xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include "nfit.h"
27 
28 /*
29  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
30  * irrelevant.
31  */
32 #include <linux/io-64-nonatomic-hi-lo.h>
33 
34 static bool force_enable_dimms;
35 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
36 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
37 
38 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
39 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
40 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
41 
42 /* after three payloads of overflow, it's dead jim */
43 static unsigned int scrub_overflow_abort = 3;
44 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
45 MODULE_PARM_DESC(scrub_overflow_abort,
46 		"Number of times we overflow ARS results before abort");
47 
48 static bool disable_vendor_specific;
49 module_param(disable_vendor_specific, bool, S_IRUGO);
50 MODULE_PARM_DESC(disable_vendor_specific,
51 		"Limit commands to the publicly specified set");
52 
53 static unsigned long override_dsm_mask;
54 module_param(override_dsm_mask, ulong, S_IRUGO);
55 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
56 
57 static int default_dsm_family = -1;
58 module_param(default_dsm_family, int, S_IRUGO);
59 MODULE_PARM_DESC(default_dsm_family,
60 		"Try this DSM type first when identifying NVDIMM family");
61 
62 LIST_HEAD(acpi_descs);
63 DEFINE_MUTEX(acpi_desc_lock);
64 
65 static struct workqueue_struct *nfit_wq;
66 
67 struct nfit_table_prev {
68 	struct list_head spas;
69 	struct list_head memdevs;
70 	struct list_head dcrs;
71 	struct list_head bdws;
72 	struct list_head idts;
73 	struct list_head flushes;
74 };
75 
76 static guid_t nfit_uuid[NFIT_UUID_MAX];
77 
78 const guid_t *to_nfit_uuid(enum nfit_uuids id)
79 {
80 	return &nfit_uuid[id];
81 }
82 EXPORT_SYMBOL(to_nfit_uuid);
83 
84 static struct acpi_nfit_desc *to_acpi_nfit_desc(
85 		struct nvdimm_bus_descriptor *nd_desc)
86 {
87 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
88 }
89 
90 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
91 {
92 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
93 
94 	/*
95 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
96 	 * acpi_device.
97 	 */
98 	if (!nd_desc->provider_name
99 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
100 		return NULL;
101 
102 	return to_acpi_device(acpi_desc->dev);
103 }
104 
105 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
106 {
107 	struct nd_cmd_clear_error *clear_err;
108 	struct nd_cmd_ars_status *ars_status;
109 	u16 flags;
110 
111 	switch (cmd) {
112 	case ND_CMD_ARS_CAP:
113 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
114 			return -ENOTTY;
115 
116 		/* Command failed */
117 		if (status & 0xffff)
118 			return -EIO;
119 
120 		/* No supported scan types for this range */
121 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
122 		if ((status >> 16 & flags) == 0)
123 			return -ENOTTY;
124 		return 0;
125 	case ND_CMD_ARS_START:
126 		/* ARS is in progress */
127 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
128 			return -EBUSY;
129 
130 		/* Command failed */
131 		if (status & 0xffff)
132 			return -EIO;
133 		return 0;
134 	case ND_CMD_ARS_STATUS:
135 		ars_status = buf;
136 		/* Command failed */
137 		if (status & 0xffff)
138 			return -EIO;
139 		/* Check extended status (Upper two bytes) */
140 		if (status == NFIT_ARS_STATUS_DONE)
141 			return 0;
142 
143 		/* ARS is in progress */
144 		if (status == NFIT_ARS_STATUS_BUSY)
145 			return -EBUSY;
146 
147 		/* No ARS performed for the current boot */
148 		if (status == NFIT_ARS_STATUS_NONE)
149 			return -EAGAIN;
150 
151 		/*
152 		 * ARS interrupted, either we overflowed or some other
153 		 * agent wants the scan to stop.  If we didn't overflow
154 		 * then just continue with the returned results.
155 		 */
156 		if (status == NFIT_ARS_STATUS_INTR) {
157 			if (ars_status->out_length >= 40 && (ars_status->flags
158 						& NFIT_ARS_F_OVERFLOW))
159 				return -ENOSPC;
160 			return 0;
161 		}
162 
163 		/* Unknown status */
164 		if (status >> 16)
165 			return -EIO;
166 		return 0;
167 	case ND_CMD_CLEAR_ERROR:
168 		clear_err = buf;
169 		if (status & 0xffff)
170 			return -EIO;
171 		if (!clear_err->cleared)
172 			return -EIO;
173 		if (clear_err->length > clear_err->cleared)
174 			return clear_err->cleared;
175 		return 0;
176 	default:
177 		break;
178 	}
179 
180 	/* all other non-zero status results in an error */
181 	if (status)
182 		return -EIO;
183 	return 0;
184 }
185 
186 #define ACPI_LABELS_LOCKED 3
187 
188 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
189 		u32 status)
190 {
191 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
192 
193 	switch (cmd) {
194 	case ND_CMD_GET_CONFIG_SIZE:
195 		/*
196 		 * In the _LSI, _LSR, _LSW case the locked status is
197 		 * communicated via the read/write commands
198 		 */
199 		if (nfit_mem->has_lsi)
200 			break;
201 
202 		if (status >> 16 & ND_CONFIG_LOCKED)
203 			return -EACCES;
204 		break;
205 	case ND_CMD_GET_CONFIG_DATA:
206 		if (nfit_mem->has_lsr && status == ACPI_LABELS_LOCKED)
207 			return -EACCES;
208 		break;
209 	case ND_CMD_SET_CONFIG_DATA:
210 		if (nfit_mem->has_lsw && status == ACPI_LABELS_LOCKED)
211 			return -EACCES;
212 		break;
213 	default:
214 		break;
215 	}
216 
217 	/* all other non-zero status results in an error */
218 	if (status)
219 		return -EIO;
220 	return 0;
221 }
222 
223 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
224 		u32 status)
225 {
226 	if (!nvdimm)
227 		return xlat_bus_status(buf, cmd, status);
228 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
229 }
230 
231 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
232 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
233 {
234 	int i;
235 	void *dst;
236 	size_t size = 0;
237 	union acpi_object *buf = NULL;
238 
239 	if (pkg->type != ACPI_TYPE_PACKAGE) {
240 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
241 				pkg->type);
242 		goto err;
243 	}
244 
245 	for (i = 0; i < pkg->package.count; i++) {
246 		union acpi_object *obj = &pkg->package.elements[i];
247 
248 		if (obj->type == ACPI_TYPE_INTEGER)
249 			size += 4;
250 		else if (obj->type == ACPI_TYPE_BUFFER)
251 			size += obj->buffer.length;
252 		else {
253 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
254 					obj->type);
255 			goto err;
256 		}
257 	}
258 
259 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
260 	if (!buf)
261 		goto err;
262 
263 	dst = buf + 1;
264 	buf->type = ACPI_TYPE_BUFFER;
265 	buf->buffer.length = size;
266 	buf->buffer.pointer = dst;
267 	for (i = 0; i < pkg->package.count; i++) {
268 		union acpi_object *obj = &pkg->package.elements[i];
269 
270 		if (obj->type == ACPI_TYPE_INTEGER) {
271 			memcpy(dst, &obj->integer.value, 4);
272 			dst += 4;
273 		} else if (obj->type == ACPI_TYPE_BUFFER) {
274 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
275 			dst += obj->buffer.length;
276 		}
277 	}
278 err:
279 	ACPI_FREE(pkg);
280 	return buf;
281 }
282 
283 static union acpi_object *int_to_buf(union acpi_object *integer)
284 {
285 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
286 	void *dst = NULL;
287 
288 	if (!buf)
289 		goto err;
290 
291 	if (integer->type != ACPI_TYPE_INTEGER) {
292 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
293 				integer->type);
294 		goto err;
295 	}
296 
297 	dst = buf + 1;
298 	buf->type = ACPI_TYPE_BUFFER;
299 	buf->buffer.length = 4;
300 	buf->buffer.pointer = dst;
301 	memcpy(dst, &integer->integer.value, 4);
302 err:
303 	ACPI_FREE(integer);
304 	return buf;
305 }
306 
307 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
308 		u32 len, void *data)
309 {
310 	acpi_status rc;
311 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
312 	struct acpi_object_list input = {
313 		.count = 3,
314 		.pointer = (union acpi_object []) {
315 			[0] = {
316 				.integer.type = ACPI_TYPE_INTEGER,
317 				.integer.value = offset,
318 			},
319 			[1] = {
320 				.integer.type = ACPI_TYPE_INTEGER,
321 				.integer.value = len,
322 			},
323 			[2] = {
324 				.buffer.type = ACPI_TYPE_BUFFER,
325 				.buffer.pointer = data,
326 				.buffer.length = len,
327 			},
328 		},
329 	};
330 
331 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
332 	if (ACPI_FAILURE(rc))
333 		return NULL;
334 	return int_to_buf(buf.pointer);
335 }
336 
337 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
338 		u32 len)
339 {
340 	acpi_status rc;
341 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
342 	struct acpi_object_list input = {
343 		.count = 2,
344 		.pointer = (union acpi_object []) {
345 			[0] = {
346 				.integer.type = ACPI_TYPE_INTEGER,
347 				.integer.value = offset,
348 			},
349 			[1] = {
350 				.integer.type = ACPI_TYPE_INTEGER,
351 				.integer.value = len,
352 			},
353 		},
354 	};
355 
356 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
357 	if (ACPI_FAILURE(rc))
358 		return NULL;
359 	return pkg_to_buf(buf.pointer);
360 }
361 
362 static union acpi_object *acpi_label_info(acpi_handle handle)
363 {
364 	acpi_status rc;
365 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
366 
367 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
368 	if (ACPI_FAILURE(rc))
369 		return NULL;
370 	return pkg_to_buf(buf.pointer);
371 }
372 
373 static u8 nfit_dsm_revid(unsigned family, unsigned func)
374 {
375 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
376 		[NVDIMM_FAMILY_INTEL] = {
377 			[NVDIMM_INTEL_GET_MODES] = 2,
378 			[NVDIMM_INTEL_GET_FWINFO] = 2,
379 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
380 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
381 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
382 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
383 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
384 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
385 		},
386 	};
387 	u8 id;
388 
389 	if (family > NVDIMM_FAMILY_MAX)
390 		return 0;
391 	if (func > 31)
392 		return 0;
393 	id = revid_table[family][func];
394 	if (id == 0)
395 		return 1; /* default */
396 	return id;
397 }
398 
399 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
400 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
401 {
402 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
403 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
404 	union acpi_object in_obj, in_buf, *out_obj;
405 	const struct nd_cmd_desc *desc = NULL;
406 	struct device *dev = acpi_desc->dev;
407 	struct nd_cmd_pkg *call_pkg = NULL;
408 	const char *cmd_name, *dimm_name;
409 	unsigned long cmd_mask, dsm_mask;
410 	u32 offset, fw_status = 0;
411 	acpi_handle handle;
412 	unsigned int func;
413 	const guid_t *guid;
414 	int rc, i;
415 
416 	func = cmd;
417 	if (cmd == ND_CMD_CALL) {
418 		call_pkg = buf;
419 		func = call_pkg->nd_command;
420 
421 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
422 			if (call_pkg->nd_reserved2[i])
423 				return -EINVAL;
424 	}
425 
426 	if (nvdimm) {
427 		struct acpi_device *adev = nfit_mem->adev;
428 
429 		if (!adev)
430 			return -ENOTTY;
431 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
432 			return -ENOTTY;
433 
434 		dimm_name = nvdimm_name(nvdimm);
435 		cmd_name = nvdimm_cmd_name(cmd);
436 		cmd_mask = nvdimm_cmd_mask(nvdimm);
437 		dsm_mask = nfit_mem->dsm_mask;
438 		desc = nd_cmd_dimm_desc(cmd);
439 		guid = to_nfit_uuid(nfit_mem->family);
440 		handle = adev->handle;
441 	} else {
442 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
443 
444 		cmd_name = nvdimm_bus_cmd_name(cmd);
445 		cmd_mask = nd_desc->cmd_mask;
446 		dsm_mask = cmd_mask;
447 		if (cmd == ND_CMD_CALL)
448 			dsm_mask = nd_desc->bus_dsm_mask;
449 		desc = nd_cmd_bus_desc(cmd);
450 		guid = to_nfit_uuid(NFIT_DEV_BUS);
451 		handle = adev->handle;
452 		dimm_name = "bus";
453 	}
454 
455 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
456 		return -ENOTTY;
457 
458 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
459 		return -ENOTTY;
460 
461 	in_obj.type = ACPI_TYPE_PACKAGE;
462 	in_obj.package.count = 1;
463 	in_obj.package.elements = &in_buf;
464 	in_buf.type = ACPI_TYPE_BUFFER;
465 	in_buf.buffer.pointer = buf;
466 	in_buf.buffer.length = 0;
467 
468 	/* libnvdimm has already validated the input envelope */
469 	for (i = 0; i < desc->in_num; i++)
470 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
471 				i, buf);
472 
473 	if (call_pkg) {
474 		/* skip over package wrapper */
475 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
476 		in_buf.buffer.length = call_pkg->nd_size_in;
477 	}
478 
479 	dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n",
480 			__func__, dimm_name, cmd, func, in_buf.buffer.length);
481 	print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
482 			in_buf.buffer.pointer,
483 			min_t(u32, 256, in_buf.buffer.length), true);
484 
485 	/* call the BIOS, prefer the named methods over _DSM if available */
486 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE && nfit_mem->has_lsi)
487 		out_obj = acpi_label_info(handle);
488 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && nfit_mem->has_lsr) {
489 		struct nd_cmd_get_config_data_hdr *p = buf;
490 
491 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
492 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
493 			&& nfit_mem->has_lsw) {
494 		struct nd_cmd_set_config_hdr *p = buf;
495 
496 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
497 				p->in_buf);
498 	} else {
499 		u8 revid;
500 
501 		if (nvdimm)
502 			revid = nfit_dsm_revid(nfit_mem->family, func);
503 		else
504 			revid = 1;
505 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
506 	}
507 
508 	if (!out_obj) {
509 		dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
510 				cmd_name);
511 		return -EINVAL;
512 	}
513 
514 	if (call_pkg) {
515 		call_pkg->nd_fw_size = out_obj->buffer.length;
516 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
517 			out_obj->buffer.pointer,
518 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
519 
520 		ACPI_FREE(out_obj);
521 		/*
522 		 * Need to support FW function w/o known size in advance.
523 		 * Caller can determine required size based upon nd_fw_size.
524 		 * If we return an error (like elsewhere) then caller wouldn't
525 		 * be able to rely upon data returned to make calculation.
526 		 */
527 		return 0;
528 	}
529 
530 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
531 		dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n",
532 				__func__, dimm_name, cmd_name, out_obj->type);
533 		rc = -EINVAL;
534 		goto out;
535 	}
536 
537 	dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__, dimm_name,
538 			cmd_name, out_obj->buffer.length);
539 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
540 			out_obj->buffer.pointer,
541 			min_t(u32, 128, out_obj->buffer.length), true);
542 
543 	for (i = 0, offset = 0; i < desc->out_num; i++) {
544 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
545 				(u32 *) out_obj->buffer.pointer,
546 				out_obj->buffer.length - offset);
547 
548 		if (offset + out_size > out_obj->buffer.length) {
549 			dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
550 					__func__, dimm_name, cmd_name, i);
551 			break;
552 		}
553 
554 		if (in_buf.buffer.length + offset + out_size > buf_len) {
555 			dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
556 					__func__, dimm_name, cmd_name, i);
557 			rc = -ENXIO;
558 			goto out;
559 		}
560 		memcpy(buf + in_buf.buffer.length + offset,
561 				out_obj->buffer.pointer + offset, out_size);
562 		offset += out_size;
563 	}
564 
565 	/*
566 	 * Set fw_status for all the commands with a known format to be
567 	 * later interpreted by xlat_status().
568 	 */
569 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
570 					&& cmd <= ND_CMD_CLEAR_ERROR)
571 				|| (nvdimm && cmd >= ND_CMD_SMART
572 					&& cmd <= ND_CMD_VENDOR)))
573 		fw_status = *(u32 *) out_obj->buffer.pointer;
574 
575 	if (offset + in_buf.buffer.length < buf_len) {
576 		if (i >= 1) {
577 			/*
578 			 * status valid, return the number of bytes left
579 			 * unfilled in the output buffer
580 			 */
581 			rc = buf_len - offset - in_buf.buffer.length;
582 			if (cmd_rc)
583 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
584 						fw_status);
585 		} else {
586 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
587 					__func__, dimm_name, cmd_name, buf_len,
588 					offset);
589 			rc = -ENXIO;
590 		}
591 	} else {
592 		rc = 0;
593 		if (cmd_rc)
594 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
595 	}
596 
597  out:
598 	ACPI_FREE(out_obj);
599 
600 	return rc;
601 }
602 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
603 
604 static const char *spa_type_name(u16 type)
605 {
606 	static const char *to_name[] = {
607 		[NFIT_SPA_VOLATILE] = "volatile",
608 		[NFIT_SPA_PM] = "pmem",
609 		[NFIT_SPA_DCR] = "dimm-control-region",
610 		[NFIT_SPA_BDW] = "block-data-window",
611 		[NFIT_SPA_VDISK] = "volatile-disk",
612 		[NFIT_SPA_VCD] = "volatile-cd",
613 		[NFIT_SPA_PDISK] = "persistent-disk",
614 		[NFIT_SPA_PCD] = "persistent-cd",
615 
616 	};
617 
618 	if (type > NFIT_SPA_PCD)
619 		return "unknown";
620 
621 	return to_name[type];
622 }
623 
624 int nfit_spa_type(struct acpi_nfit_system_address *spa)
625 {
626 	int i;
627 
628 	for (i = 0; i < NFIT_UUID_MAX; i++)
629 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
630 			return i;
631 	return -1;
632 }
633 
634 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
635 		struct nfit_table_prev *prev,
636 		struct acpi_nfit_system_address *spa)
637 {
638 	struct device *dev = acpi_desc->dev;
639 	struct nfit_spa *nfit_spa;
640 
641 	if (spa->header.length != sizeof(*spa))
642 		return false;
643 
644 	list_for_each_entry(nfit_spa, &prev->spas, list) {
645 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
646 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
647 			return true;
648 		}
649 	}
650 
651 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
652 			GFP_KERNEL);
653 	if (!nfit_spa)
654 		return false;
655 	INIT_LIST_HEAD(&nfit_spa->list);
656 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
657 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
658 	dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
659 			spa->range_index,
660 			spa_type_name(nfit_spa_type(spa)));
661 	return true;
662 }
663 
664 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
665 		struct nfit_table_prev *prev,
666 		struct acpi_nfit_memory_map *memdev)
667 {
668 	struct device *dev = acpi_desc->dev;
669 	struct nfit_memdev *nfit_memdev;
670 
671 	if (memdev->header.length != sizeof(*memdev))
672 		return false;
673 
674 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
675 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
676 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
677 			return true;
678 		}
679 
680 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
681 			GFP_KERNEL);
682 	if (!nfit_memdev)
683 		return false;
684 	INIT_LIST_HEAD(&nfit_memdev->list);
685 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
686 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
687 	dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
688 			__func__, memdev->device_handle, memdev->range_index,
689 			memdev->region_index, memdev->flags);
690 	return true;
691 }
692 
693 /*
694  * An implementation may provide a truncated control region if no block windows
695  * are defined.
696  */
697 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
698 {
699 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
700 				window_size))
701 		return 0;
702 	if (dcr->windows)
703 		return sizeof(*dcr);
704 	return offsetof(struct acpi_nfit_control_region, window_size);
705 }
706 
707 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
708 		struct nfit_table_prev *prev,
709 		struct acpi_nfit_control_region *dcr)
710 {
711 	struct device *dev = acpi_desc->dev;
712 	struct nfit_dcr *nfit_dcr;
713 
714 	if (!sizeof_dcr(dcr))
715 		return false;
716 
717 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
718 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
719 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
720 			return true;
721 		}
722 
723 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
724 			GFP_KERNEL);
725 	if (!nfit_dcr)
726 		return false;
727 	INIT_LIST_HEAD(&nfit_dcr->list);
728 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
729 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
730 	dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
731 			dcr->region_index, dcr->windows);
732 	return true;
733 }
734 
735 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
736 		struct nfit_table_prev *prev,
737 		struct acpi_nfit_data_region *bdw)
738 {
739 	struct device *dev = acpi_desc->dev;
740 	struct nfit_bdw *nfit_bdw;
741 
742 	if (bdw->header.length != sizeof(*bdw))
743 		return false;
744 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
745 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
746 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
747 			return true;
748 		}
749 
750 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
751 			GFP_KERNEL);
752 	if (!nfit_bdw)
753 		return false;
754 	INIT_LIST_HEAD(&nfit_bdw->list);
755 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
756 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
757 	dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
758 			bdw->region_index, bdw->windows);
759 	return true;
760 }
761 
762 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
763 {
764 	if (idt->header.length < sizeof(*idt))
765 		return 0;
766 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
767 }
768 
769 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
770 		struct nfit_table_prev *prev,
771 		struct acpi_nfit_interleave *idt)
772 {
773 	struct device *dev = acpi_desc->dev;
774 	struct nfit_idt *nfit_idt;
775 
776 	if (!sizeof_idt(idt))
777 		return false;
778 
779 	list_for_each_entry(nfit_idt, &prev->idts, list) {
780 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
781 			continue;
782 
783 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
784 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
785 			return true;
786 		}
787 	}
788 
789 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
790 			GFP_KERNEL);
791 	if (!nfit_idt)
792 		return false;
793 	INIT_LIST_HEAD(&nfit_idt->list);
794 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
795 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
796 	dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
797 			idt->interleave_index, idt->line_count);
798 	return true;
799 }
800 
801 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
802 {
803 	if (flush->header.length < sizeof(*flush))
804 		return 0;
805 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
806 }
807 
808 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
809 		struct nfit_table_prev *prev,
810 		struct acpi_nfit_flush_address *flush)
811 {
812 	struct device *dev = acpi_desc->dev;
813 	struct nfit_flush *nfit_flush;
814 
815 	if (!sizeof_flush(flush))
816 		return false;
817 
818 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
819 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
820 			continue;
821 
822 		if (memcmp(nfit_flush->flush, flush,
823 					sizeof_flush(flush)) == 0) {
824 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
825 			return true;
826 		}
827 	}
828 
829 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
830 			+ sizeof_flush(flush), GFP_KERNEL);
831 	if (!nfit_flush)
832 		return false;
833 	INIT_LIST_HEAD(&nfit_flush->list);
834 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
835 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
836 	dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
837 			flush->device_handle, flush->hint_count);
838 	return true;
839 }
840 
841 static void *add_table(struct acpi_nfit_desc *acpi_desc,
842 		struct nfit_table_prev *prev, void *table, const void *end)
843 {
844 	struct device *dev = acpi_desc->dev;
845 	struct acpi_nfit_header *hdr;
846 	void *err = ERR_PTR(-ENOMEM);
847 
848 	if (table >= end)
849 		return NULL;
850 
851 	hdr = table;
852 	if (!hdr->length) {
853 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
854 			hdr->type);
855 		return NULL;
856 	}
857 
858 	switch (hdr->type) {
859 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
860 		if (!add_spa(acpi_desc, prev, table))
861 			return err;
862 		break;
863 	case ACPI_NFIT_TYPE_MEMORY_MAP:
864 		if (!add_memdev(acpi_desc, prev, table))
865 			return err;
866 		break;
867 	case ACPI_NFIT_TYPE_CONTROL_REGION:
868 		if (!add_dcr(acpi_desc, prev, table))
869 			return err;
870 		break;
871 	case ACPI_NFIT_TYPE_DATA_REGION:
872 		if (!add_bdw(acpi_desc, prev, table))
873 			return err;
874 		break;
875 	case ACPI_NFIT_TYPE_INTERLEAVE:
876 		if (!add_idt(acpi_desc, prev, table))
877 			return err;
878 		break;
879 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
880 		if (!add_flush(acpi_desc, prev, table))
881 			return err;
882 		break;
883 	case ACPI_NFIT_TYPE_SMBIOS:
884 		dev_dbg(dev, "%s: smbios\n", __func__);
885 		break;
886 	default:
887 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
888 		break;
889 	}
890 
891 	return table + hdr->length;
892 }
893 
894 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
895 		struct nfit_mem *nfit_mem)
896 {
897 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
898 	u16 dcr = nfit_mem->dcr->region_index;
899 	struct nfit_spa *nfit_spa;
900 
901 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
902 		u16 range_index = nfit_spa->spa->range_index;
903 		int type = nfit_spa_type(nfit_spa->spa);
904 		struct nfit_memdev *nfit_memdev;
905 
906 		if (type != NFIT_SPA_BDW)
907 			continue;
908 
909 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
910 			if (nfit_memdev->memdev->range_index != range_index)
911 				continue;
912 			if (nfit_memdev->memdev->device_handle != device_handle)
913 				continue;
914 			if (nfit_memdev->memdev->region_index != dcr)
915 				continue;
916 
917 			nfit_mem->spa_bdw = nfit_spa->spa;
918 			return;
919 		}
920 	}
921 
922 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
923 			nfit_mem->spa_dcr->range_index);
924 	nfit_mem->bdw = NULL;
925 }
926 
927 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
928 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
929 {
930 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
931 	struct nfit_memdev *nfit_memdev;
932 	struct nfit_bdw *nfit_bdw;
933 	struct nfit_idt *nfit_idt;
934 	u16 idt_idx, range_index;
935 
936 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
937 		if (nfit_bdw->bdw->region_index != dcr)
938 			continue;
939 		nfit_mem->bdw = nfit_bdw->bdw;
940 		break;
941 	}
942 
943 	if (!nfit_mem->bdw)
944 		return;
945 
946 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
947 
948 	if (!nfit_mem->spa_bdw)
949 		return;
950 
951 	range_index = nfit_mem->spa_bdw->range_index;
952 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
953 		if (nfit_memdev->memdev->range_index != range_index ||
954 				nfit_memdev->memdev->region_index != dcr)
955 			continue;
956 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
957 		idt_idx = nfit_memdev->memdev->interleave_index;
958 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
959 			if (nfit_idt->idt->interleave_index != idt_idx)
960 				continue;
961 			nfit_mem->idt_bdw = nfit_idt->idt;
962 			break;
963 		}
964 		break;
965 	}
966 }
967 
968 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
969 		struct acpi_nfit_system_address *spa)
970 {
971 	struct nfit_mem *nfit_mem, *found;
972 	struct nfit_memdev *nfit_memdev;
973 	int type = spa ? nfit_spa_type(spa) : 0;
974 
975 	switch (type) {
976 	case NFIT_SPA_DCR:
977 	case NFIT_SPA_PM:
978 		break;
979 	default:
980 		if (spa)
981 			return 0;
982 	}
983 
984 	/*
985 	 * This loop runs in two modes, when a dimm is mapped the loop
986 	 * adds memdev associations to an existing dimm, or creates a
987 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
988 	 * instances with an invalid / zero range_index and adds those
989 	 * dimms without spa associations.
990 	 */
991 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
992 		struct nfit_flush *nfit_flush;
993 		struct nfit_dcr *nfit_dcr;
994 		u32 device_handle;
995 		u16 dcr;
996 
997 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
998 			continue;
999 		if (!spa && nfit_memdev->memdev->range_index)
1000 			continue;
1001 		found = NULL;
1002 		dcr = nfit_memdev->memdev->region_index;
1003 		device_handle = nfit_memdev->memdev->device_handle;
1004 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1005 			if (__to_nfit_memdev(nfit_mem)->device_handle
1006 					== device_handle) {
1007 				found = nfit_mem;
1008 				break;
1009 			}
1010 
1011 		if (found)
1012 			nfit_mem = found;
1013 		else {
1014 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1015 					sizeof(*nfit_mem), GFP_KERNEL);
1016 			if (!nfit_mem)
1017 				return -ENOMEM;
1018 			INIT_LIST_HEAD(&nfit_mem->list);
1019 			nfit_mem->acpi_desc = acpi_desc;
1020 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1021 		}
1022 
1023 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1024 			if (nfit_dcr->dcr->region_index != dcr)
1025 				continue;
1026 			/*
1027 			 * Record the control region for the dimm.  For
1028 			 * the ACPI 6.1 case, where there are separate
1029 			 * control regions for the pmem vs blk
1030 			 * interfaces, be sure to record the extended
1031 			 * blk details.
1032 			 */
1033 			if (!nfit_mem->dcr)
1034 				nfit_mem->dcr = nfit_dcr->dcr;
1035 			else if (nfit_mem->dcr->windows == 0
1036 					&& nfit_dcr->dcr->windows)
1037 				nfit_mem->dcr = nfit_dcr->dcr;
1038 			break;
1039 		}
1040 
1041 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1042 			struct acpi_nfit_flush_address *flush;
1043 			u16 i;
1044 
1045 			if (nfit_flush->flush->device_handle != device_handle)
1046 				continue;
1047 			nfit_mem->nfit_flush = nfit_flush;
1048 			flush = nfit_flush->flush;
1049 			nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
1050 					flush->hint_count
1051 					* sizeof(struct resource), GFP_KERNEL);
1052 			if (!nfit_mem->flush_wpq)
1053 				return -ENOMEM;
1054 			for (i = 0; i < flush->hint_count; i++) {
1055 				struct resource *res = &nfit_mem->flush_wpq[i];
1056 
1057 				res->start = flush->hint_address[i];
1058 				res->end = res->start + 8 - 1;
1059 			}
1060 			break;
1061 		}
1062 
1063 		if (dcr && !nfit_mem->dcr) {
1064 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1065 					spa->range_index, dcr);
1066 			return -ENODEV;
1067 		}
1068 
1069 		if (type == NFIT_SPA_DCR) {
1070 			struct nfit_idt *nfit_idt;
1071 			u16 idt_idx;
1072 
1073 			/* multiple dimms may share a SPA when interleaved */
1074 			nfit_mem->spa_dcr = spa;
1075 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1076 			idt_idx = nfit_memdev->memdev->interleave_index;
1077 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1078 				if (nfit_idt->idt->interleave_index != idt_idx)
1079 					continue;
1080 				nfit_mem->idt_dcr = nfit_idt->idt;
1081 				break;
1082 			}
1083 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1084 		} else if (type == NFIT_SPA_PM) {
1085 			/*
1086 			 * A single dimm may belong to multiple SPA-PM
1087 			 * ranges, record at least one in addition to
1088 			 * any SPA-DCR range.
1089 			 */
1090 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1091 		} else
1092 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1099 {
1100 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1101 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1102 	u32 handleA, handleB;
1103 
1104 	handleA = __to_nfit_memdev(a)->device_handle;
1105 	handleB = __to_nfit_memdev(b)->device_handle;
1106 	if (handleA < handleB)
1107 		return -1;
1108 	else if (handleA > handleB)
1109 		return 1;
1110 	return 0;
1111 }
1112 
1113 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1114 {
1115 	struct nfit_spa *nfit_spa;
1116 	int rc;
1117 
1118 
1119 	/*
1120 	 * For each SPA-DCR or SPA-PMEM address range find its
1121 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1122 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1123 	 * try to find a SPA-BDW and a corresponding BDW that references
1124 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1125 	 * BDWs are optional.
1126 	 */
1127 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1128 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1129 		if (rc)
1130 			return rc;
1131 	}
1132 
1133 	/*
1134 	 * If a DIMM has failed to be mapped into SPA there will be no
1135 	 * SPA entries above. Find and register all the unmapped DIMMs
1136 	 * for reporting and recovery purposes.
1137 	 */
1138 	rc = __nfit_mem_init(acpi_desc, NULL);
1139 	if (rc)
1140 		return rc;
1141 
1142 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1143 
1144 	return 0;
1145 }
1146 
1147 static ssize_t bus_dsm_mask_show(struct device *dev,
1148 		struct device_attribute *attr, char *buf)
1149 {
1150 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1151 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1152 
1153 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1154 }
1155 static struct device_attribute dev_attr_bus_dsm_mask =
1156 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1157 
1158 static ssize_t revision_show(struct device *dev,
1159 		struct device_attribute *attr, char *buf)
1160 {
1161 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1162 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1163 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1164 
1165 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1166 }
1167 static DEVICE_ATTR_RO(revision);
1168 
1169 static ssize_t hw_error_scrub_show(struct device *dev,
1170 		struct device_attribute *attr, char *buf)
1171 {
1172 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1173 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1174 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1175 
1176 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1177 }
1178 
1179 /*
1180  * The 'hw_error_scrub' attribute can have the following values written to it:
1181  * '0': Switch to the default mode where an exception will only insert
1182  *      the address of the memory error into the poison and badblocks lists.
1183  * '1': Enable a full scrub to happen if an exception for a memory error is
1184  *      received.
1185  */
1186 static ssize_t hw_error_scrub_store(struct device *dev,
1187 		struct device_attribute *attr, const char *buf, size_t size)
1188 {
1189 	struct nvdimm_bus_descriptor *nd_desc;
1190 	ssize_t rc;
1191 	long val;
1192 
1193 	rc = kstrtol(buf, 0, &val);
1194 	if (rc)
1195 		return rc;
1196 
1197 	device_lock(dev);
1198 	nd_desc = dev_get_drvdata(dev);
1199 	if (nd_desc) {
1200 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1201 
1202 		switch (val) {
1203 		case HW_ERROR_SCRUB_ON:
1204 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1205 			break;
1206 		case HW_ERROR_SCRUB_OFF:
1207 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1208 			break;
1209 		default:
1210 			rc = -EINVAL;
1211 			break;
1212 		}
1213 	}
1214 	device_unlock(dev);
1215 	if (rc)
1216 		return rc;
1217 	return size;
1218 }
1219 static DEVICE_ATTR_RW(hw_error_scrub);
1220 
1221 /*
1222  * This shows the number of full Address Range Scrubs that have been
1223  * completed since driver load time. Userspace can wait on this using
1224  * select/poll etc. A '+' at the end indicates an ARS is in progress
1225  */
1226 static ssize_t scrub_show(struct device *dev,
1227 		struct device_attribute *attr, char *buf)
1228 {
1229 	struct nvdimm_bus_descriptor *nd_desc;
1230 	ssize_t rc = -ENXIO;
1231 
1232 	device_lock(dev);
1233 	nd_desc = dev_get_drvdata(dev);
1234 	if (nd_desc) {
1235 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1236 
1237 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1238 				(work_busy(&acpi_desc->work)) ? "+\n" : "\n");
1239 	}
1240 	device_unlock(dev);
1241 	return rc;
1242 }
1243 
1244 static ssize_t scrub_store(struct device *dev,
1245 		struct device_attribute *attr, const char *buf, size_t size)
1246 {
1247 	struct nvdimm_bus_descriptor *nd_desc;
1248 	ssize_t rc;
1249 	long val;
1250 
1251 	rc = kstrtol(buf, 0, &val);
1252 	if (rc)
1253 		return rc;
1254 	if (val != 1)
1255 		return -EINVAL;
1256 
1257 	device_lock(dev);
1258 	nd_desc = dev_get_drvdata(dev);
1259 	if (nd_desc) {
1260 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1261 
1262 		rc = acpi_nfit_ars_rescan(acpi_desc, 0);
1263 	}
1264 	device_unlock(dev);
1265 	if (rc)
1266 		return rc;
1267 	return size;
1268 }
1269 static DEVICE_ATTR_RW(scrub);
1270 
1271 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1272 {
1273 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1274 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1275 		| 1 << ND_CMD_ARS_STATUS;
1276 
1277 	return (nd_desc->cmd_mask & mask) == mask;
1278 }
1279 
1280 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1281 {
1282 	struct device *dev = container_of(kobj, struct device, kobj);
1283 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1284 
1285 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1286 		return 0;
1287 	return a->mode;
1288 }
1289 
1290 static struct attribute *acpi_nfit_attributes[] = {
1291 	&dev_attr_revision.attr,
1292 	&dev_attr_scrub.attr,
1293 	&dev_attr_hw_error_scrub.attr,
1294 	&dev_attr_bus_dsm_mask.attr,
1295 	NULL,
1296 };
1297 
1298 static const struct attribute_group acpi_nfit_attribute_group = {
1299 	.name = "nfit",
1300 	.attrs = acpi_nfit_attributes,
1301 	.is_visible = nfit_visible,
1302 };
1303 
1304 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1305 	&nvdimm_bus_attribute_group,
1306 	&acpi_nfit_attribute_group,
1307 	NULL,
1308 };
1309 
1310 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1311 {
1312 	struct nvdimm *nvdimm = to_nvdimm(dev);
1313 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1314 
1315 	return __to_nfit_memdev(nfit_mem);
1316 }
1317 
1318 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1319 {
1320 	struct nvdimm *nvdimm = to_nvdimm(dev);
1321 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1322 
1323 	return nfit_mem->dcr;
1324 }
1325 
1326 static ssize_t handle_show(struct device *dev,
1327 		struct device_attribute *attr, char *buf)
1328 {
1329 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1330 
1331 	return sprintf(buf, "%#x\n", memdev->device_handle);
1332 }
1333 static DEVICE_ATTR_RO(handle);
1334 
1335 static ssize_t phys_id_show(struct device *dev,
1336 		struct device_attribute *attr, char *buf)
1337 {
1338 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1339 
1340 	return sprintf(buf, "%#x\n", memdev->physical_id);
1341 }
1342 static DEVICE_ATTR_RO(phys_id);
1343 
1344 static ssize_t vendor_show(struct device *dev,
1345 		struct device_attribute *attr, char *buf)
1346 {
1347 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1348 
1349 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1350 }
1351 static DEVICE_ATTR_RO(vendor);
1352 
1353 static ssize_t rev_id_show(struct device *dev,
1354 		struct device_attribute *attr, char *buf)
1355 {
1356 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1357 
1358 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1359 }
1360 static DEVICE_ATTR_RO(rev_id);
1361 
1362 static ssize_t device_show(struct device *dev,
1363 		struct device_attribute *attr, char *buf)
1364 {
1365 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1366 
1367 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1368 }
1369 static DEVICE_ATTR_RO(device);
1370 
1371 static ssize_t subsystem_vendor_show(struct device *dev,
1372 		struct device_attribute *attr, char *buf)
1373 {
1374 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1375 
1376 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1377 }
1378 static DEVICE_ATTR_RO(subsystem_vendor);
1379 
1380 static ssize_t subsystem_rev_id_show(struct device *dev,
1381 		struct device_attribute *attr, char *buf)
1382 {
1383 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1384 
1385 	return sprintf(buf, "0x%04x\n",
1386 			be16_to_cpu(dcr->subsystem_revision_id));
1387 }
1388 static DEVICE_ATTR_RO(subsystem_rev_id);
1389 
1390 static ssize_t subsystem_device_show(struct device *dev,
1391 		struct device_attribute *attr, char *buf)
1392 {
1393 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1394 
1395 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1396 }
1397 static DEVICE_ATTR_RO(subsystem_device);
1398 
1399 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1400 {
1401 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1402 	int formats = 0;
1403 
1404 	if (nfit_mem->memdev_pmem)
1405 		formats++;
1406 	if (nfit_mem->memdev_bdw)
1407 		formats++;
1408 	return formats;
1409 }
1410 
1411 static ssize_t format_show(struct device *dev,
1412 		struct device_attribute *attr, char *buf)
1413 {
1414 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1415 
1416 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1417 }
1418 static DEVICE_ATTR_RO(format);
1419 
1420 static ssize_t format1_show(struct device *dev,
1421 		struct device_attribute *attr, char *buf)
1422 {
1423 	u32 handle;
1424 	ssize_t rc = -ENXIO;
1425 	struct nfit_mem *nfit_mem;
1426 	struct nfit_memdev *nfit_memdev;
1427 	struct acpi_nfit_desc *acpi_desc;
1428 	struct nvdimm *nvdimm = to_nvdimm(dev);
1429 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1430 
1431 	nfit_mem = nvdimm_provider_data(nvdimm);
1432 	acpi_desc = nfit_mem->acpi_desc;
1433 	handle = to_nfit_memdev(dev)->device_handle;
1434 
1435 	/* assumes DIMMs have at most 2 published interface codes */
1436 	mutex_lock(&acpi_desc->init_mutex);
1437 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1438 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1439 		struct nfit_dcr *nfit_dcr;
1440 
1441 		if (memdev->device_handle != handle)
1442 			continue;
1443 
1444 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1445 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1446 				continue;
1447 			if (nfit_dcr->dcr->code == dcr->code)
1448 				continue;
1449 			rc = sprintf(buf, "0x%04x\n",
1450 					le16_to_cpu(nfit_dcr->dcr->code));
1451 			break;
1452 		}
1453 		if (rc != ENXIO)
1454 			break;
1455 	}
1456 	mutex_unlock(&acpi_desc->init_mutex);
1457 	return rc;
1458 }
1459 static DEVICE_ATTR_RO(format1);
1460 
1461 static ssize_t formats_show(struct device *dev,
1462 		struct device_attribute *attr, char *buf)
1463 {
1464 	struct nvdimm *nvdimm = to_nvdimm(dev);
1465 
1466 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1467 }
1468 static DEVICE_ATTR_RO(formats);
1469 
1470 static ssize_t serial_show(struct device *dev,
1471 		struct device_attribute *attr, char *buf)
1472 {
1473 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1474 
1475 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1476 }
1477 static DEVICE_ATTR_RO(serial);
1478 
1479 static ssize_t family_show(struct device *dev,
1480 		struct device_attribute *attr, char *buf)
1481 {
1482 	struct nvdimm *nvdimm = to_nvdimm(dev);
1483 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1484 
1485 	if (nfit_mem->family < 0)
1486 		return -ENXIO;
1487 	return sprintf(buf, "%d\n", nfit_mem->family);
1488 }
1489 static DEVICE_ATTR_RO(family);
1490 
1491 static ssize_t dsm_mask_show(struct device *dev,
1492 		struct device_attribute *attr, char *buf)
1493 {
1494 	struct nvdimm *nvdimm = to_nvdimm(dev);
1495 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1496 
1497 	if (nfit_mem->family < 0)
1498 		return -ENXIO;
1499 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1500 }
1501 static DEVICE_ATTR_RO(dsm_mask);
1502 
1503 static ssize_t flags_show(struct device *dev,
1504 		struct device_attribute *attr, char *buf)
1505 {
1506 	u16 flags = to_nfit_memdev(dev)->flags;
1507 
1508 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1509 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1510 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1511 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1512 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1513 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1514 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1515 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1516 }
1517 static DEVICE_ATTR_RO(flags);
1518 
1519 static ssize_t id_show(struct device *dev,
1520 		struct device_attribute *attr, char *buf)
1521 {
1522 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1523 
1524 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1525 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1526 				be16_to_cpu(dcr->vendor_id),
1527 				dcr->manufacturing_location,
1528 				be16_to_cpu(dcr->manufacturing_date),
1529 				be32_to_cpu(dcr->serial_number));
1530 	else
1531 		return sprintf(buf, "%04x-%08x\n",
1532 				be16_to_cpu(dcr->vendor_id),
1533 				be32_to_cpu(dcr->serial_number));
1534 }
1535 static DEVICE_ATTR_RO(id);
1536 
1537 static struct attribute *acpi_nfit_dimm_attributes[] = {
1538 	&dev_attr_handle.attr,
1539 	&dev_attr_phys_id.attr,
1540 	&dev_attr_vendor.attr,
1541 	&dev_attr_device.attr,
1542 	&dev_attr_rev_id.attr,
1543 	&dev_attr_subsystem_vendor.attr,
1544 	&dev_attr_subsystem_device.attr,
1545 	&dev_attr_subsystem_rev_id.attr,
1546 	&dev_attr_format.attr,
1547 	&dev_attr_formats.attr,
1548 	&dev_attr_format1.attr,
1549 	&dev_attr_serial.attr,
1550 	&dev_attr_flags.attr,
1551 	&dev_attr_id.attr,
1552 	&dev_attr_family.attr,
1553 	&dev_attr_dsm_mask.attr,
1554 	NULL,
1555 };
1556 
1557 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1558 		struct attribute *a, int n)
1559 {
1560 	struct device *dev = container_of(kobj, struct device, kobj);
1561 	struct nvdimm *nvdimm = to_nvdimm(dev);
1562 
1563 	if (!to_nfit_dcr(dev)) {
1564 		/* Without a dcr only the memdev attributes can be surfaced */
1565 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1566 				|| a == &dev_attr_flags.attr
1567 				|| a == &dev_attr_family.attr
1568 				|| a == &dev_attr_dsm_mask.attr)
1569 			return a->mode;
1570 		return 0;
1571 	}
1572 
1573 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1574 		return 0;
1575 	return a->mode;
1576 }
1577 
1578 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1579 	.name = "nfit",
1580 	.attrs = acpi_nfit_dimm_attributes,
1581 	.is_visible = acpi_nfit_dimm_attr_visible,
1582 };
1583 
1584 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1585 	&nvdimm_attribute_group,
1586 	&nd_device_attribute_group,
1587 	&acpi_nfit_dimm_attribute_group,
1588 	NULL,
1589 };
1590 
1591 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1592 		u32 device_handle)
1593 {
1594 	struct nfit_mem *nfit_mem;
1595 
1596 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1597 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1598 			return nfit_mem->nvdimm;
1599 
1600 	return NULL;
1601 }
1602 
1603 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1604 {
1605 	struct nfit_mem *nfit_mem;
1606 	struct acpi_nfit_desc *acpi_desc;
1607 
1608 	dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__,
1609 			event);
1610 
1611 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1612 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1613 				event);
1614 		return;
1615 	}
1616 
1617 	acpi_desc = dev_get_drvdata(dev->parent);
1618 	if (!acpi_desc)
1619 		return;
1620 
1621 	/*
1622 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1623 	 * is still valid.
1624 	 */
1625 	nfit_mem = dev_get_drvdata(dev);
1626 	if (nfit_mem && nfit_mem->flags_attr)
1627 		sysfs_notify_dirent(nfit_mem->flags_attr);
1628 }
1629 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1630 
1631 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1632 {
1633 	struct acpi_device *adev = data;
1634 	struct device *dev = &adev->dev;
1635 
1636 	device_lock(dev->parent);
1637 	__acpi_nvdimm_notify(dev, event);
1638 	device_unlock(dev->parent);
1639 }
1640 
1641 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1642 		struct nfit_mem *nfit_mem, u32 device_handle)
1643 {
1644 	struct acpi_device *adev, *adev_dimm;
1645 	struct device *dev = acpi_desc->dev;
1646 	union acpi_object *obj;
1647 	unsigned long dsm_mask;
1648 	const guid_t *guid;
1649 	int i;
1650 	int family = -1;
1651 
1652 	/* nfit test assumes 1:1 relationship between commands and dsms */
1653 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1654 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1655 	adev = to_acpi_dev(acpi_desc);
1656 	if (!adev)
1657 		return 0;
1658 
1659 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1660 	nfit_mem->adev = adev_dimm;
1661 	if (!adev_dimm) {
1662 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1663 				device_handle);
1664 		return force_enable_dimms ? 0 : -ENODEV;
1665 	}
1666 
1667 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1668 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1669 		dev_err(dev, "%s: notification registration failed\n",
1670 				dev_name(&adev_dimm->dev));
1671 		return -ENXIO;
1672 	}
1673 	/*
1674 	 * Record nfit_mem for the notification path to track back to
1675 	 * the nfit sysfs attributes for this dimm device object.
1676 	 */
1677 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1678 
1679 	/*
1680 	 * Until standardization materializes we need to consider 4
1681 	 * different command sets.  Note, that checking for function0 (bit0)
1682 	 * tells us if any commands are reachable through this GUID.
1683 	 */
1684 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1685 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1686 			if (family < 0 || i == default_dsm_family)
1687 				family = i;
1688 
1689 	/* limit the supported commands to those that are publicly documented */
1690 	nfit_mem->family = family;
1691 	if (override_dsm_mask && !disable_vendor_specific)
1692 		dsm_mask = override_dsm_mask;
1693 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1694 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1695 		if (disable_vendor_specific)
1696 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1697 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1698 		dsm_mask = 0x1c3c76;
1699 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1700 		dsm_mask = 0x1fe;
1701 		if (disable_vendor_specific)
1702 			dsm_mask &= ~(1 << 8);
1703 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1704 		dsm_mask = 0xffffffff;
1705 	} else {
1706 		dev_dbg(dev, "unknown dimm command family\n");
1707 		nfit_mem->family = -1;
1708 		/* DSMs are optional, continue loading the driver... */
1709 		return 0;
1710 	}
1711 
1712 	guid = to_nfit_uuid(nfit_mem->family);
1713 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1714 		if (acpi_check_dsm(adev_dimm->handle, guid,
1715 					nfit_dsm_revid(nfit_mem->family, i),
1716 					1ULL << i))
1717 			set_bit(i, &nfit_mem->dsm_mask);
1718 
1719 	obj = acpi_label_info(adev_dimm->handle);
1720 	if (obj) {
1721 		ACPI_FREE(obj);
1722 		nfit_mem->has_lsi = 1;
1723 		dev_dbg(dev, "%s: has _LSI\n", dev_name(&adev_dimm->dev));
1724 	}
1725 
1726 	obj = acpi_label_read(adev_dimm->handle, 0, 0);
1727 	if (obj) {
1728 		ACPI_FREE(obj);
1729 		nfit_mem->has_lsr = 1;
1730 		dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1731 	}
1732 
1733 	obj = acpi_label_write(adev_dimm->handle, 0, 0, NULL);
1734 	if (obj) {
1735 		ACPI_FREE(obj);
1736 		nfit_mem->has_lsw = 1;
1737 		dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 static void shutdown_dimm_notify(void *data)
1744 {
1745 	struct acpi_nfit_desc *acpi_desc = data;
1746 	struct nfit_mem *nfit_mem;
1747 
1748 	mutex_lock(&acpi_desc->init_mutex);
1749 	/*
1750 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1751 	 * notifications.
1752 	 */
1753 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1754 		struct acpi_device *adev_dimm = nfit_mem->adev;
1755 
1756 		if (nfit_mem->flags_attr) {
1757 			sysfs_put(nfit_mem->flags_attr);
1758 			nfit_mem->flags_attr = NULL;
1759 		}
1760 		if (adev_dimm) {
1761 			acpi_remove_notify_handler(adev_dimm->handle,
1762 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1763 			dev_set_drvdata(&adev_dimm->dev, NULL);
1764 		}
1765 	}
1766 	mutex_unlock(&acpi_desc->init_mutex);
1767 }
1768 
1769 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1770 {
1771 	struct nfit_mem *nfit_mem;
1772 	int dimm_count = 0, rc;
1773 	struct nvdimm *nvdimm;
1774 
1775 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1776 		struct acpi_nfit_flush_address *flush;
1777 		unsigned long flags = 0, cmd_mask;
1778 		struct nfit_memdev *nfit_memdev;
1779 		u32 device_handle;
1780 		u16 mem_flags;
1781 
1782 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1783 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1784 		if (nvdimm) {
1785 			dimm_count++;
1786 			continue;
1787 		}
1788 
1789 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1790 			set_bit(NDD_ALIASING, &flags);
1791 
1792 		/* collate flags across all memdevs for this dimm */
1793 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1794 			struct acpi_nfit_memory_map *dimm_memdev;
1795 
1796 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1797 			if (dimm_memdev->device_handle
1798 					!= nfit_memdev->memdev->device_handle)
1799 				continue;
1800 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1801 		}
1802 
1803 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1804 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1805 			set_bit(NDD_UNARMED, &flags);
1806 
1807 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1808 		if (rc)
1809 			continue;
1810 
1811 		/*
1812 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1813 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1814 		 * userspace interface.
1815 		 */
1816 		cmd_mask = 1UL << ND_CMD_CALL;
1817 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1818 			/*
1819 			 * These commands have a 1:1 correspondence
1820 			 * between DSM payload and libnvdimm ioctl
1821 			 * payload format.
1822 			 */
1823 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
1824 		}
1825 
1826 		if (nfit_mem->has_lsi)
1827 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
1828 		if (nfit_mem->has_lsr)
1829 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
1830 		if (nfit_mem->has_lsw)
1831 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
1832 
1833 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1834 			: NULL;
1835 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1836 				acpi_nfit_dimm_attribute_groups,
1837 				flags, cmd_mask, flush ? flush->hint_count : 0,
1838 				nfit_mem->flush_wpq);
1839 		if (!nvdimm)
1840 			return -ENOMEM;
1841 
1842 		nfit_mem->nvdimm = nvdimm;
1843 		dimm_count++;
1844 
1845 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1846 			continue;
1847 
1848 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
1849 				nvdimm_name(nvdimm),
1850 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1851 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1852 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1853 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
1854 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
1855 
1856 	}
1857 
1858 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1859 	if (rc)
1860 		return rc;
1861 
1862 	/*
1863 	 * Now that dimms are successfully registered, and async registration
1864 	 * is flushed, attempt to enable event notification.
1865 	 */
1866 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1867 		struct kernfs_node *nfit_kernfs;
1868 
1869 		nvdimm = nfit_mem->nvdimm;
1870 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1871 		if (nfit_kernfs)
1872 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1873 					"flags");
1874 		sysfs_put(nfit_kernfs);
1875 		if (!nfit_mem->flags_attr)
1876 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1877 					nvdimm_name(nvdimm));
1878 	}
1879 
1880 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1881 			acpi_desc);
1882 }
1883 
1884 /*
1885  * These constants are private because there are no kernel consumers of
1886  * these commands.
1887  */
1888 enum nfit_aux_cmds {
1889         NFIT_CMD_TRANSLATE_SPA = 5,
1890         NFIT_CMD_ARS_INJECT_SET = 7,
1891         NFIT_CMD_ARS_INJECT_CLEAR = 8,
1892         NFIT_CMD_ARS_INJECT_GET = 9,
1893 };
1894 
1895 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1896 {
1897 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1898 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
1899 	struct acpi_device *adev;
1900 	unsigned long dsm_mask;
1901 	int i;
1902 
1903 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1904 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
1905 	adev = to_acpi_dev(acpi_desc);
1906 	if (!adev)
1907 		return;
1908 
1909 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1910 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1911 			set_bit(i, &nd_desc->cmd_mask);
1912 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
1913 
1914 	dsm_mask =
1915 		(1 << ND_CMD_ARS_CAP) |
1916 		(1 << ND_CMD_ARS_START) |
1917 		(1 << ND_CMD_ARS_STATUS) |
1918 		(1 << ND_CMD_CLEAR_ERROR) |
1919 		(1 << NFIT_CMD_TRANSLATE_SPA) |
1920 		(1 << NFIT_CMD_ARS_INJECT_SET) |
1921 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
1922 		(1 << NFIT_CMD_ARS_INJECT_GET);
1923 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1924 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1925 			set_bit(i, &nd_desc->bus_dsm_mask);
1926 }
1927 
1928 static ssize_t range_index_show(struct device *dev,
1929 		struct device_attribute *attr, char *buf)
1930 {
1931 	struct nd_region *nd_region = to_nd_region(dev);
1932 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1933 
1934 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1935 }
1936 static DEVICE_ATTR_RO(range_index);
1937 
1938 static ssize_t ecc_unit_size_show(struct device *dev,
1939 		struct device_attribute *attr, char *buf)
1940 {
1941 	struct nd_region *nd_region = to_nd_region(dev);
1942 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1943 
1944 	return sprintf(buf, "%d\n", nfit_spa->clear_err_unit);
1945 }
1946 static DEVICE_ATTR_RO(ecc_unit_size);
1947 
1948 static struct attribute *acpi_nfit_region_attributes[] = {
1949 	&dev_attr_range_index.attr,
1950 	&dev_attr_ecc_unit_size.attr,
1951 	NULL,
1952 };
1953 
1954 static const struct attribute_group acpi_nfit_region_attribute_group = {
1955 	.name = "nfit",
1956 	.attrs = acpi_nfit_region_attributes,
1957 };
1958 
1959 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1960 	&nd_region_attribute_group,
1961 	&nd_mapping_attribute_group,
1962 	&nd_device_attribute_group,
1963 	&nd_numa_attribute_group,
1964 	&acpi_nfit_region_attribute_group,
1965 	NULL,
1966 };
1967 
1968 /* enough info to uniquely specify an interleave set */
1969 struct nfit_set_info {
1970 	struct nfit_set_info_map {
1971 		u64 region_offset;
1972 		u32 serial_number;
1973 		u32 pad;
1974 	} mapping[0];
1975 };
1976 
1977 struct nfit_set_info2 {
1978 	struct nfit_set_info_map2 {
1979 		u64 region_offset;
1980 		u32 serial_number;
1981 		u16 vendor_id;
1982 		u16 manufacturing_date;
1983 		u8  manufacturing_location;
1984 		u8  reserved[31];
1985 	} mapping[0];
1986 };
1987 
1988 static size_t sizeof_nfit_set_info(int num_mappings)
1989 {
1990 	return sizeof(struct nfit_set_info)
1991 		+ num_mappings * sizeof(struct nfit_set_info_map);
1992 }
1993 
1994 static size_t sizeof_nfit_set_info2(int num_mappings)
1995 {
1996 	return sizeof(struct nfit_set_info2)
1997 		+ num_mappings * sizeof(struct nfit_set_info_map2);
1998 }
1999 
2000 static int cmp_map_compat(const void *m0, const void *m1)
2001 {
2002 	const struct nfit_set_info_map *map0 = m0;
2003 	const struct nfit_set_info_map *map1 = m1;
2004 
2005 	return memcmp(&map0->region_offset, &map1->region_offset,
2006 			sizeof(u64));
2007 }
2008 
2009 static int cmp_map(const void *m0, const void *m1)
2010 {
2011 	const struct nfit_set_info_map *map0 = m0;
2012 	const struct nfit_set_info_map *map1 = m1;
2013 
2014 	if (map0->region_offset < map1->region_offset)
2015 		return -1;
2016 	else if (map0->region_offset > map1->region_offset)
2017 		return 1;
2018 	return 0;
2019 }
2020 
2021 static int cmp_map2(const void *m0, const void *m1)
2022 {
2023 	const struct nfit_set_info_map2 *map0 = m0;
2024 	const struct nfit_set_info_map2 *map1 = m1;
2025 
2026 	if (map0->region_offset < map1->region_offset)
2027 		return -1;
2028 	else if (map0->region_offset > map1->region_offset)
2029 		return 1;
2030 	return 0;
2031 }
2032 
2033 /* Retrieve the nth entry referencing this spa */
2034 static struct acpi_nfit_memory_map *memdev_from_spa(
2035 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2036 {
2037 	struct nfit_memdev *nfit_memdev;
2038 
2039 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2040 		if (nfit_memdev->memdev->range_index == range_index)
2041 			if (n-- == 0)
2042 				return nfit_memdev->memdev;
2043 	return NULL;
2044 }
2045 
2046 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2047 		struct nd_region_desc *ndr_desc,
2048 		struct acpi_nfit_system_address *spa)
2049 {
2050 	struct device *dev = acpi_desc->dev;
2051 	struct nd_interleave_set *nd_set;
2052 	u16 nr = ndr_desc->num_mappings;
2053 	struct nfit_set_info2 *info2;
2054 	struct nfit_set_info *info;
2055 	int i;
2056 
2057 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2058 	if (!nd_set)
2059 		return -ENOMEM;
2060 	ndr_desc->nd_set = nd_set;
2061 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2062 
2063 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2064 	if (!info)
2065 		return -ENOMEM;
2066 
2067 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2068 	if (!info2)
2069 		return -ENOMEM;
2070 
2071 	for (i = 0; i < nr; i++) {
2072 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2073 		struct nfit_set_info_map *map = &info->mapping[i];
2074 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2075 		struct nvdimm *nvdimm = mapping->nvdimm;
2076 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2077 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2078 				spa->range_index, i);
2079 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2080 
2081 		if (!memdev || !nfit_mem->dcr) {
2082 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2083 			return -ENODEV;
2084 		}
2085 
2086 		map->region_offset = memdev->region_offset;
2087 		map->serial_number = dcr->serial_number;
2088 
2089 		map2->region_offset = memdev->region_offset;
2090 		map2->serial_number = dcr->serial_number;
2091 		map2->vendor_id = dcr->vendor_id;
2092 		map2->manufacturing_date = dcr->manufacturing_date;
2093 		map2->manufacturing_location = dcr->manufacturing_location;
2094 	}
2095 
2096 	/* v1.1 namespaces */
2097 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2098 			cmp_map, NULL);
2099 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2100 
2101 	/* v1.2 namespaces */
2102 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2103 			cmp_map2, NULL);
2104 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2105 
2106 	/* support v1.1 namespaces created with the wrong sort order */
2107 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2108 			cmp_map_compat, NULL);
2109 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2110 
2111 	/* record the result of the sort for the mapping position */
2112 	for (i = 0; i < nr; i++) {
2113 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2114 		int j;
2115 
2116 		for (j = 0; j < nr; j++) {
2117 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2118 			struct nvdimm *nvdimm = mapping->nvdimm;
2119 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2120 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2121 
2122 			if (map2->serial_number == dcr->serial_number &&
2123 			    map2->vendor_id == dcr->vendor_id &&
2124 			    map2->manufacturing_date == dcr->manufacturing_date &&
2125 			    map2->manufacturing_location
2126 				    == dcr->manufacturing_location) {
2127 				mapping->position = i;
2128 				break;
2129 			}
2130 		}
2131 	}
2132 
2133 	ndr_desc->nd_set = nd_set;
2134 	devm_kfree(dev, info);
2135 	devm_kfree(dev, info2);
2136 
2137 	return 0;
2138 }
2139 
2140 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2141 {
2142 	struct acpi_nfit_interleave *idt = mmio->idt;
2143 	u32 sub_line_offset, line_index, line_offset;
2144 	u64 line_no, table_skip_count, table_offset;
2145 
2146 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2147 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2148 	line_offset = idt->line_offset[line_index]
2149 		* mmio->line_size;
2150 	table_offset = table_skip_count * mmio->table_size;
2151 
2152 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2153 }
2154 
2155 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2156 {
2157 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2158 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2159 	const u32 STATUS_MASK = 0x80000037;
2160 
2161 	if (mmio->num_lines)
2162 		offset = to_interleave_offset(offset, mmio);
2163 
2164 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2165 }
2166 
2167 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2168 		resource_size_t dpa, unsigned int len, unsigned int write)
2169 {
2170 	u64 cmd, offset;
2171 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2172 
2173 	enum {
2174 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2175 		BCW_LEN_SHIFT = 48,
2176 		BCW_LEN_MASK = (1ULL << 8) - 1,
2177 		BCW_CMD_SHIFT = 56,
2178 	};
2179 
2180 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2181 	len = len >> L1_CACHE_SHIFT;
2182 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2183 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2184 
2185 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2186 	if (mmio->num_lines)
2187 		offset = to_interleave_offset(offset, mmio);
2188 
2189 	writeq(cmd, mmio->addr.base + offset);
2190 	nvdimm_flush(nfit_blk->nd_region);
2191 
2192 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2193 		readq(mmio->addr.base + offset);
2194 }
2195 
2196 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2197 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2198 		unsigned int lane)
2199 {
2200 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2201 	unsigned int copied = 0;
2202 	u64 base_offset;
2203 	int rc;
2204 
2205 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2206 		+ lane * mmio->size;
2207 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2208 	while (len) {
2209 		unsigned int c;
2210 		u64 offset;
2211 
2212 		if (mmio->num_lines) {
2213 			u32 line_offset;
2214 
2215 			offset = to_interleave_offset(base_offset + copied,
2216 					mmio);
2217 			div_u64_rem(offset, mmio->line_size, &line_offset);
2218 			c = min_t(size_t, len, mmio->line_size - line_offset);
2219 		} else {
2220 			offset = base_offset + nfit_blk->bdw_offset;
2221 			c = len;
2222 		}
2223 
2224 		if (rw)
2225 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2226 		else {
2227 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2228 				arch_invalidate_pmem((void __force *)
2229 					mmio->addr.aperture + offset, c);
2230 
2231 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2232 		}
2233 
2234 		copied += c;
2235 		len -= c;
2236 	}
2237 
2238 	if (rw)
2239 		nvdimm_flush(nfit_blk->nd_region);
2240 
2241 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2242 	return rc;
2243 }
2244 
2245 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2246 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2247 {
2248 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2249 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2250 	struct nd_region *nd_region = nfit_blk->nd_region;
2251 	unsigned int lane, copied = 0;
2252 	int rc = 0;
2253 
2254 	lane = nd_region_acquire_lane(nd_region);
2255 	while (len) {
2256 		u64 c = min(len, mmio->size);
2257 
2258 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2259 				iobuf + copied, c, rw, lane);
2260 		if (rc)
2261 			break;
2262 
2263 		copied += c;
2264 		len -= c;
2265 	}
2266 	nd_region_release_lane(nd_region, lane);
2267 
2268 	return rc;
2269 }
2270 
2271 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2272 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2273 {
2274 	if (idt) {
2275 		mmio->num_lines = idt->line_count;
2276 		mmio->line_size = idt->line_size;
2277 		if (interleave_ways == 0)
2278 			return -ENXIO;
2279 		mmio->table_size = mmio->num_lines * interleave_ways
2280 			* mmio->line_size;
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2287 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2288 {
2289 	struct nd_cmd_dimm_flags flags;
2290 	int rc;
2291 
2292 	memset(&flags, 0, sizeof(flags));
2293 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2294 			sizeof(flags), NULL);
2295 
2296 	if (rc >= 0 && flags.status == 0)
2297 		nfit_blk->dimm_flags = flags.flags;
2298 	else if (rc == -ENOTTY) {
2299 		/* fall back to a conservative default */
2300 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2301 		rc = 0;
2302 	} else
2303 		rc = -ENXIO;
2304 
2305 	return rc;
2306 }
2307 
2308 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2309 		struct device *dev)
2310 {
2311 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2312 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2313 	struct nfit_blk_mmio *mmio;
2314 	struct nfit_blk *nfit_blk;
2315 	struct nfit_mem *nfit_mem;
2316 	struct nvdimm *nvdimm;
2317 	int rc;
2318 
2319 	nvdimm = nd_blk_region_to_dimm(ndbr);
2320 	nfit_mem = nvdimm_provider_data(nvdimm);
2321 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2322 		dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
2323 				nfit_mem ? "" : " nfit_mem",
2324 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2325 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2326 		return -ENXIO;
2327 	}
2328 
2329 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2330 	if (!nfit_blk)
2331 		return -ENOMEM;
2332 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2333 	nfit_blk->nd_region = to_nd_region(dev);
2334 
2335 	/* map block aperture memory */
2336 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2337 	mmio = &nfit_blk->mmio[BDW];
2338 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2339                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2340 	if (!mmio->addr.base) {
2341 		dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
2342 				nvdimm_name(nvdimm));
2343 		return -ENOMEM;
2344 	}
2345 	mmio->size = nfit_mem->bdw->size;
2346 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2347 	mmio->idt = nfit_mem->idt_bdw;
2348 	mmio->spa = nfit_mem->spa_bdw;
2349 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2350 			nfit_mem->memdev_bdw->interleave_ways);
2351 	if (rc) {
2352 		dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
2353 				__func__, nvdimm_name(nvdimm));
2354 		return rc;
2355 	}
2356 
2357 	/* map block control memory */
2358 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2359 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2360 	mmio = &nfit_blk->mmio[DCR];
2361 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2362 			nfit_mem->spa_dcr->length);
2363 	if (!mmio->addr.base) {
2364 		dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
2365 				nvdimm_name(nvdimm));
2366 		return -ENOMEM;
2367 	}
2368 	mmio->size = nfit_mem->dcr->window_size;
2369 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2370 	mmio->idt = nfit_mem->idt_dcr;
2371 	mmio->spa = nfit_mem->spa_dcr;
2372 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2373 			nfit_mem->memdev_dcr->interleave_ways);
2374 	if (rc) {
2375 		dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
2376 				__func__, nvdimm_name(nvdimm));
2377 		return rc;
2378 	}
2379 
2380 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2381 	if (rc < 0) {
2382 		dev_dbg(dev, "%s: %s failed get DIMM flags\n",
2383 				__func__, nvdimm_name(nvdimm));
2384 		return rc;
2385 	}
2386 
2387 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2388 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2389 
2390 	if (mmio->line_size == 0)
2391 		return 0;
2392 
2393 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2394 			+ 8 > mmio->line_size) {
2395 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2396 		return -ENXIO;
2397 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2398 			+ 8 > mmio->line_size) {
2399 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2400 		return -ENXIO;
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2407 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2408 {
2409 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2410 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2411 	int cmd_rc, rc;
2412 
2413 	cmd->address = spa->address;
2414 	cmd->length = spa->length;
2415 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2416 			sizeof(*cmd), &cmd_rc);
2417 	if (rc < 0)
2418 		return rc;
2419 	return cmd_rc;
2420 }
2421 
2422 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
2423 {
2424 	int rc;
2425 	int cmd_rc;
2426 	struct nd_cmd_ars_start ars_start;
2427 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2428 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2429 
2430 	memset(&ars_start, 0, sizeof(ars_start));
2431 	ars_start.address = spa->address;
2432 	ars_start.length = spa->length;
2433 	ars_start.flags = acpi_desc->ars_start_flags;
2434 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2435 		ars_start.type = ND_ARS_PERSISTENT;
2436 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2437 		ars_start.type = ND_ARS_VOLATILE;
2438 	else
2439 		return -ENOTTY;
2440 
2441 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2442 			sizeof(ars_start), &cmd_rc);
2443 
2444 	if (rc < 0)
2445 		return rc;
2446 	return cmd_rc;
2447 }
2448 
2449 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2450 {
2451 	int rc, cmd_rc;
2452 	struct nd_cmd_ars_start ars_start;
2453 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2454 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2455 
2456 	memset(&ars_start, 0, sizeof(ars_start));
2457 	ars_start.address = ars_status->restart_address;
2458 	ars_start.length = ars_status->restart_length;
2459 	ars_start.type = ars_status->type;
2460 	ars_start.flags = acpi_desc->ars_start_flags;
2461 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2462 			sizeof(ars_start), &cmd_rc);
2463 	if (rc < 0)
2464 		return rc;
2465 	return cmd_rc;
2466 }
2467 
2468 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2469 {
2470 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2471 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2472 	int rc, cmd_rc;
2473 
2474 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2475 			acpi_desc->ars_status_size, &cmd_rc);
2476 	if (rc < 0)
2477 		return rc;
2478 	return cmd_rc;
2479 }
2480 
2481 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc,
2482 		struct nd_cmd_ars_status *ars_status)
2483 {
2484 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2485 	int rc;
2486 	u32 i;
2487 
2488 	/*
2489 	 * First record starts at 44 byte offset from the start of the
2490 	 * payload.
2491 	 */
2492 	if (ars_status->out_length < 44)
2493 		return 0;
2494 	for (i = 0; i < ars_status->num_records; i++) {
2495 		/* only process full records */
2496 		if (ars_status->out_length
2497 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2498 			break;
2499 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2500 				ars_status->records[i].err_address,
2501 				ars_status->records[i].length);
2502 		if (rc)
2503 			return rc;
2504 	}
2505 	if (i < ars_status->num_records)
2506 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2507 
2508 	return 0;
2509 }
2510 
2511 static void acpi_nfit_remove_resource(void *data)
2512 {
2513 	struct resource *res = data;
2514 
2515 	remove_resource(res);
2516 }
2517 
2518 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2519 		struct nd_region_desc *ndr_desc)
2520 {
2521 	struct resource *res, *nd_res = ndr_desc->res;
2522 	int is_pmem, ret;
2523 
2524 	/* No operation if the region is already registered as PMEM */
2525 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2526 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2527 	if (is_pmem == REGION_INTERSECTS)
2528 		return 0;
2529 
2530 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2531 	if (!res)
2532 		return -ENOMEM;
2533 
2534 	res->name = "Persistent Memory";
2535 	res->start = nd_res->start;
2536 	res->end = nd_res->end;
2537 	res->flags = IORESOURCE_MEM;
2538 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2539 
2540 	ret = insert_resource(&iomem_resource, res);
2541 	if (ret)
2542 		return ret;
2543 
2544 	ret = devm_add_action_or_reset(acpi_desc->dev,
2545 					acpi_nfit_remove_resource,
2546 					res);
2547 	if (ret)
2548 		return ret;
2549 
2550 	return 0;
2551 }
2552 
2553 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2554 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2555 		struct acpi_nfit_memory_map *memdev,
2556 		struct nfit_spa *nfit_spa)
2557 {
2558 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2559 			memdev->device_handle);
2560 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2561 	struct nd_blk_region_desc *ndbr_desc;
2562 	struct nfit_mem *nfit_mem;
2563 	int blk_valid = 0, rc;
2564 
2565 	if (!nvdimm) {
2566 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2567 				spa->range_index, memdev->device_handle);
2568 		return -ENODEV;
2569 	}
2570 
2571 	mapping->nvdimm = nvdimm;
2572 	switch (nfit_spa_type(spa)) {
2573 	case NFIT_SPA_PM:
2574 	case NFIT_SPA_VOLATILE:
2575 		mapping->start = memdev->address;
2576 		mapping->size = memdev->region_size;
2577 		break;
2578 	case NFIT_SPA_DCR:
2579 		nfit_mem = nvdimm_provider_data(nvdimm);
2580 		if (!nfit_mem || !nfit_mem->bdw) {
2581 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2582 					spa->range_index, nvdimm_name(nvdimm));
2583 		} else {
2584 			mapping->size = nfit_mem->bdw->capacity;
2585 			mapping->start = nfit_mem->bdw->start_address;
2586 			ndr_desc->num_lanes = nfit_mem->bdw->windows;
2587 			blk_valid = 1;
2588 		}
2589 
2590 		ndr_desc->mapping = mapping;
2591 		ndr_desc->num_mappings = blk_valid;
2592 		ndbr_desc = to_blk_region_desc(ndr_desc);
2593 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2594 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2595 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2596 		if (rc)
2597 			return rc;
2598 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2599 				ndr_desc);
2600 		if (!nfit_spa->nd_region)
2601 			return -ENOMEM;
2602 		break;
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2609 {
2610 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2611 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2612 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2613 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2614 }
2615 
2616 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2617 {
2618 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2619 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2620 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2621 }
2622 
2623 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2624 		struct nfit_spa *nfit_spa)
2625 {
2626 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2627 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2628 	struct nd_blk_region_desc ndbr_desc;
2629 	struct nd_region_desc *ndr_desc;
2630 	struct nfit_memdev *nfit_memdev;
2631 	struct nvdimm_bus *nvdimm_bus;
2632 	struct resource res;
2633 	int count = 0, rc;
2634 
2635 	if (nfit_spa->nd_region)
2636 		return 0;
2637 
2638 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2639 		dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
2640 				__func__);
2641 		return 0;
2642 	}
2643 
2644 	memset(&res, 0, sizeof(res));
2645 	memset(&mappings, 0, sizeof(mappings));
2646 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2647 	res.start = spa->address;
2648 	res.end = res.start + spa->length - 1;
2649 	ndr_desc = &ndbr_desc.ndr_desc;
2650 	ndr_desc->res = &res;
2651 	ndr_desc->provider_data = nfit_spa;
2652 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2653 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2654 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2655 						spa->proximity_domain);
2656 	else
2657 		ndr_desc->numa_node = NUMA_NO_NODE;
2658 
2659 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2660 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2661 		struct nd_mapping_desc *mapping;
2662 
2663 		if (memdev->range_index != spa->range_index)
2664 			continue;
2665 		if (count >= ND_MAX_MAPPINGS) {
2666 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2667 					spa->range_index, ND_MAX_MAPPINGS);
2668 			return -ENXIO;
2669 		}
2670 		mapping = &mappings[count++];
2671 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2672 				memdev, nfit_spa);
2673 		if (rc)
2674 			goto out;
2675 	}
2676 
2677 	ndr_desc->mapping = mappings;
2678 	ndr_desc->num_mappings = count;
2679 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2680 	if (rc)
2681 		goto out;
2682 
2683 	nvdimm_bus = acpi_desc->nvdimm_bus;
2684 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2685 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2686 		if (rc) {
2687 			dev_warn(acpi_desc->dev,
2688 				"failed to insert pmem resource to iomem: %d\n",
2689 				rc);
2690 			goto out;
2691 		}
2692 
2693 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2694 				ndr_desc);
2695 		if (!nfit_spa->nd_region)
2696 			rc = -ENOMEM;
2697 	} else if (nfit_spa_is_volatile(spa)) {
2698 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2699 				ndr_desc);
2700 		if (!nfit_spa->nd_region)
2701 			rc = -ENOMEM;
2702 	} else if (nfit_spa_is_virtual(spa)) {
2703 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2704 				ndr_desc);
2705 		if (!nfit_spa->nd_region)
2706 			rc = -ENOMEM;
2707 	}
2708 
2709  out:
2710 	if (rc)
2711 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2712 				nfit_spa->spa->range_index);
2713 	return rc;
2714 }
2715 
2716 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2717 		u32 max_ars)
2718 {
2719 	struct device *dev = acpi_desc->dev;
2720 	struct nd_cmd_ars_status *ars_status;
2721 
2722 	if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2723 		memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2724 		return 0;
2725 	}
2726 
2727 	if (acpi_desc->ars_status)
2728 		devm_kfree(dev, acpi_desc->ars_status);
2729 	acpi_desc->ars_status = NULL;
2730 	ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2731 	if (!ars_status)
2732 		return -ENOMEM;
2733 	acpi_desc->ars_status = ars_status;
2734 	acpi_desc->ars_status_size = max_ars;
2735 	return 0;
2736 }
2737 
2738 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2739 		struct nfit_spa *nfit_spa)
2740 {
2741 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2742 	int rc;
2743 
2744 	if (!nfit_spa->max_ars) {
2745 		struct nd_cmd_ars_cap ars_cap;
2746 
2747 		memset(&ars_cap, 0, sizeof(ars_cap));
2748 		rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2749 		if (rc < 0)
2750 			return rc;
2751 		nfit_spa->max_ars = ars_cap.max_ars_out;
2752 		nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2753 		/* check that the supported scrub types match the spa type */
2754 		if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2755 				((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2756 			return -ENOTTY;
2757 		else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2758 				((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2759 			return -ENOTTY;
2760 	}
2761 
2762 	if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2763 		return -ENOMEM;
2764 
2765 	rc = ars_get_status(acpi_desc);
2766 	if (rc < 0 && rc != -ENOSPC)
2767 		return rc;
2768 
2769 	if (ars_status_process_records(acpi_desc, acpi_desc->ars_status))
2770 		return -ENOMEM;
2771 
2772 	return 0;
2773 }
2774 
2775 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2776 		struct nfit_spa *nfit_spa)
2777 {
2778 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2779 	unsigned int overflow_retry = scrub_overflow_abort;
2780 	u64 init_ars_start = 0, init_ars_len = 0;
2781 	struct device *dev = acpi_desc->dev;
2782 	unsigned int tmo = scrub_timeout;
2783 	int rc;
2784 
2785 	if (!nfit_spa->ars_required || !nfit_spa->nd_region)
2786 		return;
2787 
2788 	rc = ars_start(acpi_desc, nfit_spa);
2789 	/*
2790 	 * If we timed out the initial scan we'll still be busy here,
2791 	 * and will wait another timeout before giving up permanently.
2792 	 */
2793 	if (rc < 0 && rc != -EBUSY)
2794 		return;
2795 
2796 	do {
2797 		u64 ars_start, ars_len;
2798 
2799 		if (acpi_desc->cancel)
2800 			break;
2801 		rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2802 		if (rc == -ENOTTY)
2803 			break;
2804 		if (rc == -EBUSY && !tmo) {
2805 			dev_warn(dev, "range %d ars timeout, aborting\n",
2806 					spa->range_index);
2807 			break;
2808 		}
2809 
2810 		if (rc == -EBUSY) {
2811 			/*
2812 			 * Note, entries may be appended to the list
2813 			 * while the lock is dropped, but the workqueue
2814 			 * being active prevents entries being deleted /
2815 			 * freed.
2816 			 */
2817 			mutex_unlock(&acpi_desc->init_mutex);
2818 			ssleep(1);
2819 			tmo--;
2820 			mutex_lock(&acpi_desc->init_mutex);
2821 			continue;
2822 		}
2823 
2824 		/* we got some results, but there are more pending... */
2825 		if (rc == -ENOSPC && overflow_retry--) {
2826 			if (!init_ars_len) {
2827 				init_ars_len = acpi_desc->ars_status->length;
2828 				init_ars_start = acpi_desc->ars_status->address;
2829 			}
2830 			rc = ars_continue(acpi_desc);
2831 		}
2832 
2833 		if (rc < 0) {
2834 			dev_warn(dev, "range %d ars continuation failed\n",
2835 					spa->range_index);
2836 			break;
2837 		}
2838 
2839 		if (init_ars_len) {
2840 			ars_start = init_ars_start;
2841 			ars_len = init_ars_len;
2842 		} else {
2843 			ars_start = acpi_desc->ars_status->address;
2844 			ars_len = acpi_desc->ars_status->length;
2845 		}
2846 		dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2847 				spa->range_index, ars_start, ars_len);
2848 		/* notify the region about new poison entries */
2849 		nvdimm_region_notify(nfit_spa->nd_region,
2850 				NVDIMM_REVALIDATE_POISON);
2851 		break;
2852 	} while (1);
2853 }
2854 
2855 static void acpi_nfit_scrub(struct work_struct *work)
2856 {
2857 	struct device *dev;
2858 	u64 init_scrub_length = 0;
2859 	struct nfit_spa *nfit_spa;
2860 	u64 init_scrub_address = 0;
2861 	bool init_ars_done = false;
2862 	struct acpi_nfit_desc *acpi_desc;
2863 	unsigned int tmo = scrub_timeout;
2864 	unsigned int overflow_retry = scrub_overflow_abort;
2865 
2866 	acpi_desc = container_of(work, typeof(*acpi_desc), work);
2867 	dev = acpi_desc->dev;
2868 
2869 	/*
2870 	 * We scrub in 2 phases.  The first phase waits for any platform
2871 	 * firmware initiated scrubs to complete and then we go search for the
2872 	 * affected spa regions to mark them scanned.  In the second phase we
2873 	 * initiate a directed scrub for every range that was not scrubbed in
2874 	 * phase 1. If we're called for a 'rescan', we harmlessly pass through
2875 	 * the first phase, but really only care about running phase 2, where
2876 	 * regions can be notified of new poison.
2877 	 */
2878 
2879 	/* process platform firmware initiated scrubs */
2880  retry:
2881 	mutex_lock(&acpi_desc->init_mutex);
2882 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2883 		struct nd_cmd_ars_status *ars_status;
2884 		struct acpi_nfit_system_address *spa;
2885 		u64 ars_start, ars_len;
2886 		int rc;
2887 
2888 		if (acpi_desc->cancel)
2889 			break;
2890 
2891 		if (nfit_spa->nd_region)
2892 			continue;
2893 
2894 		if (init_ars_done) {
2895 			/*
2896 			 * No need to re-query, we're now just
2897 			 * reconciling all the ranges covered by the
2898 			 * initial scrub
2899 			 */
2900 			rc = 0;
2901 		} else
2902 			rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2903 
2904 		if (rc == -ENOTTY) {
2905 			/* no ars capability, just register spa and move on */
2906 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2907 			continue;
2908 		}
2909 
2910 		if (rc == -EBUSY && !tmo) {
2911 			/* fallthrough to directed scrub in phase 2 */
2912 			dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2913 			break;
2914 		} else if (rc == -EBUSY) {
2915 			mutex_unlock(&acpi_desc->init_mutex);
2916 			ssleep(1);
2917 			tmo--;
2918 			goto retry;
2919 		}
2920 
2921 		/* we got some results, but there are more pending... */
2922 		if (rc == -ENOSPC && overflow_retry--) {
2923 			ars_status = acpi_desc->ars_status;
2924 			/*
2925 			 * Record the original scrub range, so that we
2926 			 * can recall all the ranges impacted by the
2927 			 * initial scrub.
2928 			 */
2929 			if (!init_scrub_length) {
2930 				init_scrub_length = ars_status->length;
2931 				init_scrub_address = ars_status->address;
2932 			}
2933 			rc = ars_continue(acpi_desc);
2934 			if (rc == 0) {
2935 				mutex_unlock(&acpi_desc->init_mutex);
2936 				goto retry;
2937 			}
2938 		}
2939 
2940 		if (rc < 0) {
2941 			/*
2942 			 * Initial scrub failed, we'll give it one more
2943 			 * try below...
2944 			 */
2945 			break;
2946 		}
2947 
2948 		/* We got some final results, record completed ranges */
2949 		ars_status = acpi_desc->ars_status;
2950 		if (init_scrub_length) {
2951 			ars_start = init_scrub_address;
2952 			ars_len = ars_start + init_scrub_length;
2953 		} else {
2954 			ars_start = ars_status->address;
2955 			ars_len = ars_status->length;
2956 		}
2957 		spa = nfit_spa->spa;
2958 
2959 		if (!init_ars_done) {
2960 			init_ars_done = true;
2961 			dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2962 					ars_start, ars_len);
2963 		}
2964 		if (ars_start <= spa->address && ars_start + ars_len
2965 				>= spa->address + spa->length)
2966 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2967 	}
2968 
2969 	/*
2970 	 * For all the ranges not covered by an initial scrub we still
2971 	 * want to see if there are errors, but it's ok to discover them
2972 	 * asynchronously.
2973 	 */
2974 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2975 		/*
2976 		 * Flag all the ranges that still need scrubbing, but
2977 		 * register them now to make data available.
2978 		 */
2979 		if (!nfit_spa->nd_region) {
2980 			nfit_spa->ars_required = 1;
2981 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2982 		}
2983 	}
2984 	acpi_desc->init_complete = 1;
2985 
2986 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2987 		acpi_nfit_async_scrub(acpi_desc, nfit_spa);
2988 	acpi_desc->scrub_count++;
2989 	acpi_desc->ars_start_flags = 0;
2990 	if (acpi_desc->scrub_count_state)
2991 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2992 	mutex_unlock(&acpi_desc->init_mutex);
2993 }
2994 
2995 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2996 {
2997 	struct nfit_spa *nfit_spa;
2998 	int rc;
2999 
3000 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3001 		if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) {
3002 			/* BLK regions don't need to wait for ars results */
3003 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3004 			if (rc)
3005 				return rc;
3006 		}
3007 
3008 	acpi_desc->ars_start_flags = 0;
3009 	if (!acpi_desc->cancel)
3010 		queue_work(nfit_wq, &acpi_desc->work);
3011 	return 0;
3012 }
3013 
3014 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3015 		struct nfit_table_prev *prev)
3016 {
3017 	struct device *dev = acpi_desc->dev;
3018 
3019 	if (!list_empty(&prev->spas) ||
3020 			!list_empty(&prev->memdevs) ||
3021 			!list_empty(&prev->dcrs) ||
3022 			!list_empty(&prev->bdws) ||
3023 			!list_empty(&prev->idts) ||
3024 			!list_empty(&prev->flushes)) {
3025 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3026 		return -ENXIO;
3027 	}
3028 	return 0;
3029 }
3030 
3031 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3032 {
3033 	struct device *dev = acpi_desc->dev;
3034 	struct kernfs_node *nfit;
3035 	struct device *bus_dev;
3036 
3037 	if (!ars_supported(acpi_desc->nvdimm_bus))
3038 		return 0;
3039 
3040 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3041 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3042 	if (!nfit) {
3043 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3044 		return -ENODEV;
3045 	}
3046 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3047 	sysfs_put(nfit);
3048 	if (!acpi_desc->scrub_count_state) {
3049 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3050 		return -ENODEV;
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 static void acpi_nfit_unregister(void *data)
3057 {
3058 	struct acpi_nfit_desc *acpi_desc = data;
3059 
3060 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3061 }
3062 
3063 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3064 {
3065 	struct device *dev = acpi_desc->dev;
3066 	struct nfit_table_prev prev;
3067 	const void *end;
3068 	int rc;
3069 
3070 	if (!acpi_desc->nvdimm_bus) {
3071 		acpi_nfit_init_dsms(acpi_desc);
3072 
3073 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3074 				&acpi_desc->nd_desc);
3075 		if (!acpi_desc->nvdimm_bus)
3076 			return -ENOMEM;
3077 
3078 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3079 				acpi_desc);
3080 		if (rc)
3081 			return rc;
3082 
3083 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3084 		if (rc)
3085 			return rc;
3086 
3087 		/* register this acpi_desc for mce notifications */
3088 		mutex_lock(&acpi_desc_lock);
3089 		list_add_tail(&acpi_desc->list, &acpi_descs);
3090 		mutex_unlock(&acpi_desc_lock);
3091 	}
3092 
3093 	mutex_lock(&acpi_desc->init_mutex);
3094 
3095 	INIT_LIST_HEAD(&prev.spas);
3096 	INIT_LIST_HEAD(&prev.memdevs);
3097 	INIT_LIST_HEAD(&prev.dcrs);
3098 	INIT_LIST_HEAD(&prev.bdws);
3099 	INIT_LIST_HEAD(&prev.idts);
3100 	INIT_LIST_HEAD(&prev.flushes);
3101 
3102 	list_cut_position(&prev.spas, &acpi_desc->spas,
3103 				acpi_desc->spas.prev);
3104 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3105 				acpi_desc->memdevs.prev);
3106 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3107 				acpi_desc->dcrs.prev);
3108 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3109 				acpi_desc->bdws.prev);
3110 	list_cut_position(&prev.idts, &acpi_desc->idts,
3111 				acpi_desc->idts.prev);
3112 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3113 				acpi_desc->flushes.prev);
3114 
3115 	end = data + sz;
3116 	while (!IS_ERR_OR_NULL(data))
3117 		data = add_table(acpi_desc, &prev, data, end);
3118 
3119 	if (IS_ERR(data)) {
3120 		dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
3121 				PTR_ERR(data));
3122 		rc = PTR_ERR(data);
3123 		goto out_unlock;
3124 	}
3125 
3126 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3127 	if (rc)
3128 		goto out_unlock;
3129 
3130 	rc = nfit_mem_init(acpi_desc);
3131 	if (rc)
3132 		goto out_unlock;
3133 
3134 	rc = acpi_nfit_register_dimms(acpi_desc);
3135 	if (rc)
3136 		goto out_unlock;
3137 
3138 	rc = acpi_nfit_register_regions(acpi_desc);
3139 
3140  out_unlock:
3141 	mutex_unlock(&acpi_desc->init_mutex);
3142 	return rc;
3143 }
3144 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3145 
3146 struct acpi_nfit_flush_work {
3147 	struct work_struct work;
3148 	struct completion cmp;
3149 };
3150 
3151 static void flush_probe(struct work_struct *work)
3152 {
3153 	struct acpi_nfit_flush_work *flush;
3154 
3155 	flush = container_of(work, typeof(*flush), work);
3156 	complete(&flush->cmp);
3157 }
3158 
3159 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3160 {
3161 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3162 	struct device *dev = acpi_desc->dev;
3163 	struct acpi_nfit_flush_work flush;
3164 	int rc;
3165 
3166 	/* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3167 	device_lock(dev);
3168 	device_unlock(dev);
3169 
3170 	/* bounce the init_mutex to make init_complete valid */
3171 	mutex_lock(&acpi_desc->init_mutex);
3172 	if (acpi_desc->cancel || acpi_desc->init_complete) {
3173 		mutex_unlock(&acpi_desc->init_mutex);
3174 		return 0;
3175 	}
3176 
3177 	/*
3178 	 * Scrub work could take 10s of seconds, userspace may give up so we
3179 	 * need to be interruptible while waiting.
3180 	 */
3181 	INIT_WORK_ONSTACK(&flush.work, flush_probe);
3182 	init_completion(&flush.cmp);
3183 	queue_work(nfit_wq, &flush.work);
3184 	mutex_unlock(&acpi_desc->init_mutex);
3185 
3186 	rc = wait_for_completion_interruptible(&flush.cmp);
3187 	cancel_work_sync(&flush.work);
3188 	return rc;
3189 }
3190 
3191 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3192 		struct nvdimm *nvdimm, unsigned int cmd)
3193 {
3194 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3195 
3196 	if (nvdimm)
3197 		return 0;
3198 	if (cmd != ND_CMD_ARS_START)
3199 		return 0;
3200 
3201 	/*
3202 	 * The kernel and userspace may race to initiate a scrub, but
3203 	 * the scrub thread is prepared to lose that initial race.  It
3204 	 * just needs guarantees that any ars it initiates are not
3205 	 * interrupted by any intervening start reqeusts from userspace.
3206 	 */
3207 	if (work_busy(&acpi_desc->work))
3208 		return -EBUSY;
3209 
3210 	return 0;
3211 }
3212 
3213 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, u8 flags)
3214 {
3215 	struct device *dev = acpi_desc->dev;
3216 	struct nfit_spa *nfit_spa;
3217 
3218 	if (work_busy(&acpi_desc->work))
3219 		return -EBUSY;
3220 
3221 	mutex_lock(&acpi_desc->init_mutex);
3222 	if (acpi_desc->cancel) {
3223 		mutex_unlock(&acpi_desc->init_mutex);
3224 		return 0;
3225 	}
3226 
3227 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3228 		struct acpi_nfit_system_address *spa = nfit_spa->spa;
3229 
3230 		if (nfit_spa_type(spa) != NFIT_SPA_PM)
3231 			continue;
3232 
3233 		nfit_spa->ars_required = 1;
3234 	}
3235 	acpi_desc->ars_start_flags = flags;
3236 	queue_work(nfit_wq, &acpi_desc->work);
3237 	dev_dbg(dev, "%s: ars_scan triggered\n", __func__);
3238 	mutex_unlock(&acpi_desc->init_mutex);
3239 
3240 	return 0;
3241 }
3242 
3243 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3244 {
3245 	struct nvdimm_bus_descriptor *nd_desc;
3246 
3247 	dev_set_drvdata(dev, acpi_desc);
3248 	acpi_desc->dev = dev;
3249 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3250 	nd_desc = &acpi_desc->nd_desc;
3251 	nd_desc->provider_name = "ACPI.NFIT";
3252 	nd_desc->module = THIS_MODULE;
3253 	nd_desc->ndctl = acpi_nfit_ctl;
3254 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3255 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3256 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3257 
3258 	INIT_LIST_HEAD(&acpi_desc->spas);
3259 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3260 	INIT_LIST_HEAD(&acpi_desc->bdws);
3261 	INIT_LIST_HEAD(&acpi_desc->idts);
3262 	INIT_LIST_HEAD(&acpi_desc->flushes);
3263 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3264 	INIT_LIST_HEAD(&acpi_desc->dimms);
3265 	INIT_LIST_HEAD(&acpi_desc->list);
3266 	mutex_init(&acpi_desc->init_mutex);
3267 	INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
3268 }
3269 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3270 
3271 static void acpi_nfit_put_table(void *table)
3272 {
3273 	acpi_put_table(table);
3274 }
3275 
3276 void acpi_nfit_shutdown(void *data)
3277 {
3278 	struct acpi_nfit_desc *acpi_desc = data;
3279 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3280 
3281 	/*
3282 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3283 	 * race teardown
3284 	 */
3285 	mutex_lock(&acpi_desc_lock);
3286 	list_del(&acpi_desc->list);
3287 	mutex_unlock(&acpi_desc_lock);
3288 
3289 	mutex_lock(&acpi_desc->init_mutex);
3290 	acpi_desc->cancel = 1;
3291 	mutex_unlock(&acpi_desc->init_mutex);
3292 
3293 	/*
3294 	 * Bounce the nvdimm bus lock to make sure any in-flight
3295 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3296 	 * either submit or see ->cancel set.
3297 	 */
3298 	device_lock(bus_dev);
3299 	device_unlock(bus_dev);
3300 
3301 	flush_workqueue(nfit_wq);
3302 }
3303 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3304 
3305 static int acpi_nfit_add(struct acpi_device *adev)
3306 {
3307 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3308 	struct acpi_nfit_desc *acpi_desc;
3309 	struct device *dev = &adev->dev;
3310 	struct acpi_table_header *tbl;
3311 	acpi_status status = AE_OK;
3312 	acpi_size sz;
3313 	int rc = 0;
3314 
3315 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3316 	if (ACPI_FAILURE(status)) {
3317 		/* This is ok, we could have an nvdimm hotplugged later */
3318 		dev_dbg(dev, "failed to find NFIT at startup\n");
3319 		return 0;
3320 	}
3321 
3322 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3323 	if (rc)
3324 		return rc;
3325 	sz = tbl->length;
3326 
3327 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3328 	if (!acpi_desc)
3329 		return -ENOMEM;
3330 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3331 
3332 	/* Save the acpi header for exporting the revision via sysfs */
3333 	acpi_desc->acpi_header = *tbl;
3334 
3335 	/* Evaluate _FIT and override with that if present */
3336 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3337 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3338 		union acpi_object *obj = buf.pointer;
3339 
3340 		if (obj->type == ACPI_TYPE_BUFFER)
3341 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3342 					obj->buffer.length);
3343 		else
3344 			dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
3345 				 __func__, (int) obj->type);
3346 		kfree(buf.pointer);
3347 	} else
3348 		/* skip over the lead-in header table */
3349 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3350 				+ sizeof(struct acpi_table_nfit),
3351 				sz - sizeof(struct acpi_table_nfit));
3352 
3353 	if (rc)
3354 		return rc;
3355 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3356 }
3357 
3358 static int acpi_nfit_remove(struct acpi_device *adev)
3359 {
3360 	/* see acpi_nfit_unregister */
3361 	return 0;
3362 }
3363 
3364 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3365 {
3366 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3367 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3368 	union acpi_object *obj;
3369 	acpi_status status;
3370 	int ret;
3371 
3372 	if (!dev->driver) {
3373 		/* dev->driver may be null if we're being removed */
3374 		dev_dbg(dev, "%s: no driver found for dev\n", __func__);
3375 		return;
3376 	}
3377 
3378 	if (!acpi_desc) {
3379 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3380 		if (!acpi_desc)
3381 			return;
3382 		acpi_nfit_desc_init(acpi_desc, dev);
3383 	} else {
3384 		/*
3385 		 * Finish previous registration before considering new
3386 		 * regions.
3387 		 */
3388 		flush_workqueue(nfit_wq);
3389 	}
3390 
3391 	/* Evaluate _FIT */
3392 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3393 	if (ACPI_FAILURE(status)) {
3394 		dev_err(dev, "failed to evaluate _FIT\n");
3395 		return;
3396 	}
3397 
3398 	obj = buf.pointer;
3399 	if (obj->type == ACPI_TYPE_BUFFER) {
3400 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3401 				obj->buffer.length);
3402 		if (ret)
3403 			dev_err(dev, "failed to merge updated NFIT\n");
3404 	} else
3405 		dev_err(dev, "Invalid _FIT\n");
3406 	kfree(buf.pointer);
3407 }
3408 
3409 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3410 {
3411 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3412 	u8 flags = (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) ?
3413 			0 : ND_ARS_RETURN_PREV_DATA;
3414 
3415 	acpi_nfit_ars_rescan(acpi_desc, flags);
3416 }
3417 
3418 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3419 {
3420 	dev_dbg(dev, "%s: event: 0x%x\n", __func__, event);
3421 
3422 	switch (event) {
3423 	case NFIT_NOTIFY_UPDATE:
3424 		return acpi_nfit_update_notify(dev, handle);
3425 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3426 		return acpi_nfit_uc_error_notify(dev, handle);
3427 	default:
3428 		return;
3429 	}
3430 }
3431 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3432 
3433 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3434 {
3435 	device_lock(&adev->dev);
3436 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3437 	device_unlock(&adev->dev);
3438 }
3439 
3440 static const struct acpi_device_id acpi_nfit_ids[] = {
3441 	{ "ACPI0012", 0 },
3442 	{ "", 0 },
3443 };
3444 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3445 
3446 static struct acpi_driver acpi_nfit_driver = {
3447 	.name = KBUILD_MODNAME,
3448 	.ids = acpi_nfit_ids,
3449 	.ops = {
3450 		.add = acpi_nfit_add,
3451 		.remove = acpi_nfit_remove,
3452 		.notify = acpi_nfit_notify,
3453 	},
3454 };
3455 
3456 static __init int nfit_init(void)
3457 {
3458 	int ret;
3459 
3460 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3461 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3462 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3463 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3464 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3465 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3466 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3467 
3468 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3469 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3470 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3471 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3472 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3473 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3474 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3475 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3476 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3477 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3478 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3479 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3480 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3481 
3482 	nfit_wq = create_singlethread_workqueue("nfit");
3483 	if (!nfit_wq)
3484 		return -ENOMEM;
3485 
3486 	nfit_mce_register();
3487 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3488 	if (ret) {
3489 		nfit_mce_unregister();
3490 		destroy_workqueue(nfit_wq);
3491 	}
3492 
3493 	return ret;
3494 
3495 }
3496 
3497 static __exit void nfit_exit(void)
3498 {
3499 	nfit_mce_unregister();
3500 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3501 	destroy_workqueue(nfit_wq);
3502 	WARN_ON(!list_empty(&acpi_descs));
3503 }
3504 
3505 module_init(nfit_init);
3506 module_exit(nfit_exit);
3507 MODULE_LICENSE("GPL v2");
3508 MODULE_AUTHOR("Intel Corporation");
3509