xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision ddc141e5)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include "nfit.h"
27 
28 /*
29  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
30  * irrelevant.
31  */
32 #include <linux/io-64-nonatomic-hi-lo.h>
33 
34 static bool force_enable_dimms;
35 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
36 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
37 
38 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
39 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
40 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
41 
42 /* after three payloads of overflow, it's dead jim */
43 static unsigned int scrub_overflow_abort = 3;
44 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
45 MODULE_PARM_DESC(scrub_overflow_abort,
46 		"Number of times we overflow ARS results before abort");
47 
48 static bool disable_vendor_specific;
49 module_param(disable_vendor_specific, bool, S_IRUGO);
50 MODULE_PARM_DESC(disable_vendor_specific,
51 		"Limit commands to the publicly specified set");
52 
53 static unsigned long override_dsm_mask;
54 module_param(override_dsm_mask, ulong, S_IRUGO);
55 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
56 
57 static int default_dsm_family = -1;
58 module_param(default_dsm_family, int, S_IRUGO);
59 MODULE_PARM_DESC(default_dsm_family,
60 		"Try this DSM type first when identifying NVDIMM family");
61 
62 LIST_HEAD(acpi_descs);
63 DEFINE_MUTEX(acpi_desc_lock);
64 
65 static struct workqueue_struct *nfit_wq;
66 
67 struct nfit_table_prev {
68 	struct list_head spas;
69 	struct list_head memdevs;
70 	struct list_head dcrs;
71 	struct list_head bdws;
72 	struct list_head idts;
73 	struct list_head flushes;
74 };
75 
76 static guid_t nfit_uuid[NFIT_UUID_MAX];
77 
78 const guid_t *to_nfit_uuid(enum nfit_uuids id)
79 {
80 	return &nfit_uuid[id];
81 }
82 EXPORT_SYMBOL(to_nfit_uuid);
83 
84 static struct acpi_nfit_desc *to_acpi_nfit_desc(
85 		struct nvdimm_bus_descriptor *nd_desc)
86 {
87 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
88 }
89 
90 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
91 {
92 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
93 
94 	/*
95 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
96 	 * acpi_device.
97 	 */
98 	if (!nd_desc->provider_name
99 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
100 		return NULL;
101 
102 	return to_acpi_device(acpi_desc->dev);
103 }
104 
105 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
106 {
107 	struct nd_cmd_clear_error *clear_err;
108 	struct nd_cmd_ars_status *ars_status;
109 	u16 flags;
110 
111 	switch (cmd) {
112 	case ND_CMD_ARS_CAP:
113 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
114 			return -ENOTTY;
115 
116 		/* Command failed */
117 		if (status & 0xffff)
118 			return -EIO;
119 
120 		/* No supported scan types for this range */
121 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
122 		if ((status >> 16 & flags) == 0)
123 			return -ENOTTY;
124 		return 0;
125 	case ND_CMD_ARS_START:
126 		/* ARS is in progress */
127 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
128 			return -EBUSY;
129 
130 		/* Command failed */
131 		if (status & 0xffff)
132 			return -EIO;
133 		return 0;
134 	case ND_CMD_ARS_STATUS:
135 		ars_status = buf;
136 		/* Command failed */
137 		if (status & 0xffff)
138 			return -EIO;
139 		/* Check extended status (Upper two bytes) */
140 		if (status == NFIT_ARS_STATUS_DONE)
141 			return 0;
142 
143 		/* ARS is in progress */
144 		if (status == NFIT_ARS_STATUS_BUSY)
145 			return -EBUSY;
146 
147 		/* No ARS performed for the current boot */
148 		if (status == NFIT_ARS_STATUS_NONE)
149 			return -EAGAIN;
150 
151 		/*
152 		 * ARS interrupted, either we overflowed or some other
153 		 * agent wants the scan to stop.  If we didn't overflow
154 		 * then just continue with the returned results.
155 		 */
156 		if (status == NFIT_ARS_STATUS_INTR) {
157 			if (ars_status->out_length >= 40 && (ars_status->flags
158 						& NFIT_ARS_F_OVERFLOW))
159 				return -ENOSPC;
160 			return 0;
161 		}
162 
163 		/* Unknown status */
164 		if (status >> 16)
165 			return -EIO;
166 		return 0;
167 	case ND_CMD_CLEAR_ERROR:
168 		clear_err = buf;
169 		if (status & 0xffff)
170 			return -EIO;
171 		if (!clear_err->cleared)
172 			return -EIO;
173 		if (clear_err->length > clear_err->cleared)
174 			return clear_err->cleared;
175 		return 0;
176 	default:
177 		break;
178 	}
179 
180 	/* all other non-zero status results in an error */
181 	if (status)
182 		return -EIO;
183 	return 0;
184 }
185 
186 #define ACPI_LABELS_LOCKED 3
187 
188 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
189 		u32 status)
190 {
191 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
192 
193 	switch (cmd) {
194 	case ND_CMD_GET_CONFIG_SIZE:
195 		/*
196 		 * In the _LSI, _LSR, _LSW case the locked status is
197 		 * communicated via the read/write commands
198 		 */
199 		if (nfit_mem->has_lsr)
200 			break;
201 
202 		if (status >> 16 & ND_CONFIG_LOCKED)
203 			return -EACCES;
204 		break;
205 	case ND_CMD_GET_CONFIG_DATA:
206 		if (nfit_mem->has_lsr && status == ACPI_LABELS_LOCKED)
207 			return -EACCES;
208 		break;
209 	case ND_CMD_SET_CONFIG_DATA:
210 		if (nfit_mem->has_lsw && status == ACPI_LABELS_LOCKED)
211 			return -EACCES;
212 		break;
213 	default:
214 		break;
215 	}
216 
217 	/* all other non-zero status results in an error */
218 	if (status)
219 		return -EIO;
220 	return 0;
221 }
222 
223 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
224 		u32 status)
225 {
226 	if (!nvdimm)
227 		return xlat_bus_status(buf, cmd, status);
228 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
229 }
230 
231 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
232 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
233 {
234 	int i;
235 	void *dst;
236 	size_t size = 0;
237 	union acpi_object *buf = NULL;
238 
239 	if (pkg->type != ACPI_TYPE_PACKAGE) {
240 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
241 				pkg->type);
242 		goto err;
243 	}
244 
245 	for (i = 0; i < pkg->package.count; i++) {
246 		union acpi_object *obj = &pkg->package.elements[i];
247 
248 		if (obj->type == ACPI_TYPE_INTEGER)
249 			size += 4;
250 		else if (obj->type == ACPI_TYPE_BUFFER)
251 			size += obj->buffer.length;
252 		else {
253 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
254 					obj->type);
255 			goto err;
256 		}
257 	}
258 
259 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
260 	if (!buf)
261 		goto err;
262 
263 	dst = buf + 1;
264 	buf->type = ACPI_TYPE_BUFFER;
265 	buf->buffer.length = size;
266 	buf->buffer.pointer = dst;
267 	for (i = 0; i < pkg->package.count; i++) {
268 		union acpi_object *obj = &pkg->package.elements[i];
269 
270 		if (obj->type == ACPI_TYPE_INTEGER) {
271 			memcpy(dst, &obj->integer.value, 4);
272 			dst += 4;
273 		} else if (obj->type == ACPI_TYPE_BUFFER) {
274 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
275 			dst += obj->buffer.length;
276 		}
277 	}
278 err:
279 	ACPI_FREE(pkg);
280 	return buf;
281 }
282 
283 static union acpi_object *int_to_buf(union acpi_object *integer)
284 {
285 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
286 	void *dst = NULL;
287 
288 	if (!buf)
289 		goto err;
290 
291 	if (integer->type != ACPI_TYPE_INTEGER) {
292 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
293 				integer->type);
294 		goto err;
295 	}
296 
297 	dst = buf + 1;
298 	buf->type = ACPI_TYPE_BUFFER;
299 	buf->buffer.length = 4;
300 	buf->buffer.pointer = dst;
301 	memcpy(dst, &integer->integer.value, 4);
302 err:
303 	ACPI_FREE(integer);
304 	return buf;
305 }
306 
307 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
308 		u32 len, void *data)
309 {
310 	acpi_status rc;
311 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
312 	struct acpi_object_list input = {
313 		.count = 3,
314 		.pointer = (union acpi_object []) {
315 			[0] = {
316 				.integer.type = ACPI_TYPE_INTEGER,
317 				.integer.value = offset,
318 			},
319 			[1] = {
320 				.integer.type = ACPI_TYPE_INTEGER,
321 				.integer.value = len,
322 			},
323 			[2] = {
324 				.buffer.type = ACPI_TYPE_BUFFER,
325 				.buffer.pointer = data,
326 				.buffer.length = len,
327 			},
328 		},
329 	};
330 
331 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
332 	if (ACPI_FAILURE(rc))
333 		return NULL;
334 	return int_to_buf(buf.pointer);
335 }
336 
337 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
338 		u32 len)
339 {
340 	acpi_status rc;
341 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
342 	struct acpi_object_list input = {
343 		.count = 2,
344 		.pointer = (union acpi_object []) {
345 			[0] = {
346 				.integer.type = ACPI_TYPE_INTEGER,
347 				.integer.value = offset,
348 			},
349 			[1] = {
350 				.integer.type = ACPI_TYPE_INTEGER,
351 				.integer.value = len,
352 			},
353 		},
354 	};
355 
356 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
357 	if (ACPI_FAILURE(rc))
358 		return NULL;
359 	return pkg_to_buf(buf.pointer);
360 }
361 
362 static union acpi_object *acpi_label_info(acpi_handle handle)
363 {
364 	acpi_status rc;
365 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
366 
367 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
368 	if (ACPI_FAILURE(rc))
369 		return NULL;
370 	return pkg_to_buf(buf.pointer);
371 }
372 
373 static u8 nfit_dsm_revid(unsigned family, unsigned func)
374 {
375 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
376 		[NVDIMM_FAMILY_INTEL] = {
377 			[NVDIMM_INTEL_GET_MODES] = 2,
378 			[NVDIMM_INTEL_GET_FWINFO] = 2,
379 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
380 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
381 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
382 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
383 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
384 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
385 		},
386 	};
387 	u8 id;
388 
389 	if (family > NVDIMM_FAMILY_MAX)
390 		return 0;
391 	if (func > 31)
392 		return 0;
393 	id = revid_table[family][func];
394 	if (id == 0)
395 		return 1; /* default */
396 	return id;
397 }
398 
399 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
400 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
401 {
402 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
403 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
404 	union acpi_object in_obj, in_buf, *out_obj;
405 	const struct nd_cmd_desc *desc = NULL;
406 	struct device *dev = acpi_desc->dev;
407 	struct nd_cmd_pkg *call_pkg = NULL;
408 	const char *cmd_name, *dimm_name;
409 	unsigned long cmd_mask, dsm_mask;
410 	u32 offset, fw_status = 0;
411 	acpi_handle handle;
412 	unsigned int func;
413 	const guid_t *guid;
414 	int rc, i;
415 
416 	func = cmd;
417 	if (cmd == ND_CMD_CALL) {
418 		call_pkg = buf;
419 		func = call_pkg->nd_command;
420 
421 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
422 			if (call_pkg->nd_reserved2[i])
423 				return -EINVAL;
424 	}
425 
426 	if (nvdimm) {
427 		struct acpi_device *adev = nfit_mem->adev;
428 
429 		if (!adev)
430 			return -ENOTTY;
431 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
432 			return -ENOTTY;
433 
434 		dimm_name = nvdimm_name(nvdimm);
435 		cmd_name = nvdimm_cmd_name(cmd);
436 		cmd_mask = nvdimm_cmd_mask(nvdimm);
437 		dsm_mask = nfit_mem->dsm_mask;
438 		desc = nd_cmd_dimm_desc(cmd);
439 		guid = to_nfit_uuid(nfit_mem->family);
440 		handle = adev->handle;
441 	} else {
442 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
443 
444 		cmd_name = nvdimm_bus_cmd_name(cmd);
445 		cmd_mask = nd_desc->cmd_mask;
446 		dsm_mask = cmd_mask;
447 		if (cmd == ND_CMD_CALL)
448 			dsm_mask = nd_desc->bus_dsm_mask;
449 		desc = nd_cmd_bus_desc(cmd);
450 		guid = to_nfit_uuid(NFIT_DEV_BUS);
451 		handle = adev->handle;
452 		dimm_name = "bus";
453 	}
454 
455 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
456 		return -ENOTTY;
457 
458 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
459 		return -ENOTTY;
460 
461 	in_obj.type = ACPI_TYPE_PACKAGE;
462 	in_obj.package.count = 1;
463 	in_obj.package.elements = &in_buf;
464 	in_buf.type = ACPI_TYPE_BUFFER;
465 	in_buf.buffer.pointer = buf;
466 	in_buf.buffer.length = 0;
467 
468 	/* libnvdimm has already validated the input envelope */
469 	for (i = 0; i < desc->in_num; i++)
470 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
471 				i, buf);
472 
473 	if (call_pkg) {
474 		/* skip over package wrapper */
475 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
476 		in_buf.buffer.length = call_pkg->nd_size_in;
477 	}
478 
479 	dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
480 		dimm_name, cmd, func, in_buf.buffer.length);
481 	print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
482 			in_buf.buffer.pointer,
483 			min_t(u32, 256, in_buf.buffer.length), true);
484 
485 	/* call the BIOS, prefer the named methods over _DSM if available */
486 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE && nfit_mem->has_lsr)
487 		out_obj = acpi_label_info(handle);
488 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && nfit_mem->has_lsr) {
489 		struct nd_cmd_get_config_data_hdr *p = buf;
490 
491 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
492 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
493 			&& nfit_mem->has_lsw) {
494 		struct nd_cmd_set_config_hdr *p = buf;
495 
496 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
497 				p->in_buf);
498 	} else {
499 		u8 revid;
500 
501 		if (nvdimm)
502 			revid = nfit_dsm_revid(nfit_mem->family, func);
503 		else
504 			revid = 1;
505 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
506 	}
507 
508 	if (!out_obj) {
509 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
510 		return -EINVAL;
511 	}
512 
513 	if (call_pkg) {
514 		call_pkg->nd_fw_size = out_obj->buffer.length;
515 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
516 			out_obj->buffer.pointer,
517 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
518 
519 		ACPI_FREE(out_obj);
520 		/*
521 		 * Need to support FW function w/o known size in advance.
522 		 * Caller can determine required size based upon nd_fw_size.
523 		 * If we return an error (like elsewhere) then caller wouldn't
524 		 * be able to rely upon data returned to make calculation.
525 		 */
526 		return 0;
527 	}
528 
529 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
530 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
531 				dimm_name, cmd_name, out_obj->type);
532 		rc = -EINVAL;
533 		goto out;
534 	}
535 
536 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
537 			cmd_name, out_obj->buffer.length);
538 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
539 			out_obj->buffer.pointer,
540 			min_t(u32, 128, out_obj->buffer.length), true);
541 
542 	for (i = 0, offset = 0; i < desc->out_num; i++) {
543 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
544 				(u32 *) out_obj->buffer.pointer,
545 				out_obj->buffer.length - offset);
546 
547 		if (offset + out_size > out_obj->buffer.length) {
548 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
549 					dimm_name, cmd_name, i);
550 			break;
551 		}
552 
553 		if (in_buf.buffer.length + offset + out_size > buf_len) {
554 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
555 					dimm_name, cmd_name, i);
556 			rc = -ENXIO;
557 			goto out;
558 		}
559 		memcpy(buf + in_buf.buffer.length + offset,
560 				out_obj->buffer.pointer + offset, out_size);
561 		offset += out_size;
562 	}
563 
564 	/*
565 	 * Set fw_status for all the commands with a known format to be
566 	 * later interpreted by xlat_status().
567 	 */
568 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
569 					&& cmd <= ND_CMD_CLEAR_ERROR)
570 				|| (nvdimm && cmd >= ND_CMD_SMART
571 					&& cmd <= ND_CMD_VENDOR)))
572 		fw_status = *(u32 *) out_obj->buffer.pointer;
573 
574 	if (offset + in_buf.buffer.length < buf_len) {
575 		if (i >= 1) {
576 			/*
577 			 * status valid, return the number of bytes left
578 			 * unfilled in the output buffer
579 			 */
580 			rc = buf_len - offset - in_buf.buffer.length;
581 			if (cmd_rc)
582 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
583 						fw_status);
584 		} else {
585 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
586 					__func__, dimm_name, cmd_name, buf_len,
587 					offset);
588 			rc = -ENXIO;
589 		}
590 	} else {
591 		rc = 0;
592 		if (cmd_rc)
593 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
594 	}
595 
596  out:
597 	ACPI_FREE(out_obj);
598 
599 	return rc;
600 }
601 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
602 
603 static const char *spa_type_name(u16 type)
604 {
605 	static const char *to_name[] = {
606 		[NFIT_SPA_VOLATILE] = "volatile",
607 		[NFIT_SPA_PM] = "pmem",
608 		[NFIT_SPA_DCR] = "dimm-control-region",
609 		[NFIT_SPA_BDW] = "block-data-window",
610 		[NFIT_SPA_VDISK] = "volatile-disk",
611 		[NFIT_SPA_VCD] = "volatile-cd",
612 		[NFIT_SPA_PDISK] = "persistent-disk",
613 		[NFIT_SPA_PCD] = "persistent-cd",
614 
615 	};
616 
617 	if (type > NFIT_SPA_PCD)
618 		return "unknown";
619 
620 	return to_name[type];
621 }
622 
623 int nfit_spa_type(struct acpi_nfit_system_address *spa)
624 {
625 	int i;
626 
627 	for (i = 0; i < NFIT_UUID_MAX; i++)
628 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
629 			return i;
630 	return -1;
631 }
632 
633 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
634 		struct nfit_table_prev *prev,
635 		struct acpi_nfit_system_address *spa)
636 {
637 	struct device *dev = acpi_desc->dev;
638 	struct nfit_spa *nfit_spa;
639 
640 	if (spa->header.length != sizeof(*spa))
641 		return false;
642 
643 	list_for_each_entry(nfit_spa, &prev->spas, list) {
644 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
645 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
646 			return true;
647 		}
648 	}
649 
650 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
651 			GFP_KERNEL);
652 	if (!nfit_spa)
653 		return false;
654 	INIT_LIST_HEAD(&nfit_spa->list);
655 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
656 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
657 	dev_dbg(dev, "spa index: %d type: %s\n",
658 			spa->range_index,
659 			spa_type_name(nfit_spa_type(spa)));
660 	return true;
661 }
662 
663 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
664 		struct nfit_table_prev *prev,
665 		struct acpi_nfit_memory_map *memdev)
666 {
667 	struct device *dev = acpi_desc->dev;
668 	struct nfit_memdev *nfit_memdev;
669 
670 	if (memdev->header.length != sizeof(*memdev))
671 		return false;
672 
673 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
674 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
675 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
676 			return true;
677 		}
678 
679 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
680 			GFP_KERNEL);
681 	if (!nfit_memdev)
682 		return false;
683 	INIT_LIST_HEAD(&nfit_memdev->list);
684 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
685 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
686 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
687 			memdev->device_handle, memdev->range_index,
688 			memdev->region_index, memdev->flags);
689 	return true;
690 }
691 
692 /*
693  * An implementation may provide a truncated control region if no block windows
694  * are defined.
695  */
696 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
697 {
698 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
699 				window_size))
700 		return 0;
701 	if (dcr->windows)
702 		return sizeof(*dcr);
703 	return offsetof(struct acpi_nfit_control_region, window_size);
704 }
705 
706 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
707 		struct nfit_table_prev *prev,
708 		struct acpi_nfit_control_region *dcr)
709 {
710 	struct device *dev = acpi_desc->dev;
711 	struct nfit_dcr *nfit_dcr;
712 
713 	if (!sizeof_dcr(dcr))
714 		return false;
715 
716 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
717 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
718 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
719 			return true;
720 		}
721 
722 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
723 			GFP_KERNEL);
724 	if (!nfit_dcr)
725 		return false;
726 	INIT_LIST_HEAD(&nfit_dcr->list);
727 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
728 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
729 	dev_dbg(dev, "dcr index: %d windows: %d\n",
730 			dcr->region_index, dcr->windows);
731 	return true;
732 }
733 
734 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
735 		struct nfit_table_prev *prev,
736 		struct acpi_nfit_data_region *bdw)
737 {
738 	struct device *dev = acpi_desc->dev;
739 	struct nfit_bdw *nfit_bdw;
740 
741 	if (bdw->header.length != sizeof(*bdw))
742 		return false;
743 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
744 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
745 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
746 			return true;
747 		}
748 
749 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
750 			GFP_KERNEL);
751 	if (!nfit_bdw)
752 		return false;
753 	INIT_LIST_HEAD(&nfit_bdw->list);
754 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
755 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
756 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
757 			bdw->region_index, bdw->windows);
758 	return true;
759 }
760 
761 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
762 {
763 	if (idt->header.length < sizeof(*idt))
764 		return 0;
765 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
766 }
767 
768 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
769 		struct nfit_table_prev *prev,
770 		struct acpi_nfit_interleave *idt)
771 {
772 	struct device *dev = acpi_desc->dev;
773 	struct nfit_idt *nfit_idt;
774 
775 	if (!sizeof_idt(idt))
776 		return false;
777 
778 	list_for_each_entry(nfit_idt, &prev->idts, list) {
779 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
780 			continue;
781 
782 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
783 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
784 			return true;
785 		}
786 	}
787 
788 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
789 			GFP_KERNEL);
790 	if (!nfit_idt)
791 		return false;
792 	INIT_LIST_HEAD(&nfit_idt->list);
793 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
794 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
795 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
796 			idt->interleave_index, idt->line_count);
797 	return true;
798 }
799 
800 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
801 {
802 	if (flush->header.length < sizeof(*flush))
803 		return 0;
804 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
805 }
806 
807 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
808 		struct nfit_table_prev *prev,
809 		struct acpi_nfit_flush_address *flush)
810 {
811 	struct device *dev = acpi_desc->dev;
812 	struct nfit_flush *nfit_flush;
813 
814 	if (!sizeof_flush(flush))
815 		return false;
816 
817 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
818 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
819 			continue;
820 
821 		if (memcmp(nfit_flush->flush, flush,
822 					sizeof_flush(flush)) == 0) {
823 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
824 			return true;
825 		}
826 	}
827 
828 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
829 			+ sizeof_flush(flush), GFP_KERNEL);
830 	if (!nfit_flush)
831 		return false;
832 	INIT_LIST_HEAD(&nfit_flush->list);
833 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
834 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
835 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
836 			flush->device_handle, flush->hint_count);
837 	return true;
838 }
839 
840 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
841 		struct acpi_nfit_capabilities *pcap)
842 {
843 	struct device *dev = acpi_desc->dev;
844 	u32 mask;
845 
846 	mask = (1 << (pcap->highest_capability + 1)) - 1;
847 	acpi_desc->platform_cap = pcap->capabilities & mask;
848 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
849 	return true;
850 }
851 
852 static void *add_table(struct acpi_nfit_desc *acpi_desc,
853 		struct nfit_table_prev *prev, void *table, const void *end)
854 {
855 	struct device *dev = acpi_desc->dev;
856 	struct acpi_nfit_header *hdr;
857 	void *err = ERR_PTR(-ENOMEM);
858 
859 	if (table >= end)
860 		return NULL;
861 
862 	hdr = table;
863 	if (!hdr->length) {
864 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
865 			hdr->type);
866 		return NULL;
867 	}
868 
869 	switch (hdr->type) {
870 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
871 		if (!add_spa(acpi_desc, prev, table))
872 			return err;
873 		break;
874 	case ACPI_NFIT_TYPE_MEMORY_MAP:
875 		if (!add_memdev(acpi_desc, prev, table))
876 			return err;
877 		break;
878 	case ACPI_NFIT_TYPE_CONTROL_REGION:
879 		if (!add_dcr(acpi_desc, prev, table))
880 			return err;
881 		break;
882 	case ACPI_NFIT_TYPE_DATA_REGION:
883 		if (!add_bdw(acpi_desc, prev, table))
884 			return err;
885 		break;
886 	case ACPI_NFIT_TYPE_INTERLEAVE:
887 		if (!add_idt(acpi_desc, prev, table))
888 			return err;
889 		break;
890 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
891 		if (!add_flush(acpi_desc, prev, table))
892 			return err;
893 		break;
894 	case ACPI_NFIT_TYPE_SMBIOS:
895 		dev_dbg(dev, "smbios\n");
896 		break;
897 	case ACPI_NFIT_TYPE_CAPABILITIES:
898 		if (!add_platform_cap(acpi_desc, table))
899 			return err;
900 		break;
901 	default:
902 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
903 		break;
904 	}
905 
906 	return table + hdr->length;
907 }
908 
909 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
910 		struct nfit_mem *nfit_mem)
911 {
912 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
913 	u16 dcr = nfit_mem->dcr->region_index;
914 	struct nfit_spa *nfit_spa;
915 
916 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
917 		u16 range_index = nfit_spa->spa->range_index;
918 		int type = nfit_spa_type(nfit_spa->spa);
919 		struct nfit_memdev *nfit_memdev;
920 
921 		if (type != NFIT_SPA_BDW)
922 			continue;
923 
924 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
925 			if (nfit_memdev->memdev->range_index != range_index)
926 				continue;
927 			if (nfit_memdev->memdev->device_handle != device_handle)
928 				continue;
929 			if (nfit_memdev->memdev->region_index != dcr)
930 				continue;
931 
932 			nfit_mem->spa_bdw = nfit_spa->spa;
933 			return;
934 		}
935 	}
936 
937 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
938 			nfit_mem->spa_dcr->range_index);
939 	nfit_mem->bdw = NULL;
940 }
941 
942 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
943 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
944 {
945 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
946 	struct nfit_memdev *nfit_memdev;
947 	struct nfit_bdw *nfit_bdw;
948 	struct nfit_idt *nfit_idt;
949 	u16 idt_idx, range_index;
950 
951 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
952 		if (nfit_bdw->bdw->region_index != dcr)
953 			continue;
954 		nfit_mem->bdw = nfit_bdw->bdw;
955 		break;
956 	}
957 
958 	if (!nfit_mem->bdw)
959 		return;
960 
961 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
962 
963 	if (!nfit_mem->spa_bdw)
964 		return;
965 
966 	range_index = nfit_mem->spa_bdw->range_index;
967 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
968 		if (nfit_memdev->memdev->range_index != range_index ||
969 				nfit_memdev->memdev->region_index != dcr)
970 			continue;
971 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
972 		idt_idx = nfit_memdev->memdev->interleave_index;
973 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
974 			if (nfit_idt->idt->interleave_index != idt_idx)
975 				continue;
976 			nfit_mem->idt_bdw = nfit_idt->idt;
977 			break;
978 		}
979 		break;
980 	}
981 }
982 
983 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
984 		struct acpi_nfit_system_address *spa)
985 {
986 	struct nfit_mem *nfit_mem, *found;
987 	struct nfit_memdev *nfit_memdev;
988 	int type = spa ? nfit_spa_type(spa) : 0;
989 
990 	switch (type) {
991 	case NFIT_SPA_DCR:
992 	case NFIT_SPA_PM:
993 		break;
994 	default:
995 		if (spa)
996 			return 0;
997 	}
998 
999 	/*
1000 	 * This loop runs in two modes, when a dimm is mapped the loop
1001 	 * adds memdev associations to an existing dimm, or creates a
1002 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1003 	 * instances with an invalid / zero range_index and adds those
1004 	 * dimms without spa associations.
1005 	 */
1006 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1007 		struct nfit_flush *nfit_flush;
1008 		struct nfit_dcr *nfit_dcr;
1009 		u32 device_handle;
1010 		u16 dcr;
1011 
1012 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1013 			continue;
1014 		if (!spa && nfit_memdev->memdev->range_index)
1015 			continue;
1016 		found = NULL;
1017 		dcr = nfit_memdev->memdev->region_index;
1018 		device_handle = nfit_memdev->memdev->device_handle;
1019 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1020 			if (__to_nfit_memdev(nfit_mem)->device_handle
1021 					== device_handle) {
1022 				found = nfit_mem;
1023 				break;
1024 			}
1025 
1026 		if (found)
1027 			nfit_mem = found;
1028 		else {
1029 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1030 					sizeof(*nfit_mem), GFP_KERNEL);
1031 			if (!nfit_mem)
1032 				return -ENOMEM;
1033 			INIT_LIST_HEAD(&nfit_mem->list);
1034 			nfit_mem->acpi_desc = acpi_desc;
1035 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1036 		}
1037 
1038 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1039 			if (nfit_dcr->dcr->region_index != dcr)
1040 				continue;
1041 			/*
1042 			 * Record the control region for the dimm.  For
1043 			 * the ACPI 6.1 case, where there are separate
1044 			 * control regions for the pmem vs blk
1045 			 * interfaces, be sure to record the extended
1046 			 * blk details.
1047 			 */
1048 			if (!nfit_mem->dcr)
1049 				nfit_mem->dcr = nfit_dcr->dcr;
1050 			else if (nfit_mem->dcr->windows == 0
1051 					&& nfit_dcr->dcr->windows)
1052 				nfit_mem->dcr = nfit_dcr->dcr;
1053 			break;
1054 		}
1055 
1056 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1057 			struct acpi_nfit_flush_address *flush;
1058 			u16 i;
1059 
1060 			if (nfit_flush->flush->device_handle != device_handle)
1061 				continue;
1062 			nfit_mem->nfit_flush = nfit_flush;
1063 			flush = nfit_flush->flush;
1064 			nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
1065 					flush->hint_count
1066 					* sizeof(struct resource), GFP_KERNEL);
1067 			if (!nfit_mem->flush_wpq)
1068 				return -ENOMEM;
1069 			for (i = 0; i < flush->hint_count; i++) {
1070 				struct resource *res = &nfit_mem->flush_wpq[i];
1071 
1072 				res->start = flush->hint_address[i];
1073 				res->end = res->start + 8 - 1;
1074 			}
1075 			break;
1076 		}
1077 
1078 		if (dcr && !nfit_mem->dcr) {
1079 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1080 					spa->range_index, dcr);
1081 			return -ENODEV;
1082 		}
1083 
1084 		if (type == NFIT_SPA_DCR) {
1085 			struct nfit_idt *nfit_idt;
1086 			u16 idt_idx;
1087 
1088 			/* multiple dimms may share a SPA when interleaved */
1089 			nfit_mem->spa_dcr = spa;
1090 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1091 			idt_idx = nfit_memdev->memdev->interleave_index;
1092 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1093 				if (nfit_idt->idt->interleave_index != idt_idx)
1094 					continue;
1095 				nfit_mem->idt_dcr = nfit_idt->idt;
1096 				break;
1097 			}
1098 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1099 		} else if (type == NFIT_SPA_PM) {
1100 			/*
1101 			 * A single dimm may belong to multiple SPA-PM
1102 			 * ranges, record at least one in addition to
1103 			 * any SPA-DCR range.
1104 			 */
1105 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1106 		} else
1107 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1114 {
1115 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1116 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1117 	u32 handleA, handleB;
1118 
1119 	handleA = __to_nfit_memdev(a)->device_handle;
1120 	handleB = __to_nfit_memdev(b)->device_handle;
1121 	if (handleA < handleB)
1122 		return -1;
1123 	else if (handleA > handleB)
1124 		return 1;
1125 	return 0;
1126 }
1127 
1128 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1129 {
1130 	struct nfit_spa *nfit_spa;
1131 	int rc;
1132 
1133 
1134 	/*
1135 	 * For each SPA-DCR or SPA-PMEM address range find its
1136 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1137 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1138 	 * try to find a SPA-BDW and a corresponding BDW that references
1139 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1140 	 * BDWs are optional.
1141 	 */
1142 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1143 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1144 		if (rc)
1145 			return rc;
1146 	}
1147 
1148 	/*
1149 	 * If a DIMM has failed to be mapped into SPA there will be no
1150 	 * SPA entries above. Find and register all the unmapped DIMMs
1151 	 * for reporting and recovery purposes.
1152 	 */
1153 	rc = __nfit_mem_init(acpi_desc, NULL);
1154 	if (rc)
1155 		return rc;
1156 
1157 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1158 
1159 	return 0;
1160 }
1161 
1162 static ssize_t bus_dsm_mask_show(struct device *dev,
1163 		struct device_attribute *attr, char *buf)
1164 {
1165 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1166 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1167 
1168 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1169 }
1170 static struct device_attribute dev_attr_bus_dsm_mask =
1171 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1172 
1173 static ssize_t revision_show(struct device *dev,
1174 		struct device_attribute *attr, char *buf)
1175 {
1176 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1177 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1178 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1179 
1180 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1181 }
1182 static DEVICE_ATTR_RO(revision);
1183 
1184 static ssize_t hw_error_scrub_show(struct device *dev,
1185 		struct device_attribute *attr, char *buf)
1186 {
1187 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1188 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1189 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1190 
1191 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1192 }
1193 
1194 /*
1195  * The 'hw_error_scrub' attribute can have the following values written to it:
1196  * '0': Switch to the default mode where an exception will only insert
1197  *      the address of the memory error into the poison and badblocks lists.
1198  * '1': Enable a full scrub to happen if an exception for a memory error is
1199  *      received.
1200  */
1201 static ssize_t hw_error_scrub_store(struct device *dev,
1202 		struct device_attribute *attr, const char *buf, size_t size)
1203 {
1204 	struct nvdimm_bus_descriptor *nd_desc;
1205 	ssize_t rc;
1206 	long val;
1207 
1208 	rc = kstrtol(buf, 0, &val);
1209 	if (rc)
1210 		return rc;
1211 
1212 	device_lock(dev);
1213 	nd_desc = dev_get_drvdata(dev);
1214 	if (nd_desc) {
1215 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1216 
1217 		switch (val) {
1218 		case HW_ERROR_SCRUB_ON:
1219 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1220 			break;
1221 		case HW_ERROR_SCRUB_OFF:
1222 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1223 			break;
1224 		default:
1225 			rc = -EINVAL;
1226 			break;
1227 		}
1228 	}
1229 	device_unlock(dev);
1230 	if (rc)
1231 		return rc;
1232 	return size;
1233 }
1234 static DEVICE_ATTR_RW(hw_error_scrub);
1235 
1236 /*
1237  * This shows the number of full Address Range Scrubs that have been
1238  * completed since driver load time. Userspace can wait on this using
1239  * select/poll etc. A '+' at the end indicates an ARS is in progress
1240  */
1241 static ssize_t scrub_show(struct device *dev,
1242 		struct device_attribute *attr, char *buf)
1243 {
1244 	struct nvdimm_bus_descriptor *nd_desc;
1245 	ssize_t rc = -ENXIO;
1246 
1247 	device_lock(dev);
1248 	nd_desc = dev_get_drvdata(dev);
1249 	if (nd_desc) {
1250 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1251 
1252 		mutex_lock(&acpi_desc->init_mutex);
1253 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1254 				work_busy(&acpi_desc->work)
1255 				&& !acpi_desc->cancel ? "+\n" : "\n");
1256 		mutex_unlock(&acpi_desc->init_mutex);
1257 	}
1258 	device_unlock(dev);
1259 	return rc;
1260 }
1261 
1262 static ssize_t scrub_store(struct device *dev,
1263 		struct device_attribute *attr, const char *buf, size_t size)
1264 {
1265 	struct nvdimm_bus_descriptor *nd_desc;
1266 	ssize_t rc;
1267 	long val;
1268 
1269 	rc = kstrtol(buf, 0, &val);
1270 	if (rc)
1271 		return rc;
1272 	if (val != 1)
1273 		return -EINVAL;
1274 
1275 	device_lock(dev);
1276 	nd_desc = dev_get_drvdata(dev);
1277 	if (nd_desc) {
1278 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1279 
1280 		rc = acpi_nfit_ars_rescan(acpi_desc, 0);
1281 	}
1282 	device_unlock(dev);
1283 	if (rc)
1284 		return rc;
1285 	return size;
1286 }
1287 static DEVICE_ATTR_RW(scrub);
1288 
1289 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1290 {
1291 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1292 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1293 		| 1 << ND_CMD_ARS_STATUS;
1294 
1295 	return (nd_desc->cmd_mask & mask) == mask;
1296 }
1297 
1298 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1299 {
1300 	struct device *dev = container_of(kobj, struct device, kobj);
1301 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1302 
1303 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1304 		return 0;
1305 	return a->mode;
1306 }
1307 
1308 static struct attribute *acpi_nfit_attributes[] = {
1309 	&dev_attr_revision.attr,
1310 	&dev_attr_scrub.attr,
1311 	&dev_attr_hw_error_scrub.attr,
1312 	&dev_attr_bus_dsm_mask.attr,
1313 	NULL,
1314 };
1315 
1316 static const struct attribute_group acpi_nfit_attribute_group = {
1317 	.name = "nfit",
1318 	.attrs = acpi_nfit_attributes,
1319 	.is_visible = nfit_visible,
1320 };
1321 
1322 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1323 	&nvdimm_bus_attribute_group,
1324 	&acpi_nfit_attribute_group,
1325 	NULL,
1326 };
1327 
1328 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1329 {
1330 	struct nvdimm *nvdimm = to_nvdimm(dev);
1331 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1332 
1333 	return __to_nfit_memdev(nfit_mem);
1334 }
1335 
1336 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1337 {
1338 	struct nvdimm *nvdimm = to_nvdimm(dev);
1339 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1340 
1341 	return nfit_mem->dcr;
1342 }
1343 
1344 static ssize_t handle_show(struct device *dev,
1345 		struct device_attribute *attr, char *buf)
1346 {
1347 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1348 
1349 	return sprintf(buf, "%#x\n", memdev->device_handle);
1350 }
1351 static DEVICE_ATTR_RO(handle);
1352 
1353 static ssize_t phys_id_show(struct device *dev,
1354 		struct device_attribute *attr, char *buf)
1355 {
1356 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1357 
1358 	return sprintf(buf, "%#x\n", memdev->physical_id);
1359 }
1360 static DEVICE_ATTR_RO(phys_id);
1361 
1362 static ssize_t vendor_show(struct device *dev,
1363 		struct device_attribute *attr, char *buf)
1364 {
1365 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1366 
1367 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1368 }
1369 static DEVICE_ATTR_RO(vendor);
1370 
1371 static ssize_t rev_id_show(struct device *dev,
1372 		struct device_attribute *attr, char *buf)
1373 {
1374 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1375 
1376 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1377 }
1378 static DEVICE_ATTR_RO(rev_id);
1379 
1380 static ssize_t device_show(struct device *dev,
1381 		struct device_attribute *attr, char *buf)
1382 {
1383 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1384 
1385 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1386 }
1387 static DEVICE_ATTR_RO(device);
1388 
1389 static ssize_t subsystem_vendor_show(struct device *dev,
1390 		struct device_attribute *attr, char *buf)
1391 {
1392 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1393 
1394 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1395 }
1396 static DEVICE_ATTR_RO(subsystem_vendor);
1397 
1398 static ssize_t subsystem_rev_id_show(struct device *dev,
1399 		struct device_attribute *attr, char *buf)
1400 {
1401 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1402 
1403 	return sprintf(buf, "0x%04x\n",
1404 			be16_to_cpu(dcr->subsystem_revision_id));
1405 }
1406 static DEVICE_ATTR_RO(subsystem_rev_id);
1407 
1408 static ssize_t subsystem_device_show(struct device *dev,
1409 		struct device_attribute *attr, char *buf)
1410 {
1411 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1412 
1413 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1414 }
1415 static DEVICE_ATTR_RO(subsystem_device);
1416 
1417 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1418 {
1419 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1420 	int formats = 0;
1421 
1422 	if (nfit_mem->memdev_pmem)
1423 		formats++;
1424 	if (nfit_mem->memdev_bdw)
1425 		formats++;
1426 	return formats;
1427 }
1428 
1429 static ssize_t format_show(struct device *dev,
1430 		struct device_attribute *attr, char *buf)
1431 {
1432 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1433 
1434 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1435 }
1436 static DEVICE_ATTR_RO(format);
1437 
1438 static ssize_t format1_show(struct device *dev,
1439 		struct device_attribute *attr, char *buf)
1440 {
1441 	u32 handle;
1442 	ssize_t rc = -ENXIO;
1443 	struct nfit_mem *nfit_mem;
1444 	struct nfit_memdev *nfit_memdev;
1445 	struct acpi_nfit_desc *acpi_desc;
1446 	struct nvdimm *nvdimm = to_nvdimm(dev);
1447 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1448 
1449 	nfit_mem = nvdimm_provider_data(nvdimm);
1450 	acpi_desc = nfit_mem->acpi_desc;
1451 	handle = to_nfit_memdev(dev)->device_handle;
1452 
1453 	/* assumes DIMMs have at most 2 published interface codes */
1454 	mutex_lock(&acpi_desc->init_mutex);
1455 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1456 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1457 		struct nfit_dcr *nfit_dcr;
1458 
1459 		if (memdev->device_handle != handle)
1460 			continue;
1461 
1462 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1463 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1464 				continue;
1465 			if (nfit_dcr->dcr->code == dcr->code)
1466 				continue;
1467 			rc = sprintf(buf, "0x%04x\n",
1468 					le16_to_cpu(nfit_dcr->dcr->code));
1469 			break;
1470 		}
1471 		if (rc != ENXIO)
1472 			break;
1473 	}
1474 	mutex_unlock(&acpi_desc->init_mutex);
1475 	return rc;
1476 }
1477 static DEVICE_ATTR_RO(format1);
1478 
1479 static ssize_t formats_show(struct device *dev,
1480 		struct device_attribute *attr, char *buf)
1481 {
1482 	struct nvdimm *nvdimm = to_nvdimm(dev);
1483 
1484 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1485 }
1486 static DEVICE_ATTR_RO(formats);
1487 
1488 static ssize_t serial_show(struct device *dev,
1489 		struct device_attribute *attr, char *buf)
1490 {
1491 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1492 
1493 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1494 }
1495 static DEVICE_ATTR_RO(serial);
1496 
1497 static ssize_t family_show(struct device *dev,
1498 		struct device_attribute *attr, char *buf)
1499 {
1500 	struct nvdimm *nvdimm = to_nvdimm(dev);
1501 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1502 
1503 	if (nfit_mem->family < 0)
1504 		return -ENXIO;
1505 	return sprintf(buf, "%d\n", nfit_mem->family);
1506 }
1507 static DEVICE_ATTR_RO(family);
1508 
1509 static ssize_t dsm_mask_show(struct device *dev,
1510 		struct device_attribute *attr, char *buf)
1511 {
1512 	struct nvdimm *nvdimm = to_nvdimm(dev);
1513 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1514 
1515 	if (nfit_mem->family < 0)
1516 		return -ENXIO;
1517 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1518 }
1519 static DEVICE_ATTR_RO(dsm_mask);
1520 
1521 static ssize_t flags_show(struct device *dev,
1522 		struct device_attribute *attr, char *buf)
1523 {
1524 	u16 flags = to_nfit_memdev(dev)->flags;
1525 
1526 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1527 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1528 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1529 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1530 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1531 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1532 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1533 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1534 }
1535 static DEVICE_ATTR_RO(flags);
1536 
1537 static ssize_t id_show(struct device *dev,
1538 		struct device_attribute *attr, char *buf)
1539 {
1540 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1541 
1542 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1543 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1544 				be16_to_cpu(dcr->vendor_id),
1545 				dcr->manufacturing_location,
1546 				be16_to_cpu(dcr->manufacturing_date),
1547 				be32_to_cpu(dcr->serial_number));
1548 	else
1549 		return sprintf(buf, "%04x-%08x\n",
1550 				be16_to_cpu(dcr->vendor_id),
1551 				be32_to_cpu(dcr->serial_number));
1552 }
1553 static DEVICE_ATTR_RO(id);
1554 
1555 static struct attribute *acpi_nfit_dimm_attributes[] = {
1556 	&dev_attr_handle.attr,
1557 	&dev_attr_phys_id.attr,
1558 	&dev_attr_vendor.attr,
1559 	&dev_attr_device.attr,
1560 	&dev_attr_rev_id.attr,
1561 	&dev_attr_subsystem_vendor.attr,
1562 	&dev_attr_subsystem_device.attr,
1563 	&dev_attr_subsystem_rev_id.attr,
1564 	&dev_attr_format.attr,
1565 	&dev_attr_formats.attr,
1566 	&dev_attr_format1.attr,
1567 	&dev_attr_serial.attr,
1568 	&dev_attr_flags.attr,
1569 	&dev_attr_id.attr,
1570 	&dev_attr_family.attr,
1571 	&dev_attr_dsm_mask.attr,
1572 	NULL,
1573 };
1574 
1575 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1576 		struct attribute *a, int n)
1577 {
1578 	struct device *dev = container_of(kobj, struct device, kobj);
1579 	struct nvdimm *nvdimm = to_nvdimm(dev);
1580 
1581 	if (!to_nfit_dcr(dev)) {
1582 		/* Without a dcr only the memdev attributes can be surfaced */
1583 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1584 				|| a == &dev_attr_flags.attr
1585 				|| a == &dev_attr_family.attr
1586 				|| a == &dev_attr_dsm_mask.attr)
1587 			return a->mode;
1588 		return 0;
1589 	}
1590 
1591 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1592 		return 0;
1593 	return a->mode;
1594 }
1595 
1596 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1597 	.name = "nfit",
1598 	.attrs = acpi_nfit_dimm_attributes,
1599 	.is_visible = acpi_nfit_dimm_attr_visible,
1600 };
1601 
1602 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1603 	&nvdimm_attribute_group,
1604 	&nd_device_attribute_group,
1605 	&acpi_nfit_dimm_attribute_group,
1606 	NULL,
1607 };
1608 
1609 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1610 		u32 device_handle)
1611 {
1612 	struct nfit_mem *nfit_mem;
1613 
1614 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1615 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1616 			return nfit_mem->nvdimm;
1617 
1618 	return NULL;
1619 }
1620 
1621 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1622 {
1623 	struct nfit_mem *nfit_mem;
1624 	struct acpi_nfit_desc *acpi_desc;
1625 
1626 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1627 			event);
1628 
1629 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1630 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1631 				event);
1632 		return;
1633 	}
1634 
1635 	acpi_desc = dev_get_drvdata(dev->parent);
1636 	if (!acpi_desc)
1637 		return;
1638 
1639 	/*
1640 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1641 	 * is still valid.
1642 	 */
1643 	nfit_mem = dev_get_drvdata(dev);
1644 	if (nfit_mem && nfit_mem->flags_attr)
1645 		sysfs_notify_dirent(nfit_mem->flags_attr);
1646 }
1647 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1648 
1649 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1650 {
1651 	struct acpi_device *adev = data;
1652 	struct device *dev = &adev->dev;
1653 
1654 	device_lock(dev->parent);
1655 	__acpi_nvdimm_notify(dev, event);
1656 	device_unlock(dev->parent);
1657 }
1658 
1659 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1660 {
1661 	acpi_handle handle;
1662 	acpi_status status;
1663 
1664 	status = acpi_get_handle(adev->handle, method, &handle);
1665 
1666 	if (ACPI_SUCCESS(status))
1667 		return true;
1668 	return false;
1669 }
1670 
1671 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1672 		struct nfit_mem *nfit_mem, u32 device_handle)
1673 {
1674 	struct acpi_device *adev, *adev_dimm;
1675 	struct device *dev = acpi_desc->dev;
1676 	unsigned long dsm_mask;
1677 	const guid_t *guid;
1678 	int i;
1679 	int family = -1;
1680 
1681 	/* nfit test assumes 1:1 relationship between commands and dsms */
1682 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1683 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1684 	adev = to_acpi_dev(acpi_desc);
1685 	if (!adev)
1686 		return 0;
1687 
1688 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1689 	nfit_mem->adev = adev_dimm;
1690 	if (!adev_dimm) {
1691 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1692 				device_handle);
1693 		return force_enable_dimms ? 0 : -ENODEV;
1694 	}
1695 
1696 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1697 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1698 		dev_err(dev, "%s: notification registration failed\n",
1699 				dev_name(&adev_dimm->dev));
1700 		return -ENXIO;
1701 	}
1702 	/*
1703 	 * Record nfit_mem for the notification path to track back to
1704 	 * the nfit sysfs attributes for this dimm device object.
1705 	 */
1706 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1707 
1708 	/*
1709 	 * Until standardization materializes we need to consider 4
1710 	 * different command sets.  Note, that checking for function0 (bit0)
1711 	 * tells us if any commands are reachable through this GUID.
1712 	 */
1713 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1714 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1715 			if (family < 0 || i == default_dsm_family)
1716 				family = i;
1717 
1718 	/* limit the supported commands to those that are publicly documented */
1719 	nfit_mem->family = family;
1720 	if (override_dsm_mask && !disable_vendor_specific)
1721 		dsm_mask = override_dsm_mask;
1722 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1723 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1724 		if (disable_vendor_specific)
1725 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1726 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1727 		dsm_mask = 0x1c3c76;
1728 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1729 		dsm_mask = 0x1fe;
1730 		if (disable_vendor_specific)
1731 			dsm_mask &= ~(1 << 8);
1732 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1733 		dsm_mask = 0xffffffff;
1734 	} else {
1735 		dev_dbg(dev, "unknown dimm command family\n");
1736 		nfit_mem->family = -1;
1737 		/* DSMs are optional, continue loading the driver... */
1738 		return 0;
1739 	}
1740 
1741 	guid = to_nfit_uuid(nfit_mem->family);
1742 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1743 		if (acpi_check_dsm(adev_dimm->handle, guid,
1744 					nfit_dsm_revid(nfit_mem->family, i),
1745 					1ULL << i))
1746 			set_bit(i, &nfit_mem->dsm_mask);
1747 
1748 	if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1749 			&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1750 		dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1751 		nfit_mem->has_lsr = true;
1752 	}
1753 
1754 	if (nfit_mem->has_lsr && acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1755 		dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1756 		nfit_mem->has_lsw = true;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static void shutdown_dimm_notify(void *data)
1763 {
1764 	struct acpi_nfit_desc *acpi_desc = data;
1765 	struct nfit_mem *nfit_mem;
1766 
1767 	mutex_lock(&acpi_desc->init_mutex);
1768 	/*
1769 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1770 	 * notifications.
1771 	 */
1772 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1773 		struct acpi_device *adev_dimm = nfit_mem->adev;
1774 
1775 		if (nfit_mem->flags_attr) {
1776 			sysfs_put(nfit_mem->flags_attr);
1777 			nfit_mem->flags_attr = NULL;
1778 		}
1779 		if (adev_dimm) {
1780 			acpi_remove_notify_handler(adev_dimm->handle,
1781 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1782 			dev_set_drvdata(&adev_dimm->dev, NULL);
1783 		}
1784 	}
1785 	mutex_unlock(&acpi_desc->init_mutex);
1786 }
1787 
1788 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1789 {
1790 	struct nfit_mem *nfit_mem;
1791 	int dimm_count = 0, rc;
1792 	struct nvdimm *nvdimm;
1793 
1794 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1795 		struct acpi_nfit_flush_address *flush;
1796 		unsigned long flags = 0, cmd_mask;
1797 		struct nfit_memdev *nfit_memdev;
1798 		u32 device_handle;
1799 		u16 mem_flags;
1800 
1801 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1802 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1803 		if (nvdimm) {
1804 			dimm_count++;
1805 			continue;
1806 		}
1807 
1808 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1809 			set_bit(NDD_ALIASING, &flags);
1810 
1811 		/* collate flags across all memdevs for this dimm */
1812 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1813 			struct acpi_nfit_memory_map *dimm_memdev;
1814 
1815 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1816 			if (dimm_memdev->device_handle
1817 					!= nfit_memdev->memdev->device_handle)
1818 				continue;
1819 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1820 		}
1821 
1822 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1823 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1824 			set_bit(NDD_UNARMED, &flags);
1825 
1826 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1827 		if (rc)
1828 			continue;
1829 
1830 		/*
1831 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1832 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1833 		 * userspace interface.
1834 		 */
1835 		cmd_mask = 1UL << ND_CMD_CALL;
1836 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1837 			/*
1838 			 * These commands have a 1:1 correspondence
1839 			 * between DSM payload and libnvdimm ioctl
1840 			 * payload format.
1841 			 */
1842 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
1843 		}
1844 
1845 		if (nfit_mem->has_lsr) {
1846 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
1847 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
1848 		}
1849 		if (nfit_mem->has_lsw)
1850 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
1851 
1852 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1853 			: NULL;
1854 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1855 				acpi_nfit_dimm_attribute_groups,
1856 				flags, cmd_mask, flush ? flush->hint_count : 0,
1857 				nfit_mem->flush_wpq);
1858 		if (!nvdimm)
1859 			return -ENOMEM;
1860 
1861 		nfit_mem->nvdimm = nvdimm;
1862 		dimm_count++;
1863 
1864 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1865 			continue;
1866 
1867 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
1868 				nvdimm_name(nvdimm),
1869 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1870 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1871 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1872 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
1873 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
1874 
1875 	}
1876 
1877 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1878 	if (rc)
1879 		return rc;
1880 
1881 	/*
1882 	 * Now that dimms are successfully registered, and async registration
1883 	 * is flushed, attempt to enable event notification.
1884 	 */
1885 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1886 		struct kernfs_node *nfit_kernfs;
1887 
1888 		nvdimm = nfit_mem->nvdimm;
1889 		if (!nvdimm)
1890 			continue;
1891 
1892 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1893 		if (nfit_kernfs)
1894 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1895 					"flags");
1896 		sysfs_put(nfit_kernfs);
1897 		if (!nfit_mem->flags_attr)
1898 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1899 					nvdimm_name(nvdimm));
1900 	}
1901 
1902 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1903 			acpi_desc);
1904 }
1905 
1906 /*
1907  * These constants are private because there are no kernel consumers of
1908  * these commands.
1909  */
1910 enum nfit_aux_cmds {
1911         NFIT_CMD_TRANSLATE_SPA = 5,
1912         NFIT_CMD_ARS_INJECT_SET = 7,
1913         NFIT_CMD_ARS_INJECT_CLEAR = 8,
1914         NFIT_CMD_ARS_INJECT_GET = 9,
1915 };
1916 
1917 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1918 {
1919 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1920 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
1921 	struct acpi_device *adev;
1922 	unsigned long dsm_mask;
1923 	int i;
1924 
1925 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1926 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
1927 	adev = to_acpi_dev(acpi_desc);
1928 	if (!adev)
1929 		return;
1930 
1931 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1932 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1933 			set_bit(i, &nd_desc->cmd_mask);
1934 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
1935 
1936 	dsm_mask =
1937 		(1 << ND_CMD_ARS_CAP) |
1938 		(1 << ND_CMD_ARS_START) |
1939 		(1 << ND_CMD_ARS_STATUS) |
1940 		(1 << ND_CMD_CLEAR_ERROR) |
1941 		(1 << NFIT_CMD_TRANSLATE_SPA) |
1942 		(1 << NFIT_CMD_ARS_INJECT_SET) |
1943 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
1944 		(1 << NFIT_CMD_ARS_INJECT_GET);
1945 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1946 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1947 			set_bit(i, &nd_desc->bus_dsm_mask);
1948 }
1949 
1950 static ssize_t range_index_show(struct device *dev,
1951 		struct device_attribute *attr, char *buf)
1952 {
1953 	struct nd_region *nd_region = to_nd_region(dev);
1954 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1955 
1956 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1957 }
1958 static DEVICE_ATTR_RO(range_index);
1959 
1960 static ssize_t ecc_unit_size_show(struct device *dev,
1961 		struct device_attribute *attr, char *buf)
1962 {
1963 	struct nd_region *nd_region = to_nd_region(dev);
1964 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1965 
1966 	return sprintf(buf, "%d\n", nfit_spa->clear_err_unit);
1967 }
1968 static DEVICE_ATTR_RO(ecc_unit_size);
1969 
1970 static struct attribute *acpi_nfit_region_attributes[] = {
1971 	&dev_attr_range_index.attr,
1972 	&dev_attr_ecc_unit_size.attr,
1973 	NULL,
1974 };
1975 
1976 static const struct attribute_group acpi_nfit_region_attribute_group = {
1977 	.name = "nfit",
1978 	.attrs = acpi_nfit_region_attributes,
1979 };
1980 
1981 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1982 	&nd_region_attribute_group,
1983 	&nd_mapping_attribute_group,
1984 	&nd_device_attribute_group,
1985 	&nd_numa_attribute_group,
1986 	&acpi_nfit_region_attribute_group,
1987 	NULL,
1988 };
1989 
1990 /* enough info to uniquely specify an interleave set */
1991 struct nfit_set_info {
1992 	struct nfit_set_info_map {
1993 		u64 region_offset;
1994 		u32 serial_number;
1995 		u32 pad;
1996 	} mapping[0];
1997 };
1998 
1999 struct nfit_set_info2 {
2000 	struct nfit_set_info_map2 {
2001 		u64 region_offset;
2002 		u32 serial_number;
2003 		u16 vendor_id;
2004 		u16 manufacturing_date;
2005 		u8  manufacturing_location;
2006 		u8  reserved[31];
2007 	} mapping[0];
2008 };
2009 
2010 static size_t sizeof_nfit_set_info(int num_mappings)
2011 {
2012 	return sizeof(struct nfit_set_info)
2013 		+ num_mappings * sizeof(struct nfit_set_info_map);
2014 }
2015 
2016 static size_t sizeof_nfit_set_info2(int num_mappings)
2017 {
2018 	return sizeof(struct nfit_set_info2)
2019 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2020 }
2021 
2022 static int cmp_map_compat(const void *m0, const void *m1)
2023 {
2024 	const struct nfit_set_info_map *map0 = m0;
2025 	const struct nfit_set_info_map *map1 = m1;
2026 
2027 	return memcmp(&map0->region_offset, &map1->region_offset,
2028 			sizeof(u64));
2029 }
2030 
2031 static int cmp_map(const void *m0, const void *m1)
2032 {
2033 	const struct nfit_set_info_map *map0 = m0;
2034 	const struct nfit_set_info_map *map1 = m1;
2035 
2036 	if (map0->region_offset < map1->region_offset)
2037 		return -1;
2038 	else if (map0->region_offset > map1->region_offset)
2039 		return 1;
2040 	return 0;
2041 }
2042 
2043 static int cmp_map2(const void *m0, const void *m1)
2044 {
2045 	const struct nfit_set_info_map2 *map0 = m0;
2046 	const struct nfit_set_info_map2 *map1 = m1;
2047 
2048 	if (map0->region_offset < map1->region_offset)
2049 		return -1;
2050 	else if (map0->region_offset > map1->region_offset)
2051 		return 1;
2052 	return 0;
2053 }
2054 
2055 /* Retrieve the nth entry referencing this spa */
2056 static struct acpi_nfit_memory_map *memdev_from_spa(
2057 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2058 {
2059 	struct nfit_memdev *nfit_memdev;
2060 
2061 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2062 		if (nfit_memdev->memdev->range_index == range_index)
2063 			if (n-- == 0)
2064 				return nfit_memdev->memdev;
2065 	return NULL;
2066 }
2067 
2068 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2069 		struct nd_region_desc *ndr_desc,
2070 		struct acpi_nfit_system_address *spa)
2071 {
2072 	struct device *dev = acpi_desc->dev;
2073 	struct nd_interleave_set *nd_set;
2074 	u16 nr = ndr_desc->num_mappings;
2075 	struct nfit_set_info2 *info2;
2076 	struct nfit_set_info *info;
2077 	int i;
2078 
2079 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2080 	if (!nd_set)
2081 		return -ENOMEM;
2082 	ndr_desc->nd_set = nd_set;
2083 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2084 
2085 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2086 	if (!info)
2087 		return -ENOMEM;
2088 
2089 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2090 	if (!info2)
2091 		return -ENOMEM;
2092 
2093 	for (i = 0; i < nr; i++) {
2094 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2095 		struct nfit_set_info_map *map = &info->mapping[i];
2096 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2097 		struct nvdimm *nvdimm = mapping->nvdimm;
2098 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2099 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2100 				spa->range_index, i);
2101 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2102 
2103 		if (!memdev || !nfit_mem->dcr) {
2104 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2105 			return -ENODEV;
2106 		}
2107 
2108 		map->region_offset = memdev->region_offset;
2109 		map->serial_number = dcr->serial_number;
2110 
2111 		map2->region_offset = memdev->region_offset;
2112 		map2->serial_number = dcr->serial_number;
2113 		map2->vendor_id = dcr->vendor_id;
2114 		map2->manufacturing_date = dcr->manufacturing_date;
2115 		map2->manufacturing_location = dcr->manufacturing_location;
2116 	}
2117 
2118 	/* v1.1 namespaces */
2119 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2120 			cmp_map, NULL);
2121 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2122 
2123 	/* v1.2 namespaces */
2124 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2125 			cmp_map2, NULL);
2126 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2127 
2128 	/* support v1.1 namespaces created with the wrong sort order */
2129 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2130 			cmp_map_compat, NULL);
2131 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2132 
2133 	/* record the result of the sort for the mapping position */
2134 	for (i = 0; i < nr; i++) {
2135 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2136 		int j;
2137 
2138 		for (j = 0; j < nr; j++) {
2139 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2140 			struct nvdimm *nvdimm = mapping->nvdimm;
2141 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2142 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2143 
2144 			if (map2->serial_number == dcr->serial_number &&
2145 			    map2->vendor_id == dcr->vendor_id &&
2146 			    map2->manufacturing_date == dcr->manufacturing_date &&
2147 			    map2->manufacturing_location
2148 				    == dcr->manufacturing_location) {
2149 				mapping->position = i;
2150 				break;
2151 			}
2152 		}
2153 	}
2154 
2155 	ndr_desc->nd_set = nd_set;
2156 	devm_kfree(dev, info);
2157 	devm_kfree(dev, info2);
2158 
2159 	return 0;
2160 }
2161 
2162 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2163 {
2164 	struct acpi_nfit_interleave *idt = mmio->idt;
2165 	u32 sub_line_offset, line_index, line_offset;
2166 	u64 line_no, table_skip_count, table_offset;
2167 
2168 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2169 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2170 	line_offset = idt->line_offset[line_index]
2171 		* mmio->line_size;
2172 	table_offset = table_skip_count * mmio->table_size;
2173 
2174 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2175 }
2176 
2177 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2178 {
2179 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2180 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2181 	const u32 STATUS_MASK = 0x80000037;
2182 
2183 	if (mmio->num_lines)
2184 		offset = to_interleave_offset(offset, mmio);
2185 
2186 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2187 }
2188 
2189 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2190 		resource_size_t dpa, unsigned int len, unsigned int write)
2191 {
2192 	u64 cmd, offset;
2193 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2194 
2195 	enum {
2196 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2197 		BCW_LEN_SHIFT = 48,
2198 		BCW_LEN_MASK = (1ULL << 8) - 1,
2199 		BCW_CMD_SHIFT = 56,
2200 	};
2201 
2202 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2203 	len = len >> L1_CACHE_SHIFT;
2204 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2205 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2206 
2207 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2208 	if (mmio->num_lines)
2209 		offset = to_interleave_offset(offset, mmio);
2210 
2211 	writeq(cmd, mmio->addr.base + offset);
2212 	nvdimm_flush(nfit_blk->nd_region);
2213 
2214 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2215 		readq(mmio->addr.base + offset);
2216 }
2217 
2218 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2219 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2220 		unsigned int lane)
2221 {
2222 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2223 	unsigned int copied = 0;
2224 	u64 base_offset;
2225 	int rc;
2226 
2227 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2228 		+ lane * mmio->size;
2229 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2230 	while (len) {
2231 		unsigned int c;
2232 		u64 offset;
2233 
2234 		if (mmio->num_lines) {
2235 			u32 line_offset;
2236 
2237 			offset = to_interleave_offset(base_offset + copied,
2238 					mmio);
2239 			div_u64_rem(offset, mmio->line_size, &line_offset);
2240 			c = min_t(size_t, len, mmio->line_size - line_offset);
2241 		} else {
2242 			offset = base_offset + nfit_blk->bdw_offset;
2243 			c = len;
2244 		}
2245 
2246 		if (rw)
2247 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2248 		else {
2249 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2250 				arch_invalidate_pmem((void __force *)
2251 					mmio->addr.aperture + offset, c);
2252 
2253 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2254 		}
2255 
2256 		copied += c;
2257 		len -= c;
2258 	}
2259 
2260 	if (rw)
2261 		nvdimm_flush(nfit_blk->nd_region);
2262 
2263 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2264 	return rc;
2265 }
2266 
2267 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2268 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2269 {
2270 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2271 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2272 	struct nd_region *nd_region = nfit_blk->nd_region;
2273 	unsigned int lane, copied = 0;
2274 	int rc = 0;
2275 
2276 	lane = nd_region_acquire_lane(nd_region);
2277 	while (len) {
2278 		u64 c = min(len, mmio->size);
2279 
2280 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2281 				iobuf + copied, c, rw, lane);
2282 		if (rc)
2283 			break;
2284 
2285 		copied += c;
2286 		len -= c;
2287 	}
2288 	nd_region_release_lane(nd_region, lane);
2289 
2290 	return rc;
2291 }
2292 
2293 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2294 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2295 {
2296 	if (idt) {
2297 		mmio->num_lines = idt->line_count;
2298 		mmio->line_size = idt->line_size;
2299 		if (interleave_ways == 0)
2300 			return -ENXIO;
2301 		mmio->table_size = mmio->num_lines * interleave_ways
2302 			* mmio->line_size;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2309 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2310 {
2311 	struct nd_cmd_dimm_flags flags;
2312 	int rc;
2313 
2314 	memset(&flags, 0, sizeof(flags));
2315 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2316 			sizeof(flags), NULL);
2317 
2318 	if (rc >= 0 && flags.status == 0)
2319 		nfit_blk->dimm_flags = flags.flags;
2320 	else if (rc == -ENOTTY) {
2321 		/* fall back to a conservative default */
2322 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2323 		rc = 0;
2324 	} else
2325 		rc = -ENXIO;
2326 
2327 	return rc;
2328 }
2329 
2330 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2331 		struct device *dev)
2332 {
2333 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2334 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2335 	struct nfit_blk_mmio *mmio;
2336 	struct nfit_blk *nfit_blk;
2337 	struct nfit_mem *nfit_mem;
2338 	struct nvdimm *nvdimm;
2339 	int rc;
2340 
2341 	nvdimm = nd_blk_region_to_dimm(ndbr);
2342 	nfit_mem = nvdimm_provider_data(nvdimm);
2343 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2344 		dev_dbg(dev, "missing%s%s%s\n",
2345 				nfit_mem ? "" : " nfit_mem",
2346 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2347 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2348 		return -ENXIO;
2349 	}
2350 
2351 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2352 	if (!nfit_blk)
2353 		return -ENOMEM;
2354 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2355 	nfit_blk->nd_region = to_nd_region(dev);
2356 
2357 	/* map block aperture memory */
2358 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2359 	mmio = &nfit_blk->mmio[BDW];
2360 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2361                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2362 	if (!mmio->addr.base) {
2363 		dev_dbg(dev, "%s failed to map bdw\n",
2364 				nvdimm_name(nvdimm));
2365 		return -ENOMEM;
2366 	}
2367 	mmio->size = nfit_mem->bdw->size;
2368 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2369 	mmio->idt = nfit_mem->idt_bdw;
2370 	mmio->spa = nfit_mem->spa_bdw;
2371 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2372 			nfit_mem->memdev_bdw->interleave_ways);
2373 	if (rc) {
2374 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2375 				nvdimm_name(nvdimm));
2376 		return rc;
2377 	}
2378 
2379 	/* map block control memory */
2380 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2381 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2382 	mmio = &nfit_blk->mmio[DCR];
2383 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2384 			nfit_mem->spa_dcr->length);
2385 	if (!mmio->addr.base) {
2386 		dev_dbg(dev, "%s failed to map dcr\n",
2387 				nvdimm_name(nvdimm));
2388 		return -ENOMEM;
2389 	}
2390 	mmio->size = nfit_mem->dcr->window_size;
2391 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2392 	mmio->idt = nfit_mem->idt_dcr;
2393 	mmio->spa = nfit_mem->spa_dcr;
2394 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2395 			nfit_mem->memdev_dcr->interleave_ways);
2396 	if (rc) {
2397 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2398 				nvdimm_name(nvdimm));
2399 		return rc;
2400 	}
2401 
2402 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2403 	if (rc < 0) {
2404 		dev_dbg(dev, "%s failed get DIMM flags\n",
2405 				nvdimm_name(nvdimm));
2406 		return rc;
2407 	}
2408 
2409 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2410 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2411 
2412 	if (mmio->line_size == 0)
2413 		return 0;
2414 
2415 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2416 			+ 8 > mmio->line_size) {
2417 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2418 		return -ENXIO;
2419 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2420 			+ 8 > mmio->line_size) {
2421 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2422 		return -ENXIO;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2429 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2430 {
2431 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2432 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2433 	int cmd_rc, rc;
2434 
2435 	cmd->address = spa->address;
2436 	cmd->length = spa->length;
2437 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2438 			sizeof(*cmd), &cmd_rc);
2439 	if (rc < 0)
2440 		return rc;
2441 	return cmd_rc;
2442 }
2443 
2444 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
2445 {
2446 	int rc;
2447 	int cmd_rc;
2448 	struct nd_cmd_ars_start ars_start;
2449 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2450 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2451 
2452 	memset(&ars_start, 0, sizeof(ars_start));
2453 	ars_start.address = spa->address;
2454 	ars_start.length = spa->length;
2455 	ars_start.flags = acpi_desc->ars_start_flags;
2456 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2457 		ars_start.type = ND_ARS_PERSISTENT;
2458 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2459 		ars_start.type = ND_ARS_VOLATILE;
2460 	else
2461 		return -ENOTTY;
2462 
2463 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2464 			sizeof(ars_start), &cmd_rc);
2465 
2466 	if (rc < 0)
2467 		return rc;
2468 	return cmd_rc;
2469 }
2470 
2471 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2472 {
2473 	int rc, cmd_rc;
2474 	struct nd_cmd_ars_start ars_start;
2475 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2476 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2477 
2478 	memset(&ars_start, 0, sizeof(ars_start));
2479 	ars_start.address = ars_status->restart_address;
2480 	ars_start.length = ars_status->restart_length;
2481 	ars_start.type = ars_status->type;
2482 	ars_start.flags = acpi_desc->ars_start_flags;
2483 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2484 			sizeof(ars_start), &cmd_rc);
2485 	if (rc < 0)
2486 		return rc;
2487 	return cmd_rc;
2488 }
2489 
2490 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2491 {
2492 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2493 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2494 	int rc, cmd_rc;
2495 
2496 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2497 			acpi_desc->ars_status_size, &cmd_rc);
2498 	if (rc < 0)
2499 		return rc;
2500 	return cmd_rc;
2501 }
2502 
2503 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc,
2504 		struct nd_cmd_ars_status *ars_status)
2505 {
2506 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2507 	int rc;
2508 	u32 i;
2509 
2510 	/*
2511 	 * First record starts at 44 byte offset from the start of the
2512 	 * payload.
2513 	 */
2514 	if (ars_status->out_length < 44)
2515 		return 0;
2516 	for (i = 0; i < ars_status->num_records; i++) {
2517 		/* only process full records */
2518 		if (ars_status->out_length
2519 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2520 			break;
2521 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2522 				ars_status->records[i].err_address,
2523 				ars_status->records[i].length);
2524 		if (rc)
2525 			return rc;
2526 	}
2527 	if (i < ars_status->num_records)
2528 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2529 
2530 	return 0;
2531 }
2532 
2533 static void acpi_nfit_remove_resource(void *data)
2534 {
2535 	struct resource *res = data;
2536 
2537 	remove_resource(res);
2538 }
2539 
2540 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2541 		struct nd_region_desc *ndr_desc)
2542 {
2543 	struct resource *res, *nd_res = ndr_desc->res;
2544 	int is_pmem, ret;
2545 
2546 	/* No operation if the region is already registered as PMEM */
2547 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2548 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2549 	if (is_pmem == REGION_INTERSECTS)
2550 		return 0;
2551 
2552 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2553 	if (!res)
2554 		return -ENOMEM;
2555 
2556 	res->name = "Persistent Memory";
2557 	res->start = nd_res->start;
2558 	res->end = nd_res->end;
2559 	res->flags = IORESOURCE_MEM;
2560 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2561 
2562 	ret = insert_resource(&iomem_resource, res);
2563 	if (ret)
2564 		return ret;
2565 
2566 	ret = devm_add_action_or_reset(acpi_desc->dev,
2567 					acpi_nfit_remove_resource,
2568 					res);
2569 	if (ret)
2570 		return ret;
2571 
2572 	return 0;
2573 }
2574 
2575 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2576 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2577 		struct acpi_nfit_memory_map *memdev,
2578 		struct nfit_spa *nfit_spa)
2579 {
2580 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2581 			memdev->device_handle);
2582 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2583 	struct nd_blk_region_desc *ndbr_desc;
2584 	struct nfit_mem *nfit_mem;
2585 	int rc;
2586 
2587 	if (!nvdimm) {
2588 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2589 				spa->range_index, memdev->device_handle);
2590 		return -ENODEV;
2591 	}
2592 
2593 	mapping->nvdimm = nvdimm;
2594 	switch (nfit_spa_type(spa)) {
2595 	case NFIT_SPA_PM:
2596 	case NFIT_SPA_VOLATILE:
2597 		mapping->start = memdev->address;
2598 		mapping->size = memdev->region_size;
2599 		break;
2600 	case NFIT_SPA_DCR:
2601 		nfit_mem = nvdimm_provider_data(nvdimm);
2602 		if (!nfit_mem || !nfit_mem->bdw) {
2603 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2604 					spa->range_index, nvdimm_name(nvdimm));
2605 			break;
2606 		}
2607 
2608 		mapping->size = nfit_mem->bdw->capacity;
2609 		mapping->start = nfit_mem->bdw->start_address;
2610 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2611 		ndr_desc->mapping = mapping;
2612 		ndr_desc->num_mappings = 1;
2613 		ndbr_desc = to_blk_region_desc(ndr_desc);
2614 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2615 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2616 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2617 		if (rc)
2618 			return rc;
2619 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2620 				ndr_desc);
2621 		if (!nfit_spa->nd_region)
2622 			return -ENOMEM;
2623 		break;
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2630 {
2631 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2632 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2633 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2634 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2635 }
2636 
2637 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2638 {
2639 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2640 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2641 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2642 }
2643 
2644 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2645 		struct nfit_spa *nfit_spa)
2646 {
2647 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2648 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2649 	struct nd_blk_region_desc ndbr_desc;
2650 	struct nd_region_desc *ndr_desc;
2651 	struct nfit_memdev *nfit_memdev;
2652 	struct nvdimm_bus *nvdimm_bus;
2653 	struct resource res;
2654 	int count = 0, rc;
2655 
2656 	if (nfit_spa->nd_region)
2657 		return 0;
2658 
2659 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2660 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2661 		return 0;
2662 	}
2663 
2664 	memset(&res, 0, sizeof(res));
2665 	memset(&mappings, 0, sizeof(mappings));
2666 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2667 	res.start = spa->address;
2668 	res.end = res.start + spa->length - 1;
2669 	ndr_desc = &ndbr_desc.ndr_desc;
2670 	ndr_desc->res = &res;
2671 	ndr_desc->provider_data = nfit_spa;
2672 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2673 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2674 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2675 						spa->proximity_domain);
2676 	else
2677 		ndr_desc->numa_node = NUMA_NO_NODE;
2678 
2679 	if(acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2680 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2681 
2682 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2683 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2684 
2685 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2686 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2687 		struct nd_mapping_desc *mapping;
2688 
2689 		if (memdev->range_index != spa->range_index)
2690 			continue;
2691 		if (count >= ND_MAX_MAPPINGS) {
2692 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2693 					spa->range_index, ND_MAX_MAPPINGS);
2694 			return -ENXIO;
2695 		}
2696 		mapping = &mappings[count++];
2697 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2698 				memdev, nfit_spa);
2699 		if (rc)
2700 			goto out;
2701 	}
2702 
2703 	ndr_desc->mapping = mappings;
2704 	ndr_desc->num_mappings = count;
2705 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2706 	if (rc)
2707 		goto out;
2708 
2709 	nvdimm_bus = acpi_desc->nvdimm_bus;
2710 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2711 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2712 		if (rc) {
2713 			dev_warn(acpi_desc->dev,
2714 				"failed to insert pmem resource to iomem: %d\n",
2715 				rc);
2716 			goto out;
2717 		}
2718 
2719 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2720 				ndr_desc);
2721 		if (!nfit_spa->nd_region)
2722 			rc = -ENOMEM;
2723 	} else if (nfit_spa_is_volatile(spa)) {
2724 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2725 				ndr_desc);
2726 		if (!nfit_spa->nd_region)
2727 			rc = -ENOMEM;
2728 	} else if (nfit_spa_is_virtual(spa)) {
2729 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2730 				ndr_desc);
2731 		if (!nfit_spa->nd_region)
2732 			rc = -ENOMEM;
2733 	}
2734 
2735  out:
2736 	if (rc)
2737 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2738 				nfit_spa->spa->range_index);
2739 	return rc;
2740 }
2741 
2742 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2743 		u32 max_ars)
2744 {
2745 	struct device *dev = acpi_desc->dev;
2746 	struct nd_cmd_ars_status *ars_status;
2747 
2748 	if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2749 		memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2750 		return 0;
2751 	}
2752 
2753 	if (acpi_desc->ars_status)
2754 		devm_kfree(dev, acpi_desc->ars_status);
2755 	acpi_desc->ars_status = NULL;
2756 	ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2757 	if (!ars_status)
2758 		return -ENOMEM;
2759 	acpi_desc->ars_status = ars_status;
2760 	acpi_desc->ars_status_size = max_ars;
2761 	return 0;
2762 }
2763 
2764 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2765 		struct nfit_spa *nfit_spa)
2766 {
2767 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2768 	int rc;
2769 
2770 	if (!nfit_spa->max_ars) {
2771 		struct nd_cmd_ars_cap ars_cap;
2772 
2773 		memset(&ars_cap, 0, sizeof(ars_cap));
2774 		rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2775 		if (rc < 0)
2776 			return rc;
2777 		nfit_spa->max_ars = ars_cap.max_ars_out;
2778 		nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2779 		/* check that the supported scrub types match the spa type */
2780 		if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2781 				((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2782 			return -ENOTTY;
2783 		else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2784 				((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2785 			return -ENOTTY;
2786 	}
2787 
2788 	if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2789 		return -ENOMEM;
2790 
2791 	rc = ars_get_status(acpi_desc);
2792 	if (rc < 0 && rc != -ENOSPC)
2793 		return rc;
2794 
2795 	if (ars_status_process_records(acpi_desc, acpi_desc->ars_status))
2796 		return -ENOMEM;
2797 
2798 	return 0;
2799 }
2800 
2801 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2802 		struct nfit_spa *nfit_spa)
2803 {
2804 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2805 	unsigned int overflow_retry = scrub_overflow_abort;
2806 	u64 init_ars_start = 0, init_ars_len = 0;
2807 	struct device *dev = acpi_desc->dev;
2808 	unsigned int tmo = scrub_timeout;
2809 	int rc;
2810 
2811 	if (!test_bit(ARS_REQ, &nfit_spa->ars_state) || !nfit_spa->nd_region)
2812 		return;
2813 
2814 	rc = ars_start(acpi_desc, nfit_spa);
2815 	/*
2816 	 * If we timed out the initial scan we'll still be busy here,
2817 	 * and will wait another timeout before giving up permanently.
2818 	 */
2819 	if (rc < 0 && rc != -EBUSY)
2820 		return;
2821 
2822 	do {
2823 		u64 ars_start, ars_len;
2824 
2825 		if (acpi_desc->cancel)
2826 			break;
2827 		rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2828 		if (rc == -ENOTTY)
2829 			break;
2830 		if (rc == -EBUSY && !tmo) {
2831 			dev_warn(dev, "range %d ars timeout, aborting\n",
2832 					spa->range_index);
2833 			break;
2834 		}
2835 
2836 		if (rc == -EBUSY) {
2837 			/*
2838 			 * Note, entries may be appended to the list
2839 			 * while the lock is dropped, but the workqueue
2840 			 * being active prevents entries being deleted /
2841 			 * freed.
2842 			 */
2843 			mutex_unlock(&acpi_desc->init_mutex);
2844 			ssleep(1);
2845 			tmo--;
2846 			mutex_lock(&acpi_desc->init_mutex);
2847 			continue;
2848 		}
2849 
2850 		/* we got some results, but there are more pending... */
2851 		if (rc == -ENOSPC && overflow_retry--) {
2852 			if (!init_ars_len) {
2853 				init_ars_len = acpi_desc->ars_status->length;
2854 				init_ars_start = acpi_desc->ars_status->address;
2855 			}
2856 			rc = ars_continue(acpi_desc);
2857 		}
2858 
2859 		if (rc < 0) {
2860 			dev_warn(dev, "range %d ars continuation failed\n",
2861 					spa->range_index);
2862 			break;
2863 		}
2864 
2865 		if (init_ars_len) {
2866 			ars_start = init_ars_start;
2867 			ars_len = init_ars_len;
2868 		} else {
2869 			ars_start = acpi_desc->ars_status->address;
2870 			ars_len = acpi_desc->ars_status->length;
2871 		}
2872 		dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2873 				spa->range_index, ars_start, ars_len);
2874 		/* notify the region about new poison entries */
2875 		nvdimm_region_notify(nfit_spa->nd_region,
2876 				NVDIMM_REVALIDATE_POISON);
2877 		break;
2878 	} while (1);
2879 }
2880 
2881 static void acpi_nfit_scrub(struct work_struct *work)
2882 {
2883 	struct device *dev;
2884 	u64 init_scrub_length = 0;
2885 	struct nfit_spa *nfit_spa;
2886 	u64 init_scrub_address = 0;
2887 	bool init_ars_done = false;
2888 	struct acpi_nfit_desc *acpi_desc;
2889 	unsigned int tmo = scrub_timeout;
2890 	unsigned int overflow_retry = scrub_overflow_abort;
2891 
2892 	acpi_desc = container_of(work, typeof(*acpi_desc), work);
2893 	dev = acpi_desc->dev;
2894 
2895 	/*
2896 	 * We scrub in 2 phases.  The first phase waits for any platform
2897 	 * firmware initiated scrubs to complete and then we go search for the
2898 	 * affected spa regions to mark them scanned.  In the second phase we
2899 	 * initiate a directed scrub for every range that was not scrubbed in
2900 	 * phase 1. If we're called for a 'rescan', we harmlessly pass through
2901 	 * the first phase, but really only care about running phase 2, where
2902 	 * regions can be notified of new poison.
2903 	 */
2904 
2905 	/* process platform firmware initiated scrubs */
2906  retry:
2907 	mutex_lock(&acpi_desc->init_mutex);
2908 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2909 		struct nd_cmd_ars_status *ars_status;
2910 		struct acpi_nfit_system_address *spa;
2911 		u64 ars_start, ars_len;
2912 		int rc;
2913 
2914 		if (acpi_desc->cancel)
2915 			break;
2916 
2917 		if (nfit_spa->nd_region)
2918 			continue;
2919 
2920 		if (init_ars_done) {
2921 			/*
2922 			 * No need to re-query, we're now just
2923 			 * reconciling all the ranges covered by the
2924 			 * initial scrub
2925 			 */
2926 			rc = 0;
2927 		} else
2928 			rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2929 
2930 		if (rc == -ENOTTY) {
2931 			/* no ars capability, just register spa and move on */
2932 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2933 			continue;
2934 		}
2935 
2936 		if (rc == -EBUSY && !tmo) {
2937 			/* fallthrough to directed scrub in phase 2 */
2938 			dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2939 			break;
2940 		} else if (rc == -EBUSY) {
2941 			mutex_unlock(&acpi_desc->init_mutex);
2942 			ssleep(1);
2943 			tmo--;
2944 			goto retry;
2945 		}
2946 
2947 		/* we got some results, but there are more pending... */
2948 		if (rc == -ENOSPC && overflow_retry--) {
2949 			ars_status = acpi_desc->ars_status;
2950 			/*
2951 			 * Record the original scrub range, so that we
2952 			 * can recall all the ranges impacted by the
2953 			 * initial scrub.
2954 			 */
2955 			if (!init_scrub_length) {
2956 				init_scrub_length = ars_status->length;
2957 				init_scrub_address = ars_status->address;
2958 			}
2959 			rc = ars_continue(acpi_desc);
2960 			if (rc == 0) {
2961 				mutex_unlock(&acpi_desc->init_mutex);
2962 				goto retry;
2963 			}
2964 		}
2965 
2966 		if (rc < 0) {
2967 			/*
2968 			 * Initial scrub failed, we'll give it one more
2969 			 * try below...
2970 			 */
2971 			break;
2972 		}
2973 
2974 		/* We got some final results, record completed ranges */
2975 		ars_status = acpi_desc->ars_status;
2976 		if (init_scrub_length) {
2977 			ars_start = init_scrub_address;
2978 			ars_len = ars_start + init_scrub_length;
2979 		} else {
2980 			ars_start = ars_status->address;
2981 			ars_len = ars_status->length;
2982 		}
2983 		spa = nfit_spa->spa;
2984 
2985 		if (!init_ars_done) {
2986 			init_ars_done = true;
2987 			dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2988 					ars_start, ars_len);
2989 		}
2990 		if (ars_start <= spa->address && ars_start + ars_len
2991 				>= spa->address + spa->length)
2992 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2993 	}
2994 
2995 	/*
2996 	 * For all the ranges not covered by an initial scrub we still
2997 	 * want to see if there are errors, but it's ok to discover them
2998 	 * asynchronously.
2999 	 */
3000 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3001 		/*
3002 		 * Flag all the ranges that still need scrubbing, but
3003 		 * register them now to make data available.
3004 		 */
3005 		if (!nfit_spa->nd_region) {
3006 			set_bit(ARS_REQ, &nfit_spa->ars_state);
3007 			acpi_nfit_register_region(acpi_desc, nfit_spa);
3008 		}
3009 	}
3010 	acpi_desc->init_complete = 1;
3011 
3012 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3013 		acpi_nfit_async_scrub(acpi_desc, nfit_spa);
3014 	acpi_desc->scrub_count++;
3015 	acpi_desc->ars_start_flags = 0;
3016 	if (acpi_desc->scrub_count_state)
3017 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3018 	mutex_unlock(&acpi_desc->init_mutex);
3019 }
3020 
3021 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3022 {
3023 	struct nfit_spa *nfit_spa;
3024 
3025 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3026 		int rc, type = nfit_spa_type(nfit_spa->spa);
3027 
3028 		/* PMEM and VMEM will be registered by the ARS workqueue */
3029 		if (type == NFIT_SPA_PM || type == NFIT_SPA_VOLATILE)
3030 			continue;
3031 		/* BLK apertures belong to BLK region registration below */
3032 		if (type == NFIT_SPA_BDW)
3033 			continue;
3034 		/* BLK regions don't need to wait for ARS results */
3035 		rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3036 		if (rc)
3037 			return rc;
3038 	}
3039 
3040 	acpi_desc->ars_start_flags = 0;
3041 	if (!acpi_desc->cancel)
3042 		queue_work(nfit_wq, &acpi_desc->work);
3043 	return 0;
3044 }
3045 
3046 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3047 		struct nfit_table_prev *prev)
3048 {
3049 	struct device *dev = acpi_desc->dev;
3050 
3051 	if (!list_empty(&prev->spas) ||
3052 			!list_empty(&prev->memdevs) ||
3053 			!list_empty(&prev->dcrs) ||
3054 			!list_empty(&prev->bdws) ||
3055 			!list_empty(&prev->idts) ||
3056 			!list_empty(&prev->flushes)) {
3057 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3058 		return -ENXIO;
3059 	}
3060 	return 0;
3061 }
3062 
3063 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3064 {
3065 	struct device *dev = acpi_desc->dev;
3066 	struct kernfs_node *nfit;
3067 	struct device *bus_dev;
3068 
3069 	if (!ars_supported(acpi_desc->nvdimm_bus))
3070 		return 0;
3071 
3072 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3073 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3074 	if (!nfit) {
3075 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3076 		return -ENODEV;
3077 	}
3078 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3079 	sysfs_put(nfit);
3080 	if (!acpi_desc->scrub_count_state) {
3081 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3082 		return -ENODEV;
3083 	}
3084 
3085 	return 0;
3086 }
3087 
3088 static void acpi_nfit_unregister(void *data)
3089 {
3090 	struct acpi_nfit_desc *acpi_desc = data;
3091 
3092 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3093 }
3094 
3095 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3096 {
3097 	struct device *dev = acpi_desc->dev;
3098 	struct nfit_table_prev prev;
3099 	const void *end;
3100 	int rc;
3101 
3102 	if (!acpi_desc->nvdimm_bus) {
3103 		acpi_nfit_init_dsms(acpi_desc);
3104 
3105 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3106 				&acpi_desc->nd_desc);
3107 		if (!acpi_desc->nvdimm_bus)
3108 			return -ENOMEM;
3109 
3110 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3111 				acpi_desc);
3112 		if (rc)
3113 			return rc;
3114 
3115 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3116 		if (rc)
3117 			return rc;
3118 
3119 		/* register this acpi_desc for mce notifications */
3120 		mutex_lock(&acpi_desc_lock);
3121 		list_add_tail(&acpi_desc->list, &acpi_descs);
3122 		mutex_unlock(&acpi_desc_lock);
3123 	}
3124 
3125 	mutex_lock(&acpi_desc->init_mutex);
3126 
3127 	INIT_LIST_HEAD(&prev.spas);
3128 	INIT_LIST_HEAD(&prev.memdevs);
3129 	INIT_LIST_HEAD(&prev.dcrs);
3130 	INIT_LIST_HEAD(&prev.bdws);
3131 	INIT_LIST_HEAD(&prev.idts);
3132 	INIT_LIST_HEAD(&prev.flushes);
3133 
3134 	list_cut_position(&prev.spas, &acpi_desc->spas,
3135 				acpi_desc->spas.prev);
3136 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3137 				acpi_desc->memdevs.prev);
3138 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3139 				acpi_desc->dcrs.prev);
3140 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3141 				acpi_desc->bdws.prev);
3142 	list_cut_position(&prev.idts, &acpi_desc->idts,
3143 				acpi_desc->idts.prev);
3144 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3145 				acpi_desc->flushes.prev);
3146 
3147 	end = data + sz;
3148 	while (!IS_ERR_OR_NULL(data))
3149 		data = add_table(acpi_desc, &prev, data, end);
3150 
3151 	if (IS_ERR(data)) {
3152 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3153 		rc = PTR_ERR(data);
3154 		goto out_unlock;
3155 	}
3156 
3157 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3158 	if (rc)
3159 		goto out_unlock;
3160 
3161 	rc = nfit_mem_init(acpi_desc);
3162 	if (rc)
3163 		goto out_unlock;
3164 
3165 	rc = acpi_nfit_register_dimms(acpi_desc);
3166 	if (rc)
3167 		goto out_unlock;
3168 
3169 	rc = acpi_nfit_register_regions(acpi_desc);
3170 
3171  out_unlock:
3172 	mutex_unlock(&acpi_desc->init_mutex);
3173 	return rc;
3174 }
3175 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3176 
3177 struct acpi_nfit_flush_work {
3178 	struct work_struct work;
3179 	struct completion cmp;
3180 };
3181 
3182 static void flush_probe(struct work_struct *work)
3183 {
3184 	struct acpi_nfit_flush_work *flush;
3185 
3186 	flush = container_of(work, typeof(*flush), work);
3187 	complete(&flush->cmp);
3188 }
3189 
3190 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3191 {
3192 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3193 	struct device *dev = acpi_desc->dev;
3194 	struct acpi_nfit_flush_work flush;
3195 	int rc;
3196 
3197 	/* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3198 	device_lock(dev);
3199 	device_unlock(dev);
3200 
3201 	/* bounce the init_mutex to make init_complete valid */
3202 	mutex_lock(&acpi_desc->init_mutex);
3203 	if (acpi_desc->cancel || acpi_desc->init_complete) {
3204 		mutex_unlock(&acpi_desc->init_mutex);
3205 		return 0;
3206 	}
3207 
3208 	/*
3209 	 * Scrub work could take 10s of seconds, userspace may give up so we
3210 	 * need to be interruptible while waiting.
3211 	 */
3212 	INIT_WORK_ONSTACK(&flush.work, flush_probe);
3213 	init_completion(&flush.cmp);
3214 	queue_work(nfit_wq, &flush.work);
3215 	mutex_unlock(&acpi_desc->init_mutex);
3216 
3217 	rc = wait_for_completion_interruptible(&flush.cmp);
3218 	cancel_work_sync(&flush.work);
3219 	return rc;
3220 }
3221 
3222 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3223 		struct nvdimm *nvdimm, unsigned int cmd)
3224 {
3225 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3226 
3227 	if (nvdimm)
3228 		return 0;
3229 	if (cmd != ND_CMD_ARS_START)
3230 		return 0;
3231 
3232 	/*
3233 	 * The kernel and userspace may race to initiate a scrub, but
3234 	 * the scrub thread is prepared to lose that initial race.  It
3235 	 * just needs guarantees that any ars it initiates are not
3236 	 * interrupted by any intervening start reqeusts from userspace.
3237 	 */
3238 	if (work_busy(&acpi_desc->work))
3239 		return -EBUSY;
3240 
3241 	return 0;
3242 }
3243 
3244 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, unsigned long flags)
3245 {
3246 	struct device *dev = acpi_desc->dev;
3247 	struct nfit_spa *nfit_spa;
3248 
3249 	if (work_busy(&acpi_desc->work))
3250 		return -EBUSY;
3251 
3252 	mutex_lock(&acpi_desc->init_mutex);
3253 	if (acpi_desc->cancel) {
3254 		mutex_unlock(&acpi_desc->init_mutex);
3255 		return 0;
3256 	}
3257 
3258 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3259 		struct acpi_nfit_system_address *spa = nfit_spa->spa;
3260 
3261 		if (nfit_spa_type(spa) != NFIT_SPA_PM)
3262 			continue;
3263 
3264 		set_bit(ARS_REQ, &nfit_spa->ars_state);
3265 	}
3266 	acpi_desc->ars_start_flags = 0;
3267 	if (test_bit(ARS_SHORT, &flags))
3268 		acpi_desc->ars_start_flags |= ND_ARS_RETURN_PREV_DATA;
3269 	queue_work(nfit_wq, &acpi_desc->work);
3270 	dev_dbg(dev, "ars_scan triggered\n");
3271 	mutex_unlock(&acpi_desc->init_mutex);
3272 
3273 	return 0;
3274 }
3275 
3276 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3277 {
3278 	struct nvdimm_bus_descriptor *nd_desc;
3279 
3280 	dev_set_drvdata(dev, acpi_desc);
3281 	acpi_desc->dev = dev;
3282 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3283 	nd_desc = &acpi_desc->nd_desc;
3284 	nd_desc->provider_name = "ACPI.NFIT";
3285 	nd_desc->module = THIS_MODULE;
3286 	nd_desc->ndctl = acpi_nfit_ctl;
3287 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3288 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3289 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3290 
3291 	INIT_LIST_HEAD(&acpi_desc->spas);
3292 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3293 	INIT_LIST_HEAD(&acpi_desc->bdws);
3294 	INIT_LIST_HEAD(&acpi_desc->idts);
3295 	INIT_LIST_HEAD(&acpi_desc->flushes);
3296 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3297 	INIT_LIST_HEAD(&acpi_desc->dimms);
3298 	INIT_LIST_HEAD(&acpi_desc->list);
3299 	mutex_init(&acpi_desc->init_mutex);
3300 	INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
3301 }
3302 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3303 
3304 static void acpi_nfit_put_table(void *table)
3305 {
3306 	acpi_put_table(table);
3307 }
3308 
3309 void acpi_nfit_shutdown(void *data)
3310 {
3311 	struct acpi_nfit_desc *acpi_desc = data;
3312 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3313 
3314 	/*
3315 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3316 	 * race teardown
3317 	 */
3318 	mutex_lock(&acpi_desc_lock);
3319 	list_del(&acpi_desc->list);
3320 	mutex_unlock(&acpi_desc_lock);
3321 
3322 	mutex_lock(&acpi_desc->init_mutex);
3323 	acpi_desc->cancel = 1;
3324 	mutex_unlock(&acpi_desc->init_mutex);
3325 
3326 	/*
3327 	 * Bounce the nvdimm bus lock to make sure any in-flight
3328 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3329 	 * either submit or see ->cancel set.
3330 	 */
3331 	device_lock(bus_dev);
3332 	device_unlock(bus_dev);
3333 
3334 	flush_workqueue(nfit_wq);
3335 }
3336 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3337 
3338 static int acpi_nfit_add(struct acpi_device *adev)
3339 {
3340 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3341 	struct acpi_nfit_desc *acpi_desc;
3342 	struct device *dev = &adev->dev;
3343 	struct acpi_table_header *tbl;
3344 	acpi_status status = AE_OK;
3345 	acpi_size sz;
3346 	int rc = 0;
3347 
3348 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3349 	if (ACPI_FAILURE(status)) {
3350 		/* This is ok, we could have an nvdimm hotplugged later */
3351 		dev_dbg(dev, "failed to find NFIT at startup\n");
3352 		return 0;
3353 	}
3354 
3355 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3356 	if (rc)
3357 		return rc;
3358 	sz = tbl->length;
3359 
3360 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3361 	if (!acpi_desc)
3362 		return -ENOMEM;
3363 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3364 
3365 	/* Save the acpi header for exporting the revision via sysfs */
3366 	acpi_desc->acpi_header = *tbl;
3367 
3368 	/* Evaluate _FIT and override with that if present */
3369 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3370 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3371 		union acpi_object *obj = buf.pointer;
3372 
3373 		if (obj->type == ACPI_TYPE_BUFFER)
3374 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3375 					obj->buffer.length);
3376 		else
3377 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3378 				(int) obj->type);
3379 		kfree(buf.pointer);
3380 	} else
3381 		/* skip over the lead-in header table */
3382 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3383 				+ sizeof(struct acpi_table_nfit),
3384 				sz - sizeof(struct acpi_table_nfit));
3385 
3386 	if (rc)
3387 		return rc;
3388 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3389 }
3390 
3391 static int acpi_nfit_remove(struct acpi_device *adev)
3392 {
3393 	/* see acpi_nfit_unregister */
3394 	return 0;
3395 }
3396 
3397 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3398 {
3399 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3400 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3401 	union acpi_object *obj;
3402 	acpi_status status;
3403 	int ret;
3404 
3405 	if (!dev->driver) {
3406 		/* dev->driver may be null if we're being removed */
3407 		dev_dbg(dev, "no driver found for dev\n");
3408 		return;
3409 	}
3410 
3411 	if (!acpi_desc) {
3412 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3413 		if (!acpi_desc)
3414 			return;
3415 		acpi_nfit_desc_init(acpi_desc, dev);
3416 	} else {
3417 		/*
3418 		 * Finish previous registration before considering new
3419 		 * regions.
3420 		 */
3421 		flush_workqueue(nfit_wq);
3422 	}
3423 
3424 	/* Evaluate _FIT */
3425 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3426 	if (ACPI_FAILURE(status)) {
3427 		dev_err(dev, "failed to evaluate _FIT\n");
3428 		return;
3429 	}
3430 
3431 	obj = buf.pointer;
3432 	if (obj->type == ACPI_TYPE_BUFFER) {
3433 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3434 				obj->buffer.length);
3435 		if (ret)
3436 			dev_err(dev, "failed to merge updated NFIT\n");
3437 	} else
3438 		dev_err(dev, "Invalid _FIT\n");
3439 	kfree(buf.pointer);
3440 }
3441 
3442 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3443 {
3444 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3445 	unsigned long flags = (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) ?
3446 			0 : 1 << ARS_SHORT;
3447 
3448 	acpi_nfit_ars_rescan(acpi_desc, flags);
3449 }
3450 
3451 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3452 {
3453 	dev_dbg(dev, "event: 0x%x\n", event);
3454 
3455 	switch (event) {
3456 	case NFIT_NOTIFY_UPDATE:
3457 		return acpi_nfit_update_notify(dev, handle);
3458 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3459 		return acpi_nfit_uc_error_notify(dev, handle);
3460 	default:
3461 		return;
3462 	}
3463 }
3464 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3465 
3466 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3467 {
3468 	device_lock(&adev->dev);
3469 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3470 	device_unlock(&adev->dev);
3471 }
3472 
3473 static const struct acpi_device_id acpi_nfit_ids[] = {
3474 	{ "ACPI0012", 0 },
3475 	{ "", 0 },
3476 };
3477 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3478 
3479 static struct acpi_driver acpi_nfit_driver = {
3480 	.name = KBUILD_MODNAME,
3481 	.ids = acpi_nfit_ids,
3482 	.ops = {
3483 		.add = acpi_nfit_add,
3484 		.remove = acpi_nfit_remove,
3485 		.notify = acpi_nfit_notify,
3486 	},
3487 };
3488 
3489 static __init int nfit_init(void)
3490 {
3491 	int ret;
3492 
3493 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3494 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3495 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3496 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3497 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3498 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3499 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3500 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3501 
3502 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3503 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3504 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3505 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3506 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3507 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3508 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3509 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3510 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3511 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3512 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3513 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3514 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3515 
3516 	nfit_wq = create_singlethread_workqueue("nfit");
3517 	if (!nfit_wq)
3518 		return -ENOMEM;
3519 
3520 	nfit_mce_register();
3521 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3522 	if (ret) {
3523 		nfit_mce_unregister();
3524 		destroy_workqueue(nfit_wq);
3525 	}
3526 
3527 	return ret;
3528 
3529 }
3530 
3531 static __exit void nfit_exit(void)
3532 {
3533 	nfit_mce_unregister();
3534 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3535 	destroy_workqueue(nfit_wq);
3536 	WARN_ON(!list_empty(&acpi_descs));
3537 }
3538 
3539 module_init(nfit_init);
3540 module_exit(nfit_exit);
3541 MODULE_LICENSE("GPL v2");
3542 MODULE_AUTHOR("Intel Corporation");
3543