ND_CMD_CALL) { 229 call_pkg = buf; 230 func = call_pkg->nd_command; 231 } 232 233 if (nvdimm) { 234 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 235 struct acpi_device *adev = nfit_mem->adev; 236 237 if (!adev) 238 return -ENOTTY; 239 if (call_pkg && nfit_mem->family != call_pkg->nd_family) 240 return -ENOTTY; 241 242 dimm_name = nvdimm_name(nvdimm); 243 cmd_name = nvdimm_cmd_name(cmd); 244 cmd_mask = nvdimm_cmd_mask(nvdimm); 245 dsm_mask = nfit_mem->dsm_mask; 246 desc = nd_cmd_dimm_desc(cmd); 247 guid = to_nfit_uuid(nfit_mem->family); 248 handle = adev->handle; 249 } else { 250 struct acpi_device *adev = to_acpi_dev(acpi_desc); 251 252 cmd_name = nvdimm_bus_cmd_name(cmd); 253 cmd_mask = nd_desc->cmd_mask; 254 dsm_mask = cmd_mask; 255 if (cmd == ND_CMD_CALL) 256 dsm_mask = nd_desc->bus_dsm_mask; 257 desc = nd_cmd_bus_desc(cmd); 258 guid = to_nfit_uuid(NFIT_DEV_BUS); 259 handle = adev->handle; 260 dimm_name = "bus"; 261 } 262 263 if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) 264 return -ENOTTY; 265 266 if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask)) 267 return -ENOTTY; 268 269 in_obj.type = ACPI_TYPE_PACKAGE; 270 in_obj.package.count = 1; 271 in_obj.package.elements = &in_buf; 272 in_buf.type = ACPI_TYPE_BUFFER; 273 in_buf.buffer.pointer = buf; 274 in_buf.buffer.length = 0; 275 276 /* libnvdimm has already validated the input envelope */ 277 for (i = 0; i < desc->in_num; i++) 278 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, 279 i, buf); 280 281 if (call_pkg) { 282 /* skip over package wrapper */ 283 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; 284 in_buf.buffer.length = call_pkg->nd_size_in; 285 } 286 287 dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n", 288 __func__, dimm_name, cmd, func, in_buf.buffer.length); 289 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, 290 in_buf.buffer.pointer, 291 min_t(u32, 256, in_buf.buffer.length), true); 292 293 out_obj = acpi_evaluate_dsm(handle, guid, 1, func, &in_obj); 294 if (!out_obj) { 295 dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name, 296 cmd_name); 297 return -EINVAL; 298 } 299 300 if (call_pkg) { 301 call_pkg->nd_fw_size = out_obj->buffer.length; 302 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, 303 out_obj->buffer.pointer, 304 min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); 305 306 ACPI_FREE(out_obj); 307 /* 308 * Need to support FW function w/o known size in advance. 309 * Caller can determine required size based upon nd_fw_size. 310 * If we return an error (like elsewhere) then caller wouldn't 311 * be able to rely upon data returned to make calculation. 312 */ 313 return 0; 314 } 315 316 if (out_obj->package.type != ACPI_TYPE_BUFFER) { 317 dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n", 318 __func__, dimm_name, cmd_name, out_obj->type); 319 rc = -EINVAL; 320 goto out; 321 } 322 323 dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__, dimm_name, 324 cmd_name, out_obj->buffer.length); 325 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, 326 out_obj->buffer.pointer, 327 min_t(u32, 128, out_obj->buffer.length), true); 328 329 for (i = 0, offset = 0; i < desc->out_num; i++) { 330 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, 331 (u32 *) out_obj->buffer.pointer, 332 out_obj->buffer.length - offset); 333 334 if (offset + out_size > out_obj->buffer.length) { 335 dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n", 336 __func__, dimm_name, cmd_name, i); 337 break; 338 } 339 340 if (in_buf.buffer.length + offset + out_size > buf_len) { 341 dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n", 342 __func__, dimm_name, cmd_name, i); 343 rc = -ENXIO; 344 goto out; 345 } 346 memcpy(buf + in_buf.buffer.length + offset, 347 out_obj->buffer.pointer + offset, out_size); 348 offset += out_size; 349 } 350 351 /* 352 * Set fw_status for all the commands with a known format to be 353 * later interpreted by xlat_status(). 354 */ 355 if (i >= 1 && ((cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR) 356 || (cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR))) 357 fw_status = *(u32 *) out_obj->buffer.pointer; 358 359 if (offset + in_buf.buffer.length < buf_len) { 360 if (i >= 1) { 361 /* 362 * status valid, return the number of bytes left 363 * unfilled in the output buffer 364 */ 365 rc = buf_len - offset - in_buf.buffer.length; 366 if (cmd_rc) 367 *cmd_rc = xlat_status(nvdimm, buf, cmd, 368 fw_status); 369 } else { 370 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", 371 __func__, dimm_name, cmd_name, buf_len, 372 offset); 373 rc = -ENXIO; 374 } 375 } else { 376 rc = 0; 377 if (cmd_rc) 378 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); 379 } 380 381 out: 382 ACPI_FREE(out_obj); 383 384 return rc; 385 } 386 EXPORT_SYMBOL_GPL(acpi_nfit_ctl); 387 388 static const char *spa_type_name(u16 type) 389 { 390 static const char *to_name[] = { 391 [NFIT_SPA_VOLATILE] = "volatile", 392 [NFIT_SPA_PM] = "pmem", 393 [NFIT_SPA_DCR] = "dimm-control-region", 394 [NFIT_SPA_BDW] = "block-data-window", 395 [NFIT_SPA_VDISK] = "volatile-disk", 396 [NFIT_SPA_VCD] = "volatile-cd", 397 [NFIT_SPA_PDISK] = "persistent-disk", 398 [NFIT_SPA_PCD] = "persistent-cd", 399 400 }; 401 402 if (type > NFIT_SPA_PCD) 403 return "unknown"; 404 405 return to_name[type]; 406 } 407 408 int nfit_spa_type(struct acpi_nfit_system_address *spa) 409 { 410 int i; 411 412 for (i = 0; i < NFIT_UUID_MAX; i++) 413 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) 414 return i; 415 return -1; 416 } 417 418 static bool add_spa(struct acpi_nfit_desc *acpi_desc, 419 struct nfit_table_prev *prev, 420 struct acpi_nfit_system_address *spa) 421 { 422 struct device *dev = acpi_desc->dev; 423 struct nfit_spa *nfit_spa; 424 425 if (spa->header.length != sizeof(*spa)) 426 return false; 427 428 list_for_each_entry(nfit_spa, &prev->spas, list) { 429 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { 430 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 431 return true; 432 } 433 } 434 435 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), 436 GFP_KERNEL); 437 if (!nfit_spa) 438 return false; 439 INIT_LIST_HEAD(&nfit_spa->list); 440 memcpy(nfit_spa->spa, spa, sizeof(*spa)); 441 list_add_tail(&nfit_spa->list, &acpi_desc->spas); 442 dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__, 443 spa->range_index, 444 spa_type_name(nfit_spa_type(spa))); 445 return true; 446 } 447 448 static bool add_memdev(struct acpi_nfit_desc *acpi_desc, 449 struct nfit_table_prev *prev, 450 struct acpi_nfit_memory_map *memdev) 451 { 452 struct device *dev = acpi_desc->dev; 453 struct nfit_memdev *nfit_memdev; 454 455 if (memdev->header.length != sizeof(*memdev)) 456 return false; 457 458 list_for_each_entry(nfit_memdev, &prev->memdevs, list) 459 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { 460 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); 461 return true; 462 } 463 464 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), 465 GFP_KERNEL); 466 if (!nfit_memdev) 467 return false; 468 INIT_LIST_HEAD(&nfit_memdev->list); 469 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); 470 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); 471 dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d flags: %#x\n", 472 __func__, memdev->device_handle, memdev->range_index, 473 memdev->region_index, memdev->flags); 474 return true; 475 } 476 477 /* 478 * An implementation may provide a truncated control region if no block windows 479 * are defined. 480 */ 481 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) 482 { 483 if (dcr->header.length < offsetof(struct acpi_nfit_control_region, 484 window_size)) 485 return 0; 486 if (dcr->windows) 487 return sizeof(*dcr); 488 return offsetof(struct acpi_nfit_control_region, window_size); 489 } 490 491 static bool add_dcr(struct acpi_nfit_desc *acpi_desc, 492 struct nfit_table_prev *prev, 493 struct acpi_nfit_control_region *dcr) 494 { 495 struct device *dev = acpi_desc->dev; 496 struct nfit_dcr *nfit_dcr; 497 498 if (!sizeof_dcr(dcr)) 499 return false; 500 501 list_for_each_entry(nfit_dcr, &prev->dcrs, list) 502 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { 503 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); 504 return true; 505 } 506 507 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), 508 GFP_KERNEL); 509 if (!nfit_dcr) 510 return false; 511 INIT_LIST_HEAD(&nfit_dcr->list); 512 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); 513 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); 514 dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__, 515 dcr->region_index, dcr->windows); 516 return true; 517 } 518 519 static bool add_bdw(struct acpi_nfit_desc *acpi_desc, 520 struct nfit_table_prev *prev, 521 struct acpi_nfit_data_region *bdw) 522 { 523 struct device *dev = acpi_desc->dev; 524 struct nfit_bdw *nfit_bdw; 525 526 if (bdw->header.length != sizeof(*bdw)) 527 return false; 528 list_for_each_entry(nfit_bdw, &prev->bdws, list) 529 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { 530 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); 531 return true; 532 } 533 534 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), 535 GFP_KERNEL); 536 if (!nfit_bdw) 537 return false; 538 INIT_LIST_HEAD(&nfit_bdw->list); 539 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); 540 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); 541 dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__, 542 bdw->region_index, bdw->windows); 543 return true; 544 } 545 546 static size_t sizeof_idt(struct acpi_nfit_interleave *idt) 547 { 548 if (idt->header.length < sizeof(*idt)) 549 return 0; 550 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); 551 } 552 553 static bool add_idt(struct acpi_nfit_desc *acpi_desc, 554 struct nfit_table_prev *prev, 555 struct acpi_nfit_interleave *idt) 556 { 557 struct device *dev = acpi_desc->dev; 558 struct nfit_idt *nfit_idt; 559 560 if (!sizeof_idt(idt)) 561 return false; 562 563 list_for_each_entry(nfit_idt, &prev->idts, list) { 564 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) 565 continue; 566 567 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { 568 list_move_tail(&nfit_idt->list, &acpi_desc->idts); 569 return true; 570 } 571 } 572 573 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), 574 GFP_KERNEL); 575 if (!nfit_idt) 576 return false; 577 INIT_LIST_HEAD(&nfit_idt->list); 578 memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); 579 list_add_tail(&nfit_idt->list, &acpi_desc->idts); 580 dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__, 581 idt->interleave_index, idt->line_count); 582 return true; 583 } 584 585 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) 586 { 587 if (flush->header.length < sizeof(*flush)) 588 return 0; 589 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); 590 } 591 592 static bool add_flush(struct acpi_nfit_desc *acpi_desc, 593 struct nfit_table_prev *prev, 594 struct acpi_nfit_flush_address *flush) 595 { 596 struct device *dev = acpi_desc->dev; 597 struct nfit_flush *nfit_flush; 598 599 if (!sizeof_flush(flush)) 600 return false; 601 602 list_for_each_entry(nfit_flush, &prev->flushes, list) { 603 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) 604 continue; 605 606 if (memcmp(nfit_flush->flush, flush, 607 sizeof_flush(flush)) == 0) { 608 list_move_tail(&nfit_flush->list, &acpi_desc->flushes); 609 return true; 610 } 611 } 612 613 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) 614 + sizeof_flush(flush), GFP_KERNEL); 615 if (!nfit_flush) 616 return false; 617 INIT_LIST_HEAD(&nfit_flush->list); 618 memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); 619 list_add_tail(&nfit_flush->list, &acpi_desc->flushes); 620 dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__, 621 flush->device_handle, flush->hint_count); 622 return true; 623 } 624 625 static void *add_table(struct acpi_nfit_desc *acpi_desc, 626 struct nfit_table_prev *prev, void *table, const void *end) 627 { 628 struct device *dev = acpi_desc->dev; 629 struct acpi_nfit_header *hdr; 630 void *err = ERR_PTR(-ENOMEM); 631 632 if (table >= end) 633 return NULL; 634 635 hdr = table; 636 if (!hdr->length) { 637 dev_warn(dev, "found a zero length table '%d' parsing nfit\n", 638 hdr->type); 639 return NULL; 640 } 641 642 switch (hdr->type) { 643 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: 644 if (!add_spa(acpi_desc, prev, table)) 645 return err; 646 break; 647 case ACPI_NFIT_TYPE_MEMORY_MAP: 648 if (!add_memdev(acpi_desc, prev, table)) 649 return err; 650 break; 651 case ACPI_NFIT_TYPE_CONTROL_REGION: 652 if (!add_dcr(acpi_desc, prev, table)) 653 return err; 654 break; 655 case ACPI_NFIT_TYPE_DATA_REGION: 656 if (!add_bdw(acpi_desc, prev, table)) 657 return err; 658 break; 659 case ACPI_NFIT_TYPE_INTERLEAVE: 660 if (!add_idt(acpi_desc, prev, table)) 661 return err; 662 break; 663 case ACPI_NFIT_TYPE_FLUSH_ADDRESS: 664 if (!add_flush(acpi_desc, prev, table)) 665 return err; 666 break; 667 case ACPI_NFIT_TYPE_SMBIOS: 668 dev_dbg(dev, "%s: smbios\n", __func__); 669 break; 670 default: 671 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); 672 break; 673 } 674 675 return table + hdr->length; 676 } 677 678 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, 679 struct nfit_mem *nfit_mem) 680 { 681 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 682 u16 dcr = nfit_mem->dcr->region_index; 683 struct nfit_spa *nfit_spa; 684 685 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 686 u16 range_index = nfit_spa->spa->range_index; 687 int type = nfit_spa_type(nfit_spa->spa); 688 struct nfit_memdev *nfit_memdev; 689 690 if (type != NFIT_SPA_BDW) 691 continue; 692 693 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 694 if (nfit_memdev->memdev->range_index != range_index) 695 continue; 696 if (nfit_memdev->memdev->device_handle != device_handle) 697 continue; 698 if (nfit_memdev->memdev->region_index != dcr) 699 continue; 700 701 nfit_mem->spa_bdw = nfit_spa->spa; 702 return; 703 } 704 } 705 706 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", 707 nfit_mem->spa_dcr->range_index); 708 nfit_mem->bdw = NULL; 709 } 710 711 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, 712 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) 713 { 714 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; 715 struct nfit_memdev *nfit_memdev; 716 struct nfit_bdw *nfit_bdw; 717 struct nfit_idt *nfit_idt; 718 u16 idt_idx, range_index; 719 720 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { 721 if (nfit_bdw->bdw->region_index != dcr) 722 continue; 723 nfit_mem->bdw = nfit_bdw->bdw; 724 break; 725 } 726 727 if (!nfit_mem->bdw) 728 return; 729 730 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); 731 732 if (!nfit_mem->spa_bdw) 733 return; 734 735 range_index = nfit_mem->spa_bdw->range_index; 736 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 737 if (nfit_memdev->memdev->range_index != range_index || 738 nfit_memdev->memdev->region_index != dcr) 739 continue; 740 nfit_mem->memdev_bdw = nfit_memdev->memdev; 741 idt_idx = nfit_memdev->memdev->interleave_index; 742 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 743 if (nfit_idt->idt->interleave_index != idt_idx) 744 continue; 745 nfit_mem->idt_bdw = nfit_idt->idt; 746 break; 747 } 748 break; 749 } 750 } 751 752 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, 753 struct acpi_nfit_system_address *spa) 754 { 755 struct nfit_mem *nfit_mem, *found; 756 struct nfit_memdev *nfit_memdev; 757 int type = spa ? nfit_spa_type(spa) : 0; 758 759 switch (type) { 760 case NFIT_SPA_DCR: 761 case NFIT_SPA_PM: 762 break; 763 default: 764 if (spa) 765 return 0; 766 } 767 768 /* 769 * This loop runs in two modes, when a dimm is mapped the loop 770 * adds memdev associations to an existing dimm, or creates a 771 * dimm. In the unmapped dimm case this loop sweeps for memdev 772 * instances with an invalid / zero range_index and adds those 773 * dimms without spa associations. 774 */ 775 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 776 struct nfit_flush *nfit_flush; 777 struct nfit_dcr *nfit_dcr; 778 u32 device_handle; 779 u16 dcr; 780 781 if (spa && nfit_memdev->memdev->range_index != spa->range_index) 782 continue; 783 if (!spa && nfit_memdev->memdev->range_index) 784 continue; 785 found = NULL; 786 dcr = nfit_memdev->memdev->region_index; 787 device_handle = nfit_memdev->memdev->device_handle; 788 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 789 if (__to_nfit_memdev(nfit_mem)->device_handle 790 == device_handle) { 791 found = nfit_mem; 792 break; 793 } 794 795 if (found) 796 nfit_mem = found; 797 else { 798 nfit_mem = devm_kzalloc(acpi_desc->dev, 799 sizeof(*nfit_mem), GFP_KERNEL); 800 if (!nfit_mem) 801 return -ENOMEM; 802 INIT_LIST_HEAD(&nfit_mem->list); 803 nfit_mem->acpi_desc = acpi_desc; 804 list_add(&nfit_mem->list, &acpi_desc->dimms); 805 } 806 807 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 808 if (nfit_dcr->dcr->region_index != dcr) 809 continue; 810 /* 811 * Record the control region for the dimm. For 812 * the ACPI 6.1 case, where there are separate 813 * control regions for the pmem vs blk 814 * interfaces, be sure to record the extended 815 * blk details. 816 */ 817 if (!nfit_mem->dcr) 818 nfit_mem->dcr = nfit_dcr->dcr; 819 else if (nfit_mem->dcr->windows == 0 820 && nfit_dcr->dcr->windows) 821 nfit_mem->dcr = nfit_dcr->dcr; 822 break; 823 } 824 825 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { 826 struct acpi_nfit_flush_address *flush; 827 u16 i; 828 829 if (nfit_flush->flush->device_handle != device_handle) 830 continue; 831 nfit_mem->nfit_flush = nfit_flush; 832 flush = nfit_flush->flush; 833 nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev, 834 flush->hint_count 835 * sizeof(struct resource), GFP_KERNEL); 836 if (!nfit_mem->flush_wpq) 837 return -ENOMEM; 838 for (i = 0; i < flush->hint_count; i++) { 839 struct resource *res = &nfit_mem->flush_wpq[i]; 840 841 res->start = flush->hint_address[i]; 842 res->end = res->start + 8 - 1; 843 } 844 break; 845 } 846 847 if (dcr && !nfit_mem->dcr) { 848 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", 849 spa->range_index, dcr); 850 return -ENODEV; 851 } 852 853 if (type == NFIT_SPA_DCR) { 854 struct nfit_idt *nfit_idt; 855 u16 idt_idx; 856 857 /* multiple dimms may share a SPA when interleaved */ 858 nfit_mem->spa_dcr = spa; 859 nfit_mem->memdev_dcr = nfit_memdev->memdev; 860 idt_idx = nfit_memdev->memdev->interleave_index; 861 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 862 if (nfit_idt->idt->interleave_index != idt_idx) 863 continue; 864 nfit_mem->idt_dcr = nfit_idt->idt; 865 break; 866 } 867 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); 868 } else if (type == NFIT_SPA_PM) { 869 /* 870 * A single dimm may belong to multiple SPA-PM 871 * ranges, record at least one in addition to 872 * any SPA-DCR range. 873 */ 874 nfit_mem->memdev_pmem = nfit_memdev->memdev; 875 } else 876 nfit_mem->memdev_dcr = nfit_memdev->memdev; 877 } 878 879 return 0; 880 } 881 882 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) 883 { 884 struct nfit_mem *a = container_of(_a, typeof(*a), list); 885 struct nfit_mem *b = container_of(_b, typeof(*b), list); 886 u32 handleA, handleB; 887 888 handleA = __to_nfit_memdev(a)->device_handle; 889 handleB = __to_nfit_memdev(b)->device_handle; 890 if (handleA < handleB) 891 return -1; 892 else if (handleA > handleB) 893 return 1; 894 return 0; 895 } 896 897 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) 898 { 899 struct nfit_spa *nfit_spa; 900 int rc; 901 902 903 /* 904 * For each SPA-DCR or SPA-PMEM address range find its 905 * corresponding MEMDEV(s). From each MEMDEV find the 906 * corresponding DCR. Then, if we're operating on a SPA-DCR, 907 * try to find a SPA-BDW and a corresponding BDW that references 908 * the DCR. Throw it all into an nfit_mem object. Note, that 909 * BDWs are optional. 910 */ 911 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 912 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); 913 if (rc) 914 return rc; 915 } 916 917 /* 918 * If a DIMM has failed to be mapped into SPA there will be no 919 * SPA entries above. Find and register all the unmapped DIMMs 920 * for reporting and recovery purposes. 921 */ 922 rc = __nfit_mem_init(acpi_desc, NULL); 923 if (rc) 924 return rc; 925 926 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); 927 928 return 0; 929 } 930 931 static ssize_t bus_dsm_mask_show(struct device *dev, 932 struct device_attribute *attr, char *buf) 933 { 934 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 935 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 936 937 return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask); 938 } 939 static struct device_attribute dev_attr_bus_dsm_mask = 940 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); 941 942 static ssize_t revision_show(struct device *dev, 943 struct device_attribute *attr, char *buf) 944 { 945 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 946 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 947 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 948 949 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); 950 } 951 static DEVICE_ATTR_RO(revision); 952 953 static ssize_t hw_error_scrub_show(struct device *dev, 954 struct device_attribute *attr, char *buf) 955 { 956 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 957 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 958 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 959 960 return sprintf(buf, "%d\n", acpi_desc->scrub_mode); 961 } 962 963 /* 964 * The 'hw_error_scrub' attribute can have the following values written to it: 965 * '0': Switch to the default mode where an exception will only insert 966 * the address of the memory error into the poison and badblocks lists. 967 * '1': Enable a full scrub to happen if an exception for a memory error is 968 * received. 969 */ 970 static ssize_t hw_error_scrub_store(struct device *dev, 971 struct device_attribute *attr, const char *buf, size_t size) 972 { 973 struct nvdimm_bus_descriptor *nd_desc; 974 ssize_t rc; 975 long val; 976 977 rc = kstrtol(buf, 0, &val); 978 if (rc) 979 return rc; 980 981 device_lock(dev); 982 nd_desc = dev_get_drvdata(dev); 983 if (nd_desc) { 984 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 985 986 switch (val) { 987 case HW_ERROR_SCRUB_ON: 988 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; 989 break; 990 case HW_ERROR_SCRUB_OFF: 991 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; 992 break; 993 default: 994 rc = -EINVAL; 995 break; 996 } 997 } 998 device_unlock(dev); 999 if (rc) 1000 return rc; 1001 return size; 1002 } 1003 static DEVICE_ATTR_RW(hw_error_scrub); 1004 1005 /* 1006 * This shows the number of full Address Range Scrubs that have been 1007 * completed since driver load time. Userspace can wait on this using 1008 * select/poll etc. A '+' at the end indicates an ARS is in progress 1009 */ 1010 static ssize_t scrub_show(struct device *dev, 1011 struct device_attribute *attr, char *buf) 1012 { 1013 struct nvdimm_bus_descriptor *nd_desc; 1014 ssize_t rc = -ENXIO; 1015 1016 device_lock(dev); 1017 nd_desc = dev_get_drvdata(dev); 1018 if (nd_desc) { 1019 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1020 1021 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, 1022 (work_busy(&acpi_desc->work)) ? "+\n" : "\n"); 1023 } 1024 device_unlock(dev); 1025 return rc; 1026 } 1027 1028 static ssize_t scrub_store(struct device *dev, 1029 struct device_attribute *attr, const char *buf, size_t size) 1030 { 1031 struct nvdimm_bus_descriptor *nd_desc; 1032 ssize_t rc; 1033 long val; 1034 1035 rc = kstrtol(buf, 0, &val); 1036 if (rc) 1037 return rc; 1038 if (val != 1) 1039 return -EINVAL; 1040 1041 device_lock(dev); 1042 nd_desc = dev_get_drvdata(dev); 1043 if (nd_desc) { 1044 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1045 1046 rc = acpi_nfit_ars_rescan(acpi_desc, 0); 1047 } 1048 device_unlock(dev); 1049 if (rc) 1050 return rc; 1051 return size; 1052 } 1053 static DEVICE_ATTR_RW(scrub); 1054 1055 static bool ars_supported(struct nvdimm_bus *nvdimm_bus) 1056 { 1057 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1058 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START 1059 | 1 << ND_CMD_ARS_STATUS; 1060 1061 return (nd_desc->cmd_mask & mask) == mask; 1062 } 1063 1064 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) 1065 { 1066 struct device *dev = container_of(kobj, struct device, kobj); 1067 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1068 1069 if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus)) 1070 return 0; 1071 return a->mode; 1072 } 1073 1074 static struct attribute *acpi_nfit_attributes[] = { 1075 &dev_attr_revision.attr, 1076 &dev_attr_scrub.attr, 1077 &dev_attr_hw_error_scrub.attr, 1078 &dev_attr_bus_dsm_mask.attr, 1079 NULL, 1080 }; 1081 1082 static const struct attribute_group acpi_nfit_attribute_group = { 1083 .name = "nfit", 1084 .attrs = acpi_nfit_attributes, 1085 .is_visible = nfit_visible, 1086 }; 1087 1088 static const struct attribute_group *acpi_nfit_attribute_groups[] = { 1089 &nvdimm_bus_attribute_group, 1090 &acpi_nfit_attribute_group, 1091 NULL, 1092 }; 1093 1094 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) 1095 { 1096 struct nvdimm *nvdimm = to_nvdimm(dev); 1097 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1098 1099 return __to_nfit_memdev(nfit_mem); 1100 } 1101 1102 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) 1103 { 1104 struct nvdimm *nvdimm = to_nvdimm(dev); 1105 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1106 1107 return nfit_mem->dcr; 1108 } 1109 1110 static ssize_t handle_show(struct device *dev, 1111 struct device_attribute *attr, char *buf) 1112 { 1113 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1114 1115 return sprintf(buf, "%#x\n", memdev->device_handle); 1116 } 1117 static DEVICE_ATTR_RO(handle); 1118 1119 static ssize_t phys_id_show(struct device *dev, 1120 struct device_attribute *attr, char *buf) 1121 { 1122 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1123 1124 return sprintf(buf, "%#x\n", memdev->physical_id); 1125 } 1126 static DEVICE_ATTR_RO(phys_id); 1127 1128 static ssize_t vendor_show(struct device *dev, 1129 struct device_attribute *attr, char *buf) 1130 { 1131 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1132 1133 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); 1134 } 1135 static DEVICE_ATTR_RO(vendor); 1136 1137 static ssize_t rev_id_show(struct device *dev, 1138 struct device_attribute *attr, char *buf) 1139 { 1140 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1141 1142 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); 1143 } 1144 static DEVICE_ATTR_RO(rev_id); 1145 1146 static ssize_t device_show(struct device *dev, 1147 struct device_attribute *attr, char *buf) 1148 { 1149 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1150 1151 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); 1152 } 1153 static DEVICE_ATTR_RO(device); 1154 1155 static ssize_t subsystem_vendor_show(struct device *dev, 1156 struct device_attribute *attr, char *buf) 1157 { 1158 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1159 1160 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); 1161 } 1162 static DEVICE_ATTR_RO(subsystem_vendor); 1163 1164 static ssize_t subsystem_rev_id_show(struct device *dev, 1165 struct device_attribute *attr, char *buf) 1166 { 1167 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1168 1169 return sprintf(buf, "0x%04x\n", 1170 be16_to_cpu(dcr->subsystem_revision_id)); 1171 } 1172 static DEVICE_ATTR_RO(subsystem_rev_id); 1173 1174 static ssize_t subsystem_device_show(struct device *dev, 1175 struct device_attribute *attr, char *buf) 1176 { 1177 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1178 1179 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); 1180 } 1181 static DEVICE_ATTR_RO(subsystem_device); 1182 1183 static int num_nvdimm_formats(struct nvdimm *nvdimm) 1184 { 1185 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1186 int formats = 0; 1187 1188 if (nfit_mem->memdev_pmem) 1189 formats++; 1190 if (nfit_mem->memdev_bdw) 1191 formats++; 1192 return formats; 1193 } 1194 1195 static ssize_t format_show(struct device *dev, 1196 struct device_attribute *attr, char *buf) 1197 { 1198 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1199 1200 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); 1201 } 1202 static DEVICE_ATTR_RO(format); 1203 1204 static ssize_t format1_show(struct device *dev, 1205 struct device_attribute *attr, char *buf) 1206 { 1207 u32 handle; 1208 ssize_t rc = -ENXIO; 1209 struct nfit_mem *nfit_mem; 1210 struct nfit_memdev *nfit_memdev; 1211 struct acpi_nfit_desc *acpi_desc; 1212 struct nvdimm *nvdimm = to_nvdimm(dev); 1213 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1214 1215 nfit_mem = nvdimm_provider_data(nvdimm); 1216 acpi_desc = nfit_mem->acpi_desc; 1217 handle = to_nfit_memdev(dev)->device_handle; 1218 1219 /* assumes DIMMs have at most 2 published interface codes */ 1220 mutex_lock(&acpi_desc->init_mutex); 1221 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1222 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 1223 struct nfit_dcr *nfit_dcr; 1224 1225 if (memdev->device_handle != handle) 1226 continue; 1227 1228 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1229 if (nfit_dcr->dcr->region_index != memdev->region_index) 1230 continue; 1231 if (nfit_dcr->dcr->code == dcr->code) 1232 continue; 1233 rc = sprintf(buf, "0x%04x\n", 1234 le16_to_cpu(nfit_dcr->dcr->code)); 1235 break; 1236 } 1237 if (rc != ENXIO) 1238 break; 1239 } 1240 mutex_unlock(&acpi_desc->init_mutex); 1241 return rc; 1242 } 1243 static DEVICE_ATTR_RO(format1); 1244 1245 static ssize_t formats_show(struct device *dev, 1246 struct device_attribute *attr, char *buf) 1247 { 1248 struct nvdimm *nvdimm = to_nvdimm(dev); 1249 1250 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); 1251 } 1252 static DEVICE_ATTR_RO(formats); 1253 1254 static ssize_t serial_show(struct device *dev, 1255 struct device_attribute *attr, char *buf) 1256 { 1257 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1258 1259 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); 1260 } 1261 static DEVICE_ATTR_RO(serial); 1262 1263 static ssize_t family_show(struct device *dev, 1264 struct device_attribute *attr, char *buf) 1265 { 1266 struct nvdimm *nvdimm = to_nvdimm(dev); 1267 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1268 1269 if (nfit_mem->family < 0) 1270 return -ENXIO; 1271 return sprintf(buf, "%d\n", nfit_mem->family); 1272 } 1273 static DEVICE_ATTR_RO(family); 1274 1275 static ssize_t dsm_mask_show(struct device *dev, 1276 struct device_attribute *attr, char *buf) 1277 { 1278 struct nvdimm *nvdimm = to_nvdimm(dev); 1279 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1280 1281 if (nfit_mem->family < 0) 1282 return -ENXIO; 1283 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); 1284 } 1285 static DEVICE_ATTR_RO(dsm_mask); 1286 1287 static ssize_t flags_show(struct device *dev, 1288 struct device_attribute *attr, char *buf) 1289 { 1290 u16 flags = to_nfit_memdev(dev)->flags; 1291 1292 return sprintf(buf, "%s%s%s%s%s%s%s\n", 1293 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", 1294 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", 1295 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", 1296 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", 1297 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", 1298 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", 1299 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); 1300 } 1301 static DEVICE_ATTR_RO(flags); 1302 1303 static ssize_t id_show(struct device *dev, 1304 struct device_attribute *attr, char *buf) 1305 { 1306 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1307 1308 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) 1309 return sprintf(buf, "%04x-%02x-%04x-%08x\n", 1310 be16_to_cpu(dcr->vendor_id), 1311 dcr->manufacturing_location, 1312 be16_to_cpu(dcr->manufacturing_date), 1313 be32_to_cpu(dcr->serial_number)); 1314 else 1315 return sprintf(buf, "%04x-%08x\n", 1316 be16_to_cpu(dcr->vendor_id), 1317 be32_to_cpu(dcr->serial_number)); 1318 } 1319 static DEVICE_ATTR_RO(id); 1320 1321 static struct attribute *acpi_nfit_dimm_attributes[] = { 1322 &dev_attr_handle.attr, 1323 &dev_attr_phys_id.attr, 1324 &dev_attr_vendor.attr, 1325 &dev_attr_device.attr, 1326 &dev_attr_rev_id.attr, 1327 &dev_attr_subsystem_vendor.attr, 1328 &dev_attr_subsystem_device.attr, 1329 &dev_attr_subsystem_rev_id.attr, 1330 &dev_attr_format.attr, 1331 &dev_attr_formats.attr, 1332 &dev_attr_format1.attr, 1333 &dev_attr_serial.attr, 1334 &dev_attr_flags.attr, 1335 &dev_attr_id.attr, 1336 &dev_attr_family.attr, 1337 &dev_attr_dsm_mask.attr, 1338 NULL, 1339 }; 1340 1341 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, 1342 struct attribute *a, int n) 1343 { 1344 struct device *dev = container_of(kobj, struct device, kobj); 1345 struct nvdimm *nvdimm = to_nvdimm(dev); 1346 1347 if (!to_nfit_dcr(dev)) { 1348 /* Without a dcr only the memdev attributes can be surfaced */ 1349 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr 1350 || a == &dev_attr_flags.attr 1351 || a == &dev_attr_family.attr 1352 || a == &dev_attr_dsm_mask.attr) 1353 return a->mode; 1354 return 0; 1355 } 1356 1357 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) 1358 return 0; 1359 return a->mode; 1360 } 1361 1362 static const struct attribute_group acpi_nfit_dimm_attribute_group = { 1363 .name = "nfit", 1364 .attrs = acpi_nfit_dimm_attributes, 1365 .is_visible = acpi_nfit_dimm_attr_visible, 1366 }; 1367 1368 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { 1369 &nvdimm_attribute_group, 1370 &nd_device_attribute_group, 1371 &acpi_nfit_dimm_attribute_group, 1372 NULL, 1373 }; 1374 1375 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, 1376 u32 device_handle) 1377 { 1378 struct nfit_mem *nfit_mem; 1379 1380 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1381 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) 1382 return nfit_mem->nvdimm; 1383 1384 return NULL; 1385 } 1386 1387 void __acpi_nvdimm_notify(struct device *dev, u32 event) 1388 { 1389 struct nfit_mem *nfit_mem; 1390 struct acpi_nfit_desc *acpi_desc; 1391 1392 dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__, 1393 event); 1394 1395 if (event != NFIT_NOTIFY_DIMM_HEALTH) { 1396 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), 1397 event); 1398 return; 1399 } 1400 1401 acpi_desc = dev_get_drvdata(dev->parent); 1402 if (!acpi_desc) 1403 return; 1404 1405 /* 1406 * If we successfully retrieved acpi_desc, then we know nfit_mem data 1407 * is still valid. 1408 */ 1409 nfit_mem = dev_get_drvdata(dev); 1410 if (nfit_mem && nfit_mem->flags_attr) 1411 sysfs_notify_dirent(nfit_mem->flags_attr); 1412 } 1413 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); 1414 1415 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) 1416 { 1417 struct acpi_device *adev = data; 1418 struct device *dev = &adev->dev; 1419 1420 device_lock(dev->parent); 1421 __acpi_nvdimm_notify(dev, event); 1422 device_unlock(dev->parent); 1423 } 1424 1425 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, 1426 struct nfit_mem *nfit_mem, u32 device_handle) 1427 { 1428 struct acpi_device *adev, *adev_dimm; 1429 struct device *dev = acpi_desc->dev; 1430 unsigned long dsm_mask; 1431 const guid_t *guid; 1432 int i; 1433 int family = -1; 1434 1435 /* nfit test assumes 1:1 relationship between commands and dsms */ 1436 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; 1437 nfit_mem->family = NVDIMM_FAMILY_INTEL; 1438 adev = to_acpi_dev(acpi_desc); 1439 if (!adev) 1440 return 0; 1441 1442 adev_dimm = acpi_find_child_device(adev, device_handle, false); 1443 nfit_mem->adev = adev_dimm; 1444 if (!adev_dimm) { 1445 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", 1446 device_handle); 1447 return force_enable_dimms ? 0 : -ENODEV; 1448 } 1449 1450 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, 1451 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { 1452 dev_err(dev, "%s: notification registration failed\n", 1453 dev_name(&adev_dimm->dev)); 1454 return -ENXIO; 1455 } 1456 1457 /* 1458 * Until standardization materializes we need to consider 4 1459 * different command sets. Note, that checking for function0 (bit0) 1460 * tells us if any commands are reachable through this GUID. 1461 */ 1462 for (i = NVDIMM_FAMILY_INTEL; i <= NVDIMM_FAMILY_MSFT; i++) 1463 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) 1464 if (family < 0 || i == default_dsm_family) 1465 family = i; 1466 1467 /* limit the supported commands to those that are publicly documented */ 1468 nfit_mem->family = family; 1469 if (override_dsm_mask && !disable_vendor_specific) 1470 dsm_mask = override_dsm_mask; 1471 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 1472 dsm_mask = 0x3fe; 1473 if (disable_vendor_specific) 1474 dsm_mask &= ~(1 << ND_CMD_VENDOR); 1475 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { 1476 dsm_mask = 0x1c3c76; 1477 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { 1478 dsm_mask = 0x1fe; 1479 if (disable_vendor_specific) 1480 dsm_mask &= ~(1 << 8); 1481 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { 1482 dsm_mask = 0xffffffff; 1483 } else { 1484 dev_dbg(dev, "unknown dimm command family\n"); 1485 nfit_mem->family = -1; 1486 /* DSMs are optional, continue loading the driver... */ 1487 return 0; 1488 } 1489 1490 guid = to_nfit_uuid(nfit_mem->family); 1491 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1492 if (acpi_check_dsm(adev_dimm->handle, guid, 1, 1ULL << i)) 1493 set_bit(i, &nfit_mem->dsm_mask); 1494 1495 return 0; 1496 } 1497 1498 static void shutdown_dimm_notify(void *data) 1499 { 1500 struct acpi_nfit_desc *acpi_desc = data; 1501 struct nfit_mem *nfit_mem; 1502 1503 mutex_lock(&acpi_desc->init_mutex); 1504 /* 1505 * Clear out the nfit_mem->flags_attr and shut down dimm event 1506 * notifications. 1507 */ 1508 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 1509 struct acpi_device *adev_dimm = nfit_mem->adev; 1510 1511 if (nfit_mem->flags_attr) { 1512 sysfs_put(nfit_mem->flags_attr); 1513 nfit_mem->flags_attr = NULL; 1514 } 1515 if (adev_dimm) 1516 acpi_remove_notify_handler(adev_dimm->handle, 1517 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); 1518 } 1519 mutex_unlock(&acpi_desc->init_mutex); 1520 } 1521 1522 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) 1523 { 1524 struct nfit_mem *nfit_mem; 1525 int dimm_count = 0, rc; 1526 struct nvdimm *nvdimm; 1527 1528 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 1529 struct acpi_nfit_flush_address *flush; 1530 unsigned long flags = 0, cmd_mask; 1531 struct nfit_memdev *nfit_memdev; 1532 u32 device_handle; 1533 u16 mem_flags; 1534 1535 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 1536 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); 1537 if (nvdimm) { 1538 dimm_count++; 1539 continue; 1540 } 1541 1542 if (nfit_mem->bdw && nfit_mem->memdev_pmem) 1543 set_bit(NDD_ALIASING, &flags); 1544 1545 /* collate flags across all memdevs for this dimm */ 1546 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1547 struct acpi_nfit_memory_map *dimm_memdev; 1548 1549 dimm_memdev = __to_nfit_memdev(nfit_mem); 1550 if (dimm_memdev->device_handle 1551 != nfit_memdev->memdev->device_handle) 1552 continue; 1553 dimm_memdev->flags |= nfit_memdev->memdev->flags; 1554 } 1555 1556 mem_flags = __to_nfit_memdev(nfit_mem)->flags; 1557 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) 1558 set_bit(NDD_UNARMED, &flags); 1559 1560 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); 1561 if (rc) 1562 continue; 1563 1564 /* 1565 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL 1566 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the 1567 * userspace interface. 1568 */ 1569 cmd_mask = 1UL << ND_CMD_CALL; 1570 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 1571 cmd_mask |= nfit_mem->dsm_mask; 1572 1573 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush 1574 : NULL; 1575 nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, 1576 acpi_nfit_dimm_attribute_groups, 1577 flags, cmd_mask, flush ? flush->hint_count : 0, 1578 nfit_mem->flush_wpq); 1579 if (!nvdimm) 1580 return -ENOMEM; 1581 1582 nfit_mem->nvdimm = nvdimm; 1583 dimm_count++; 1584 1585 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) 1586 continue; 1587 1588 dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n", 1589 nvdimm_name(nvdimm), 1590 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", 1591 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", 1592 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", 1593 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", 1594 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); 1595 1596 } 1597 1598 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); 1599 if (rc) 1600 return rc; 1601 1602 /* 1603 * Now that dimms are successfully registered, and async registration 1604 * is flushed, attempt to enable event notification. 1605 */ 1606 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 1607 struct kernfs_node *nfit_kernfs; 1608 1609 nvdimm = nfit_mem->nvdimm; 1610 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); 1611 if (nfit_kernfs) 1612 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, 1613 "flags"); 1614 sysfs_put(nfit_kernfs); 1615 if (!nfit_mem->flags_attr) 1616 dev_warn(acpi_desc->dev, "%s: notifications disabled\n", 1617 nvdimm_name(nvdimm)); 1618 } 1619 1620 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, 1621 acpi_desc); 1622 } 1623 1624 /* 1625 * These constants are private because there are no kernel consumers of 1626 * these commands. 1627 */ 1628 enum nfit_aux_cmds { 1629 NFIT_CMD_TRANSLATE_SPA = 5, 1630 NFIT_CMD_ARS_INJECT_SET = 7, 1631 NFIT_CMD_ARS_INJECT_CLEAR = 8, 1632 NFIT_CMD_ARS_INJECT_GET = 9, 1633 }; 1634 1635 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) 1636 { 1637 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 1638 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); 1639 struct acpi_device *adev; 1640 unsigned long dsm_mask; 1641 int i; 1642 1643 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; 1644 adev = to_acpi_dev(acpi_desc); 1645 if (!adev) 1646 return; 1647 1648 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) 1649 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 1650 set_bit(i, &nd_desc->cmd_mask); 1651 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); 1652 1653 dsm_mask = 1654 (1 << ND_CMD_ARS_CAP) | 1655 (1 << ND_CMD_ARS_START) | 1656 (1 << ND_CMD_ARS_STATUS) | 1657 (1 << ND_CMD_CLEAR_ERROR) | 1658 (1 << NFIT_CMD_TRANSLATE_SPA) | 1659 (1 << NFIT_CMD_ARS_INJECT_SET) | 1660 (1 << NFIT_CMD_ARS_INJECT_CLEAR) | 1661 (1 << NFIT_CMD_ARS_INJECT_GET); 1662 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1663 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 1664 set_bit(i, &nd_desc->bus_dsm_mask); 1665 } 1666 1667 static ssize_t range_index_show(struct device *dev, 1668 struct device_attribute *attr, char *buf) 1669 { 1670 struct nd_region *nd_region = to_nd_region(dev); 1671 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); 1672 1673 return sprintf(buf, "%d\n", nfit_spa->spa->range_index); 1674 } 1675 static DEVICE_ATTR_RO(range_index); 1676 1677 static struct attribute *acpi_nfit_region_attributes[] = { 1678 &dev_attr_range_index.attr, 1679 NULL, 1680 }; 1681 1682 static const struct attribute_group acpi_nfit_region_attribute_group = { 1683 .name = "nfit", 1684 .attrs = acpi_nfit_region_attributes, 1685 }; 1686 1687 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { 1688 &nd_region_attribute_group, 1689 &nd_mapping_attribute_group, 1690 &nd_device_attribute_group, 1691 &nd_numa_attribute_group, 1692 &acpi_nfit_region_attribute_group, 1693 NULL, 1694 }; 1695 1696 /* enough info to uniquely specify an interleave set */ 1697 struct nfit_set_info { 1698 struct nfit_set_info_map { 1699 u64 region_offset; 1700 u32 serial_number; 1701 u32 pad; 1702 } mapping[0]; 1703 }; 1704 1705 struct nfit_set_info2 { 1706 struct nfit_set_info_map2 { 1707 u64 region_offset; 1708 u32 serial_number; 1709 u16 vendor_id; 1710 u16 manufacturing_date; 1711 u8 manufacturing_location; 1712 u8 reserved[31]; 1713 } mapping[0]; 1714 }; 1715 1716 static size_t sizeof_nfit_set_info(int num_mappings) 1717 { 1718 return sizeof(struct nfit_set_info) 1719 + num_mappings * sizeof(struct nfit_set_info_map); 1720 } 1721 1722 static size_t sizeof_nfit_set_info2(int num_mappings) 1723 { 1724 return sizeof(struct nfit_set_info2) 1725 + num_mappings * sizeof(struct nfit_set_info_map2); 1726 } 1727 1728 static int cmp_map_compat(const void *m0, const void *m1) 1729 { 1730 const struct nfit_set_info_map *map0 = m0; 1731 const struct nfit_set_info_map *map1 = m1; 1732 1733 return memcmp(&map0->region_offset, &map1->region_offset, 1734 sizeof(u64)); 1735 } 1736 1737 static int cmp_map(const void *m0, const void *m1) 1738 { 1739 const struct nfit_set_info_map *map0 = m0; 1740 const struct nfit_set_info_map *map1 = m1; 1741 1742 if (map0->region_offset < map1->region_offset) 1743 return -1; 1744 else if (map0->region_offset > map1->region_offset) 1745 return 1; 1746 return 0; 1747 } 1748 1749 static int cmp_map2(const void *m0, const void *m1) 1750 { 1751 const struct nfit_set_info_map2 *map0 = m0; 1752 const struct nfit_set_info_map2 *map1 = m1; 1753 1754 if (map0->region_offset < map1->region_offset) 1755 return -1; 1756 else if (map0->region_offset > map1->region_offset) 1757 return 1; 1758 return 0; 1759 } 1760 1761 /* Retrieve the nth entry referencing this spa */ 1762 static struct acpi_nfit_memory_map *memdev_from_spa( 1763 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) 1764 { 1765 struct nfit_memdev *nfit_memdev; 1766 1767 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) 1768 if (nfit_memdev->memdev->range_index == range_index) 1769 if (n-- == 0) 1770 return nfit_memdev->memdev; 1771 return NULL; 1772 } 1773 1774 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, 1775 struct nd_region_desc *ndr_desc, 1776 struct acpi_nfit_system_address *spa) 1777 { 1778 struct device *dev = acpi_desc->dev; 1779 struct nd_interleave_set *nd_set; 1780 u16 nr = ndr_desc->num_mappings; 1781 struct nfit_set_info2 *info2; 1782 struct nfit_set_info *info; 1783 int i; 1784 1785 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); 1786 if (!nd_set) 1787 return -ENOMEM; 1788 ndr_desc->nd_set = nd_set; 1789 guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid); 1790 1791 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL); 1792 if (!info) 1793 return -ENOMEM; 1794 1795 info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL); 1796 if (!info2) 1797 return -ENOMEM; 1798 1799 for (i = 0; i < nr; i++) { 1800 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1801 struct nfit_set_info_map *map = &info->mapping[i]; 1802 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 1803 struct nvdimm *nvdimm = mapping->nvdimm; 1804 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1805 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc, 1806 spa->range_index, i); 1807 1808 if (!memdev || !nfit_mem->dcr) { 1809 dev_err(dev, "%s: failed to find DCR\n", __func__); 1810 return -ENODEV; 1811 } 1812 1813 map->region_offset = memdev->region_offset; 1814 map->serial_number = nfit_mem->dcr->serial_number; 1815 1816 map2->region_offset = memdev->region_offset; 1817 map2->serial_number = nfit_mem->dcr->serial_number; 1818 map2->vendor_id = nfit_mem->dcr->vendor_id; 1819 map2->manufacturing_date = nfit_mem->dcr->manufacturing_date; 1820 map2->manufacturing_location = nfit_mem->dcr->manufacturing_location; 1821 } 1822 1823 /* v1.1 namespaces */ 1824 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 1825 cmp_map, NULL); 1826 nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 1827 1828 /* v1.2 namespaces */ 1829 sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2), 1830 cmp_map2, NULL); 1831 nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0); 1832 1833 /* support v1.1 namespaces created with the wrong sort order */ 1834 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 1835 cmp_map_compat, NULL); 1836 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 1837 1838 ndr_desc->nd_set = nd_set; 1839 devm_kfree(dev, info); 1840 devm_kfree(dev, info2); 1841 1842 return 0; 1843 } 1844 1845 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) 1846 { 1847 struct acpi_nfit_interleave *idt = mmio->idt; 1848 u32 sub_line_offset, line_index, line_offset; 1849 u64 line_no, table_skip_count, table_offset; 1850 1851 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); 1852 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); 1853 line_offset = idt->line_offset[line_index] 1854 * mmio->line_size; 1855 table_offset = table_skip_count * mmio->table_size; 1856 1857 return mmio->base_offset + line_offset + table_offset + sub_line_offset; 1858 } 1859 1860 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) 1861 { 1862 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 1863 u64 offset = nfit_blk->stat_offset + mmio->size * bw; 1864 const u32 STATUS_MASK = 0x80000037; 1865 1866 if (mmio->num_lines) 1867 offset = to_interleave_offset(offset, mmio); 1868 1869 return readl(mmio->addr.base + offset) & STATUS_MASK; 1870 } 1871 1872 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, 1873 resource_size_t dpa, unsigned int len, unsigned int write) 1874 { 1875 u64 cmd, offset; 1876 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 1877 1878 enum { 1879 BCW_OFFSET_MASK = (1ULL << 48)-1, 1880 BCW_LEN_SHIFT = 48, 1881 BCW_LEN_MASK = (1ULL << 8) - 1, 1882 BCW_CMD_SHIFT = 56, 1883 }; 1884 1885 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; 1886 len = len >> L1_CACHE_SHIFT; 1887 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; 1888 cmd |= ((u64) write) << BCW_CMD_SHIFT; 1889 1890 offset = nfit_blk->cmd_offset + mmio->size * bw; 1891 if (mmio->num_lines) 1892 offset = to_interleave_offset(offset, mmio); 1893 1894 writeq(cmd, mmio->addr.base + offset); 1895 nvdimm_flush(nfit_blk->nd_region); 1896 1897 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) 1898 readq(mmio->addr.base + offset); 1899 } 1900 1901 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, 1902 resource_size_t dpa, void *iobuf, size_t len, int rw, 1903 unsigned int lane) 1904 { 1905 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 1906 unsigned int copied = 0; 1907 u64 base_offset; 1908 int rc; 1909 1910 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES 1911 + lane * mmio->size; 1912 write_blk_ctl(nfit_blk, lane, dpa, len, rw); 1913 while (len) { 1914 unsigned int c; 1915 u64 offset; 1916 1917 if (mmio->num_lines) { 1918 u32 line_offset; 1919 1920 offset = to_interleave_offset(base_offset + copied, 1921 mmio); 1922 div_u64_rem(offset, mmio->line_size, &line_offset); 1923 c = min_t(size_t, len, mmio->line_size - line_offset); 1924 } else { 1925 offset = base_offset + nfit_blk->bdw_offset; 1926 c = len; 1927 } 1928 1929 if (rw) 1930 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); 1931 else { 1932 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) 1933 mmio_flush_range((void __force *) 1934 mmio->addr.aperture + offset, c); 1935 1936 memcpy(iobuf + copied, mmio->addr.aperture + offset, c); 1937 } 1938 1939 copied += c; 1940 len -= c; 1941 } 1942 1943 if (rw) 1944 nvdimm_flush(nfit_blk->nd_region); 1945 1946 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; 1947 return rc; 1948 } 1949 1950 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, 1951 resource_size_t dpa, void *iobuf, u64 len, int rw) 1952 { 1953 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); 1954 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 1955 struct nd_region *nd_region = nfit_blk->nd_region; 1956 unsigned int lane, copied = 0; 1957 int rc = 0; 1958 1959 lane = nd_region_acquire_lane(nd_region); 1960 while (len) { 1961 u64 c = min(len, mmio->size); 1962 1963 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, 1964 iobuf + copied, c, rw, lane); 1965 if (rc) 1966 break; 1967 1968 copied += c; 1969 len -= c; 1970 } 1971 nd_region_release_lane(nd_region, lane); 1972 1973 return rc; 1974 } 1975 1976 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, 1977 struct acpi_nfit_interleave *idt, u16 interleave_ways) 1978 { 1979 if (idt) { 1980 mmio->num_lines = idt->line_count; 1981 mmio->line_size = idt->line_size; 1982 if (interleave_ways == 0) 1983 return -ENXIO; 1984 mmio->table_size = mmio->num_lines * interleave_ways 1985 * mmio->line_size; 1986 } 1987 1988 return 0; 1989 } 1990 1991 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, 1992 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) 1993 { 1994 struct nd_cmd_dimm_flags flags; 1995 int rc; 1996 1997 memset(&flags, 0, sizeof(flags)); 1998 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, 1999 sizeof(flags), NULL); 2000 2001 if (rc >= 0 && flags.status == 0) 2002 nfit_blk->dimm_flags = flags.flags; 2003 else if (rc == -ENOTTY) { 2004 /* fall back to a conservative default */ 2005 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; 2006 rc = 0; 2007 } else 2008 rc = -ENXIO; 2009 2010 return rc; 2011 } 2012 2013 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, 2014 struct device *dev) 2015 { 2016 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 2017 struct nd_blk_region *ndbr = to_nd_blk_region(dev); 2018 struct nfit_blk_mmio *mmio; 2019 struct nfit_blk *nfit_blk; 2020 struct nfit_mem *nfit_mem; 2021 struct nvdimm *nvdimm; 2022 int rc; 2023 2024 nvdimm = nd_blk_region_to_dimm(ndbr); 2025 nfit_mem = nvdimm_provider_data(nvdimm); 2026 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { 2027 dev_dbg(dev, "%s: missing%s%s%s\n", __func__, 2028 nfit_mem ? "" : " nfit_mem", 2029 (nfit_mem && nfit_mem->dcr) ? "" : " dcr", 2030 (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); 2031 return -ENXIO; 2032 } 2033 2034 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); 2035 if (!nfit_blk) 2036 return -ENOMEM; 2037 nd_blk_region_set_provider_data(ndbr, nfit_blk); 2038 nfit_blk->nd_region = to_nd_region(dev); 2039 2040 /* map block aperture memory */ 2041 nfit_blk->bdw_offset = nfit_mem->bdw->offset; 2042 mmio = &nfit_blk->mmio[BDW]; 2043 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, 2044 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); 2045 if (!mmio->addr.base) { 2046 dev_dbg(dev, "%s: %s failed to map bdw\n", __func__, 2047 nvdimm_name(nvdimm)); 2048 return -ENOMEM; 2049 } 2050 mmio->size = nfit_mem->bdw->size; 2051 mmio->base_offset = nfit_mem->memdev_bdw->region_offset; 2052 mmio->idt = nfit_mem->idt_bdw; 2053 mmio->spa = nfit_mem->spa_bdw; 2054 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, 2055 nfit_mem->memdev_bdw->interleave_ways); 2056 if (rc) { 2057 dev_dbg(dev, "%s: %s failed to init bdw interleave\n", 2058 __func__, nvdimm_name(nvdimm)); 2059 return rc; 2060 } 2061 2062 /* map block control memory */ 2063 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; 2064 nfit_blk->stat_offset = nfit_mem->dcr->status_offset; 2065 mmio = &nfit_blk->mmio[DCR]; 2066 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, 2067 nfit_mem->spa_dcr->length); 2068 if (!mmio->addr.base) { 2069 dev_dbg(dev, "%s: %s failed to map dcr\n", __func__, 2070 nvdimm_name(nvdimm)); 2071 return -ENOMEM; 2072 } 2073 mmio->size = nfit_mem->dcr->window_size; 2074 mmio->base_offset = nfit_mem->memdev_dcr->region_offset; 2075 mmio->idt = nfit_mem->idt_dcr; 2076 mmio->spa = nfit_mem->spa_dcr; 2077 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, 2078 nfit_mem->memdev_dcr->interleave_ways); 2079 if (rc) { 2080 dev_dbg(dev, "%s: %s failed to init dcr interleave\n", 2081 __func__, nvdimm_name(nvdimm)); 2082 return rc; 2083 } 2084 2085 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); 2086 if (rc < 0) { 2087 dev_dbg(dev, "%s: %s failed get DIMM flags\n", 2088 __func__, nvdimm_name(nvdimm)); 2089 return rc; 2090 } 2091 2092 if (nvdimm_has_flush(nfit_blk->nd_region) < 0) 2093 dev_warn(dev, "unable to guarantee persistence of writes\n"); 2094 2095 if (mmio->line_size == 0) 2096 return 0; 2097 2098 if ((u32) nfit_blk->cmd_offset % mmio->line_size 2099 + 8 > mmio->line_size) { 2100 dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); 2101 return -ENXIO; 2102 } else if ((u32) nfit_blk->stat_offset % mmio->line_size 2103 + 8 > mmio->line_size) { 2104 dev_dbg(dev, "stat_offset crosses interleave boundary\n"); 2105 return -ENXIO; 2106 } 2107 2108 return 0; 2109 } 2110 2111 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, 2112 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) 2113 { 2114 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2115 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2116 int cmd_rc, rc; 2117 2118 cmd->address = spa->address; 2119 cmd->length = spa->length; 2120 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, 2121 sizeof(*cmd), &cmd_rc); 2122 if (rc < 0) 2123 return rc; 2124 return cmd_rc; 2125 } 2126 2127 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) 2128 { 2129 int rc; 2130 int cmd_rc; 2131 struct nd_cmd_ars_start ars_start; 2132 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2133 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2134 2135 memset(&ars_start, 0, sizeof(ars_start)); 2136 ars_start.address = spa->address; 2137 ars_start.length = spa->length; 2138 ars_start.flags = acpi_desc->ars_start_flags; 2139 if (nfit_spa_type(spa) == NFIT_SPA_PM) 2140 ars_start.type = ND_ARS_PERSISTENT; 2141 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) 2142 ars_start.type = ND_ARS_VOLATILE; 2143 else 2144 return -ENOTTY; 2145 2146 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2147 sizeof(ars_start), &cmd_rc); 2148 2149 if (rc < 0) 2150 return rc; 2151 return cmd_rc; 2152 } 2153 2154 static int ars_continue(struct acpi_nfit_desc *acpi_desc) 2155 { 2156 int rc, cmd_rc; 2157 struct nd_cmd_ars_start ars_start; 2158 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2159 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2160 2161 memset(&ars_start, 0, sizeof(ars_start)); 2162 ars_start.address = ars_status->restart_address; 2163 ars_start.length = ars_status->restart_length; 2164 ars_start.type = ars_status->type; 2165 ars_start.flags = acpi_desc->ars_start_flags; 2166 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2167 sizeof(ars_start), &cmd_rc); 2168 if (rc < 0) 2169 return rc; 2170 return cmd_rc; 2171 } 2172 2173 static int ars_get_status(struct acpi_nfit_desc *acpi_desc) 2174 { 2175 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2176 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2177 int rc, cmd_rc; 2178 2179 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, 2180 acpi_desc->ars_status_size, &cmd_rc); 2181 if (rc < 0) 2182 return rc; 2183 return cmd_rc; 2184 } 2185 2186 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc, 2187 struct nd_cmd_ars_status *ars_status) 2188 { 2189 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; 2190 int rc; 2191 u32 i; 2192 2193 /* 2194 * First record starts at 44 byte offset from the start of the 2195 * payload. 2196 */ 2197 if (ars_status->out_length < 44) 2198 return 0; 2199 for (i = 0; i < ars_status->num_records; i++) { 2200 /* only process full records */ 2201 if (ars_status->out_length 2202 < 44 + sizeof(struct nd_ars_record) * (i + 1)) 2203 break; 2204 rc = nvdimm_bus_add_poison(nvdimm_bus, 2205 ars_status->records[i].err_address, 2206 ars_status->records[i].length); 2207 if (rc) 2208 return rc; 2209 } 2210 if (i < ars_status->num_records) 2211 dev_warn(acpi_desc->dev, "detected truncated ars results\n"); 2212 2213 return 0; 2214 } 2215 2216 static void acpi_nfit_remove_resource(void *data) 2217 { 2218 struct resource *res = data; 2219 2220 remove_resource(res); 2221 } 2222 2223 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, 2224 struct nd_region_desc *ndr_desc) 2225 { 2226 struct resource *res, *nd_res = ndr_desc->res; 2227 int is_pmem, ret; 2228 2229 /* No operation if the region is already registered as PMEM */ 2230 is_pmem = region_intersects(nd_res->start, resource_size(nd_res), 2231 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); 2232 if (is_pmem == REGION_INTERSECTS) 2233 return 0; 2234 2235 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); 2236 if (!res) 2237 return -ENOMEM; 2238 2239 res->name = "Persistent Memory"; 2240 res->start = nd_res->start; 2241 res->end = nd_res->end; 2242 res->flags = IORESOURCE_MEM; 2243 res->desc = IORES_DESC_PERSISTENT_MEMORY; 2244 2245 ret = insert_resource(&iomem_resource, res); 2246 if (ret) 2247 return ret; 2248 2249 ret = devm_add_action_or_reset(acpi_desc->dev, 2250 acpi_nfit_remove_resource, 2251 res); 2252 if (ret) 2253 return ret; 2254 2255 return 0; 2256 } 2257 2258 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, 2259 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, 2260 struct acpi_nfit_memory_map *memdev, 2261 struct nfit_spa *nfit_spa) 2262 { 2263 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, 2264 memdev->device_handle); 2265 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2266 struct nd_blk_region_desc *ndbr_desc; 2267 struct nfit_mem *nfit_mem; 2268 int blk_valid = 0, rc; 2269 2270 if (!nvdimm) { 2271 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", 2272 spa->range_index, memdev->device_handle); 2273 return -ENODEV; 2274 } 2275 2276 mapping->nvdimm = nvdimm; 2277 switch (nfit_spa_type(spa)) { 2278 case NFIT_SPA_PM: 2279 case NFIT_SPA_VOLATILE: 2280 mapping->start = memdev->address; 2281 mapping->size = memdev->region_size; 2282 break; 2283 case NFIT_SPA_DCR: 2284 nfit_mem = nvdimm_provider_data(nvdimm); 2285 if (!nfit_mem || !nfit_mem->bdw) { 2286 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", 2287 spa->range_index, nvdimm_name(nvdimm)); 2288 } else { 2289 mapping->size = nfit_mem->bdw->capacity; 2290 mapping->start = nfit_mem->bdw->start_address; 2291 ndr_desc->num_lanes = nfit_mem->bdw->windows; 2292 blk_valid = 1; 2293 } 2294 2295 ndr_desc->mapping = mapping; 2296 ndr_desc->num_mappings = blk_valid; 2297 ndbr_desc = to_blk_region_desc(ndr_desc); 2298 ndbr_desc->enable = acpi_nfit_blk_region_enable; 2299 ndbr_desc->do_io = acpi_desc->blk_do_io; 2300 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2301 if (rc) 2302 return rc; 2303 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, 2304 ndr_desc); 2305 if (!nfit_spa->nd_region) 2306 return -ENOMEM; 2307 break; 2308 } 2309 2310 return 0; 2311 } 2312 2313 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) 2314 { 2315 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2316 nfit_spa_type(spa) == NFIT_SPA_VCD || 2317 nfit_spa_type(spa) == NFIT_SPA_PDISK || 2318 nfit_spa_type(spa) == NFIT_SPA_PCD); 2319 } 2320 2321 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) 2322 { 2323 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2324 nfit_spa_type(spa) == NFIT_SPA_VCD || 2325 nfit_spa_type(spa) == NFIT_SPA_VOLATILE); 2326 } 2327 2328 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, 2329 struct nfit_spa *nfit_spa) 2330 { 2331 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; 2332 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2333 struct nd_blk_region_desc ndbr_desc; 2334 struct nd_region_desc *ndr_desc; 2335 struct nfit_memdev *nfit_memdev; 2336 struct nvdimm_bus *nvdimm_bus; 2337 struct resource res; 2338 int count = 0, rc; 2339 2340 if (nfit_spa->nd_region) 2341 return 0; 2342 2343 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { 2344 dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n", 2345 __func__); 2346 return 0; 2347 } 2348 2349 memset(&res, 0, sizeof(res)); 2350 memset(&mappings, 0, sizeof(mappings)); 2351 memset(&ndbr_desc, 0, sizeof(ndbr_desc)); 2352 res.start = spa->address; 2353 res.end = res.start + spa->length - 1; 2354 ndr_desc = &ndbr_desc.ndr_desc; 2355 ndr_desc->res = &res; 2356 ndr_desc->provider_data = nfit_spa; 2357 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; 2358 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) 2359 ndr_desc->numa_node = acpi_map_pxm_to_online_node( 2360 spa->proximity_domain); 2361 else 2362 ndr_desc->numa_node = NUMA_NO_NODE; 2363 2364 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2365 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 2366 struct nd_mapping_desc *mapping; 2367 2368 if (memdev->range_index != spa->range_index) 2369 continue; 2370 if (count >= ND_MAX_MAPPINGS) { 2371 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", 2372 spa->range_index, ND_MAX_MAPPINGS); 2373 return -ENXIO; 2374 } 2375 mapping = &mappings[count++]; 2376 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, 2377 memdev, nfit_spa); 2378 if (rc) 2379 goto out; 2380 } 2381 2382 ndr_desc->mapping = mappings; 2383 ndr_desc->num_mappings = count; 2384 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2385 if (rc) 2386 goto out; 2387 2388 nvdimm_bus = acpi_desc->nvdimm_bus; 2389 if (nfit_spa_type(spa) == NFIT_SPA_PM) { 2390 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); 2391 if (rc) { 2392 dev_warn(acpi_desc->dev, 2393 "failed to insert pmem resource to iomem: %d\n", 2394 rc); 2395 goto out; 2396 } 2397 2398 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 2399 ndr_desc); 2400 if (!nfit_spa->nd_region) 2401 rc = -ENOMEM; 2402 } else if (nfit_spa_is_volatile(spa)) { 2403 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, 2404 ndr_desc); 2405 if (!nfit_spa->nd_region) 2406 rc = -ENOMEM; 2407 } else if (nfit_spa_is_virtual(spa)) { 2408 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 2409 ndr_desc); 2410 if (!nfit_spa->nd_region) 2411 rc = -ENOMEM; 2412 } 2413 2414 out: 2415 if (rc) 2416 dev_err(acpi_desc->dev, "failed to register spa range %d\n", 2417 nfit_spa->spa->range_index); 2418 return rc; 2419 } 2420 2421 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc, 2422 u32 max_ars) 2423 { 2424 struct device *dev = acpi_desc->dev; 2425 struct nd_cmd_ars_status *ars_status; 2426 2427 if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) { 2428 memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size); 2429 return 0; 2430 } 2431 2432 if (acpi_desc->ars_status) 2433 devm_kfree(dev, acpi_desc->ars_status); 2434 acpi_desc->ars_status = NULL; 2435 ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL); 2436 if (!ars_status) 2437 return -ENOMEM; 2438 acpi_desc->ars_status = ars_status; 2439 acpi_desc->ars_status_size = max_ars; 2440 return 0; 2441 } 2442 2443 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc, 2444 struct nfit_spa *nfit_spa) 2445 { 2446 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2447 int rc; 2448 2449 if (!nfit_spa->max_ars) { 2450 struct nd_cmd_ars_cap ars_cap; 2451 2452 memset(&ars_cap, 0, sizeof(ars_cap)); 2453 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); 2454 if (rc < 0) 2455 return rc; 2456 nfit_spa->max_ars = ars_cap.max_ars_out; 2457 nfit_spa->clear_err_unit = ars_cap.clear_err_unit; 2458 /* check that the supported scrub types match the spa type */ 2459 if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE && 2460 ((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0) 2461 return -ENOTTY; 2462 else if (nfit_spa_type(spa) == NFIT_SPA_PM && 2463 ((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0) 2464 return -ENOTTY; 2465 } 2466 2467 if (ars_status_alloc(acpi_desc, nfit_spa->max_ars)) 2468 return -ENOMEM; 2469 2470 rc = ars_get_status(acpi_desc); 2471 if (rc < 0 && rc != -ENOSPC) 2472 return rc; 2473 2474 if (ars_status_process_records(acpi_desc, acpi_desc->ars_status)) 2475 return -ENOMEM; 2476 2477 return 0; 2478 } 2479 2480 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc, 2481 struct nfit_spa *nfit_spa) 2482 { 2483 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2484 unsigned int overflow_retry = scrub_overflow_abort; 2485 u64 init_ars_start = 0, init_ars_len = 0; 2486 struct device *dev = acpi_desc->dev; 2487 unsigned int tmo = scrub_timeout; 2488 int rc; 2489 2490 if (!nfit_spa->ars_required || !nfit_spa->nd_region) 2491 return; 2492 2493 rc = ars_start(acpi_desc, nfit_spa); 2494 /* 2495 * If we timed out the initial scan we'll still be busy here, 2496 * and will wait another timeout before giving up permanently. 2497 */ 2498 if (rc < 0 && rc != -EBUSY) 2499 return; 2500 2501 do { 2502 u64 ars_start, ars_len; 2503 2504 if (acpi_desc->cancel) 2505 break; 2506 rc = acpi_nfit_query_poison(acpi_desc, nfit_spa); 2507 if (rc == -ENOTTY) 2508 break; 2509 if (rc == -EBUSY && !tmo) { 2510 dev_warn(dev, "range %d ars timeout, aborting\n", 2511 spa->range_index); 2512 break; 2513 } 2514 2515 if (rc == -EBUSY) { 2516 /* 2517 * Note, entries may be appended to the list 2518 * while the lock is dropped, but the workqueue 2519 * being active prevents entries being deleted / 2520 * freed. 2521 */ 2522 mutex_unlock(&acpi_desc->init_mutex); 2523 ssleep(1); 2524 tmo--; 2525 mutex_lock(&acpi_desc->init_mutex); 2526 continue; 2527 } 2528 2529 /* we got some results, but there are more pending... */ 2530 if (rc == -ENOSPC && overflow_retry--) { 2531 if (!init_ars_len) { 2532 init_ars_len = acpi_desc->ars_status->length; 2533 init_ars_start = acpi_desc->ars_status->address; 2534 } 2535 rc = ars_continue(acpi_desc); 2536 } 2537 2538 if (rc < 0) { 2539 dev_warn(dev, "range %d ars continuation failed\n", 2540 spa->range_index); 2541 break; 2542 } 2543 2544 if (init_ars_len) { 2545 ars_start = init_ars_start; 2546 ars_len = init_ars_len; 2547 } else { 2548 ars_start = acpi_desc->ars_status->address; 2549 ars_len = acpi_desc->ars_status->length; 2550 } 2551 dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n", 2552 spa->range_index, ars_start, ars_len); 2553 /* notify the region about new poison entries */ 2554 nvdimm_region_notify(nfit_spa->nd_region, 2555 NVDIMM_REVALIDATE_POISON); 2556 break; 2557 } while (1); 2558 } 2559 2560 static void acpi_nfit_scrub(struct work_struct *work) 2561 { 2562 struct device *dev; 2563 u64 init_scrub_length = 0; 2564 struct nfit_spa *nfit_spa; 2565 u64 init_scrub_address = 0; 2566 bool init_ars_done = false; 2567 struct acpi_nfit_desc *acpi_desc; 2568 unsigned int tmo = scrub_timeout; 2569 unsigned int overflow_retry = scrub_overflow_abort; 2570 2571 acpi_desc = container_of(work, typeof(*acpi_desc), work); 2572 dev = acpi_desc->dev; 2573 2574 /* 2575 * We scrub in 2 phases. The first phase waits for any platform 2576 * firmware initiated scrubs to complete and then we go search for the 2577 * affected spa regions to mark them scanned. In the second phase we 2578 * initiate a directed scrub for every range that was not scrubbed in 2579 * phase 1. If we're called for a 'rescan', we harmlessly pass through 2580 * the first phase, but really only care about running phase 2, where 2581 * regions can be notified of new poison. 2582 */ 2583 2584 /* process platform firmware initiated scrubs */ 2585 retry: 2586 mutex_lock(&acpi_desc->init_mutex); 2587 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 2588 struct nd_cmd_ars_status *ars_status; 2589 struct acpi_nfit_system_address *spa; 2590 u64 ars_start, ars_len; 2591 int rc; 2592 2593 if (acpi_desc->cancel) 2594 break; 2595 2596 if (nfit_spa->nd_region) 2597 continue; 2598 2599 if (init_ars_done) { 2600 /* 2601 * No need to re-query, we're now just 2602 * reconciling all the ranges covered by the 2603 * initial scrub 2604 */ 2605 rc = 0; 2606 } else 2607 rc = acpi_nfit_query_poison(acpi_desc, nfit_spa); 2608 2609 if (rc == -ENOTTY) { 2610 /* no ars capability, just register spa and move on */ 2611 acpi_nfit_register_region(acpi_desc, nfit_spa); 2612 continue; 2613 } 2614 2615 if (rc == -EBUSY && !tmo) { 2616 /* fallthrough to directed scrub in phase 2 */ 2617 dev_warn(dev, "timeout awaiting ars results, continuing...\n"); 2618 break; 2619 } else if (rc == -EBUSY) { 2620 mutex_unlock(&acpi_desc->init_mutex); 2621 ssleep(1); 2622 tmo--; 2623 goto retry; 2624 } 2625 2626 /* we got some results, but there are more pending... */ 2627 if (rc == -ENOSPC && overflow_retry--) { 2628 ars_status = acpi_desc->ars_status; 2629 /* 2630 * Record the original scrub range, so that we 2631 * can recall all the ranges impacted by the 2632 * initial scrub. 2633 */ 2634 if (!init_scrub_length) { 2635 init_scrub_length = ars_status->length; 2636 init_scrub_address = ars_status->address; 2637 } 2638 rc = ars_continue(acpi_desc); 2639 if (rc == 0) { 2640 mutex_unlock(&acpi_desc->init_mutex); 2641 goto retry; 2642 } 2643 } 2644 2645 if (rc < 0) { 2646 /* 2647 * Initial scrub failed, we'll give it one more 2648 * try below... 2649 */ 2650 break; 2651 } 2652 2653 /* We got some final results, record completed ranges */ 2654 ars_status = acpi_desc->ars_status; 2655 if (init_scrub_length) { 2656 ars_start = init_scrub_address; 2657 ars_len = ars_start + init_scrub_length; 2658 } else { 2659 ars_start = ars_status->address; 2660 ars_len = ars_status->length; 2661 } 2662 spa = nfit_spa->spa; 2663 2664 if (!init_ars_done) { 2665 init_ars_done = true; 2666 dev_dbg(dev, "init scrub %#llx + %#llx complete\n", 2667 ars_start, ars_len); 2668 } 2669 if (ars_start <= spa->address && ars_start + ars_len 2670 >= spa->address + spa->length) 2671 acpi_nfit_register_region(acpi_desc, nfit_spa); 2672 } 2673 2674 /* 2675 * For all the ranges not covered by an initial scrub we still 2676 * want to see if there are errors, but it's ok to discover them 2677 * asynchronously. 2678 */ 2679 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 2680 /* 2681 * Flag all the ranges that still need scrubbing, but 2682 * register them now to make data available. 2683 */ 2684 if (!nfit_spa->nd_region) { 2685 nfit_spa->ars_required = 1; 2686 acpi_nfit_register_region(acpi_desc, nfit_spa); 2687 } 2688 } 2689 acpi_desc->init_complete = 1; 2690 2691 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) 2692 acpi_nfit_async_scrub(acpi_desc, nfit_spa); 2693 acpi_desc->scrub_count++; 2694 acpi_desc->ars_start_flags = 0; 2695 if (acpi_desc->scrub_count_state) 2696 sysfs_notify_dirent(acpi_desc->scrub_count_state); 2697 mutex_unlock(&acpi_desc->init_mutex); 2698 } 2699 2700 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) 2701 { 2702 struct nfit_spa *nfit_spa; 2703 int rc; 2704 2705 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) 2706 if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) { 2707 /* BLK regions don't need to wait for ars results */ 2708 rc = acpi_nfit_register_region(acpi_desc, nfit_spa); 2709 if (rc) 2710 return rc; 2711 } 2712 2713 acpi_desc->ars_start_flags = 0; 2714 if (!acpi_desc->cancel) 2715 queue_work(nfit_wq, &acpi_desc->work); 2716 return 0; 2717 } 2718 2719 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, 2720 struct nfit_table_prev *prev) 2721 { 2722 struct device *dev = acpi_desc->dev; 2723 2724 if (!list_empty(&prev->spas) || 2725 !list_empty(&prev->memdevs) || 2726 !list_empty(&prev->dcrs) || 2727 !list_empty(&prev->bdws) || 2728 !list_empty(&prev->idts) || 2729 !list_empty(&prev->flushes)) { 2730 dev_err(dev, "new nfit deletes entries (unsupported)\n"); 2731 return -ENXIO; 2732 } 2733 return 0; 2734 } 2735 2736 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) 2737 { 2738 struct device *dev = acpi_desc->dev; 2739 struct kernfs_node *nfit; 2740 struct device *bus_dev; 2741 2742 if (!ars_supported(acpi_desc->nvdimm_bus)) 2743 return 0; 2744 2745 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 2746 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); 2747 if (!nfit) { 2748 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); 2749 return -ENODEV; 2750 } 2751 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); 2752 sysfs_put(nfit); 2753 if (!acpi_desc->scrub_count_state) { 2754 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); 2755 return -ENODEV; 2756 } 2757 2758 return 0; 2759 } 2760 2761 static void acpi_nfit_unregister(void *data) 2762 { 2763 struct acpi_nfit_desc *acpi_desc = data; 2764 2765 nvdimm_bus_unregister(acpi_desc->nvdimm_bus); 2766 } 2767 2768 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) 2769 { 2770 struct device *dev = acpi_desc->dev; 2771 struct nfit_table_prev prev; 2772 const void *end; 2773 int rc; 2774 2775 if (!acpi_desc->nvdimm_bus) { 2776 acpi_nfit_init_dsms(acpi_desc); 2777 2778 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, 2779 &acpi_desc->nd_desc); 2780 if (!acpi_desc->nvdimm_bus) 2781 return -ENOMEM; 2782 2783 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, 2784 acpi_desc); 2785 if (rc) 2786 return rc; 2787 2788 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); 2789 if (rc) 2790 return rc; 2791 2792 /* register this acpi_desc for mce notifications */ 2793 mutex_lock(&acpi_desc_lock); 2794 list_add_tail(&acpi_desc->list, &acpi_descs); 2795 mutex_unlock(&acpi_desc_lock); 2796 } 2797 2798 mutex_lock(&acpi_desc->init_mutex); 2799 2800 INIT_LIST_HEAD(&prev.spas); 2801 INIT_LIST_HEAD(&prev.memdevs); 2802 INIT_LIST_HEAD(&prev.dcrs); 2803 INIT_LIST_HEAD(&prev.bdws); 2804 INIT_LIST_HEAD(&prev.idts); 2805 INIT_LIST_HEAD(&prev.flushes); 2806 2807 list_cut_position(&prev.spas, &acpi_desc->spas, 2808 acpi_desc->spas.prev); 2809 list_cut_position(&prev.memdevs, &acpi_desc->memdevs, 2810 acpi_desc->memdevs.prev); 2811 list_cut_position(&prev.dcrs, &acpi_desc->dcrs, 2812 acpi_desc->dcrs.prev); 2813 list_cut_position(&prev.bdws, &acpi_desc->bdws, 2814 acpi_desc->bdws.prev); 2815 list_cut_position(&prev.idts, &acpi_desc->idts, 2816 acpi_desc->idts.prev); 2817 list_cut_position(&prev.flushes, &acpi_desc->flushes, 2818 acpi_desc->flushes.prev); 2819 2820 end = data + sz; 2821 while (!IS_ERR_OR_NULL(data)) 2822 data = add_table(acpi_desc, &prev, data, end); 2823 2824 if (IS_ERR(data)) { 2825 dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__, 2826 PTR_ERR(data)); 2827 rc = PTR_ERR(data); 2828 goto out_unlock; 2829 } 2830 2831 rc = acpi_nfit_check_deletions(acpi_desc, &prev); 2832 if (rc) 2833 goto out_unlock; 2834 2835 rc = nfit_mem_init(acpi_desc); 2836 if (rc) 2837 goto out_unlock; 2838 2839 rc = acpi_nfit_register_dimms(acpi_desc); 2840 if (rc) 2841 goto out_unlock; 2842 2843 rc = acpi_nfit_register_regions(acpi_desc); 2844 2845 out_unlock: 2846 mutex_unlock(&acpi_desc->init_mutex); 2847 return rc; 2848 } 2849 EXPORT_SYMBOL_GPL(acpi_nfit_init); 2850 2851 struct acpi_nfit_flush_work { 2852 struct work_struct work; 2853 struct completion cmp; 2854 }; 2855 2856 static void flush_probe(struct work_struct *work) 2857 { 2858 struct acpi_nfit_flush_work *flush; 2859 2860 flush = container_of(work, typeof(*flush), work); 2861 complete(&flush->cmp); 2862 } 2863 2864 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) 2865 { 2866 struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); 2867 struct device *dev = acpi_desc->dev; 2868 struct acpi_nfit_flush_work flush; 2869 int rc; 2870 2871 /* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ 2872 device_lock(dev); 2873 device_unlock(dev); 2874 2875 /* bounce the init_mutex to make init_complete valid */ 2876 mutex_lock(&acpi_desc->init_mutex); 2877 if (acpi_desc->cancel || acpi_desc->init_complete) { 2878 mutex_unlock(&acpi_desc->init_mutex); 2879 return 0; 2880 } 2881 2882 /* 2883 * Scrub work could take 10s of seconds, userspace may give up so we 2884 * need to be interruptible while waiting. 2885 */ 2886 INIT_WORK_ONSTACK(&flush.work, flush_probe); 2887 COMPLETION_INITIALIZER_ONSTACK(flush.cmp); 2888 queue_work(nfit_wq, &flush.work); 2889 mutex_unlock(&acpi_desc->init_mutex); 2890 2891 rc = wait_for_completion_interruptible(&flush.cmp); 2892 cancel_work_sync(&flush.work); 2893 return rc; 2894 } 2895 2896 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 2897 struct nvdimm *nvdimm, unsigned int cmd) 2898 { 2899 struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); 2900 2901 if (nvdimm) 2902 return 0; 2903 if (cmd != ND_CMD_ARS_START) 2904 return 0; 2905 2906 /* 2907 * The kernel and userspace may race to initiate a scrub, but 2908 * the scrub thread is prepared to lose that initial race. It 2909 * just needs guarantees that any ars it initiates are not 2910 * interrupted by any intervening start reqeusts from userspace. 2911 */ 2912 if (work_busy(&acpi_desc->work)) 2913 return -EBUSY; 2914 2915 return 0; 2916 } 2917 2918 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, u8 flags) 2919 { 2920 struct device *dev = acpi_desc->dev; 2921 struct nfit_spa *nfit_spa; 2922 2923 if (work_busy(&acpi_desc->work)) 2924 return -EBUSY; 2925 2926 mutex_lock(&acpi_desc->init_mutex); 2927 if (acpi_desc->cancel) { 2928 mutex_unlock(&acpi_desc->init_mutex); 2929 return 0; 2930 } 2931 2932 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 2933 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2934 2935 if (nfit_spa_type(spa) != NFIT_SPA_PM) 2936 continue; 2937 2938 nfit_spa->ars_required = 1; 2939 } 2940 acpi_desc->ars_start_flags = flags; 2941 queue_work(nfit_wq, &acpi_desc->work); 2942 dev_dbg(dev, "%s: ars_scan triggered\n", __func__); 2943 mutex_unlock(&acpi_desc->init_mutex); 2944 2945 return 0; 2946 } 2947 2948 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) 2949 { 2950 struct nvdimm_bus_descriptor *nd_desc; 2951 2952 dev_set_drvdata(dev, acpi_desc); 2953 acpi_desc->dev = dev; 2954 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; 2955 nd_desc = &acpi_desc->nd_desc; 2956 nd_desc->provider_name = "ACPI.NFIT"; 2957 nd_desc->module = THIS_MODULE; 2958 nd_desc->ndctl = acpi_nfit_ctl; 2959 nd_desc->flush_probe = acpi_nfit_flush_probe; 2960 nd_desc->clear_to_send = acpi_nfit_clear_to_send; 2961 nd_desc->attr_groups = acpi_nfit_attribute_groups; 2962 2963 INIT_LIST_HEAD(&acpi_desc->spas); 2964 INIT_LIST_HEAD(&acpi_desc->dcrs); 2965 INIT_LIST_HEAD(&acpi_desc->bdws); 2966 INIT_LIST_HEAD(&acpi_desc->idts); 2967 INIT_LIST_HEAD(&acpi_desc->flushes); 2968 INIT_LIST_HEAD(&acpi_desc->memdevs); 2969 INIT_LIST_HEAD(&acpi_desc->dimms); 2970 INIT_LIST_HEAD(&acpi_desc->list); 2971 mutex_init(&acpi_desc->init_mutex); 2972 INIT_WORK(&acpi_desc->work, acpi_nfit_scrub); 2973 } 2974 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); 2975 2976 static void acpi_nfit_put_table(void *table) 2977 { 2978 acpi_put_table(table); 2979 } 2980 2981 void acpi_nfit_shutdown(void *data) 2982 { 2983 struct acpi_nfit_desc *acpi_desc = data; 2984 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 2985 2986 /* 2987 * Destruct under acpi_desc_lock so that nfit_handle_mce does not 2988 * race teardown 2989 */ 2990 mutex_lock(&acpi_desc_lock); 2991 list_del(&acpi_desc->list); 2992 mutex_unlock(&acpi_desc_lock); 2993 2994 mutex_lock(&acpi_desc->init_mutex); 2995 acpi_desc->cancel = 1; 2996 mutex_unlock(&acpi_desc->init_mutex); 2997 2998 /* 2999 * Bounce the nvdimm bus lock to make sure any in-flight 3000 * acpi_nfit_ars_rescan() submissions have had a chance to 3001 * either submit or see ->cancel set. 3002 */ 3003 device_lock(bus_dev); 3004 device_unlock(bus_dev); 3005 3006 flush_workqueue(nfit_wq); 3007 } 3008 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); 3009 3010 static int acpi_nfit_add(struct acpi_device *adev) 3011 { 3012 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3013 struct acpi_nfit_desc *acpi_desc; 3014 struct device *dev = &adev->dev; 3015 struct acpi_table_header *tbl; 3016 acpi_status status = AE_OK; 3017 acpi_size sz; 3018 int rc = 0; 3019 3020 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); 3021 if (ACPI_FAILURE(status)) { 3022 /* This is ok, we could have an nvdimm hotplugged later */ 3023 dev_dbg(dev, "failed to find NFIT at startup\n"); 3024 return 0; 3025 } 3026 3027 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); 3028 if (rc) 3029 return rc; 3030 sz = tbl->length; 3031 3032 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3033 if (!acpi_desc) 3034 return -ENOMEM; 3035 acpi_nfit_desc_init(acpi_desc, &adev->dev); 3036 3037 /* Save the acpi header for exporting the revision via sysfs */ 3038 acpi_desc->acpi_header = *tbl; 3039 3040 /* Evaluate _FIT and override with that if present */ 3041 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); 3042 if (ACPI_SUCCESS(status) && buf.length > 0) { 3043 union acpi_object *obj = buf.pointer; 3044 3045 if (obj->type == ACPI_TYPE_BUFFER) 3046 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3047 obj->buffer.length); 3048 else 3049 dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n", 3050 __func__, (int) obj->type); 3051 kfree(buf.pointer); 3052 } else 3053 /* skip over the lead-in header table */ 3054 rc = acpi_nfit_init(acpi_desc, (void *) tbl 3055 + sizeof(struct acpi_table_nfit), 3056 sz - sizeof(struct acpi_table_nfit)); 3057 3058 if (rc) 3059 return rc; 3060 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); 3061 } 3062 3063 static int acpi_nfit_remove(struct acpi_device *adev) 3064 { 3065 /* see acpi_nfit_unregister */ 3066 return 0; 3067 } 3068 3069 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) 3070 { 3071 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3072 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3073 union acpi_object *obj; 3074 acpi_status status; 3075 int ret; 3076 3077 if (!dev->driver) { 3078 /* dev->driver may be null if we're being removed */ 3079 dev_dbg(dev, "%s: no driver found for dev\n", __func__); 3080 return; 3081 } 3082 3083 if (!acpi_desc) { 3084 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3085 if (!acpi_desc) 3086 return; 3087 acpi_nfit_desc_init(acpi_desc, dev); 3088 } else { 3089 /* 3090 * Finish previous registration before considering new 3091 * regions. 3092 */ 3093 flush_workqueue(nfit_wq); 3094 } 3095 3096 /* Evaluate _FIT */ 3097 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); 3098 if (ACPI_FAILURE(status)) { 3099 dev_err(dev, "failed to evaluate _FIT\n"); 3100 return; 3101 } 3102 3103 obj = buf.pointer; 3104 if (obj->type == ACPI_TYPE_BUFFER) { 3105 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3106 obj->buffer.length); 3107 if (ret) 3108 dev_err(dev, "failed to merge updated NFIT\n"); 3109 } else 3110 dev_err(dev, "Invalid _FIT\n"); 3111 kfree(buf.pointer); 3112 } 3113 3114 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) 3115 { 3116 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3117 u8 flags = (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) ? 3118 0 : ND_ARS_RETURN_PREV_DATA; 3119 3120 acpi_nfit_ars_rescan(acpi_desc, flags); 3121 } 3122 3123 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) 3124 { 3125 dev_dbg(dev, "%s: event: 0x%x\n", __func__, event); 3126 3127 switch (event) { 3128 case NFIT_NOTIFY_UPDATE: 3129 return acpi_nfit_update_notify(dev, handle); 3130 case NFIT_NOTIFY_UC_MEMORY_ERROR: 3131 return acpi_nfit_uc_error_notify(dev, handle); 3132 default: 3133 return; 3134 } 3135 } 3136 EXPORT_SYMBOL_GPL(__acpi_nfit_notify); 3137 3138 static void acpi_nfit_notify(struct acpi_device *adev, u32 event) 3139 { 3140 device_lock(&adev->dev); 3141 __acpi_nfit_notify(&adev->dev, adev->handle, event); 3142 device_unlock(&adev->dev); 3143 } 3144 3145 static const struct acpi_device_id acpi_nfit_ids[] = { 3146 { "ACPI0012", 0 }, 3147 { "", 0 }, 3148 }; 3149 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); 3150 3151 static struct acpi_driver acpi_nfit_driver = { 3152 .name = KBUILD_MODNAME, 3153 .ids = acpi_nfit_ids, 3154 .ops = { 3155 .add = acpi_nfit_add, 3156 .remove = acpi_nfit_remove, 3157 .notify = acpi_nfit_notify, 3158 }, 3159 }; 3160 3161 static __init int nfit_init(void) 3162 { 3163 int ret; 3164 3165 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); 3166 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); 3167 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); 3168 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); 3169 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); 3170 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); 3171 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); 3172 3173 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); 3174 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); 3175 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); 3176 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); 3177 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); 3178 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); 3179 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); 3180 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); 3181 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); 3182 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); 3183 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); 3184 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); 3185 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); 3186 3187 nfit_wq = create_singlethread_workqueue("nfit"); 3188 if (!nfit_wq) 3189 return -ENOMEM; 3190 3191 nfit_mce_register(); 3192 ret = acpi_bus_register_driver(&acpi_nfit_driver); 3193 if (ret) { 3194 nfit_mce_unregister(); 3195 destroy_workqueue(nfit_wq); 3196 } 3197 3198 return ret; 3199 3200 } 3201 3202 static __exit void nfit_exit(void) 3203 { 3204 nfit_mce_unregister(); 3205 acpi_bus_unregister_driver(&acpi_nfit_driver); 3206 destroy_workqueue(nfit_wq); 3207 WARN_ON(!list_empty(&acpi_descs)); 3208 } 3209 3210 module_init(nfit_init); 3211 module_exit(nfit_exit); 3212 MODULE_LICENSE("GPL v2"); 3213 MODULE_AUTHOR("Intel Corporation"); 3214