xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision caf83e49)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/nospec.h>
9 #include <linux/mutex.h>
10 #include <linux/ndctl.h>
11 #include <linux/sysfs.h>
12 #include <linux/delay.h>
13 #include <linux/list.h>
14 #include <linux/acpi.h>
15 #include <linux/sort.h>
16 #include <linux/io.h>
17 #include <linux/nd.h>
18 #include <asm/cacheflush.h>
19 #include <acpi/nfit.h>
20 #include "intel.h"
21 #include "nfit.h"
22 
23 /*
24  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
25  * irrelevant.
26  */
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 
29 static bool force_enable_dimms;
30 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
31 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
32 
33 static bool disable_vendor_specific;
34 module_param(disable_vendor_specific, bool, S_IRUGO);
35 MODULE_PARM_DESC(disable_vendor_specific,
36 		"Limit commands to the publicly specified set");
37 
38 static unsigned long override_dsm_mask;
39 module_param(override_dsm_mask, ulong, S_IRUGO);
40 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
41 
42 static int default_dsm_family = -1;
43 module_param(default_dsm_family, int, S_IRUGO);
44 MODULE_PARM_DESC(default_dsm_family,
45 		"Try this DSM type first when identifying NVDIMM family");
46 
47 static bool no_init_ars;
48 module_param(no_init_ars, bool, 0644);
49 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
50 
51 static bool force_labels;
52 module_param(force_labels, bool, 0444);
53 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
54 
55 LIST_HEAD(acpi_descs);
56 DEFINE_MUTEX(acpi_desc_lock);
57 
58 static struct workqueue_struct *nfit_wq;
59 
60 struct nfit_table_prev {
61 	struct list_head spas;
62 	struct list_head memdevs;
63 	struct list_head dcrs;
64 	struct list_head bdws;
65 	struct list_head idts;
66 	struct list_head flushes;
67 };
68 
69 static guid_t nfit_uuid[NFIT_UUID_MAX];
70 
71 const guid_t *to_nfit_uuid(enum nfit_uuids id)
72 {
73 	return &nfit_uuid[id];
74 }
75 EXPORT_SYMBOL(to_nfit_uuid);
76 
77 static const guid_t *to_nfit_bus_uuid(int family)
78 {
79 	if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
80 			"only secondary bus families can be translated\n"))
81 		return NULL;
82 	/*
83 	 * The index of bus UUIDs starts immediately following the last
84 	 * NVDIMM/leaf family.
85 	 */
86 	return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
87 }
88 
89 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
90 {
91 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
92 
93 	/*
94 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
95 	 * acpi_device.
96 	 */
97 	if (!nd_desc->provider_name
98 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
99 		return NULL;
100 
101 	return to_acpi_device(acpi_desc->dev);
102 }
103 
104 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
105 {
106 	struct nd_cmd_clear_error *clear_err;
107 	struct nd_cmd_ars_status *ars_status;
108 	u16 flags;
109 
110 	switch (cmd) {
111 	case ND_CMD_ARS_CAP:
112 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
113 			return -ENOTTY;
114 
115 		/* Command failed */
116 		if (status & 0xffff)
117 			return -EIO;
118 
119 		/* No supported scan types for this range */
120 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
121 		if ((status >> 16 & flags) == 0)
122 			return -ENOTTY;
123 		return 0;
124 	case ND_CMD_ARS_START:
125 		/* ARS is in progress */
126 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
127 			return -EBUSY;
128 
129 		/* Command failed */
130 		if (status & 0xffff)
131 			return -EIO;
132 		return 0;
133 	case ND_CMD_ARS_STATUS:
134 		ars_status = buf;
135 		/* Command failed */
136 		if (status & 0xffff)
137 			return -EIO;
138 		/* Check extended status (Upper two bytes) */
139 		if (status == NFIT_ARS_STATUS_DONE)
140 			return 0;
141 
142 		/* ARS is in progress */
143 		if (status == NFIT_ARS_STATUS_BUSY)
144 			return -EBUSY;
145 
146 		/* No ARS performed for the current boot */
147 		if (status == NFIT_ARS_STATUS_NONE)
148 			return -EAGAIN;
149 
150 		/*
151 		 * ARS interrupted, either we overflowed or some other
152 		 * agent wants the scan to stop.  If we didn't overflow
153 		 * then just continue with the returned results.
154 		 */
155 		if (status == NFIT_ARS_STATUS_INTR) {
156 			if (ars_status->out_length >= 40 && (ars_status->flags
157 						& NFIT_ARS_F_OVERFLOW))
158 				return -ENOSPC;
159 			return 0;
160 		}
161 
162 		/* Unknown status */
163 		if (status >> 16)
164 			return -EIO;
165 		return 0;
166 	case ND_CMD_CLEAR_ERROR:
167 		clear_err = buf;
168 		if (status & 0xffff)
169 			return -EIO;
170 		if (!clear_err->cleared)
171 			return -EIO;
172 		if (clear_err->length > clear_err->cleared)
173 			return clear_err->cleared;
174 		return 0;
175 	default:
176 		break;
177 	}
178 
179 	/* all other non-zero status results in an error */
180 	if (status)
181 		return -EIO;
182 	return 0;
183 }
184 
185 #define ACPI_LABELS_LOCKED 3
186 
187 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
188 		u32 status)
189 {
190 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
191 
192 	switch (cmd) {
193 	case ND_CMD_GET_CONFIG_SIZE:
194 		/*
195 		 * In the _LSI, _LSR, _LSW case the locked status is
196 		 * communicated via the read/write commands
197 		 */
198 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
199 			break;
200 
201 		if (status >> 16 & ND_CONFIG_LOCKED)
202 			return -EACCES;
203 		break;
204 	case ND_CMD_GET_CONFIG_DATA:
205 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
206 				&& status == ACPI_LABELS_LOCKED)
207 			return -EACCES;
208 		break;
209 	case ND_CMD_SET_CONFIG_DATA:
210 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
211 				&& status == ACPI_LABELS_LOCKED)
212 			return -EACCES;
213 		break;
214 	default:
215 		break;
216 	}
217 
218 	/* all other non-zero status results in an error */
219 	if (status)
220 		return -EIO;
221 	return 0;
222 }
223 
224 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
225 		u32 status)
226 {
227 	if (!nvdimm)
228 		return xlat_bus_status(buf, cmd, status);
229 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
230 }
231 
232 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
233 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
234 {
235 	int i;
236 	void *dst;
237 	size_t size = 0;
238 	union acpi_object *buf = NULL;
239 
240 	if (pkg->type != ACPI_TYPE_PACKAGE) {
241 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242 				pkg->type);
243 		goto err;
244 	}
245 
246 	for (i = 0; i < pkg->package.count; i++) {
247 		union acpi_object *obj = &pkg->package.elements[i];
248 
249 		if (obj->type == ACPI_TYPE_INTEGER)
250 			size += 4;
251 		else if (obj->type == ACPI_TYPE_BUFFER)
252 			size += obj->buffer.length;
253 		else {
254 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
255 					obj->type);
256 			goto err;
257 		}
258 	}
259 
260 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
261 	if (!buf)
262 		goto err;
263 
264 	dst = buf + 1;
265 	buf->type = ACPI_TYPE_BUFFER;
266 	buf->buffer.length = size;
267 	buf->buffer.pointer = dst;
268 	for (i = 0; i < pkg->package.count; i++) {
269 		union acpi_object *obj = &pkg->package.elements[i];
270 
271 		if (obj->type == ACPI_TYPE_INTEGER) {
272 			memcpy(dst, &obj->integer.value, 4);
273 			dst += 4;
274 		} else if (obj->type == ACPI_TYPE_BUFFER) {
275 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
276 			dst += obj->buffer.length;
277 		}
278 	}
279 err:
280 	ACPI_FREE(pkg);
281 	return buf;
282 }
283 
284 static union acpi_object *int_to_buf(union acpi_object *integer)
285 {
286 	union acpi_object *buf = NULL;
287 	void *dst = NULL;
288 
289 	if (integer->type != ACPI_TYPE_INTEGER) {
290 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
291 				integer->type);
292 		goto err;
293 	}
294 
295 	buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
296 	if (!buf)
297 		goto err;
298 
299 	dst = buf + 1;
300 	buf->type = ACPI_TYPE_BUFFER;
301 	buf->buffer.length = 4;
302 	buf->buffer.pointer = dst;
303 	memcpy(dst, &integer->integer.value, 4);
304 err:
305 	ACPI_FREE(integer);
306 	return buf;
307 }
308 
309 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
310 		u32 len, void *data)
311 {
312 	acpi_status rc;
313 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
314 	struct acpi_object_list input = {
315 		.count = 3,
316 		.pointer = (union acpi_object []) {
317 			[0] = {
318 				.integer.type = ACPI_TYPE_INTEGER,
319 				.integer.value = offset,
320 			},
321 			[1] = {
322 				.integer.type = ACPI_TYPE_INTEGER,
323 				.integer.value = len,
324 			},
325 			[2] = {
326 				.buffer.type = ACPI_TYPE_BUFFER,
327 				.buffer.pointer = data,
328 				.buffer.length = len,
329 			},
330 		},
331 	};
332 
333 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
334 	if (ACPI_FAILURE(rc))
335 		return NULL;
336 	return int_to_buf(buf.pointer);
337 }
338 
339 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
340 		u32 len)
341 {
342 	acpi_status rc;
343 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
344 	struct acpi_object_list input = {
345 		.count = 2,
346 		.pointer = (union acpi_object []) {
347 			[0] = {
348 				.integer.type = ACPI_TYPE_INTEGER,
349 				.integer.value = offset,
350 			},
351 			[1] = {
352 				.integer.type = ACPI_TYPE_INTEGER,
353 				.integer.value = len,
354 			},
355 		},
356 	};
357 
358 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
359 	if (ACPI_FAILURE(rc))
360 		return NULL;
361 	return pkg_to_buf(buf.pointer);
362 }
363 
364 static union acpi_object *acpi_label_info(acpi_handle handle)
365 {
366 	acpi_status rc;
367 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
368 
369 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
370 	if (ACPI_FAILURE(rc))
371 		return NULL;
372 	return pkg_to_buf(buf.pointer);
373 }
374 
375 static u8 nfit_dsm_revid(unsigned family, unsigned func)
376 {
377 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
378 		[NVDIMM_FAMILY_INTEL] = {
379 			[NVDIMM_INTEL_GET_MODES ...
380 				NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
381 		},
382 	};
383 	u8 id;
384 
385 	if (family > NVDIMM_FAMILY_MAX)
386 		return 0;
387 	if (func > NVDIMM_CMD_MAX)
388 		return 0;
389 	id = revid_table[family][func];
390 	if (id == 0)
391 		return 1; /* default */
392 	return id;
393 }
394 
395 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
396 {
397 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
398 
399 	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
400 			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
401 			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
402 		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
403 	return true;
404 }
405 
406 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
407 		struct nd_cmd_pkg *call_pkg, int *family)
408 {
409 	if (call_pkg) {
410 		int i;
411 
412 		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
413 			return -ENOTTY;
414 
415 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
416 			if (call_pkg->nd_reserved2[i])
417 				return -EINVAL;
418 		*family = call_pkg->nd_family;
419 		return call_pkg->nd_command;
420 	}
421 
422 	/* In the !call_pkg case, bus commands == bus functions */
423 	if (!nfit_mem)
424 		return cmd;
425 
426 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
427 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
428 		return cmd;
429 
430 	/*
431 	 * Force function number validation to fail since 0 is never
432 	 * published as a valid function in dsm_mask.
433 	 */
434 	return 0;
435 }
436 
437 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
438 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
439 {
440 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
441 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
442 	union acpi_object in_obj, in_buf, *out_obj;
443 	const struct nd_cmd_desc *desc = NULL;
444 	struct device *dev = acpi_desc->dev;
445 	struct nd_cmd_pkg *call_pkg = NULL;
446 	const char *cmd_name, *dimm_name;
447 	unsigned long cmd_mask, dsm_mask;
448 	u32 offset, fw_status = 0;
449 	acpi_handle handle;
450 	const guid_t *guid;
451 	int func, rc, i;
452 	int family = 0;
453 
454 	if (cmd_rc)
455 		*cmd_rc = -EINVAL;
456 
457 	if (cmd == ND_CMD_CALL)
458 		call_pkg = buf;
459 	func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
460 	if (func < 0)
461 		return func;
462 
463 	if (nvdimm) {
464 		struct acpi_device *adev = nfit_mem->adev;
465 
466 		if (!adev)
467 			return -ENOTTY;
468 
469 		dimm_name = nvdimm_name(nvdimm);
470 		cmd_name = nvdimm_cmd_name(cmd);
471 		cmd_mask = nvdimm_cmd_mask(nvdimm);
472 		dsm_mask = nfit_mem->dsm_mask;
473 		desc = nd_cmd_dimm_desc(cmd);
474 		guid = to_nfit_uuid(nfit_mem->family);
475 		handle = adev->handle;
476 	} else {
477 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
478 
479 		cmd_name = nvdimm_bus_cmd_name(cmd);
480 		cmd_mask = nd_desc->cmd_mask;
481 		if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
482 			family = call_pkg->nd_family;
483 			if (family > NVDIMM_BUS_FAMILY_MAX ||
484 			    !test_bit(family, &nd_desc->bus_family_mask))
485 				return -EINVAL;
486 			family = array_index_nospec(family,
487 						    NVDIMM_BUS_FAMILY_MAX + 1);
488 			dsm_mask = acpi_desc->family_dsm_mask[family];
489 			guid = to_nfit_bus_uuid(family);
490 		} else {
491 			dsm_mask = acpi_desc->bus_dsm_mask;
492 			guid = to_nfit_uuid(NFIT_DEV_BUS);
493 		}
494 		desc = nd_cmd_bus_desc(cmd);
495 		handle = adev->handle;
496 		dimm_name = "bus";
497 	}
498 
499 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
500 		return -ENOTTY;
501 
502 	/*
503 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
504 	 * make sure that the DSM function is supported.
505 	 */
506 	if (cmd == ND_CMD_CALL &&
507 	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
508 		return -ENOTTY;
509 	else if (!test_bit(cmd, &cmd_mask))
510 		return -ENOTTY;
511 
512 	in_obj.type = ACPI_TYPE_PACKAGE;
513 	in_obj.package.count = 1;
514 	in_obj.package.elements = &in_buf;
515 	in_buf.type = ACPI_TYPE_BUFFER;
516 	in_buf.buffer.pointer = buf;
517 	in_buf.buffer.length = 0;
518 
519 	/* libnvdimm has already validated the input envelope */
520 	for (i = 0; i < desc->in_num; i++)
521 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
522 				i, buf);
523 
524 	if (call_pkg) {
525 		/* skip over package wrapper */
526 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
527 		in_buf.buffer.length = call_pkg->nd_size_in;
528 	}
529 
530 	dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
531 		dimm_name, cmd, family, func, in_buf.buffer.length);
532 	if (payload_dumpable(nvdimm, func))
533 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
534 				in_buf.buffer.pointer,
535 				min_t(u32, 256, in_buf.buffer.length), true);
536 
537 	/* call the BIOS, prefer the named methods over _DSM if available */
538 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
539 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
540 		out_obj = acpi_label_info(handle);
541 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
542 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
543 		struct nd_cmd_get_config_data_hdr *p = buf;
544 
545 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
546 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
547 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
548 		struct nd_cmd_set_config_hdr *p = buf;
549 
550 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
551 				p->in_buf);
552 	} else {
553 		u8 revid;
554 
555 		if (nvdimm)
556 			revid = nfit_dsm_revid(nfit_mem->family, func);
557 		else
558 			revid = 1;
559 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
560 	}
561 
562 	if (!out_obj) {
563 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
564 		return -EINVAL;
565 	}
566 
567 	if (out_obj->type != ACPI_TYPE_BUFFER) {
568 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
569 				dimm_name, cmd_name, out_obj->type);
570 		rc = -EINVAL;
571 		goto out;
572 	}
573 
574 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
575 			cmd_name, out_obj->buffer.length);
576 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
577 			out_obj->buffer.pointer,
578 			min_t(u32, 128, out_obj->buffer.length), true);
579 
580 	if (call_pkg) {
581 		call_pkg->nd_fw_size = out_obj->buffer.length;
582 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
583 			out_obj->buffer.pointer,
584 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
585 
586 		ACPI_FREE(out_obj);
587 		/*
588 		 * Need to support FW function w/o known size in advance.
589 		 * Caller can determine required size based upon nd_fw_size.
590 		 * If we return an error (like elsewhere) then caller wouldn't
591 		 * be able to rely upon data returned to make calculation.
592 		 */
593 		if (cmd_rc)
594 			*cmd_rc = 0;
595 		return 0;
596 	}
597 
598 	for (i = 0, offset = 0; i < desc->out_num; i++) {
599 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
600 				(u32 *) out_obj->buffer.pointer,
601 				out_obj->buffer.length - offset);
602 
603 		if (offset + out_size > out_obj->buffer.length) {
604 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
605 					dimm_name, cmd_name, i);
606 			break;
607 		}
608 
609 		if (in_buf.buffer.length + offset + out_size > buf_len) {
610 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
611 					dimm_name, cmd_name, i);
612 			rc = -ENXIO;
613 			goto out;
614 		}
615 		memcpy(buf + in_buf.buffer.length + offset,
616 				out_obj->buffer.pointer + offset, out_size);
617 		offset += out_size;
618 	}
619 
620 	/*
621 	 * Set fw_status for all the commands with a known format to be
622 	 * later interpreted by xlat_status().
623 	 */
624 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
625 					&& cmd <= ND_CMD_CLEAR_ERROR)
626 				|| (nvdimm && cmd >= ND_CMD_SMART
627 					&& cmd <= ND_CMD_VENDOR)))
628 		fw_status = *(u32 *) out_obj->buffer.pointer;
629 
630 	if (offset + in_buf.buffer.length < buf_len) {
631 		if (i >= 1) {
632 			/*
633 			 * status valid, return the number of bytes left
634 			 * unfilled in the output buffer
635 			 */
636 			rc = buf_len - offset - in_buf.buffer.length;
637 			if (cmd_rc)
638 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
639 						fw_status);
640 		} else {
641 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
642 					__func__, dimm_name, cmd_name, buf_len,
643 					offset);
644 			rc = -ENXIO;
645 		}
646 	} else {
647 		rc = 0;
648 		if (cmd_rc)
649 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
650 	}
651 
652  out:
653 	ACPI_FREE(out_obj);
654 
655 	return rc;
656 }
657 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
658 
659 static const char *spa_type_name(u16 type)
660 {
661 	static const char *to_name[] = {
662 		[NFIT_SPA_VOLATILE] = "volatile",
663 		[NFIT_SPA_PM] = "pmem",
664 		[NFIT_SPA_DCR] = "dimm-control-region",
665 		[NFIT_SPA_BDW] = "block-data-window",
666 		[NFIT_SPA_VDISK] = "volatile-disk",
667 		[NFIT_SPA_VCD] = "volatile-cd",
668 		[NFIT_SPA_PDISK] = "persistent-disk",
669 		[NFIT_SPA_PCD] = "persistent-cd",
670 
671 	};
672 
673 	if (type > NFIT_SPA_PCD)
674 		return "unknown";
675 
676 	return to_name[type];
677 }
678 
679 int nfit_spa_type(struct acpi_nfit_system_address *spa)
680 {
681 	guid_t guid;
682 	int i;
683 
684 	import_guid(&guid, spa->range_guid);
685 	for (i = 0; i < NFIT_UUID_MAX; i++)
686 		if (guid_equal(to_nfit_uuid(i), &guid))
687 			return i;
688 	return -1;
689 }
690 
691 static size_t sizeof_spa(struct acpi_nfit_system_address *spa)
692 {
693 	if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID)
694 		return sizeof(*spa);
695 	return sizeof(*spa) - 8;
696 }
697 
698 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
699 		struct nfit_table_prev *prev,
700 		struct acpi_nfit_system_address *spa)
701 {
702 	struct device *dev = acpi_desc->dev;
703 	struct nfit_spa *nfit_spa;
704 
705 	if (spa->header.length != sizeof_spa(spa))
706 		return false;
707 
708 	list_for_each_entry(nfit_spa, &prev->spas, list) {
709 		if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) {
710 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
711 			return true;
712 		}
713 	}
714 
715 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa),
716 			GFP_KERNEL);
717 	if (!nfit_spa)
718 		return false;
719 	INIT_LIST_HEAD(&nfit_spa->list);
720 	memcpy(nfit_spa->spa, spa, sizeof_spa(spa));
721 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
722 	dev_dbg(dev, "spa index: %d type: %s\n",
723 			spa->range_index,
724 			spa_type_name(nfit_spa_type(spa)));
725 	return true;
726 }
727 
728 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
729 		struct nfit_table_prev *prev,
730 		struct acpi_nfit_memory_map *memdev)
731 {
732 	struct device *dev = acpi_desc->dev;
733 	struct nfit_memdev *nfit_memdev;
734 
735 	if (memdev->header.length != sizeof(*memdev))
736 		return false;
737 
738 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
739 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
740 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
741 			return true;
742 		}
743 
744 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
745 			GFP_KERNEL);
746 	if (!nfit_memdev)
747 		return false;
748 	INIT_LIST_HEAD(&nfit_memdev->list);
749 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
750 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
751 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
752 			memdev->device_handle, memdev->range_index,
753 			memdev->region_index, memdev->flags);
754 	return true;
755 }
756 
757 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
758 {
759 	struct acpi_nfit_memory_map *memdev;
760 	struct acpi_nfit_desc *acpi_desc;
761 	struct nfit_mem *nfit_mem;
762 	u16 physical_id;
763 
764 	mutex_lock(&acpi_desc_lock);
765 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
766 		mutex_lock(&acpi_desc->init_mutex);
767 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
768 			memdev = __to_nfit_memdev(nfit_mem);
769 			if (memdev->device_handle == device_handle) {
770 				*flags = memdev->flags;
771 				physical_id = memdev->physical_id;
772 				mutex_unlock(&acpi_desc->init_mutex);
773 				mutex_unlock(&acpi_desc_lock);
774 				return physical_id;
775 			}
776 		}
777 		mutex_unlock(&acpi_desc->init_mutex);
778 	}
779 	mutex_unlock(&acpi_desc_lock);
780 
781 	return -ENODEV;
782 }
783 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
784 
785 /*
786  * An implementation may provide a truncated control region if no block windows
787  * are defined.
788  */
789 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
790 {
791 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
792 				window_size))
793 		return 0;
794 	if (dcr->windows)
795 		return sizeof(*dcr);
796 	return offsetof(struct acpi_nfit_control_region, window_size);
797 }
798 
799 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
800 		struct nfit_table_prev *prev,
801 		struct acpi_nfit_control_region *dcr)
802 {
803 	struct device *dev = acpi_desc->dev;
804 	struct nfit_dcr *nfit_dcr;
805 
806 	if (!sizeof_dcr(dcr))
807 		return false;
808 
809 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
810 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
811 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
812 			return true;
813 		}
814 
815 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
816 			GFP_KERNEL);
817 	if (!nfit_dcr)
818 		return false;
819 	INIT_LIST_HEAD(&nfit_dcr->list);
820 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
821 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
822 	dev_dbg(dev, "dcr index: %d windows: %d\n",
823 			dcr->region_index, dcr->windows);
824 	return true;
825 }
826 
827 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
828 		struct nfit_table_prev *prev,
829 		struct acpi_nfit_data_region *bdw)
830 {
831 	struct device *dev = acpi_desc->dev;
832 	struct nfit_bdw *nfit_bdw;
833 
834 	if (bdw->header.length != sizeof(*bdw))
835 		return false;
836 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
837 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
838 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
839 			return true;
840 		}
841 
842 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
843 			GFP_KERNEL);
844 	if (!nfit_bdw)
845 		return false;
846 	INIT_LIST_HEAD(&nfit_bdw->list);
847 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
848 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
849 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
850 			bdw->region_index, bdw->windows);
851 	return true;
852 }
853 
854 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
855 {
856 	if (idt->header.length < sizeof(*idt))
857 		return 0;
858 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
859 }
860 
861 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
862 		struct nfit_table_prev *prev,
863 		struct acpi_nfit_interleave *idt)
864 {
865 	struct device *dev = acpi_desc->dev;
866 	struct nfit_idt *nfit_idt;
867 
868 	if (!sizeof_idt(idt))
869 		return false;
870 
871 	list_for_each_entry(nfit_idt, &prev->idts, list) {
872 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
873 			continue;
874 
875 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
876 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
877 			return true;
878 		}
879 	}
880 
881 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
882 			GFP_KERNEL);
883 	if (!nfit_idt)
884 		return false;
885 	INIT_LIST_HEAD(&nfit_idt->list);
886 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
887 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
888 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
889 			idt->interleave_index, idt->line_count);
890 	return true;
891 }
892 
893 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
894 {
895 	if (flush->header.length < sizeof(*flush))
896 		return 0;
897 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
898 }
899 
900 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
901 		struct nfit_table_prev *prev,
902 		struct acpi_nfit_flush_address *flush)
903 {
904 	struct device *dev = acpi_desc->dev;
905 	struct nfit_flush *nfit_flush;
906 
907 	if (!sizeof_flush(flush))
908 		return false;
909 
910 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
911 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
912 			continue;
913 
914 		if (memcmp(nfit_flush->flush, flush,
915 					sizeof_flush(flush)) == 0) {
916 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
917 			return true;
918 		}
919 	}
920 
921 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
922 			+ sizeof_flush(flush), GFP_KERNEL);
923 	if (!nfit_flush)
924 		return false;
925 	INIT_LIST_HEAD(&nfit_flush->list);
926 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
927 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
928 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
929 			flush->device_handle, flush->hint_count);
930 	return true;
931 }
932 
933 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
934 		struct acpi_nfit_capabilities *pcap)
935 {
936 	struct device *dev = acpi_desc->dev;
937 	u32 mask;
938 
939 	mask = (1 << (pcap->highest_capability + 1)) - 1;
940 	acpi_desc->platform_cap = pcap->capabilities & mask;
941 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
942 	return true;
943 }
944 
945 static void *add_table(struct acpi_nfit_desc *acpi_desc,
946 		struct nfit_table_prev *prev, void *table, const void *end)
947 {
948 	struct device *dev = acpi_desc->dev;
949 	struct acpi_nfit_header *hdr;
950 	void *err = ERR_PTR(-ENOMEM);
951 
952 	if (table >= end)
953 		return NULL;
954 
955 	hdr = table;
956 	if (!hdr->length) {
957 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
958 			hdr->type);
959 		return NULL;
960 	}
961 
962 	switch (hdr->type) {
963 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
964 		if (!add_spa(acpi_desc, prev, table))
965 			return err;
966 		break;
967 	case ACPI_NFIT_TYPE_MEMORY_MAP:
968 		if (!add_memdev(acpi_desc, prev, table))
969 			return err;
970 		break;
971 	case ACPI_NFIT_TYPE_CONTROL_REGION:
972 		if (!add_dcr(acpi_desc, prev, table))
973 			return err;
974 		break;
975 	case ACPI_NFIT_TYPE_DATA_REGION:
976 		if (!add_bdw(acpi_desc, prev, table))
977 			return err;
978 		break;
979 	case ACPI_NFIT_TYPE_INTERLEAVE:
980 		if (!add_idt(acpi_desc, prev, table))
981 			return err;
982 		break;
983 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
984 		if (!add_flush(acpi_desc, prev, table))
985 			return err;
986 		break;
987 	case ACPI_NFIT_TYPE_SMBIOS:
988 		dev_dbg(dev, "smbios\n");
989 		break;
990 	case ACPI_NFIT_TYPE_CAPABILITIES:
991 		if (!add_platform_cap(acpi_desc, table))
992 			return err;
993 		break;
994 	default:
995 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
996 		break;
997 	}
998 
999 	return table + hdr->length;
1000 }
1001 
1002 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1003 		struct acpi_nfit_system_address *spa)
1004 {
1005 	struct nfit_mem *nfit_mem, *found;
1006 	struct nfit_memdev *nfit_memdev;
1007 	int type = spa ? nfit_spa_type(spa) : 0;
1008 
1009 	switch (type) {
1010 	case NFIT_SPA_DCR:
1011 	case NFIT_SPA_PM:
1012 		break;
1013 	default:
1014 		if (spa)
1015 			return 0;
1016 	}
1017 
1018 	/*
1019 	 * This loop runs in two modes, when a dimm is mapped the loop
1020 	 * adds memdev associations to an existing dimm, or creates a
1021 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1022 	 * instances with an invalid / zero range_index and adds those
1023 	 * dimms without spa associations.
1024 	 */
1025 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1026 		struct nfit_flush *nfit_flush;
1027 		struct nfit_dcr *nfit_dcr;
1028 		u32 device_handle;
1029 		u16 dcr;
1030 
1031 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1032 			continue;
1033 		if (!spa && nfit_memdev->memdev->range_index)
1034 			continue;
1035 		found = NULL;
1036 		dcr = nfit_memdev->memdev->region_index;
1037 		device_handle = nfit_memdev->memdev->device_handle;
1038 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1039 			if (__to_nfit_memdev(nfit_mem)->device_handle
1040 					== device_handle) {
1041 				found = nfit_mem;
1042 				break;
1043 			}
1044 
1045 		if (found)
1046 			nfit_mem = found;
1047 		else {
1048 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1049 					sizeof(*nfit_mem), GFP_KERNEL);
1050 			if (!nfit_mem)
1051 				return -ENOMEM;
1052 			INIT_LIST_HEAD(&nfit_mem->list);
1053 			nfit_mem->acpi_desc = acpi_desc;
1054 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1055 		}
1056 
1057 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1058 			if (nfit_dcr->dcr->region_index != dcr)
1059 				continue;
1060 			/*
1061 			 * Record the control region for the dimm.  For
1062 			 * the ACPI 6.1 case, where there are separate
1063 			 * control regions for the pmem vs blk
1064 			 * interfaces, be sure to record the extended
1065 			 * blk details.
1066 			 */
1067 			if (!nfit_mem->dcr)
1068 				nfit_mem->dcr = nfit_dcr->dcr;
1069 			else if (nfit_mem->dcr->windows == 0
1070 					&& nfit_dcr->dcr->windows)
1071 				nfit_mem->dcr = nfit_dcr->dcr;
1072 			break;
1073 		}
1074 
1075 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1076 			struct acpi_nfit_flush_address *flush;
1077 			u16 i;
1078 
1079 			if (nfit_flush->flush->device_handle != device_handle)
1080 				continue;
1081 			nfit_mem->nfit_flush = nfit_flush;
1082 			flush = nfit_flush->flush;
1083 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1084 					flush->hint_count,
1085 					sizeof(struct resource),
1086 					GFP_KERNEL);
1087 			if (!nfit_mem->flush_wpq)
1088 				return -ENOMEM;
1089 			for (i = 0; i < flush->hint_count; i++) {
1090 				struct resource *res = &nfit_mem->flush_wpq[i];
1091 
1092 				res->start = flush->hint_address[i];
1093 				res->end = res->start + 8 - 1;
1094 			}
1095 			break;
1096 		}
1097 
1098 		if (dcr && !nfit_mem->dcr) {
1099 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1100 					spa->range_index, dcr);
1101 			return -ENODEV;
1102 		}
1103 
1104 		if (type == NFIT_SPA_DCR) {
1105 			struct nfit_idt *nfit_idt;
1106 			u16 idt_idx;
1107 
1108 			/* multiple dimms may share a SPA when interleaved */
1109 			nfit_mem->spa_dcr = spa;
1110 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1111 			idt_idx = nfit_memdev->memdev->interleave_index;
1112 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1113 				if (nfit_idt->idt->interleave_index != idt_idx)
1114 					continue;
1115 				nfit_mem->idt_dcr = nfit_idt->idt;
1116 				break;
1117 			}
1118 		} else if (type == NFIT_SPA_PM) {
1119 			/*
1120 			 * A single dimm may belong to multiple SPA-PM
1121 			 * ranges, record at least one in addition to
1122 			 * any SPA-DCR range.
1123 			 */
1124 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1125 		} else
1126 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int nfit_mem_cmp(void *priv, const struct list_head *_a,
1133 		const struct list_head *_b)
1134 {
1135 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1136 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1137 	u32 handleA, handleB;
1138 
1139 	handleA = __to_nfit_memdev(a)->device_handle;
1140 	handleB = __to_nfit_memdev(b)->device_handle;
1141 	if (handleA < handleB)
1142 		return -1;
1143 	else if (handleA > handleB)
1144 		return 1;
1145 	return 0;
1146 }
1147 
1148 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1149 {
1150 	struct nfit_spa *nfit_spa;
1151 	int rc;
1152 
1153 
1154 	/*
1155 	 * For each SPA-DCR or SPA-PMEM address range find its
1156 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1157 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1158 	 * try to find a SPA-BDW and a corresponding BDW that references
1159 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1160 	 * BDWs are optional.
1161 	 */
1162 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1163 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1164 		if (rc)
1165 			return rc;
1166 	}
1167 
1168 	/*
1169 	 * If a DIMM has failed to be mapped into SPA there will be no
1170 	 * SPA entries above. Find and register all the unmapped DIMMs
1171 	 * for reporting and recovery purposes.
1172 	 */
1173 	rc = __nfit_mem_init(acpi_desc, NULL);
1174 	if (rc)
1175 		return rc;
1176 
1177 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1178 
1179 	return 0;
1180 }
1181 
1182 static ssize_t bus_dsm_mask_show(struct device *dev,
1183 		struct device_attribute *attr, char *buf)
1184 {
1185 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1186 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1187 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1188 
1189 	return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1190 }
1191 static struct device_attribute dev_attr_bus_dsm_mask =
1192 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1193 
1194 static ssize_t revision_show(struct device *dev,
1195 		struct device_attribute *attr, char *buf)
1196 {
1197 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1198 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1199 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1200 
1201 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1202 }
1203 static DEVICE_ATTR_RO(revision);
1204 
1205 static ssize_t hw_error_scrub_show(struct device *dev,
1206 		struct device_attribute *attr, char *buf)
1207 {
1208 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1209 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1210 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1211 
1212 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1213 }
1214 
1215 /*
1216  * The 'hw_error_scrub' attribute can have the following values written to it:
1217  * '0': Switch to the default mode where an exception will only insert
1218  *      the address of the memory error into the poison and badblocks lists.
1219  * '1': Enable a full scrub to happen if an exception for a memory error is
1220  *      received.
1221  */
1222 static ssize_t hw_error_scrub_store(struct device *dev,
1223 		struct device_attribute *attr, const char *buf, size_t size)
1224 {
1225 	struct nvdimm_bus_descriptor *nd_desc;
1226 	ssize_t rc;
1227 	long val;
1228 
1229 	rc = kstrtol(buf, 0, &val);
1230 	if (rc)
1231 		return rc;
1232 
1233 	nfit_device_lock(dev);
1234 	nd_desc = dev_get_drvdata(dev);
1235 	if (nd_desc) {
1236 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1237 
1238 		switch (val) {
1239 		case HW_ERROR_SCRUB_ON:
1240 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1241 			break;
1242 		case HW_ERROR_SCRUB_OFF:
1243 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1244 			break;
1245 		default:
1246 			rc = -EINVAL;
1247 			break;
1248 		}
1249 	}
1250 	nfit_device_unlock(dev);
1251 	if (rc)
1252 		return rc;
1253 	return size;
1254 }
1255 static DEVICE_ATTR_RW(hw_error_scrub);
1256 
1257 /*
1258  * This shows the number of full Address Range Scrubs that have been
1259  * completed since driver load time. Userspace can wait on this using
1260  * select/poll etc. A '+' at the end indicates an ARS is in progress
1261  */
1262 static ssize_t scrub_show(struct device *dev,
1263 		struct device_attribute *attr, char *buf)
1264 {
1265 	struct nvdimm_bus_descriptor *nd_desc;
1266 	struct acpi_nfit_desc *acpi_desc;
1267 	ssize_t rc = -ENXIO;
1268 	bool busy;
1269 
1270 	nfit_device_lock(dev);
1271 	nd_desc = dev_get_drvdata(dev);
1272 	if (!nd_desc) {
1273 		nfit_device_unlock(dev);
1274 		return rc;
1275 	}
1276 	acpi_desc = to_acpi_desc(nd_desc);
1277 
1278 	mutex_lock(&acpi_desc->init_mutex);
1279 	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1280 		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1281 	rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1282 	/* Allow an admin to poll the busy state at a higher rate */
1283 	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1284 				&acpi_desc->scrub_flags)) {
1285 		acpi_desc->scrub_tmo = 1;
1286 		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1287 	}
1288 
1289 	mutex_unlock(&acpi_desc->init_mutex);
1290 	nfit_device_unlock(dev);
1291 	return rc;
1292 }
1293 
1294 static ssize_t scrub_store(struct device *dev,
1295 		struct device_attribute *attr, const char *buf, size_t size)
1296 {
1297 	struct nvdimm_bus_descriptor *nd_desc;
1298 	ssize_t rc;
1299 	long val;
1300 
1301 	rc = kstrtol(buf, 0, &val);
1302 	if (rc)
1303 		return rc;
1304 	if (val != 1)
1305 		return -EINVAL;
1306 
1307 	nfit_device_lock(dev);
1308 	nd_desc = dev_get_drvdata(dev);
1309 	if (nd_desc) {
1310 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1311 
1312 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1313 	}
1314 	nfit_device_unlock(dev);
1315 	if (rc)
1316 		return rc;
1317 	return size;
1318 }
1319 static DEVICE_ATTR_RW(scrub);
1320 
1321 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1322 {
1323 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1324 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1325 		| 1 << ND_CMD_ARS_STATUS;
1326 
1327 	return (nd_desc->cmd_mask & mask) == mask;
1328 }
1329 
1330 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1331 {
1332 	struct device *dev = kobj_to_dev(kobj);
1333 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1334 
1335 	if (a == &dev_attr_scrub.attr)
1336 		return ars_supported(nvdimm_bus) ? a->mode : 0;
1337 
1338 	if (a == &dev_attr_firmware_activate_noidle.attr)
1339 		return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1340 
1341 	return a->mode;
1342 }
1343 
1344 static struct attribute *acpi_nfit_attributes[] = {
1345 	&dev_attr_revision.attr,
1346 	&dev_attr_scrub.attr,
1347 	&dev_attr_hw_error_scrub.attr,
1348 	&dev_attr_bus_dsm_mask.attr,
1349 	&dev_attr_firmware_activate_noidle.attr,
1350 	NULL,
1351 };
1352 
1353 static const struct attribute_group acpi_nfit_attribute_group = {
1354 	.name = "nfit",
1355 	.attrs = acpi_nfit_attributes,
1356 	.is_visible = nfit_visible,
1357 };
1358 
1359 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1360 	&acpi_nfit_attribute_group,
1361 	NULL,
1362 };
1363 
1364 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1365 {
1366 	struct nvdimm *nvdimm = to_nvdimm(dev);
1367 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1368 
1369 	return __to_nfit_memdev(nfit_mem);
1370 }
1371 
1372 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1373 {
1374 	struct nvdimm *nvdimm = to_nvdimm(dev);
1375 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1376 
1377 	return nfit_mem->dcr;
1378 }
1379 
1380 static ssize_t handle_show(struct device *dev,
1381 		struct device_attribute *attr, char *buf)
1382 {
1383 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1384 
1385 	return sprintf(buf, "%#x\n", memdev->device_handle);
1386 }
1387 static DEVICE_ATTR_RO(handle);
1388 
1389 static ssize_t phys_id_show(struct device *dev,
1390 		struct device_attribute *attr, char *buf)
1391 {
1392 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1393 
1394 	return sprintf(buf, "%#x\n", memdev->physical_id);
1395 }
1396 static DEVICE_ATTR_RO(phys_id);
1397 
1398 static ssize_t vendor_show(struct device *dev,
1399 		struct device_attribute *attr, char *buf)
1400 {
1401 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1402 
1403 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1404 }
1405 static DEVICE_ATTR_RO(vendor);
1406 
1407 static ssize_t rev_id_show(struct device *dev,
1408 		struct device_attribute *attr, char *buf)
1409 {
1410 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1411 
1412 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1413 }
1414 static DEVICE_ATTR_RO(rev_id);
1415 
1416 static ssize_t device_show(struct device *dev,
1417 		struct device_attribute *attr, char *buf)
1418 {
1419 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1420 
1421 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1422 }
1423 static DEVICE_ATTR_RO(device);
1424 
1425 static ssize_t subsystem_vendor_show(struct device *dev,
1426 		struct device_attribute *attr, char *buf)
1427 {
1428 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1429 
1430 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1431 }
1432 static DEVICE_ATTR_RO(subsystem_vendor);
1433 
1434 static ssize_t subsystem_rev_id_show(struct device *dev,
1435 		struct device_attribute *attr, char *buf)
1436 {
1437 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1438 
1439 	return sprintf(buf, "0x%04x\n",
1440 			be16_to_cpu(dcr->subsystem_revision_id));
1441 }
1442 static DEVICE_ATTR_RO(subsystem_rev_id);
1443 
1444 static ssize_t subsystem_device_show(struct device *dev,
1445 		struct device_attribute *attr, char *buf)
1446 {
1447 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1448 
1449 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1450 }
1451 static DEVICE_ATTR_RO(subsystem_device);
1452 
1453 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1454 {
1455 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1456 	int formats = 0;
1457 
1458 	if (nfit_mem->memdev_pmem)
1459 		formats++;
1460 	return formats;
1461 }
1462 
1463 static ssize_t format_show(struct device *dev,
1464 		struct device_attribute *attr, char *buf)
1465 {
1466 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1467 
1468 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1469 }
1470 static DEVICE_ATTR_RO(format);
1471 
1472 static ssize_t format1_show(struct device *dev,
1473 		struct device_attribute *attr, char *buf)
1474 {
1475 	u32 handle;
1476 	ssize_t rc = -ENXIO;
1477 	struct nfit_mem *nfit_mem;
1478 	struct nfit_memdev *nfit_memdev;
1479 	struct acpi_nfit_desc *acpi_desc;
1480 	struct nvdimm *nvdimm = to_nvdimm(dev);
1481 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1482 
1483 	nfit_mem = nvdimm_provider_data(nvdimm);
1484 	acpi_desc = nfit_mem->acpi_desc;
1485 	handle = to_nfit_memdev(dev)->device_handle;
1486 
1487 	/* assumes DIMMs have at most 2 published interface codes */
1488 	mutex_lock(&acpi_desc->init_mutex);
1489 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1490 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1491 		struct nfit_dcr *nfit_dcr;
1492 
1493 		if (memdev->device_handle != handle)
1494 			continue;
1495 
1496 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1497 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1498 				continue;
1499 			if (nfit_dcr->dcr->code == dcr->code)
1500 				continue;
1501 			rc = sprintf(buf, "0x%04x\n",
1502 					le16_to_cpu(nfit_dcr->dcr->code));
1503 			break;
1504 		}
1505 		if (rc != -ENXIO)
1506 			break;
1507 	}
1508 	mutex_unlock(&acpi_desc->init_mutex);
1509 	return rc;
1510 }
1511 static DEVICE_ATTR_RO(format1);
1512 
1513 static ssize_t formats_show(struct device *dev,
1514 		struct device_attribute *attr, char *buf)
1515 {
1516 	struct nvdimm *nvdimm = to_nvdimm(dev);
1517 
1518 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1519 }
1520 static DEVICE_ATTR_RO(formats);
1521 
1522 static ssize_t serial_show(struct device *dev,
1523 		struct device_attribute *attr, char *buf)
1524 {
1525 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1526 
1527 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1528 }
1529 static DEVICE_ATTR_RO(serial);
1530 
1531 static ssize_t family_show(struct device *dev,
1532 		struct device_attribute *attr, char *buf)
1533 {
1534 	struct nvdimm *nvdimm = to_nvdimm(dev);
1535 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1536 
1537 	if (nfit_mem->family < 0)
1538 		return -ENXIO;
1539 	return sprintf(buf, "%d\n", nfit_mem->family);
1540 }
1541 static DEVICE_ATTR_RO(family);
1542 
1543 static ssize_t dsm_mask_show(struct device *dev,
1544 		struct device_attribute *attr, char *buf)
1545 {
1546 	struct nvdimm *nvdimm = to_nvdimm(dev);
1547 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1548 
1549 	if (nfit_mem->family < 0)
1550 		return -ENXIO;
1551 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1552 }
1553 static DEVICE_ATTR_RO(dsm_mask);
1554 
1555 static ssize_t flags_show(struct device *dev,
1556 		struct device_attribute *attr, char *buf)
1557 {
1558 	struct nvdimm *nvdimm = to_nvdimm(dev);
1559 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1560 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1561 
1562 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1563 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1564 
1565 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1566 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1567 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1568 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1569 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1570 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1571 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1572 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1573 }
1574 static DEVICE_ATTR_RO(flags);
1575 
1576 static ssize_t id_show(struct device *dev,
1577 		struct device_attribute *attr, char *buf)
1578 {
1579 	struct nvdimm *nvdimm = to_nvdimm(dev);
1580 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1581 
1582 	return sprintf(buf, "%s\n", nfit_mem->id);
1583 }
1584 static DEVICE_ATTR_RO(id);
1585 
1586 static ssize_t dirty_shutdown_show(struct device *dev,
1587 		struct device_attribute *attr, char *buf)
1588 {
1589 	struct nvdimm *nvdimm = to_nvdimm(dev);
1590 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1591 
1592 	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1593 }
1594 static DEVICE_ATTR_RO(dirty_shutdown);
1595 
1596 static struct attribute *acpi_nfit_dimm_attributes[] = {
1597 	&dev_attr_handle.attr,
1598 	&dev_attr_phys_id.attr,
1599 	&dev_attr_vendor.attr,
1600 	&dev_attr_device.attr,
1601 	&dev_attr_rev_id.attr,
1602 	&dev_attr_subsystem_vendor.attr,
1603 	&dev_attr_subsystem_device.attr,
1604 	&dev_attr_subsystem_rev_id.attr,
1605 	&dev_attr_format.attr,
1606 	&dev_attr_formats.attr,
1607 	&dev_attr_format1.attr,
1608 	&dev_attr_serial.attr,
1609 	&dev_attr_flags.attr,
1610 	&dev_attr_id.attr,
1611 	&dev_attr_family.attr,
1612 	&dev_attr_dsm_mask.attr,
1613 	&dev_attr_dirty_shutdown.attr,
1614 	NULL,
1615 };
1616 
1617 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1618 		struct attribute *a, int n)
1619 {
1620 	struct device *dev = kobj_to_dev(kobj);
1621 	struct nvdimm *nvdimm = to_nvdimm(dev);
1622 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1623 
1624 	if (!to_nfit_dcr(dev)) {
1625 		/* Without a dcr only the memdev attributes can be surfaced */
1626 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1627 				|| a == &dev_attr_flags.attr
1628 				|| a == &dev_attr_family.attr
1629 				|| a == &dev_attr_dsm_mask.attr)
1630 			return a->mode;
1631 		return 0;
1632 	}
1633 
1634 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1635 		return 0;
1636 
1637 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1638 			&& a == &dev_attr_dirty_shutdown.attr)
1639 		return 0;
1640 
1641 	return a->mode;
1642 }
1643 
1644 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1645 	.name = "nfit",
1646 	.attrs = acpi_nfit_dimm_attributes,
1647 	.is_visible = acpi_nfit_dimm_attr_visible,
1648 };
1649 
1650 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1651 	&acpi_nfit_dimm_attribute_group,
1652 	NULL,
1653 };
1654 
1655 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1656 		u32 device_handle)
1657 {
1658 	struct nfit_mem *nfit_mem;
1659 
1660 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1661 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1662 			return nfit_mem->nvdimm;
1663 
1664 	return NULL;
1665 }
1666 
1667 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1668 {
1669 	struct nfit_mem *nfit_mem;
1670 	struct acpi_nfit_desc *acpi_desc;
1671 
1672 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1673 			event);
1674 
1675 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1676 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1677 				event);
1678 		return;
1679 	}
1680 
1681 	acpi_desc = dev_get_drvdata(dev->parent);
1682 	if (!acpi_desc)
1683 		return;
1684 
1685 	/*
1686 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1687 	 * is still valid.
1688 	 */
1689 	nfit_mem = dev_get_drvdata(dev);
1690 	if (nfit_mem && nfit_mem->flags_attr)
1691 		sysfs_notify_dirent(nfit_mem->flags_attr);
1692 }
1693 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1694 
1695 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1696 {
1697 	struct acpi_device *adev = data;
1698 	struct device *dev = &adev->dev;
1699 
1700 	nfit_device_lock(dev->parent);
1701 	__acpi_nvdimm_notify(dev, event);
1702 	nfit_device_unlock(dev->parent);
1703 }
1704 
1705 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1706 {
1707 	acpi_handle handle;
1708 	acpi_status status;
1709 
1710 	status = acpi_get_handle(adev->handle, method, &handle);
1711 
1712 	if (ACPI_SUCCESS(status))
1713 		return true;
1714 	return false;
1715 }
1716 
1717 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1718 {
1719 	struct device *dev = &nfit_mem->adev->dev;
1720 	struct nd_intel_smart smart = { 0 };
1721 	union acpi_object in_buf = {
1722 		.buffer.type = ACPI_TYPE_BUFFER,
1723 		.buffer.length = 0,
1724 	};
1725 	union acpi_object in_obj = {
1726 		.package.type = ACPI_TYPE_PACKAGE,
1727 		.package.count = 1,
1728 		.package.elements = &in_buf,
1729 	};
1730 	const u8 func = ND_INTEL_SMART;
1731 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1732 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1733 	struct acpi_device *adev = nfit_mem->adev;
1734 	acpi_handle handle = adev->handle;
1735 	union acpi_object *out_obj;
1736 
1737 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1738 		return;
1739 
1740 	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1741 	if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1742 			|| out_obj->buffer.length < sizeof(smart)) {
1743 		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1744 				dev_name(dev));
1745 		ACPI_FREE(out_obj);
1746 		return;
1747 	}
1748 	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1749 	ACPI_FREE(out_obj);
1750 
1751 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1752 		if (smart.shutdown_state)
1753 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1754 	}
1755 
1756 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1757 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1758 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1759 	}
1760 }
1761 
1762 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1763 {
1764 	/*
1765 	 * For DIMMs that provide a dynamic facility to retrieve a
1766 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1767 	 * these values in nfit_mem.
1768 	 */
1769 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1770 		nfit_intel_shutdown_status(nfit_mem);
1771 }
1772 
1773 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1774 		struct nfit_mem *nfit_mem, u32 device_handle)
1775 {
1776 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1777 	struct acpi_device *adev, *adev_dimm;
1778 	struct device *dev = acpi_desc->dev;
1779 	unsigned long dsm_mask, label_mask;
1780 	const guid_t *guid;
1781 	int i;
1782 	int family = -1;
1783 	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1784 
1785 	/* nfit test assumes 1:1 relationship between commands and dsms */
1786 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1787 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1788 	set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1789 
1790 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1791 		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1792 				be16_to_cpu(dcr->vendor_id),
1793 				dcr->manufacturing_location,
1794 				be16_to_cpu(dcr->manufacturing_date),
1795 				be32_to_cpu(dcr->serial_number));
1796 	else
1797 		sprintf(nfit_mem->id, "%04x-%08x",
1798 				be16_to_cpu(dcr->vendor_id),
1799 				be32_to_cpu(dcr->serial_number));
1800 
1801 	adev = to_acpi_dev(acpi_desc);
1802 	if (!adev) {
1803 		/* unit test case */
1804 		populate_shutdown_status(nfit_mem);
1805 		return 0;
1806 	}
1807 
1808 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1809 	nfit_mem->adev = adev_dimm;
1810 	if (!adev_dimm) {
1811 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1812 				device_handle);
1813 		return force_enable_dimms ? 0 : -ENODEV;
1814 	}
1815 
1816 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1817 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1818 		dev_err(dev, "%s: notification registration failed\n",
1819 				dev_name(&adev_dimm->dev));
1820 		return -ENXIO;
1821 	}
1822 	/*
1823 	 * Record nfit_mem for the notification path to track back to
1824 	 * the nfit sysfs attributes for this dimm device object.
1825 	 */
1826 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1827 
1828 	/*
1829 	 * There are 4 "legacy" NVDIMM command sets
1830 	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1831 	 * an EFI working group was established to constrain this
1832 	 * proliferation. The nfit driver probes for the supported command
1833 	 * set by GUID. Note, if you're a platform developer looking to add
1834 	 * a new command set to this probe, consider using an existing set,
1835 	 * or otherwise seek approval to publish the command set at
1836 	 * http://www.uefi.org/RFIC_LIST.
1837 	 *
1838 	 * Note, that checking for function0 (bit0) tells us if any commands
1839 	 * are reachable through this GUID.
1840 	 */
1841 	clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1842 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1843 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1844 			set_bit(i, &nd_desc->dimm_family_mask);
1845 			if (family < 0 || i == default_dsm_family)
1846 				family = i;
1847 		}
1848 
1849 	/* limit the supported commands to those that are publicly documented */
1850 	nfit_mem->family = family;
1851 	if (override_dsm_mask && !disable_vendor_specific)
1852 		dsm_mask = override_dsm_mask;
1853 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1854 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1855 		if (disable_vendor_specific)
1856 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1857 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1858 		dsm_mask = 0x1c3c76;
1859 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1860 		dsm_mask = 0x1fe;
1861 		if (disable_vendor_specific)
1862 			dsm_mask &= ~(1 << 8);
1863 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1864 		dsm_mask = 0xffffffff;
1865 	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1866 		dsm_mask = 0x1f;
1867 	} else {
1868 		dev_dbg(dev, "unknown dimm command family\n");
1869 		nfit_mem->family = -1;
1870 		/* DSMs are optional, continue loading the driver... */
1871 		return 0;
1872 	}
1873 
1874 	/*
1875 	 * Function 0 is the command interrogation function, don't
1876 	 * export it to potential userspace use, and enable it to be
1877 	 * used as an error value in acpi_nfit_ctl().
1878 	 */
1879 	dsm_mask &= ~1UL;
1880 
1881 	guid = to_nfit_uuid(nfit_mem->family);
1882 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1883 		if (acpi_check_dsm(adev_dimm->handle, guid,
1884 					nfit_dsm_revid(nfit_mem->family, i),
1885 					1ULL << i))
1886 			set_bit(i, &nfit_mem->dsm_mask);
1887 
1888 	/*
1889 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1890 	 * due to their better semantics handling locked capacity.
1891 	 */
1892 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1893 		| 1 << ND_CMD_SET_CONFIG_DATA;
1894 	if (family == NVDIMM_FAMILY_INTEL
1895 			&& (dsm_mask & label_mask) == label_mask)
1896 		/* skip _LS{I,R,W} enabling */;
1897 	else {
1898 		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1899 				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1900 			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1901 			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1902 		}
1903 
1904 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1905 				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1906 			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1907 			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1908 		}
1909 
1910 		/*
1911 		 * Quirk read-only label configurations to preserve
1912 		 * access to label-less namespaces by default.
1913 		 */
1914 		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1915 				&& !force_labels) {
1916 			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1917 					dev_name(&adev_dimm->dev));
1918 			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1919 		} else
1920 			dev_dbg(dev, "%s: Force enable labels\n",
1921 					dev_name(&adev_dimm->dev));
1922 	}
1923 
1924 	populate_shutdown_status(nfit_mem);
1925 
1926 	return 0;
1927 }
1928 
1929 static void shutdown_dimm_notify(void *data)
1930 {
1931 	struct acpi_nfit_desc *acpi_desc = data;
1932 	struct nfit_mem *nfit_mem;
1933 
1934 	mutex_lock(&acpi_desc->init_mutex);
1935 	/*
1936 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1937 	 * notifications.
1938 	 */
1939 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1940 		struct acpi_device *adev_dimm = nfit_mem->adev;
1941 
1942 		if (nfit_mem->flags_attr) {
1943 			sysfs_put(nfit_mem->flags_attr);
1944 			nfit_mem->flags_attr = NULL;
1945 		}
1946 		if (adev_dimm) {
1947 			acpi_remove_notify_handler(adev_dimm->handle,
1948 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1949 			dev_set_drvdata(&adev_dimm->dev, NULL);
1950 		}
1951 	}
1952 	mutex_unlock(&acpi_desc->init_mutex);
1953 }
1954 
1955 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1956 {
1957 	switch (family) {
1958 	case NVDIMM_FAMILY_INTEL:
1959 		return intel_security_ops;
1960 	default:
1961 		return NULL;
1962 	}
1963 }
1964 
1965 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
1966 		struct nfit_mem *nfit_mem)
1967 {
1968 	unsigned long mask;
1969 	struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
1970 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1971 
1972 	if (!nd_desc->fw_ops)
1973 		return NULL;
1974 
1975 	if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
1976 		return NULL;
1977 
1978 	mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
1979 	if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
1980 		return NULL;
1981 
1982 	return intel_fw_ops;
1983 }
1984 
1985 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1986 {
1987 	struct nfit_mem *nfit_mem;
1988 	int dimm_count = 0, rc;
1989 	struct nvdimm *nvdimm;
1990 
1991 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1992 		struct acpi_nfit_flush_address *flush;
1993 		unsigned long flags = 0, cmd_mask;
1994 		struct nfit_memdev *nfit_memdev;
1995 		u32 device_handle;
1996 		u16 mem_flags;
1997 
1998 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1999 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2000 		if (nvdimm) {
2001 			dimm_count++;
2002 			continue;
2003 		}
2004 
2005 		/* collate flags across all memdevs for this dimm */
2006 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2007 			struct acpi_nfit_memory_map *dimm_memdev;
2008 
2009 			dimm_memdev = __to_nfit_memdev(nfit_mem);
2010 			if (dimm_memdev->device_handle
2011 					!= nfit_memdev->memdev->device_handle)
2012 				continue;
2013 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2014 		}
2015 
2016 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2017 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2018 			set_bit(NDD_UNARMED, &flags);
2019 
2020 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2021 		if (rc)
2022 			continue;
2023 
2024 		/*
2025 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2026 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2027 		 * userspace interface.
2028 		 */
2029 		cmd_mask = 1UL << ND_CMD_CALL;
2030 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2031 			/*
2032 			 * These commands have a 1:1 correspondence
2033 			 * between DSM payload and libnvdimm ioctl
2034 			 * payload format.
2035 			 */
2036 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2037 		}
2038 
2039 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2040 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2041 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2042 		}
2043 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2044 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2045 
2046 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2047 			: NULL;
2048 		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2049 				acpi_nfit_dimm_attribute_groups,
2050 				flags, cmd_mask, flush ? flush->hint_count : 0,
2051 				nfit_mem->flush_wpq, &nfit_mem->id[0],
2052 				acpi_nfit_get_security_ops(nfit_mem->family),
2053 				acpi_nfit_get_fw_ops(nfit_mem));
2054 		if (!nvdimm)
2055 			return -ENOMEM;
2056 
2057 		nfit_mem->nvdimm = nvdimm;
2058 		dimm_count++;
2059 
2060 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2061 			continue;
2062 
2063 		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2064 				nvdimm_name(nvdimm),
2065 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2066 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2067 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2068 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2069 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2070 
2071 	}
2072 
2073 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2074 	if (rc)
2075 		return rc;
2076 
2077 	/*
2078 	 * Now that dimms are successfully registered, and async registration
2079 	 * is flushed, attempt to enable event notification.
2080 	 */
2081 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2082 		struct kernfs_node *nfit_kernfs;
2083 
2084 		nvdimm = nfit_mem->nvdimm;
2085 		if (!nvdimm)
2086 			continue;
2087 
2088 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2089 		if (nfit_kernfs)
2090 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2091 					"flags");
2092 		sysfs_put(nfit_kernfs);
2093 		if (!nfit_mem->flags_attr)
2094 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2095 					nvdimm_name(nvdimm));
2096 	}
2097 
2098 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2099 			acpi_desc);
2100 }
2101 
2102 /*
2103  * These constants are private because there are no kernel consumers of
2104  * these commands.
2105  */
2106 enum nfit_aux_cmds {
2107 	NFIT_CMD_TRANSLATE_SPA = 5,
2108 	NFIT_CMD_ARS_INJECT_SET = 7,
2109 	NFIT_CMD_ARS_INJECT_CLEAR = 8,
2110 	NFIT_CMD_ARS_INJECT_GET = 9,
2111 };
2112 
2113 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2114 {
2115 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2116 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2117 	unsigned long dsm_mask, *mask;
2118 	struct acpi_device *adev;
2119 	int i;
2120 
2121 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2122 	set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2123 
2124 	/* enable nfit_test to inject bus command emulation */
2125 	if (acpi_desc->bus_cmd_force_en) {
2126 		nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2127 		mask = &nd_desc->bus_family_mask;
2128 		if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2129 			set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2130 			nd_desc->fw_ops = intel_bus_fw_ops;
2131 		}
2132 	}
2133 
2134 	adev = to_acpi_dev(acpi_desc);
2135 	if (!adev)
2136 		return;
2137 
2138 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2139 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2140 			set_bit(i, &nd_desc->cmd_mask);
2141 
2142 	dsm_mask =
2143 		(1 << ND_CMD_ARS_CAP) |
2144 		(1 << ND_CMD_ARS_START) |
2145 		(1 << ND_CMD_ARS_STATUS) |
2146 		(1 << ND_CMD_CLEAR_ERROR) |
2147 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2148 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2149 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2150 		(1 << NFIT_CMD_ARS_INJECT_GET);
2151 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2152 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2153 			set_bit(i, &acpi_desc->bus_dsm_mask);
2154 
2155 	/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2156 	dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2157 	guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2158 	mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2159 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2160 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2161 			set_bit(i, mask);
2162 
2163 	if (*mask == dsm_mask) {
2164 		set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2165 		nd_desc->fw_ops = intel_bus_fw_ops;
2166 	}
2167 }
2168 
2169 static ssize_t range_index_show(struct device *dev,
2170 		struct device_attribute *attr, char *buf)
2171 {
2172 	struct nd_region *nd_region = to_nd_region(dev);
2173 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2174 
2175 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2176 }
2177 static DEVICE_ATTR_RO(range_index);
2178 
2179 static struct attribute *acpi_nfit_region_attributes[] = {
2180 	&dev_attr_range_index.attr,
2181 	NULL,
2182 };
2183 
2184 static const struct attribute_group acpi_nfit_region_attribute_group = {
2185 	.name = "nfit",
2186 	.attrs = acpi_nfit_region_attributes,
2187 };
2188 
2189 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2190 	&acpi_nfit_region_attribute_group,
2191 	NULL,
2192 };
2193 
2194 /* enough info to uniquely specify an interleave set */
2195 struct nfit_set_info {
2196 	u64 region_offset;
2197 	u32 serial_number;
2198 	u32 pad;
2199 };
2200 
2201 struct nfit_set_info2 {
2202 	u64 region_offset;
2203 	u32 serial_number;
2204 	u16 vendor_id;
2205 	u16 manufacturing_date;
2206 	u8 manufacturing_location;
2207 	u8 reserved[31];
2208 };
2209 
2210 static int cmp_map_compat(const void *m0, const void *m1)
2211 {
2212 	const struct nfit_set_info *map0 = m0;
2213 	const struct nfit_set_info *map1 = m1;
2214 
2215 	return memcmp(&map0->region_offset, &map1->region_offset,
2216 			sizeof(u64));
2217 }
2218 
2219 static int cmp_map(const void *m0, const void *m1)
2220 {
2221 	const struct nfit_set_info *map0 = m0;
2222 	const struct nfit_set_info *map1 = m1;
2223 
2224 	if (map0->region_offset < map1->region_offset)
2225 		return -1;
2226 	else if (map0->region_offset > map1->region_offset)
2227 		return 1;
2228 	return 0;
2229 }
2230 
2231 static int cmp_map2(const void *m0, const void *m1)
2232 {
2233 	const struct nfit_set_info2 *map0 = m0;
2234 	const struct nfit_set_info2 *map1 = m1;
2235 
2236 	if (map0->region_offset < map1->region_offset)
2237 		return -1;
2238 	else if (map0->region_offset > map1->region_offset)
2239 		return 1;
2240 	return 0;
2241 }
2242 
2243 /* Retrieve the nth entry referencing this spa */
2244 static struct acpi_nfit_memory_map *memdev_from_spa(
2245 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2246 {
2247 	struct nfit_memdev *nfit_memdev;
2248 
2249 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2250 		if (nfit_memdev->memdev->range_index == range_index)
2251 			if (n-- == 0)
2252 				return nfit_memdev->memdev;
2253 	return NULL;
2254 }
2255 
2256 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2257 		struct nd_region_desc *ndr_desc,
2258 		struct acpi_nfit_system_address *spa)
2259 {
2260 	struct device *dev = acpi_desc->dev;
2261 	struct nd_interleave_set *nd_set;
2262 	u16 nr = ndr_desc->num_mappings;
2263 	struct nfit_set_info2 *info2;
2264 	struct nfit_set_info *info;
2265 	int i;
2266 
2267 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2268 	if (!nd_set)
2269 		return -ENOMEM;
2270 	import_guid(&nd_set->type_guid, spa->range_guid);
2271 
2272 	info = devm_kcalloc(dev, nr, sizeof(*info), GFP_KERNEL);
2273 	if (!info)
2274 		return -ENOMEM;
2275 
2276 	info2 = devm_kcalloc(dev, nr, sizeof(*info2), GFP_KERNEL);
2277 	if (!info2)
2278 		return -ENOMEM;
2279 
2280 	for (i = 0; i < nr; i++) {
2281 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2282 		struct nvdimm *nvdimm = mapping->nvdimm;
2283 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2284 		struct nfit_set_info *map = &info[i];
2285 		struct nfit_set_info2 *map2 = &info2[i];
2286 		struct acpi_nfit_memory_map *memdev =
2287 			memdev_from_spa(acpi_desc, spa->range_index, i);
2288 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2289 
2290 		if (!memdev || !nfit_mem->dcr) {
2291 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2292 			return -ENODEV;
2293 		}
2294 
2295 		map->region_offset = memdev->region_offset;
2296 		map->serial_number = dcr->serial_number;
2297 
2298 		map2->region_offset = memdev->region_offset;
2299 		map2->serial_number = dcr->serial_number;
2300 		map2->vendor_id = dcr->vendor_id;
2301 		map2->manufacturing_date = dcr->manufacturing_date;
2302 		map2->manufacturing_location = dcr->manufacturing_location;
2303 	}
2304 
2305 	/* v1.1 namespaces */
2306 	sort(info, nr, sizeof(*info), cmp_map, NULL);
2307 	nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0);
2308 
2309 	/* v1.2 namespaces */
2310 	sort(info2, nr, sizeof(*info2), cmp_map2, NULL);
2311 	nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0);
2312 
2313 	/* support v1.1 namespaces created with the wrong sort order */
2314 	sort(info, nr, sizeof(*info), cmp_map_compat, NULL);
2315 	nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0);
2316 
2317 	/* record the result of the sort for the mapping position */
2318 	for (i = 0; i < nr; i++) {
2319 		struct nfit_set_info2 *map2 = &info2[i];
2320 		int j;
2321 
2322 		for (j = 0; j < nr; j++) {
2323 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2324 			struct nvdimm *nvdimm = mapping->nvdimm;
2325 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2326 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2327 
2328 			if (map2->serial_number == dcr->serial_number &&
2329 			    map2->vendor_id == dcr->vendor_id &&
2330 			    map2->manufacturing_date == dcr->manufacturing_date &&
2331 			    map2->manufacturing_location
2332 				    == dcr->manufacturing_location) {
2333 				mapping->position = i;
2334 				break;
2335 			}
2336 		}
2337 	}
2338 
2339 	ndr_desc->nd_set = nd_set;
2340 	devm_kfree(dev, info);
2341 	devm_kfree(dev, info2);
2342 
2343 	return 0;
2344 }
2345 
2346 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2347 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2348 {
2349 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2350 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2351 	int cmd_rc, rc;
2352 
2353 	cmd->address = spa->address;
2354 	cmd->length = spa->length;
2355 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2356 			sizeof(*cmd), &cmd_rc);
2357 	if (rc < 0)
2358 		return rc;
2359 	return cmd_rc;
2360 }
2361 
2362 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2363 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2364 {
2365 	int rc;
2366 	int cmd_rc;
2367 	struct nd_cmd_ars_start ars_start;
2368 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2369 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2370 
2371 	memset(&ars_start, 0, sizeof(ars_start));
2372 	ars_start.address = spa->address;
2373 	ars_start.length = spa->length;
2374 	if (req_type == ARS_REQ_SHORT)
2375 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2376 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2377 		ars_start.type = ND_ARS_PERSISTENT;
2378 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2379 		ars_start.type = ND_ARS_VOLATILE;
2380 	else
2381 		return -ENOTTY;
2382 
2383 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2384 			sizeof(ars_start), &cmd_rc);
2385 
2386 	if (rc < 0)
2387 		return rc;
2388 	if (cmd_rc < 0)
2389 		return cmd_rc;
2390 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2391 	return 0;
2392 }
2393 
2394 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2395 {
2396 	int rc, cmd_rc;
2397 	struct nd_cmd_ars_start ars_start;
2398 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2399 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2400 
2401 	ars_start = (struct nd_cmd_ars_start) {
2402 		.address = ars_status->restart_address,
2403 		.length = ars_status->restart_length,
2404 		.type = ars_status->type,
2405 	};
2406 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2407 			sizeof(ars_start), &cmd_rc);
2408 	if (rc < 0)
2409 		return rc;
2410 	return cmd_rc;
2411 }
2412 
2413 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2414 {
2415 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2416 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2417 	int rc, cmd_rc;
2418 
2419 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2420 			acpi_desc->max_ars, &cmd_rc);
2421 	if (rc < 0)
2422 		return rc;
2423 	return cmd_rc;
2424 }
2425 
2426 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2427 		struct nfit_spa *nfit_spa)
2428 {
2429 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2430 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2431 	struct nd_region *nd_region = nfit_spa->nd_region;
2432 	struct device *dev;
2433 
2434 	lockdep_assert_held(&acpi_desc->init_mutex);
2435 	/*
2436 	 * Only advance the ARS state for ARS runs initiated by the
2437 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2438 	 * completion tracking.
2439 	 */
2440 	if (acpi_desc->scrub_spa != nfit_spa)
2441 		return;
2442 
2443 	if ((ars_status->address >= spa->address && ars_status->address
2444 				< spa->address + spa->length)
2445 			|| (ars_status->address < spa->address)) {
2446 		/*
2447 		 * Assume that if a scrub starts at an offset from the
2448 		 * start of nfit_spa that we are in the continuation
2449 		 * case.
2450 		 *
2451 		 * Otherwise, if the scrub covers the spa range, mark
2452 		 * any pending request complete.
2453 		 */
2454 		if (ars_status->address + ars_status->length
2455 				>= spa->address + spa->length)
2456 				/* complete */;
2457 		else
2458 			return;
2459 	} else
2460 		return;
2461 
2462 	acpi_desc->scrub_spa = NULL;
2463 	if (nd_region) {
2464 		dev = nd_region_dev(nd_region);
2465 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2466 	} else
2467 		dev = acpi_desc->dev;
2468 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2469 }
2470 
2471 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2472 {
2473 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2474 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2475 	int rc;
2476 	u32 i;
2477 
2478 	/*
2479 	 * First record starts at 44 byte offset from the start of the
2480 	 * payload.
2481 	 */
2482 	if (ars_status->out_length < 44)
2483 		return 0;
2484 
2485 	/*
2486 	 * Ignore potentially stale results that are only refreshed
2487 	 * after a start-ARS event.
2488 	 */
2489 	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2490 		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2491 				ars_status->num_records);
2492 		return 0;
2493 	}
2494 
2495 	for (i = 0; i < ars_status->num_records; i++) {
2496 		/* only process full records */
2497 		if (ars_status->out_length
2498 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2499 			break;
2500 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2501 				ars_status->records[i].err_address,
2502 				ars_status->records[i].length);
2503 		if (rc)
2504 			return rc;
2505 	}
2506 	if (i < ars_status->num_records)
2507 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2508 
2509 	return 0;
2510 }
2511 
2512 static void acpi_nfit_remove_resource(void *data)
2513 {
2514 	struct resource *res = data;
2515 
2516 	remove_resource(res);
2517 }
2518 
2519 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2520 		struct nd_region_desc *ndr_desc)
2521 {
2522 	struct resource *res, *nd_res = ndr_desc->res;
2523 	int is_pmem, ret;
2524 
2525 	/* No operation if the region is already registered as PMEM */
2526 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2527 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2528 	if (is_pmem == REGION_INTERSECTS)
2529 		return 0;
2530 
2531 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2532 	if (!res)
2533 		return -ENOMEM;
2534 
2535 	res->name = "Persistent Memory";
2536 	res->start = nd_res->start;
2537 	res->end = nd_res->end;
2538 	res->flags = IORESOURCE_MEM;
2539 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2540 
2541 	ret = insert_resource(&iomem_resource, res);
2542 	if (ret)
2543 		return ret;
2544 
2545 	ret = devm_add_action_or_reset(acpi_desc->dev,
2546 					acpi_nfit_remove_resource,
2547 					res);
2548 	if (ret)
2549 		return ret;
2550 
2551 	return 0;
2552 }
2553 
2554 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2555 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2556 		struct acpi_nfit_memory_map *memdev,
2557 		struct nfit_spa *nfit_spa)
2558 {
2559 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2560 			memdev->device_handle);
2561 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2562 
2563 	if (!nvdimm) {
2564 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2565 				spa->range_index, memdev->device_handle);
2566 		return -ENODEV;
2567 	}
2568 
2569 	mapping->nvdimm = nvdimm;
2570 	switch (nfit_spa_type(spa)) {
2571 	case NFIT_SPA_PM:
2572 	case NFIT_SPA_VOLATILE:
2573 		mapping->start = memdev->address;
2574 		mapping->size = memdev->region_size;
2575 		break;
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2582 {
2583 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2584 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2585 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2586 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2587 }
2588 
2589 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2590 {
2591 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2592 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2593 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2594 }
2595 
2596 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2597 		struct nfit_spa *nfit_spa)
2598 {
2599 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2600 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2601 	struct nd_region_desc *ndr_desc, _ndr_desc;
2602 	struct nfit_memdev *nfit_memdev;
2603 	struct nvdimm_bus *nvdimm_bus;
2604 	struct resource res;
2605 	int count = 0, rc;
2606 
2607 	if (nfit_spa->nd_region)
2608 		return 0;
2609 
2610 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2611 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2612 		return 0;
2613 	}
2614 
2615 	memset(&res, 0, sizeof(res));
2616 	memset(&mappings, 0, sizeof(mappings));
2617 	memset(&_ndr_desc, 0, sizeof(_ndr_desc));
2618 	res.start = spa->address;
2619 	res.end = res.start + spa->length - 1;
2620 	ndr_desc = &_ndr_desc;
2621 	ndr_desc->res = &res;
2622 	ndr_desc->provider_data = nfit_spa;
2623 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2624 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2625 		ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
2626 		ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
2627 	} else {
2628 		ndr_desc->numa_node = NUMA_NO_NODE;
2629 		ndr_desc->target_node = NUMA_NO_NODE;
2630 	}
2631 
2632 	/* Fallback to address based numa information if node lookup failed */
2633 	if (ndr_desc->numa_node == NUMA_NO_NODE) {
2634 		ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
2635 		dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
2636 			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2637 	}
2638 	if (ndr_desc->target_node == NUMA_NO_NODE) {
2639 		ndr_desc->target_node = phys_to_target_node(spa->address);
2640 		dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
2641 			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2642 	}
2643 
2644 	/*
2645 	 * Persistence domain bits are hierarchical, if
2646 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2647 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2648 	 */
2649 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2650 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2651 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2652 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2653 
2654 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2655 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2656 		struct nd_mapping_desc *mapping;
2657 
2658 		/* range index 0 == unmapped in SPA or invalid-SPA */
2659 		if (memdev->range_index == 0 || spa->range_index == 0)
2660 			continue;
2661 		if (memdev->range_index != spa->range_index)
2662 			continue;
2663 		if (count >= ND_MAX_MAPPINGS) {
2664 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2665 					spa->range_index, ND_MAX_MAPPINGS);
2666 			return -ENXIO;
2667 		}
2668 		mapping = &mappings[count++];
2669 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2670 				memdev, nfit_spa);
2671 		if (rc)
2672 			goto out;
2673 	}
2674 
2675 	ndr_desc->mapping = mappings;
2676 	ndr_desc->num_mappings = count;
2677 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2678 	if (rc)
2679 		goto out;
2680 
2681 	nvdimm_bus = acpi_desc->nvdimm_bus;
2682 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2683 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2684 		if (rc) {
2685 			dev_warn(acpi_desc->dev,
2686 				"failed to insert pmem resource to iomem: %d\n",
2687 				rc);
2688 			goto out;
2689 		}
2690 
2691 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2692 				ndr_desc);
2693 		if (!nfit_spa->nd_region)
2694 			rc = -ENOMEM;
2695 	} else if (nfit_spa_is_volatile(spa)) {
2696 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2697 				ndr_desc);
2698 		if (!nfit_spa->nd_region)
2699 			rc = -ENOMEM;
2700 	} else if (nfit_spa_is_virtual(spa)) {
2701 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2702 				ndr_desc);
2703 		if (!nfit_spa->nd_region)
2704 			rc = -ENOMEM;
2705 	}
2706 
2707  out:
2708 	if (rc)
2709 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2710 				nfit_spa->spa->range_index);
2711 	return rc;
2712 }
2713 
2714 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2715 {
2716 	struct device *dev = acpi_desc->dev;
2717 	struct nd_cmd_ars_status *ars_status;
2718 
2719 	if (acpi_desc->ars_status) {
2720 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2721 		return 0;
2722 	}
2723 
2724 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2725 	if (!ars_status)
2726 		return -ENOMEM;
2727 	acpi_desc->ars_status = ars_status;
2728 	return 0;
2729 }
2730 
2731 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2732 {
2733 	int rc;
2734 
2735 	if (ars_status_alloc(acpi_desc))
2736 		return -ENOMEM;
2737 
2738 	rc = ars_get_status(acpi_desc);
2739 
2740 	if (rc < 0 && rc != -ENOSPC)
2741 		return rc;
2742 
2743 	if (ars_status_process_records(acpi_desc))
2744 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2745 
2746 	return rc;
2747 }
2748 
2749 static int ars_register(struct acpi_nfit_desc *acpi_desc,
2750 		struct nfit_spa *nfit_spa)
2751 {
2752 	int rc;
2753 
2754 	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2755 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2756 
2757 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2758 	if (!no_init_ars)
2759 		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2760 
2761 	switch (acpi_nfit_query_poison(acpi_desc)) {
2762 	case 0:
2763 	case -ENOSPC:
2764 	case -EAGAIN:
2765 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2766 		/* shouldn't happen, try again later */
2767 		if (rc == -EBUSY)
2768 			break;
2769 		if (rc) {
2770 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2771 			break;
2772 		}
2773 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2774 		rc = acpi_nfit_query_poison(acpi_desc);
2775 		if (rc)
2776 			break;
2777 		acpi_desc->scrub_spa = nfit_spa;
2778 		ars_complete(acpi_desc, nfit_spa);
2779 		/*
2780 		 * If ars_complete() says we didn't complete the
2781 		 * short scrub, we'll try again with a long
2782 		 * request.
2783 		 */
2784 		acpi_desc->scrub_spa = NULL;
2785 		break;
2786 	case -EBUSY:
2787 	case -ENOMEM:
2788 		/*
2789 		 * BIOS was using ARS, wait for it to complete (or
2790 		 * resources to become available) and then perform our
2791 		 * own scrubs.
2792 		 */
2793 		break;
2794 	default:
2795 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2796 		break;
2797 	}
2798 
2799 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2800 }
2801 
2802 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2803 {
2804 	struct nfit_spa *nfit_spa;
2805 
2806 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2807 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2808 			continue;
2809 		ars_complete(acpi_desc, nfit_spa);
2810 	}
2811 }
2812 
2813 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2814 		int query_rc)
2815 {
2816 	unsigned int tmo = acpi_desc->scrub_tmo;
2817 	struct device *dev = acpi_desc->dev;
2818 	struct nfit_spa *nfit_spa;
2819 
2820 	lockdep_assert_held(&acpi_desc->init_mutex);
2821 
2822 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
2823 		return 0;
2824 
2825 	if (query_rc == -EBUSY) {
2826 		dev_dbg(dev, "ARS: ARS busy\n");
2827 		return min(30U * 60U, tmo * 2);
2828 	}
2829 	if (query_rc == -ENOSPC) {
2830 		dev_dbg(dev, "ARS: ARS continue\n");
2831 		ars_continue(acpi_desc);
2832 		return 1;
2833 	}
2834 	if (query_rc && query_rc != -EAGAIN) {
2835 		unsigned long long addr, end;
2836 
2837 		addr = acpi_desc->ars_status->address;
2838 		end = addr + acpi_desc->ars_status->length;
2839 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
2840 				query_rc);
2841 	}
2842 
2843 	ars_complete_all(acpi_desc);
2844 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2845 		enum nfit_ars_state req_type;
2846 		int rc;
2847 
2848 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2849 			continue;
2850 
2851 		/* prefer short ARS requests first */
2852 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
2853 			req_type = ARS_REQ_SHORT;
2854 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
2855 			req_type = ARS_REQ_LONG;
2856 		else
2857 			continue;
2858 		rc = ars_start(acpi_desc, nfit_spa, req_type);
2859 
2860 		dev = nd_region_dev(nfit_spa->nd_region);
2861 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
2862 				nfit_spa->spa->range_index,
2863 				req_type == ARS_REQ_SHORT ? "short" : "long",
2864 				rc);
2865 		/*
2866 		 * Hmm, we raced someone else starting ARS? Try again in
2867 		 * a bit.
2868 		 */
2869 		if (rc == -EBUSY)
2870 			return 1;
2871 		if (rc == 0) {
2872 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
2873 					"scrub start while range %d active\n",
2874 					acpi_desc->scrub_spa->spa->range_index);
2875 			clear_bit(req_type, &nfit_spa->ars_state);
2876 			acpi_desc->scrub_spa = nfit_spa;
2877 			/*
2878 			 * Consider this spa last for future scrub
2879 			 * requests
2880 			 */
2881 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
2882 			return 1;
2883 		}
2884 
2885 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
2886 				nfit_spa->spa->range_index, rc);
2887 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2888 	}
2889 	return 0;
2890 }
2891 
2892 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
2893 {
2894 	lockdep_assert_held(&acpi_desc->init_mutex);
2895 
2896 	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2897 	/* note this should only be set from within the workqueue */
2898 	if (tmo)
2899 		acpi_desc->scrub_tmo = tmo;
2900 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
2901 }
2902 
2903 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
2904 {
2905 	__sched_ars(acpi_desc, 0);
2906 }
2907 
2908 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
2909 {
2910 	lockdep_assert_held(&acpi_desc->init_mutex);
2911 
2912 	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2913 	acpi_desc->scrub_count++;
2914 	if (acpi_desc->scrub_count_state)
2915 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2916 }
2917 
2918 static void acpi_nfit_scrub(struct work_struct *work)
2919 {
2920 	struct acpi_nfit_desc *acpi_desc;
2921 	unsigned int tmo;
2922 	int query_rc;
2923 
2924 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
2925 	mutex_lock(&acpi_desc->init_mutex);
2926 	query_rc = acpi_nfit_query_poison(acpi_desc);
2927 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
2928 	if (tmo)
2929 		__sched_ars(acpi_desc, tmo);
2930 	else
2931 		notify_ars_done(acpi_desc);
2932 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2933 	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
2934 	mutex_unlock(&acpi_desc->init_mutex);
2935 }
2936 
2937 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
2938 		struct nfit_spa *nfit_spa)
2939 {
2940 	int type = nfit_spa_type(nfit_spa->spa);
2941 	struct nd_cmd_ars_cap ars_cap;
2942 	int rc;
2943 
2944 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
2945 	memset(&ars_cap, 0, sizeof(ars_cap));
2946 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2947 	if (rc < 0)
2948 		return;
2949 	/* check that the supported scrub types match the spa type */
2950 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
2951 				& ND_ARS_VOLATILE) == 0)
2952 		return;
2953 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
2954 				& ND_ARS_PERSISTENT) == 0)
2955 		return;
2956 
2957 	nfit_spa->max_ars = ars_cap.max_ars_out;
2958 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2959 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
2960 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
2961 }
2962 
2963 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2964 {
2965 	struct nfit_spa *nfit_spa;
2966 	int rc, do_sched_ars = 0;
2967 
2968 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2969 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2970 		switch (nfit_spa_type(nfit_spa->spa)) {
2971 		case NFIT_SPA_VOLATILE:
2972 		case NFIT_SPA_PM:
2973 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
2974 			break;
2975 		}
2976 	}
2977 
2978 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2979 		switch (nfit_spa_type(nfit_spa->spa)) {
2980 		case NFIT_SPA_VOLATILE:
2981 		case NFIT_SPA_PM:
2982 			/* register regions and kick off initial ARS run */
2983 			rc = ars_register(acpi_desc, nfit_spa);
2984 			if (rc)
2985 				return rc;
2986 
2987 			/*
2988 			 * Kick off background ARS if at least one
2989 			 * region successfully registered ARS
2990 			 */
2991 			if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
2992 				do_sched_ars++;
2993 			break;
2994 		case NFIT_SPA_BDW:
2995 			/* nothing to register */
2996 			break;
2997 		case NFIT_SPA_DCR:
2998 		case NFIT_SPA_VDISK:
2999 		case NFIT_SPA_VCD:
3000 		case NFIT_SPA_PDISK:
3001 		case NFIT_SPA_PCD:
3002 			/* register known regions that don't support ARS */
3003 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3004 			if (rc)
3005 				return rc;
3006 			break;
3007 		default:
3008 			/* don't register unknown regions */
3009 			break;
3010 		}
3011 	}
3012 
3013 	if (do_sched_ars)
3014 		sched_ars(acpi_desc);
3015 	return 0;
3016 }
3017 
3018 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3019 		struct nfit_table_prev *prev)
3020 {
3021 	struct device *dev = acpi_desc->dev;
3022 
3023 	if (!list_empty(&prev->spas) ||
3024 			!list_empty(&prev->memdevs) ||
3025 			!list_empty(&prev->dcrs) ||
3026 			!list_empty(&prev->bdws) ||
3027 			!list_empty(&prev->idts) ||
3028 			!list_empty(&prev->flushes)) {
3029 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3030 		return -ENXIO;
3031 	}
3032 	return 0;
3033 }
3034 
3035 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3036 {
3037 	struct device *dev = acpi_desc->dev;
3038 	struct kernfs_node *nfit;
3039 	struct device *bus_dev;
3040 
3041 	if (!ars_supported(acpi_desc->nvdimm_bus))
3042 		return 0;
3043 
3044 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3045 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3046 	if (!nfit) {
3047 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3048 		return -ENODEV;
3049 	}
3050 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3051 	sysfs_put(nfit);
3052 	if (!acpi_desc->scrub_count_state) {
3053 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3054 		return -ENODEV;
3055 	}
3056 
3057 	return 0;
3058 }
3059 
3060 static void acpi_nfit_unregister(void *data)
3061 {
3062 	struct acpi_nfit_desc *acpi_desc = data;
3063 
3064 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3065 }
3066 
3067 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3068 {
3069 	struct device *dev = acpi_desc->dev;
3070 	struct nfit_table_prev prev;
3071 	const void *end;
3072 	int rc;
3073 
3074 	if (!acpi_desc->nvdimm_bus) {
3075 		acpi_nfit_init_dsms(acpi_desc);
3076 
3077 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3078 				&acpi_desc->nd_desc);
3079 		if (!acpi_desc->nvdimm_bus)
3080 			return -ENOMEM;
3081 
3082 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3083 				acpi_desc);
3084 		if (rc)
3085 			return rc;
3086 
3087 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3088 		if (rc)
3089 			return rc;
3090 
3091 		/* register this acpi_desc for mce notifications */
3092 		mutex_lock(&acpi_desc_lock);
3093 		list_add_tail(&acpi_desc->list, &acpi_descs);
3094 		mutex_unlock(&acpi_desc_lock);
3095 	}
3096 
3097 	mutex_lock(&acpi_desc->init_mutex);
3098 
3099 	INIT_LIST_HEAD(&prev.spas);
3100 	INIT_LIST_HEAD(&prev.memdevs);
3101 	INIT_LIST_HEAD(&prev.dcrs);
3102 	INIT_LIST_HEAD(&prev.bdws);
3103 	INIT_LIST_HEAD(&prev.idts);
3104 	INIT_LIST_HEAD(&prev.flushes);
3105 
3106 	list_cut_position(&prev.spas, &acpi_desc->spas,
3107 				acpi_desc->spas.prev);
3108 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3109 				acpi_desc->memdevs.prev);
3110 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3111 				acpi_desc->dcrs.prev);
3112 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3113 				acpi_desc->bdws.prev);
3114 	list_cut_position(&prev.idts, &acpi_desc->idts,
3115 				acpi_desc->idts.prev);
3116 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3117 				acpi_desc->flushes.prev);
3118 
3119 	end = data + sz;
3120 	while (!IS_ERR_OR_NULL(data))
3121 		data = add_table(acpi_desc, &prev, data, end);
3122 
3123 	if (IS_ERR(data)) {
3124 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3125 		rc = PTR_ERR(data);
3126 		goto out_unlock;
3127 	}
3128 
3129 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3130 	if (rc)
3131 		goto out_unlock;
3132 
3133 	rc = nfit_mem_init(acpi_desc);
3134 	if (rc)
3135 		goto out_unlock;
3136 
3137 	rc = acpi_nfit_register_dimms(acpi_desc);
3138 	if (rc)
3139 		goto out_unlock;
3140 
3141 	rc = acpi_nfit_register_regions(acpi_desc);
3142 
3143  out_unlock:
3144 	mutex_unlock(&acpi_desc->init_mutex);
3145 	return rc;
3146 }
3147 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3148 
3149 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3150 {
3151 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3152 	struct device *dev = acpi_desc->dev;
3153 
3154 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3155 	nfit_device_lock(dev);
3156 	nfit_device_unlock(dev);
3157 
3158 	/* Bounce the init_mutex to complete initial registration */
3159 	mutex_lock(&acpi_desc->init_mutex);
3160 	mutex_unlock(&acpi_desc->init_mutex);
3161 
3162 	return 0;
3163 }
3164 
3165 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3166 		struct nvdimm *nvdimm, unsigned int cmd)
3167 {
3168 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3169 
3170 	if (nvdimm)
3171 		return 0;
3172 	if (cmd != ND_CMD_ARS_START)
3173 		return 0;
3174 
3175 	/*
3176 	 * The kernel and userspace may race to initiate a scrub, but
3177 	 * the scrub thread is prepared to lose that initial race.  It
3178 	 * just needs guarantees that any ARS it initiates are not
3179 	 * interrupted by any intervening start requests from userspace.
3180 	 */
3181 	if (work_busy(&acpi_desc->dwork.work))
3182 		return -EBUSY;
3183 
3184 	return 0;
3185 }
3186 
3187 /*
3188  * Prevent security and firmware activate commands from being issued via
3189  * ioctl.
3190  */
3191 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3192 		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3193 {
3194 	struct nd_cmd_pkg *call_pkg = buf;
3195 	unsigned int func;
3196 
3197 	if (nvdimm && cmd == ND_CMD_CALL &&
3198 			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3199 		func = call_pkg->nd_command;
3200 		if (func > NVDIMM_CMD_MAX ||
3201 		    (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3202 			return -EOPNOTSUPP;
3203 	}
3204 
3205 	/* block all non-nfit bus commands */
3206 	if (!nvdimm && cmd == ND_CMD_CALL &&
3207 			call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3208 		return -EOPNOTSUPP;
3209 
3210 	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3211 }
3212 
3213 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3214 		enum nfit_ars_state req_type)
3215 {
3216 	struct device *dev = acpi_desc->dev;
3217 	int scheduled = 0, busy = 0;
3218 	struct nfit_spa *nfit_spa;
3219 
3220 	mutex_lock(&acpi_desc->init_mutex);
3221 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3222 		mutex_unlock(&acpi_desc->init_mutex);
3223 		return 0;
3224 	}
3225 
3226 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3227 		int type = nfit_spa_type(nfit_spa->spa);
3228 
3229 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3230 			continue;
3231 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3232 			continue;
3233 
3234 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3235 			busy++;
3236 		else
3237 			scheduled++;
3238 	}
3239 	if (scheduled) {
3240 		sched_ars(acpi_desc);
3241 		dev_dbg(dev, "ars_scan triggered\n");
3242 	}
3243 	mutex_unlock(&acpi_desc->init_mutex);
3244 
3245 	if (scheduled)
3246 		return 0;
3247 	if (busy)
3248 		return -EBUSY;
3249 	return -ENOTTY;
3250 }
3251 
3252 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3253 {
3254 	struct nvdimm_bus_descriptor *nd_desc;
3255 
3256 	dev_set_drvdata(dev, acpi_desc);
3257 	acpi_desc->dev = dev;
3258 	nd_desc = &acpi_desc->nd_desc;
3259 	nd_desc->provider_name = "ACPI.NFIT";
3260 	nd_desc->module = THIS_MODULE;
3261 	nd_desc->ndctl = acpi_nfit_ctl;
3262 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3263 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3264 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3265 
3266 	INIT_LIST_HEAD(&acpi_desc->spas);
3267 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3268 	INIT_LIST_HEAD(&acpi_desc->bdws);
3269 	INIT_LIST_HEAD(&acpi_desc->idts);
3270 	INIT_LIST_HEAD(&acpi_desc->flushes);
3271 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3272 	INIT_LIST_HEAD(&acpi_desc->dimms);
3273 	INIT_LIST_HEAD(&acpi_desc->list);
3274 	mutex_init(&acpi_desc->init_mutex);
3275 	acpi_desc->scrub_tmo = 1;
3276 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3277 }
3278 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3279 
3280 static void acpi_nfit_put_table(void *table)
3281 {
3282 	acpi_put_table(table);
3283 }
3284 
3285 void acpi_nfit_shutdown(void *data)
3286 {
3287 	struct acpi_nfit_desc *acpi_desc = data;
3288 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3289 
3290 	/*
3291 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3292 	 * race teardown
3293 	 */
3294 	mutex_lock(&acpi_desc_lock);
3295 	list_del(&acpi_desc->list);
3296 	mutex_unlock(&acpi_desc_lock);
3297 
3298 	mutex_lock(&acpi_desc->init_mutex);
3299 	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3300 	cancel_delayed_work_sync(&acpi_desc->dwork);
3301 	mutex_unlock(&acpi_desc->init_mutex);
3302 
3303 	/*
3304 	 * Bounce the nvdimm bus lock to make sure any in-flight
3305 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3306 	 * either submit or see ->cancel set.
3307 	 */
3308 	nfit_device_lock(bus_dev);
3309 	nfit_device_unlock(bus_dev);
3310 
3311 	flush_workqueue(nfit_wq);
3312 }
3313 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3314 
3315 static int acpi_nfit_add(struct acpi_device *adev)
3316 {
3317 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3318 	struct acpi_nfit_desc *acpi_desc;
3319 	struct device *dev = &adev->dev;
3320 	struct acpi_table_header *tbl;
3321 	acpi_status status = AE_OK;
3322 	acpi_size sz;
3323 	int rc = 0;
3324 
3325 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3326 	if (ACPI_FAILURE(status)) {
3327 		/* The NVDIMM root device allows OS to trigger enumeration of
3328 		 * NVDIMMs through NFIT at boot time and re-enumeration at
3329 		 * root level via the _FIT method during runtime.
3330 		 * This is ok to return 0 here, we could have an nvdimm
3331 		 * hotplugged later and evaluate _FIT method which returns
3332 		 * data in the format of a series of NFIT Structures.
3333 		 */
3334 		dev_dbg(dev, "failed to find NFIT at startup\n");
3335 		return 0;
3336 	}
3337 
3338 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3339 	if (rc)
3340 		return rc;
3341 	sz = tbl->length;
3342 
3343 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3344 	if (!acpi_desc)
3345 		return -ENOMEM;
3346 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3347 
3348 	/* Save the acpi header for exporting the revision via sysfs */
3349 	acpi_desc->acpi_header = *tbl;
3350 
3351 	/* Evaluate _FIT and override with that if present */
3352 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3353 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3354 		union acpi_object *obj = buf.pointer;
3355 
3356 		if (obj->type == ACPI_TYPE_BUFFER)
3357 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3358 					obj->buffer.length);
3359 		else
3360 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3361 				(int) obj->type);
3362 		kfree(buf.pointer);
3363 	} else
3364 		/* skip over the lead-in header table */
3365 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3366 				+ sizeof(struct acpi_table_nfit),
3367 				sz - sizeof(struct acpi_table_nfit));
3368 
3369 	if (rc)
3370 		return rc;
3371 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3372 }
3373 
3374 static int acpi_nfit_remove(struct acpi_device *adev)
3375 {
3376 	/* see acpi_nfit_unregister */
3377 	return 0;
3378 }
3379 
3380 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3381 {
3382 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3383 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3384 	union acpi_object *obj;
3385 	acpi_status status;
3386 	int ret;
3387 
3388 	if (!dev->driver) {
3389 		/* dev->driver may be null if we're being removed */
3390 		dev_dbg(dev, "no driver found for dev\n");
3391 		return;
3392 	}
3393 
3394 	if (!acpi_desc) {
3395 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3396 		if (!acpi_desc)
3397 			return;
3398 		acpi_nfit_desc_init(acpi_desc, dev);
3399 	} else {
3400 		/*
3401 		 * Finish previous registration before considering new
3402 		 * regions.
3403 		 */
3404 		flush_workqueue(nfit_wq);
3405 	}
3406 
3407 	/* Evaluate _FIT */
3408 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3409 	if (ACPI_FAILURE(status)) {
3410 		dev_err(dev, "failed to evaluate _FIT\n");
3411 		return;
3412 	}
3413 
3414 	obj = buf.pointer;
3415 	if (obj->type == ACPI_TYPE_BUFFER) {
3416 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3417 				obj->buffer.length);
3418 		if (ret)
3419 			dev_err(dev, "failed to merge updated NFIT\n");
3420 	} else
3421 		dev_err(dev, "Invalid _FIT\n");
3422 	kfree(buf.pointer);
3423 }
3424 
3425 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3426 {
3427 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3428 
3429 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3430 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3431 	else
3432 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3433 }
3434 
3435 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3436 {
3437 	dev_dbg(dev, "event: 0x%x\n", event);
3438 
3439 	switch (event) {
3440 	case NFIT_NOTIFY_UPDATE:
3441 		return acpi_nfit_update_notify(dev, handle);
3442 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3443 		return acpi_nfit_uc_error_notify(dev, handle);
3444 	default:
3445 		return;
3446 	}
3447 }
3448 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3449 
3450 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3451 {
3452 	nfit_device_lock(&adev->dev);
3453 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3454 	nfit_device_unlock(&adev->dev);
3455 }
3456 
3457 static const struct acpi_device_id acpi_nfit_ids[] = {
3458 	{ "ACPI0012", 0 },
3459 	{ "", 0 },
3460 };
3461 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3462 
3463 static struct acpi_driver acpi_nfit_driver = {
3464 	.name = KBUILD_MODNAME,
3465 	.ids = acpi_nfit_ids,
3466 	.ops = {
3467 		.add = acpi_nfit_add,
3468 		.remove = acpi_nfit_remove,
3469 		.notify = acpi_nfit_notify,
3470 	},
3471 };
3472 
3473 static __init int nfit_init(void)
3474 {
3475 	int ret;
3476 
3477 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3478 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64);
3479 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3480 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3481 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3482 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3483 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3484 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3485 
3486 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3487 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3488 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3489 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3490 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3491 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3492 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3493 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3494 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3495 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3496 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3497 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3498 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3499 	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3500 	guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3501 
3502 	nfit_wq = create_singlethread_workqueue("nfit");
3503 	if (!nfit_wq)
3504 		return -ENOMEM;
3505 
3506 	nfit_mce_register();
3507 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3508 	if (ret) {
3509 		nfit_mce_unregister();
3510 		destroy_workqueue(nfit_wq);
3511 	}
3512 
3513 	return ret;
3514 
3515 }
3516 
3517 static __exit void nfit_exit(void)
3518 {
3519 	nfit_mce_unregister();
3520 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3521 	destroy_workqueue(nfit_wq);
3522 	WARN_ON(!list_empty(&acpi_descs));
3523 }
3524 
3525 module_init(nfit_init);
3526 module_exit(nfit_exit);
3527 MODULE_LICENSE("GPL v2");
3528 MODULE_AUTHOR("Intel Corporation");
3529