xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision bc05aa6e)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include "nfit.h"
27 
28 /*
29  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
30  * irrelevant.
31  */
32 #include <linux/io-64-nonatomic-hi-lo.h>
33 
34 static bool force_enable_dimms;
35 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
36 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
37 
38 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
39 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
40 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
41 
42 /* after three payloads of overflow, it's dead jim */
43 static unsigned int scrub_overflow_abort = 3;
44 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
45 MODULE_PARM_DESC(scrub_overflow_abort,
46 		"Number of times we overflow ARS results before abort");
47 
48 static bool disable_vendor_specific;
49 module_param(disable_vendor_specific, bool, S_IRUGO);
50 MODULE_PARM_DESC(disable_vendor_specific,
51 		"Limit commands to the publicly specified set");
52 
53 static unsigned long override_dsm_mask;
54 module_param(override_dsm_mask, ulong, S_IRUGO);
55 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
56 
57 static int default_dsm_family = -1;
58 module_param(default_dsm_family, int, S_IRUGO);
59 MODULE_PARM_DESC(default_dsm_family,
60 		"Try this DSM type first when identifying NVDIMM family");
61 
62 LIST_HEAD(acpi_descs);
63 DEFINE_MUTEX(acpi_desc_lock);
64 
65 static struct workqueue_struct *nfit_wq;
66 
67 struct nfit_table_prev {
68 	struct list_head spas;
69 	struct list_head memdevs;
70 	struct list_head dcrs;
71 	struct list_head bdws;
72 	struct list_head idts;
73 	struct list_head flushes;
74 };
75 
76 static guid_t nfit_uuid[NFIT_UUID_MAX];
77 
78 const guid_t *to_nfit_uuid(enum nfit_uuids id)
79 {
80 	return &nfit_uuid[id];
81 }
82 EXPORT_SYMBOL(to_nfit_uuid);
83 
84 static struct acpi_nfit_desc *to_acpi_nfit_desc(
85 		struct nvdimm_bus_descriptor *nd_desc)
86 {
87 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
88 }
89 
90 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
91 {
92 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
93 
94 	/*
95 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
96 	 * acpi_device.
97 	 */
98 	if (!nd_desc->provider_name
99 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
100 		return NULL;
101 
102 	return to_acpi_device(acpi_desc->dev);
103 }
104 
105 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
106 {
107 	struct nd_cmd_clear_error *clear_err;
108 	struct nd_cmd_ars_status *ars_status;
109 	u16 flags;
110 
111 	switch (cmd) {
112 	case ND_CMD_ARS_CAP:
113 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
114 			return -ENOTTY;
115 
116 		/* Command failed */
117 		if (status & 0xffff)
118 			return -EIO;
119 
120 		/* No supported scan types for this range */
121 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
122 		if ((status >> 16 & flags) == 0)
123 			return -ENOTTY;
124 		return 0;
125 	case ND_CMD_ARS_START:
126 		/* ARS is in progress */
127 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
128 			return -EBUSY;
129 
130 		/* Command failed */
131 		if (status & 0xffff)
132 			return -EIO;
133 		return 0;
134 	case ND_CMD_ARS_STATUS:
135 		ars_status = buf;
136 		/* Command failed */
137 		if (status & 0xffff)
138 			return -EIO;
139 		/* Check extended status (Upper two bytes) */
140 		if (status == NFIT_ARS_STATUS_DONE)
141 			return 0;
142 
143 		/* ARS is in progress */
144 		if (status == NFIT_ARS_STATUS_BUSY)
145 			return -EBUSY;
146 
147 		/* No ARS performed for the current boot */
148 		if (status == NFIT_ARS_STATUS_NONE)
149 			return -EAGAIN;
150 
151 		/*
152 		 * ARS interrupted, either we overflowed or some other
153 		 * agent wants the scan to stop.  If we didn't overflow
154 		 * then just continue with the returned results.
155 		 */
156 		if (status == NFIT_ARS_STATUS_INTR) {
157 			if (ars_status->out_length >= 40 && (ars_status->flags
158 						& NFIT_ARS_F_OVERFLOW))
159 				return -ENOSPC;
160 			return 0;
161 		}
162 
163 		/* Unknown status */
164 		if (status >> 16)
165 			return -EIO;
166 		return 0;
167 	case ND_CMD_CLEAR_ERROR:
168 		clear_err = buf;
169 		if (status & 0xffff)
170 			return -EIO;
171 		if (!clear_err->cleared)
172 			return -EIO;
173 		if (clear_err->length > clear_err->cleared)
174 			return clear_err->cleared;
175 		return 0;
176 	default:
177 		break;
178 	}
179 
180 	/* all other non-zero status results in an error */
181 	if (status)
182 		return -EIO;
183 	return 0;
184 }
185 
186 #define ACPI_LABELS_LOCKED 3
187 
188 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
189 		u32 status)
190 {
191 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
192 
193 	switch (cmd) {
194 	case ND_CMD_GET_CONFIG_SIZE:
195 		/*
196 		 * In the _LSI, _LSR, _LSW case the locked status is
197 		 * communicated via the read/write commands
198 		 */
199 		if (nfit_mem->has_lsi)
200 			break;
201 
202 		if (status >> 16 & ND_CONFIG_LOCKED)
203 			return -EACCES;
204 		break;
205 	case ND_CMD_GET_CONFIG_DATA:
206 		if (nfit_mem->has_lsr && status == ACPI_LABELS_LOCKED)
207 			return -EACCES;
208 		break;
209 	case ND_CMD_SET_CONFIG_DATA:
210 		if (nfit_mem->has_lsw && status == ACPI_LABELS_LOCKED)
211 			return -EACCES;
212 		break;
213 	default:
214 		break;
215 	}
216 
217 	/* all other non-zero status results in an error */
218 	if (status)
219 		return -EIO;
220 	return 0;
221 }
222 
223 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
224 		u32 status)
225 {
226 	if (!nvdimm)
227 		return xlat_bus_status(buf, cmd, status);
228 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
229 }
230 
231 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
232 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
233 {
234 	int i;
235 	void *dst;
236 	size_t size = 0;
237 	union acpi_object *buf = NULL;
238 
239 	if (pkg->type != ACPI_TYPE_PACKAGE) {
240 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
241 				pkg->type);
242 		goto err;
243 	}
244 
245 	for (i = 0; i < pkg->package.count; i++) {
246 		union acpi_object *obj = &pkg->package.elements[i];
247 
248 		if (obj->type == ACPI_TYPE_INTEGER)
249 			size += 4;
250 		else if (obj->type == ACPI_TYPE_BUFFER)
251 			size += obj->buffer.length;
252 		else {
253 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
254 					obj->type);
255 			goto err;
256 		}
257 	}
258 
259 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
260 	if (!buf)
261 		goto err;
262 
263 	dst = buf + 1;
264 	buf->type = ACPI_TYPE_BUFFER;
265 	buf->buffer.length = size;
266 	buf->buffer.pointer = dst;
267 	for (i = 0; i < pkg->package.count; i++) {
268 		union acpi_object *obj = &pkg->package.elements[i];
269 
270 		if (obj->type == ACPI_TYPE_INTEGER) {
271 			memcpy(dst, &obj->integer.value, 4);
272 			dst += 4;
273 		} else if (obj->type == ACPI_TYPE_BUFFER) {
274 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
275 			dst += obj->buffer.length;
276 		}
277 	}
278 err:
279 	ACPI_FREE(pkg);
280 	return buf;
281 }
282 
283 static union acpi_object *int_to_buf(union acpi_object *integer)
284 {
285 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
286 	void *dst = NULL;
287 
288 	if (!buf)
289 		goto err;
290 
291 	if (integer->type != ACPI_TYPE_INTEGER) {
292 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
293 				integer->type);
294 		goto err;
295 	}
296 
297 	dst = buf + 1;
298 	buf->type = ACPI_TYPE_BUFFER;
299 	buf->buffer.length = 4;
300 	buf->buffer.pointer = dst;
301 	memcpy(dst, &integer->integer.value, 4);
302 err:
303 	ACPI_FREE(integer);
304 	return buf;
305 }
306 
307 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
308 		u32 len, void *data)
309 {
310 	acpi_status rc;
311 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
312 	struct acpi_object_list input = {
313 		.count = 3,
314 		.pointer = (union acpi_object []) {
315 			[0] = {
316 				.integer.type = ACPI_TYPE_INTEGER,
317 				.integer.value = offset,
318 			},
319 			[1] = {
320 				.integer.type = ACPI_TYPE_INTEGER,
321 				.integer.value = len,
322 			},
323 			[2] = {
324 				.buffer.type = ACPI_TYPE_BUFFER,
325 				.buffer.pointer = data,
326 				.buffer.length = len,
327 			},
328 		},
329 	};
330 
331 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
332 	if (ACPI_FAILURE(rc))
333 		return NULL;
334 	return int_to_buf(buf.pointer);
335 }
336 
337 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
338 		u32 len)
339 {
340 	acpi_status rc;
341 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
342 	struct acpi_object_list input = {
343 		.count = 2,
344 		.pointer = (union acpi_object []) {
345 			[0] = {
346 				.integer.type = ACPI_TYPE_INTEGER,
347 				.integer.value = offset,
348 			},
349 			[1] = {
350 				.integer.type = ACPI_TYPE_INTEGER,
351 				.integer.value = len,
352 			},
353 		},
354 	};
355 
356 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
357 	if (ACPI_FAILURE(rc))
358 		return NULL;
359 	return pkg_to_buf(buf.pointer);
360 }
361 
362 static union acpi_object *acpi_label_info(acpi_handle handle)
363 {
364 	acpi_status rc;
365 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
366 
367 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
368 	if (ACPI_FAILURE(rc))
369 		return NULL;
370 	return pkg_to_buf(buf.pointer);
371 }
372 
373 static u8 nfit_dsm_revid(unsigned family, unsigned func)
374 {
375 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
376 		[NVDIMM_FAMILY_INTEL] = {
377 			[NVDIMM_INTEL_GET_MODES] = 2,
378 			[NVDIMM_INTEL_GET_FWINFO] = 2,
379 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
380 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
381 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
382 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
383 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
384 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
385 		},
386 	};
387 	u8 id;
388 
389 	if (family > NVDIMM_FAMILY_MAX)
390 		return 0;
391 	if (func > 31)
392 		return 0;
393 	id = revid_table[family][func];
394 	if (id == 0)
395 		return 1; /* default */
396 	return id;
397 }
398 
399 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
400 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
401 {
402 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
403 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
404 	union acpi_object in_obj, in_buf, *out_obj;
405 	const struct nd_cmd_desc *desc = NULL;
406 	struct device *dev = acpi_desc->dev;
407 	struct nd_cmd_pkg *call_pkg = NULL;
408 	const char *cmd_name, *dimm_name;
409 	unsigned long cmd_mask, dsm_mask;
410 	u32 offset, fw_status = 0;
411 	acpi_handle handle;
412 	unsigned int func;
413 	const guid_t *guid;
414 	int rc, i;
415 
416 	func = cmd;
417 	if (cmd == ND_CMD_CALL) {
418 		call_pkg = buf;
419 		func = call_pkg->nd_command;
420 
421 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
422 			if (call_pkg->nd_reserved2[i])
423 				return -EINVAL;
424 	}
425 
426 	if (nvdimm) {
427 		struct acpi_device *adev = nfit_mem->adev;
428 
429 		if (!adev)
430 			return -ENOTTY;
431 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
432 			return -ENOTTY;
433 
434 		dimm_name = nvdimm_name(nvdimm);
435 		cmd_name = nvdimm_cmd_name(cmd);
436 		cmd_mask = nvdimm_cmd_mask(nvdimm);
437 		dsm_mask = nfit_mem->dsm_mask;
438 		desc = nd_cmd_dimm_desc(cmd);
439 		guid = to_nfit_uuid(nfit_mem->family);
440 		handle = adev->handle;
441 	} else {
442 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
443 
444 		cmd_name = nvdimm_bus_cmd_name(cmd);
445 		cmd_mask = nd_desc->cmd_mask;
446 		dsm_mask = cmd_mask;
447 		if (cmd == ND_CMD_CALL)
448 			dsm_mask = nd_desc->bus_dsm_mask;
449 		desc = nd_cmd_bus_desc(cmd);
450 		guid = to_nfit_uuid(NFIT_DEV_BUS);
451 		handle = adev->handle;
452 		dimm_name = "bus";
453 	}
454 
455 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
456 		return -ENOTTY;
457 
458 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
459 		return -ENOTTY;
460 
461 	in_obj.type = ACPI_TYPE_PACKAGE;
462 	in_obj.package.count = 1;
463 	in_obj.package.elements = &in_buf;
464 	in_buf.type = ACPI_TYPE_BUFFER;
465 	in_buf.buffer.pointer = buf;
466 	in_buf.buffer.length = 0;
467 
468 	/* libnvdimm has already validated the input envelope */
469 	for (i = 0; i < desc->in_num; i++)
470 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
471 				i, buf);
472 
473 	if (call_pkg) {
474 		/* skip over package wrapper */
475 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
476 		in_buf.buffer.length = call_pkg->nd_size_in;
477 	}
478 
479 	dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n",
480 			__func__, dimm_name, cmd, func, in_buf.buffer.length);
481 	print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
482 			in_buf.buffer.pointer,
483 			min_t(u32, 256, in_buf.buffer.length), true);
484 
485 	/* call the BIOS, prefer the named methods over _DSM if available */
486 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE && nfit_mem->has_lsi)
487 		out_obj = acpi_label_info(handle);
488 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && nfit_mem->has_lsr) {
489 		struct nd_cmd_get_config_data_hdr *p = buf;
490 
491 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
492 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
493 			&& nfit_mem->has_lsw) {
494 		struct nd_cmd_set_config_hdr *p = buf;
495 
496 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
497 				p->in_buf);
498 	} else {
499 		u8 revid;
500 
501 		if (nvdimm)
502 			revid = nfit_dsm_revid(nfit_mem->family, func);
503 		else
504 			revid = 1;
505 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
506 	}
507 
508 	if (!out_obj) {
509 		dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
510 				cmd_name);
511 		return -EINVAL;
512 	}
513 
514 	if (call_pkg) {
515 		call_pkg->nd_fw_size = out_obj->buffer.length;
516 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
517 			out_obj->buffer.pointer,
518 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
519 
520 		ACPI_FREE(out_obj);
521 		/*
522 		 * Need to support FW function w/o known size in advance.
523 		 * Caller can determine required size based upon nd_fw_size.
524 		 * If we return an error (like elsewhere) then caller wouldn't
525 		 * be able to rely upon data returned to make calculation.
526 		 */
527 		return 0;
528 	}
529 
530 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
531 		dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n",
532 				__func__, dimm_name, cmd_name, out_obj->type);
533 		rc = -EINVAL;
534 		goto out;
535 	}
536 
537 	dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__, dimm_name,
538 			cmd_name, out_obj->buffer.length);
539 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
540 			out_obj->buffer.pointer,
541 			min_t(u32, 128, out_obj->buffer.length), true);
542 
543 	for (i = 0, offset = 0; i < desc->out_num; i++) {
544 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
545 				(u32 *) out_obj->buffer.pointer,
546 				out_obj->buffer.length - offset);
547 
548 		if (offset + out_size > out_obj->buffer.length) {
549 			dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
550 					__func__, dimm_name, cmd_name, i);
551 			break;
552 		}
553 
554 		if (in_buf.buffer.length + offset + out_size > buf_len) {
555 			dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
556 					__func__, dimm_name, cmd_name, i);
557 			rc = -ENXIO;
558 			goto out;
559 		}
560 		memcpy(buf + in_buf.buffer.length + offset,
561 				out_obj->buffer.pointer + offset, out_size);
562 		offset += out_size;
563 	}
564 
565 	/*
566 	 * Set fw_status for all the commands with a known format to be
567 	 * later interpreted by xlat_status().
568 	 */
569 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
570 					&& cmd <= ND_CMD_CLEAR_ERROR)
571 				|| (nvdimm && cmd >= ND_CMD_SMART
572 					&& cmd <= ND_CMD_VENDOR)))
573 		fw_status = *(u32 *) out_obj->buffer.pointer;
574 
575 	if (offset + in_buf.buffer.length < buf_len) {
576 		if (i >= 1) {
577 			/*
578 			 * status valid, return the number of bytes left
579 			 * unfilled in the output buffer
580 			 */
581 			rc = buf_len - offset - in_buf.buffer.length;
582 			if (cmd_rc)
583 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
584 						fw_status);
585 		} else {
586 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
587 					__func__, dimm_name, cmd_name, buf_len,
588 					offset);
589 			rc = -ENXIO;
590 		}
591 	} else {
592 		rc = 0;
593 		if (cmd_rc)
594 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
595 	}
596 
597  out:
598 	ACPI_FREE(out_obj);
599 
600 	return rc;
601 }
602 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
603 
604 static const char *spa_type_name(u16 type)
605 {
606 	static const char *to_name[] = {
607 		[NFIT_SPA_VOLATILE] = "volatile",
608 		[NFIT_SPA_PM] = "pmem",
609 		[NFIT_SPA_DCR] = "dimm-control-region",
610 		[NFIT_SPA_BDW] = "block-data-window",
611 		[NFIT_SPA_VDISK] = "volatile-disk",
612 		[NFIT_SPA_VCD] = "volatile-cd",
613 		[NFIT_SPA_PDISK] = "persistent-disk",
614 		[NFIT_SPA_PCD] = "persistent-cd",
615 
616 	};
617 
618 	if (type > NFIT_SPA_PCD)
619 		return "unknown";
620 
621 	return to_name[type];
622 }
623 
624 int nfit_spa_type(struct acpi_nfit_system_address *spa)
625 {
626 	int i;
627 
628 	for (i = 0; i < NFIT_UUID_MAX; i++)
629 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
630 			return i;
631 	return -1;
632 }
633 
634 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
635 		struct nfit_table_prev *prev,
636 		struct acpi_nfit_system_address *spa)
637 {
638 	struct device *dev = acpi_desc->dev;
639 	struct nfit_spa *nfit_spa;
640 
641 	if (spa->header.length != sizeof(*spa))
642 		return false;
643 
644 	list_for_each_entry(nfit_spa, &prev->spas, list) {
645 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
646 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
647 			return true;
648 		}
649 	}
650 
651 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
652 			GFP_KERNEL);
653 	if (!nfit_spa)
654 		return false;
655 	INIT_LIST_HEAD(&nfit_spa->list);
656 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
657 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
658 	dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
659 			spa->range_index,
660 			spa_type_name(nfit_spa_type(spa)));
661 	return true;
662 }
663 
664 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
665 		struct nfit_table_prev *prev,
666 		struct acpi_nfit_memory_map *memdev)
667 {
668 	struct device *dev = acpi_desc->dev;
669 	struct nfit_memdev *nfit_memdev;
670 
671 	if (memdev->header.length != sizeof(*memdev))
672 		return false;
673 
674 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
675 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
676 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
677 			return true;
678 		}
679 
680 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
681 			GFP_KERNEL);
682 	if (!nfit_memdev)
683 		return false;
684 	INIT_LIST_HEAD(&nfit_memdev->list);
685 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
686 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
687 	dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
688 			__func__, memdev->device_handle, memdev->range_index,
689 			memdev->region_index, memdev->flags);
690 	return true;
691 }
692 
693 /*
694  * An implementation may provide a truncated control region if no block windows
695  * are defined.
696  */
697 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
698 {
699 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
700 				window_size))
701 		return 0;
702 	if (dcr->windows)
703 		return sizeof(*dcr);
704 	return offsetof(struct acpi_nfit_control_region, window_size);
705 }
706 
707 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
708 		struct nfit_table_prev *prev,
709 		struct acpi_nfit_control_region *dcr)
710 {
711 	struct device *dev = acpi_desc->dev;
712 	struct nfit_dcr *nfit_dcr;
713 
714 	if (!sizeof_dcr(dcr))
715 		return false;
716 
717 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
718 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
719 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
720 			return true;
721 		}
722 
723 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
724 			GFP_KERNEL);
725 	if (!nfit_dcr)
726 		return false;
727 	INIT_LIST_HEAD(&nfit_dcr->list);
728 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
729 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
730 	dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
731 			dcr->region_index, dcr->windows);
732 	return true;
733 }
734 
735 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
736 		struct nfit_table_prev *prev,
737 		struct acpi_nfit_data_region *bdw)
738 {
739 	struct device *dev = acpi_desc->dev;
740 	struct nfit_bdw *nfit_bdw;
741 
742 	if (bdw->header.length != sizeof(*bdw))
743 		return false;
744 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
745 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
746 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
747 			return true;
748 		}
749 
750 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
751 			GFP_KERNEL);
752 	if (!nfit_bdw)
753 		return false;
754 	INIT_LIST_HEAD(&nfit_bdw->list);
755 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
756 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
757 	dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
758 			bdw->region_index, bdw->windows);
759 	return true;
760 }
761 
762 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
763 {
764 	if (idt->header.length < sizeof(*idt))
765 		return 0;
766 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
767 }
768 
769 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
770 		struct nfit_table_prev *prev,
771 		struct acpi_nfit_interleave *idt)
772 {
773 	struct device *dev = acpi_desc->dev;
774 	struct nfit_idt *nfit_idt;
775 
776 	if (!sizeof_idt(idt))
777 		return false;
778 
779 	list_for_each_entry(nfit_idt, &prev->idts, list) {
780 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
781 			continue;
782 
783 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
784 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
785 			return true;
786 		}
787 	}
788 
789 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
790 			GFP_KERNEL);
791 	if (!nfit_idt)
792 		return false;
793 	INIT_LIST_HEAD(&nfit_idt->list);
794 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
795 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
796 	dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
797 			idt->interleave_index, idt->line_count);
798 	return true;
799 }
800 
801 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
802 {
803 	if (flush->header.length < sizeof(*flush))
804 		return 0;
805 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
806 }
807 
808 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
809 		struct nfit_table_prev *prev,
810 		struct acpi_nfit_flush_address *flush)
811 {
812 	struct device *dev = acpi_desc->dev;
813 	struct nfit_flush *nfit_flush;
814 
815 	if (!sizeof_flush(flush))
816 		return false;
817 
818 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
819 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
820 			continue;
821 
822 		if (memcmp(nfit_flush->flush, flush,
823 					sizeof_flush(flush)) == 0) {
824 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
825 			return true;
826 		}
827 	}
828 
829 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
830 			+ sizeof_flush(flush), GFP_KERNEL);
831 	if (!nfit_flush)
832 		return false;
833 	INIT_LIST_HEAD(&nfit_flush->list);
834 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
835 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
836 	dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
837 			flush->device_handle, flush->hint_count);
838 	return true;
839 }
840 
841 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
842 		struct acpi_nfit_capabilities *pcap)
843 {
844 	struct device *dev = acpi_desc->dev;
845 	u32 mask;
846 
847 	mask = (1 << (pcap->highest_capability + 1)) - 1;
848 	acpi_desc->platform_cap = pcap->capabilities & mask;
849 	dev_dbg(dev, "%s: cap: %#x\n", __func__, acpi_desc->platform_cap);
850 	return true;
851 }
852 
853 static void *add_table(struct acpi_nfit_desc *acpi_desc,
854 		struct nfit_table_prev *prev, void *table, const void *end)
855 {
856 	struct device *dev = acpi_desc->dev;
857 	struct acpi_nfit_header *hdr;
858 	void *err = ERR_PTR(-ENOMEM);
859 
860 	if (table >= end)
861 		return NULL;
862 
863 	hdr = table;
864 	if (!hdr->length) {
865 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
866 			hdr->type);
867 		return NULL;
868 	}
869 
870 	switch (hdr->type) {
871 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
872 		if (!add_spa(acpi_desc, prev, table))
873 			return err;
874 		break;
875 	case ACPI_NFIT_TYPE_MEMORY_MAP:
876 		if (!add_memdev(acpi_desc, prev, table))
877 			return err;
878 		break;
879 	case ACPI_NFIT_TYPE_CONTROL_REGION:
880 		if (!add_dcr(acpi_desc, prev, table))
881 			return err;
882 		break;
883 	case ACPI_NFIT_TYPE_DATA_REGION:
884 		if (!add_bdw(acpi_desc, prev, table))
885 			return err;
886 		break;
887 	case ACPI_NFIT_TYPE_INTERLEAVE:
888 		if (!add_idt(acpi_desc, prev, table))
889 			return err;
890 		break;
891 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
892 		if (!add_flush(acpi_desc, prev, table))
893 			return err;
894 		break;
895 	case ACPI_NFIT_TYPE_SMBIOS:
896 		dev_dbg(dev, "%s: smbios\n", __func__);
897 		break;
898 	case ACPI_NFIT_TYPE_CAPABILITIES:
899 		if (!add_platform_cap(acpi_desc, table))
900 			return err;
901 		break;
902 	default:
903 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
904 		break;
905 	}
906 
907 	return table + hdr->length;
908 }
909 
910 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
911 		struct nfit_mem *nfit_mem)
912 {
913 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
914 	u16 dcr = nfit_mem->dcr->region_index;
915 	struct nfit_spa *nfit_spa;
916 
917 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
918 		u16 range_index = nfit_spa->spa->range_index;
919 		int type = nfit_spa_type(nfit_spa->spa);
920 		struct nfit_memdev *nfit_memdev;
921 
922 		if (type != NFIT_SPA_BDW)
923 			continue;
924 
925 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
926 			if (nfit_memdev->memdev->range_index != range_index)
927 				continue;
928 			if (nfit_memdev->memdev->device_handle != device_handle)
929 				continue;
930 			if (nfit_memdev->memdev->region_index != dcr)
931 				continue;
932 
933 			nfit_mem->spa_bdw = nfit_spa->spa;
934 			return;
935 		}
936 	}
937 
938 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
939 			nfit_mem->spa_dcr->range_index);
940 	nfit_mem->bdw = NULL;
941 }
942 
943 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
944 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
945 {
946 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
947 	struct nfit_memdev *nfit_memdev;
948 	struct nfit_bdw *nfit_bdw;
949 	struct nfit_idt *nfit_idt;
950 	u16 idt_idx, range_index;
951 
952 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
953 		if (nfit_bdw->bdw->region_index != dcr)
954 			continue;
955 		nfit_mem->bdw = nfit_bdw->bdw;
956 		break;
957 	}
958 
959 	if (!nfit_mem->bdw)
960 		return;
961 
962 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
963 
964 	if (!nfit_mem->spa_bdw)
965 		return;
966 
967 	range_index = nfit_mem->spa_bdw->range_index;
968 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
969 		if (nfit_memdev->memdev->range_index != range_index ||
970 				nfit_memdev->memdev->region_index != dcr)
971 			continue;
972 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
973 		idt_idx = nfit_memdev->memdev->interleave_index;
974 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
975 			if (nfit_idt->idt->interleave_index != idt_idx)
976 				continue;
977 			nfit_mem->idt_bdw = nfit_idt->idt;
978 			break;
979 		}
980 		break;
981 	}
982 }
983 
984 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
985 		struct acpi_nfit_system_address *spa)
986 {
987 	struct nfit_mem *nfit_mem, *found;
988 	struct nfit_memdev *nfit_memdev;
989 	int type = spa ? nfit_spa_type(spa) : 0;
990 
991 	switch (type) {
992 	case NFIT_SPA_DCR:
993 	case NFIT_SPA_PM:
994 		break;
995 	default:
996 		if (spa)
997 			return 0;
998 	}
999 
1000 	/*
1001 	 * This loop runs in two modes, when a dimm is mapped the loop
1002 	 * adds memdev associations to an existing dimm, or creates a
1003 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1004 	 * instances with an invalid / zero range_index and adds those
1005 	 * dimms without spa associations.
1006 	 */
1007 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1008 		struct nfit_flush *nfit_flush;
1009 		struct nfit_dcr *nfit_dcr;
1010 		u32 device_handle;
1011 		u16 dcr;
1012 
1013 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1014 			continue;
1015 		if (!spa && nfit_memdev->memdev->range_index)
1016 			continue;
1017 		found = NULL;
1018 		dcr = nfit_memdev->memdev->region_index;
1019 		device_handle = nfit_memdev->memdev->device_handle;
1020 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1021 			if (__to_nfit_memdev(nfit_mem)->device_handle
1022 					== device_handle) {
1023 				found = nfit_mem;
1024 				break;
1025 			}
1026 
1027 		if (found)
1028 			nfit_mem = found;
1029 		else {
1030 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1031 					sizeof(*nfit_mem), GFP_KERNEL);
1032 			if (!nfit_mem)
1033 				return -ENOMEM;
1034 			INIT_LIST_HEAD(&nfit_mem->list);
1035 			nfit_mem->acpi_desc = acpi_desc;
1036 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1037 		}
1038 
1039 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1040 			if (nfit_dcr->dcr->region_index != dcr)
1041 				continue;
1042 			/*
1043 			 * Record the control region for the dimm.  For
1044 			 * the ACPI 6.1 case, where there are separate
1045 			 * control regions for the pmem vs blk
1046 			 * interfaces, be sure to record the extended
1047 			 * blk details.
1048 			 */
1049 			if (!nfit_mem->dcr)
1050 				nfit_mem->dcr = nfit_dcr->dcr;
1051 			else if (nfit_mem->dcr->windows == 0
1052 					&& nfit_dcr->dcr->windows)
1053 				nfit_mem->dcr = nfit_dcr->dcr;
1054 			break;
1055 		}
1056 
1057 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1058 			struct acpi_nfit_flush_address *flush;
1059 			u16 i;
1060 
1061 			if (nfit_flush->flush->device_handle != device_handle)
1062 				continue;
1063 			nfit_mem->nfit_flush = nfit_flush;
1064 			flush = nfit_flush->flush;
1065 			nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
1066 					flush->hint_count
1067 					* sizeof(struct resource), GFP_KERNEL);
1068 			if (!nfit_mem->flush_wpq)
1069 				return -ENOMEM;
1070 			for (i = 0; i < flush->hint_count; i++) {
1071 				struct resource *res = &nfit_mem->flush_wpq[i];
1072 
1073 				res->start = flush->hint_address[i];
1074 				res->end = res->start + 8 - 1;
1075 			}
1076 			break;
1077 		}
1078 
1079 		if (dcr && !nfit_mem->dcr) {
1080 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1081 					spa->range_index, dcr);
1082 			return -ENODEV;
1083 		}
1084 
1085 		if (type == NFIT_SPA_DCR) {
1086 			struct nfit_idt *nfit_idt;
1087 			u16 idt_idx;
1088 
1089 			/* multiple dimms may share a SPA when interleaved */
1090 			nfit_mem->spa_dcr = spa;
1091 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1092 			idt_idx = nfit_memdev->memdev->interleave_index;
1093 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1094 				if (nfit_idt->idt->interleave_index != idt_idx)
1095 					continue;
1096 				nfit_mem->idt_dcr = nfit_idt->idt;
1097 				break;
1098 			}
1099 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1100 		} else if (type == NFIT_SPA_PM) {
1101 			/*
1102 			 * A single dimm may belong to multiple SPA-PM
1103 			 * ranges, record at least one in addition to
1104 			 * any SPA-DCR range.
1105 			 */
1106 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1107 		} else
1108 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1115 {
1116 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1117 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1118 	u32 handleA, handleB;
1119 
1120 	handleA = __to_nfit_memdev(a)->device_handle;
1121 	handleB = __to_nfit_memdev(b)->device_handle;
1122 	if (handleA < handleB)
1123 		return -1;
1124 	else if (handleA > handleB)
1125 		return 1;
1126 	return 0;
1127 }
1128 
1129 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1130 {
1131 	struct nfit_spa *nfit_spa;
1132 	int rc;
1133 
1134 
1135 	/*
1136 	 * For each SPA-DCR or SPA-PMEM address range find its
1137 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1138 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1139 	 * try to find a SPA-BDW and a corresponding BDW that references
1140 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1141 	 * BDWs are optional.
1142 	 */
1143 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1144 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1145 		if (rc)
1146 			return rc;
1147 	}
1148 
1149 	/*
1150 	 * If a DIMM has failed to be mapped into SPA there will be no
1151 	 * SPA entries above. Find and register all the unmapped DIMMs
1152 	 * for reporting and recovery purposes.
1153 	 */
1154 	rc = __nfit_mem_init(acpi_desc, NULL);
1155 	if (rc)
1156 		return rc;
1157 
1158 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1159 
1160 	return 0;
1161 }
1162 
1163 static ssize_t bus_dsm_mask_show(struct device *dev,
1164 		struct device_attribute *attr, char *buf)
1165 {
1166 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1167 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1168 
1169 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1170 }
1171 static struct device_attribute dev_attr_bus_dsm_mask =
1172 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1173 
1174 static ssize_t revision_show(struct device *dev,
1175 		struct device_attribute *attr, char *buf)
1176 {
1177 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1178 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1179 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1180 
1181 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1182 }
1183 static DEVICE_ATTR_RO(revision);
1184 
1185 static ssize_t hw_error_scrub_show(struct device *dev,
1186 		struct device_attribute *attr, char *buf)
1187 {
1188 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1189 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1190 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1191 
1192 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1193 }
1194 
1195 /*
1196  * The 'hw_error_scrub' attribute can have the following values written to it:
1197  * '0': Switch to the default mode where an exception will only insert
1198  *      the address of the memory error into the poison and badblocks lists.
1199  * '1': Enable a full scrub to happen if an exception for a memory error is
1200  *      received.
1201  */
1202 static ssize_t hw_error_scrub_store(struct device *dev,
1203 		struct device_attribute *attr, const char *buf, size_t size)
1204 {
1205 	struct nvdimm_bus_descriptor *nd_desc;
1206 	ssize_t rc;
1207 	long val;
1208 
1209 	rc = kstrtol(buf, 0, &val);
1210 	if (rc)
1211 		return rc;
1212 
1213 	device_lock(dev);
1214 	nd_desc = dev_get_drvdata(dev);
1215 	if (nd_desc) {
1216 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1217 
1218 		switch (val) {
1219 		case HW_ERROR_SCRUB_ON:
1220 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1221 			break;
1222 		case HW_ERROR_SCRUB_OFF:
1223 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1224 			break;
1225 		default:
1226 			rc = -EINVAL;
1227 			break;
1228 		}
1229 	}
1230 	device_unlock(dev);
1231 	if (rc)
1232 		return rc;
1233 	return size;
1234 }
1235 static DEVICE_ATTR_RW(hw_error_scrub);
1236 
1237 /*
1238  * This shows the number of full Address Range Scrubs that have been
1239  * completed since driver load time. Userspace can wait on this using
1240  * select/poll etc. A '+' at the end indicates an ARS is in progress
1241  */
1242 static ssize_t scrub_show(struct device *dev,
1243 		struct device_attribute *attr, char *buf)
1244 {
1245 	struct nvdimm_bus_descriptor *nd_desc;
1246 	ssize_t rc = -ENXIO;
1247 
1248 	device_lock(dev);
1249 	nd_desc = dev_get_drvdata(dev);
1250 	if (nd_desc) {
1251 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1252 
1253 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1254 				(work_busy(&acpi_desc->work)) ? "+\n" : "\n");
1255 	}
1256 	device_unlock(dev);
1257 	return rc;
1258 }
1259 
1260 static ssize_t scrub_store(struct device *dev,
1261 		struct device_attribute *attr, const char *buf, size_t size)
1262 {
1263 	struct nvdimm_bus_descriptor *nd_desc;
1264 	ssize_t rc;
1265 	long val;
1266 
1267 	rc = kstrtol(buf, 0, &val);
1268 	if (rc)
1269 		return rc;
1270 	if (val != 1)
1271 		return -EINVAL;
1272 
1273 	device_lock(dev);
1274 	nd_desc = dev_get_drvdata(dev);
1275 	if (nd_desc) {
1276 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1277 
1278 		rc = acpi_nfit_ars_rescan(acpi_desc, 0);
1279 	}
1280 	device_unlock(dev);
1281 	if (rc)
1282 		return rc;
1283 	return size;
1284 }
1285 static DEVICE_ATTR_RW(scrub);
1286 
1287 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1288 {
1289 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1290 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1291 		| 1 << ND_CMD_ARS_STATUS;
1292 
1293 	return (nd_desc->cmd_mask & mask) == mask;
1294 }
1295 
1296 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1297 {
1298 	struct device *dev = container_of(kobj, struct device, kobj);
1299 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1300 
1301 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1302 		return 0;
1303 	return a->mode;
1304 }
1305 
1306 static struct attribute *acpi_nfit_attributes[] = {
1307 	&dev_attr_revision.attr,
1308 	&dev_attr_scrub.attr,
1309 	&dev_attr_hw_error_scrub.attr,
1310 	&dev_attr_bus_dsm_mask.attr,
1311 	NULL,
1312 };
1313 
1314 static const struct attribute_group acpi_nfit_attribute_group = {
1315 	.name = "nfit",
1316 	.attrs = acpi_nfit_attributes,
1317 	.is_visible = nfit_visible,
1318 };
1319 
1320 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1321 	&nvdimm_bus_attribute_group,
1322 	&acpi_nfit_attribute_group,
1323 	NULL,
1324 };
1325 
1326 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1327 {
1328 	struct nvdimm *nvdimm = to_nvdimm(dev);
1329 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1330 
1331 	return __to_nfit_memdev(nfit_mem);
1332 }
1333 
1334 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1335 {
1336 	struct nvdimm *nvdimm = to_nvdimm(dev);
1337 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1338 
1339 	return nfit_mem->dcr;
1340 }
1341 
1342 static ssize_t handle_show(struct device *dev,
1343 		struct device_attribute *attr, char *buf)
1344 {
1345 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1346 
1347 	return sprintf(buf, "%#x\n", memdev->device_handle);
1348 }
1349 static DEVICE_ATTR_RO(handle);
1350 
1351 static ssize_t phys_id_show(struct device *dev,
1352 		struct device_attribute *attr, char *buf)
1353 {
1354 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1355 
1356 	return sprintf(buf, "%#x\n", memdev->physical_id);
1357 }
1358 static DEVICE_ATTR_RO(phys_id);
1359 
1360 static ssize_t vendor_show(struct device *dev,
1361 		struct device_attribute *attr, char *buf)
1362 {
1363 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1364 
1365 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1366 }
1367 static DEVICE_ATTR_RO(vendor);
1368 
1369 static ssize_t rev_id_show(struct device *dev,
1370 		struct device_attribute *attr, char *buf)
1371 {
1372 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1373 
1374 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1375 }
1376 static DEVICE_ATTR_RO(rev_id);
1377 
1378 static ssize_t device_show(struct device *dev,
1379 		struct device_attribute *attr, char *buf)
1380 {
1381 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1382 
1383 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1384 }
1385 static DEVICE_ATTR_RO(device);
1386 
1387 static ssize_t subsystem_vendor_show(struct device *dev,
1388 		struct device_attribute *attr, char *buf)
1389 {
1390 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1391 
1392 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1393 }
1394 static DEVICE_ATTR_RO(subsystem_vendor);
1395 
1396 static ssize_t subsystem_rev_id_show(struct device *dev,
1397 		struct device_attribute *attr, char *buf)
1398 {
1399 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1400 
1401 	return sprintf(buf, "0x%04x\n",
1402 			be16_to_cpu(dcr->subsystem_revision_id));
1403 }
1404 static DEVICE_ATTR_RO(subsystem_rev_id);
1405 
1406 static ssize_t subsystem_device_show(struct device *dev,
1407 		struct device_attribute *attr, char *buf)
1408 {
1409 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1410 
1411 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1412 }
1413 static DEVICE_ATTR_RO(subsystem_device);
1414 
1415 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1416 {
1417 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1418 	int formats = 0;
1419 
1420 	if (nfit_mem->memdev_pmem)
1421 		formats++;
1422 	if (nfit_mem->memdev_bdw)
1423 		formats++;
1424 	return formats;
1425 }
1426 
1427 static ssize_t format_show(struct device *dev,
1428 		struct device_attribute *attr, char *buf)
1429 {
1430 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1431 
1432 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1433 }
1434 static DEVICE_ATTR_RO(format);
1435 
1436 static ssize_t format1_show(struct device *dev,
1437 		struct device_attribute *attr, char *buf)
1438 {
1439 	u32 handle;
1440 	ssize_t rc = -ENXIO;
1441 	struct nfit_mem *nfit_mem;
1442 	struct nfit_memdev *nfit_memdev;
1443 	struct acpi_nfit_desc *acpi_desc;
1444 	struct nvdimm *nvdimm = to_nvdimm(dev);
1445 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1446 
1447 	nfit_mem = nvdimm_provider_data(nvdimm);
1448 	acpi_desc = nfit_mem->acpi_desc;
1449 	handle = to_nfit_memdev(dev)->device_handle;
1450 
1451 	/* assumes DIMMs have at most 2 published interface codes */
1452 	mutex_lock(&acpi_desc->init_mutex);
1453 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1454 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1455 		struct nfit_dcr *nfit_dcr;
1456 
1457 		if (memdev->device_handle != handle)
1458 			continue;
1459 
1460 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1461 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1462 				continue;
1463 			if (nfit_dcr->dcr->code == dcr->code)
1464 				continue;
1465 			rc = sprintf(buf, "0x%04x\n",
1466 					le16_to_cpu(nfit_dcr->dcr->code));
1467 			break;
1468 		}
1469 		if (rc != ENXIO)
1470 			break;
1471 	}
1472 	mutex_unlock(&acpi_desc->init_mutex);
1473 	return rc;
1474 }
1475 static DEVICE_ATTR_RO(format1);
1476 
1477 static ssize_t formats_show(struct device *dev,
1478 		struct device_attribute *attr, char *buf)
1479 {
1480 	struct nvdimm *nvdimm = to_nvdimm(dev);
1481 
1482 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1483 }
1484 static DEVICE_ATTR_RO(formats);
1485 
1486 static ssize_t serial_show(struct device *dev,
1487 		struct device_attribute *attr, char *buf)
1488 {
1489 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1490 
1491 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1492 }
1493 static DEVICE_ATTR_RO(serial);
1494 
1495 static ssize_t family_show(struct device *dev,
1496 		struct device_attribute *attr, char *buf)
1497 {
1498 	struct nvdimm *nvdimm = to_nvdimm(dev);
1499 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1500 
1501 	if (nfit_mem->family < 0)
1502 		return -ENXIO;
1503 	return sprintf(buf, "%d\n", nfit_mem->family);
1504 }
1505 static DEVICE_ATTR_RO(family);
1506 
1507 static ssize_t dsm_mask_show(struct device *dev,
1508 		struct device_attribute *attr, char *buf)
1509 {
1510 	struct nvdimm *nvdimm = to_nvdimm(dev);
1511 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1512 
1513 	if (nfit_mem->family < 0)
1514 		return -ENXIO;
1515 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1516 }
1517 static DEVICE_ATTR_RO(dsm_mask);
1518 
1519 static ssize_t flags_show(struct device *dev,
1520 		struct device_attribute *attr, char *buf)
1521 {
1522 	u16 flags = to_nfit_memdev(dev)->flags;
1523 
1524 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1525 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1526 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1527 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1528 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1529 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1530 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1531 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1532 }
1533 static DEVICE_ATTR_RO(flags);
1534 
1535 static ssize_t id_show(struct device *dev,
1536 		struct device_attribute *attr, char *buf)
1537 {
1538 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1539 
1540 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1541 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1542 				be16_to_cpu(dcr->vendor_id),
1543 				dcr->manufacturing_location,
1544 				be16_to_cpu(dcr->manufacturing_date),
1545 				be32_to_cpu(dcr->serial_number));
1546 	else
1547 		return sprintf(buf, "%04x-%08x\n",
1548 				be16_to_cpu(dcr->vendor_id),
1549 				be32_to_cpu(dcr->serial_number));
1550 }
1551 static DEVICE_ATTR_RO(id);
1552 
1553 static struct attribute *acpi_nfit_dimm_attributes[] = {
1554 	&dev_attr_handle.attr,
1555 	&dev_attr_phys_id.attr,
1556 	&dev_attr_vendor.attr,
1557 	&dev_attr_device.attr,
1558 	&dev_attr_rev_id.attr,
1559 	&dev_attr_subsystem_vendor.attr,
1560 	&dev_attr_subsystem_device.attr,
1561 	&dev_attr_subsystem_rev_id.attr,
1562 	&dev_attr_format.attr,
1563 	&dev_attr_formats.attr,
1564 	&dev_attr_format1.attr,
1565 	&dev_attr_serial.attr,
1566 	&dev_attr_flags.attr,
1567 	&dev_attr_id.attr,
1568 	&dev_attr_family.attr,
1569 	&dev_attr_dsm_mask.attr,
1570 	NULL,
1571 };
1572 
1573 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1574 		struct attribute *a, int n)
1575 {
1576 	struct device *dev = container_of(kobj, struct device, kobj);
1577 	struct nvdimm *nvdimm = to_nvdimm(dev);
1578 
1579 	if (!to_nfit_dcr(dev)) {
1580 		/* Without a dcr only the memdev attributes can be surfaced */
1581 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1582 				|| a == &dev_attr_flags.attr
1583 				|| a == &dev_attr_family.attr
1584 				|| a == &dev_attr_dsm_mask.attr)
1585 			return a->mode;
1586 		return 0;
1587 	}
1588 
1589 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1590 		return 0;
1591 	return a->mode;
1592 }
1593 
1594 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1595 	.name = "nfit",
1596 	.attrs = acpi_nfit_dimm_attributes,
1597 	.is_visible = acpi_nfit_dimm_attr_visible,
1598 };
1599 
1600 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1601 	&nvdimm_attribute_group,
1602 	&nd_device_attribute_group,
1603 	&acpi_nfit_dimm_attribute_group,
1604 	NULL,
1605 };
1606 
1607 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1608 		u32 device_handle)
1609 {
1610 	struct nfit_mem *nfit_mem;
1611 
1612 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1613 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1614 			return nfit_mem->nvdimm;
1615 
1616 	return NULL;
1617 }
1618 
1619 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1620 {
1621 	struct nfit_mem *nfit_mem;
1622 	struct acpi_nfit_desc *acpi_desc;
1623 
1624 	dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__,
1625 			event);
1626 
1627 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1628 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1629 				event);
1630 		return;
1631 	}
1632 
1633 	acpi_desc = dev_get_drvdata(dev->parent);
1634 	if (!acpi_desc)
1635 		return;
1636 
1637 	/*
1638 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1639 	 * is still valid.
1640 	 */
1641 	nfit_mem = dev_get_drvdata(dev);
1642 	if (nfit_mem && nfit_mem->flags_attr)
1643 		sysfs_notify_dirent(nfit_mem->flags_attr);
1644 }
1645 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1646 
1647 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1648 {
1649 	struct acpi_device *adev = data;
1650 	struct device *dev = &adev->dev;
1651 
1652 	device_lock(dev->parent);
1653 	__acpi_nvdimm_notify(dev, event);
1654 	device_unlock(dev->parent);
1655 }
1656 
1657 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1658 		struct nfit_mem *nfit_mem, u32 device_handle)
1659 {
1660 	struct acpi_device *adev, *adev_dimm;
1661 	struct device *dev = acpi_desc->dev;
1662 	union acpi_object *obj;
1663 	unsigned long dsm_mask;
1664 	const guid_t *guid;
1665 	int i;
1666 	int family = -1;
1667 
1668 	/* nfit test assumes 1:1 relationship between commands and dsms */
1669 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1670 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1671 	adev = to_acpi_dev(acpi_desc);
1672 	if (!adev)
1673 		return 0;
1674 
1675 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1676 	nfit_mem->adev = adev_dimm;
1677 	if (!adev_dimm) {
1678 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1679 				device_handle);
1680 		return force_enable_dimms ? 0 : -ENODEV;
1681 	}
1682 
1683 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1684 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1685 		dev_err(dev, "%s: notification registration failed\n",
1686 				dev_name(&adev_dimm->dev));
1687 		return -ENXIO;
1688 	}
1689 	/*
1690 	 * Record nfit_mem for the notification path to track back to
1691 	 * the nfit sysfs attributes for this dimm device object.
1692 	 */
1693 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1694 
1695 	/*
1696 	 * Until standardization materializes we need to consider 4
1697 	 * different command sets.  Note, that checking for function0 (bit0)
1698 	 * tells us if any commands are reachable through this GUID.
1699 	 */
1700 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1701 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1702 			if (family < 0 || i == default_dsm_family)
1703 				family = i;
1704 
1705 	/* limit the supported commands to those that are publicly documented */
1706 	nfit_mem->family = family;
1707 	if (override_dsm_mask && !disable_vendor_specific)
1708 		dsm_mask = override_dsm_mask;
1709 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1710 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1711 		if (disable_vendor_specific)
1712 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1713 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1714 		dsm_mask = 0x1c3c76;
1715 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1716 		dsm_mask = 0x1fe;
1717 		if (disable_vendor_specific)
1718 			dsm_mask &= ~(1 << 8);
1719 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1720 		dsm_mask = 0xffffffff;
1721 	} else {
1722 		dev_dbg(dev, "unknown dimm command family\n");
1723 		nfit_mem->family = -1;
1724 		/* DSMs are optional, continue loading the driver... */
1725 		return 0;
1726 	}
1727 
1728 	guid = to_nfit_uuid(nfit_mem->family);
1729 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1730 		if (acpi_check_dsm(adev_dimm->handle, guid,
1731 					nfit_dsm_revid(nfit_mem->family, i),
1732 					1ULL << i))
1733 			set_bit(i, &nfit_mem->dsm_mask);
1734 
1735 	obj = acpi_label_info(adev_dimm->handle);
1736 	if (obj) {
1737 		ACPI_FREE(obj);
1738 		nfit_mem->has_lsi = 1;
1739 		dev_dbg(dev, "%s: has _LSI\n", dev_name(&adev_dimm->dev));
1740 	}
1741 
1742 	obj = acpi_label_read(adev_dimm->handle, 0, 0);
1743 	if (obj) {
1744 		ACPI_FREE(obj);
1745 		nfit_mem->has_lsr = 1;
1746 		dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1747 	}
1748 
1749 	obj = acpi_label_write(adev_dimm->handle, 0, 0, NULL);
1750 	if (obj) {
1751 		ACPI_FREE(obj);
1752 		nfit_mem->has_lsw = 1;
1753 		dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 static void shutdown_dimm_notify(void *data)
1760 {
1761 	struct acpi_nfit_desc *acpi_desc = data;
1762 	struct nfit_mem *nfit_mem;
1763 
1764 	mutex_lock(&acpi_desc->init_mutex);
1765 	/*
1766 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1767 	 * notifications.
1768 	 */
1769 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1770 		struct acpi_device *adev_dimm = nfit_mem->adev;
1771 
1772 		if (nfit_mem->flags_attr) {
1773 			sysfs_put(nfit_mem->flags_attr);
1774 			nfit_mem->flags_attr = NULL;
1775 		}
1776 		if (adev_dimm) {
1777 			acpi_remove_notify_handler(adev_dimm->handle,
1778 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1779 			dev_set_drvdata(&adev_dimm->dev, NULL);
1780 		}
1781 	}
1782 	mutex_unlock(&acpi_desc->init_mutex);
1783 }
1784 
1785 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1786 {
1787 	struct nfit_mem *nfit_mem;
1788 	int dimm_count = 0, rc;
1789 	struct nvdimm *nvdimm;
1790 
1791 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1792 		struct acpi_nfit_flush_address *flush;
1793 		unsigned long flags = 0, cmd_mask;
1794 		struct nfit_memdev *nfit_memdev;
1795 		u32 device_handle;
1796 		u16 mem_flags;
1797 
1798 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1799 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1800 		if (nvdimm) {
1801 			dimm_count++;
1802 			continue;
1803 		}
1804 
1805 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1806 			set_bit(NDD_ALIASING, &flags);
1807 
1808 		/* collate flags across all memdevs for this dimm */
1809 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1810 			struct acpi_nfit_memory_map *dimm_memdev;
1811 
1812 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1813 			if (dimm_memdev->device_handle
1814 					!= nfit_memdev->memdev->device_handle)
1815 				continue;
1816 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1817 		}
1818 
1819 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1820 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1821 			set_bit(NDD_UNARMED, &flags);
1822 
1823 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1824 		if (rc)
1825 			continue;
1826 
1827 		/*
1828 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1829 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1830 		 * userspace interface.
1831 		 */
1832 		cmd_mask = 1UL << ND_CMD_CALL;
1833 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1834 			/*
1835 			 * These commands have a 1:1 correspondence
1836 			 * between DSM payload and libnvdimm ioctl
1837 			 * payload format.
1838 			 */
1839 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
1840 		}
1841 
1842 		if (nfit_mem->has_lsi)
1843 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
1844 		if (nfit_mem->has_lsr)
1845 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
1846 		if (nfit_mem->has_lsw)
1847 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
1848 
1849 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1850 			: NULL;
1851 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1852 				acpi_nfit_dimm_attribute_groups,
1853 				flags, cmd_mask, flush ? flush->hint_count : 0,
1854 				nfit_mem->flush_wpq);
1855 		if (!nvdimm)
1856 			return -ENOMEM;
1857 
1858 		nfit_mem->nvdimm = nvdimm;
1859 		dimm_count++;
1860 
1861 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1862 			continue;
1863 
1864 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
1865 				nvdimm_name(nvdimm),
1866 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1867 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1868 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1869 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
1870 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
1871 
1872 	}
1873 
1874 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1875 	if (rc)
1876 		return rc;
1877 
1878 	/*
1879 	 * Now that dimms are successfully registered, and async registration
1880 	 * is flushed, attempt to enable event notification.
1881 	 */
1882 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1883 		struct kernfs_node *nfit_kernfs;
1884 
1885 		nvdimm = nfit_mem->nvdimm;
1886 		if (!nvdimm)
1887 			continue;
1888 
1889 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1890 		if (nfit_kernfs)
1891 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1892 					"flags");
1893 		sysfs_put(nfit_kernfs);
1894 		if (!nfit_mem->flags_attr)
1895 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1896 					nvdimm_name(nvdimm));
1897 	}
1898 
1899 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1900 			acpi_desc);
1901 }
1902 
1903 /*
1904  * These constants are private because there are no kernel consumers of
1905  * these commands.
1906  */
1907 enum nfit_aux_cmds {
1908         NFIT_CMD_TRANSLATE_SPA = 5,
1909         NFIT_CMD_ARS_INJECT_SET = 7,
1910         NFIT_CMD_ARS_INJECT_CLEAR = 8,
1911         NFIT_CMD_ARS_INJECT_GET = 9,
1912 };
1913 
1914 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1915 {
1916 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1917 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
1918 	struct acpi_device *adev;
1919 	unsigned long dsm_mask;
1920 	int i;
1921 
1922 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1923 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
1924 	adev = to_acpi_dev(acpi_desc);
1925 	if (!adev)
1926 		return;
1927 
1928 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1929 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1930 			set_bit(i, &nd_desc->cmd_mask);
1931 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
1932 
1933 	dsm_mask =
1934 		(1 << ND_CMD_ARS_CAP) |
1935 		(1 << ND_CMD_ARS_START) |
1936 		(1 << ND_CMD_ARS_STATUS) |
1937 		(1 << ND_CMD_CLEAR_ERROR) |
1938 		(1 << NFIT_CMD_TRANSLATE_SPA) |
1939 		(1 << NFIT_CMD_ARS_INJECT_SET) |
1940 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
1941 		(1 << NFIT_CMD_ARS_INJECT_GET);
1942 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1943 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1944 			set_bit(i, &nd_desc->bus_dsm_mask);
1945 }
1946 
1947 static ssize_t range_index_show(struct device *dev,
1948 		struct device_attribute *attr, char *buf)
1949 {
1950 	struct nd_region *nd_region = to_nd_region(dev);
1951 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1952 
1953 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1954 }
1955 static DEVICE_ATTR_RO(range_index);
1956 
1957 static ssize_t ecc_unit_size_show(struct device *dev,
1958 		struct device_attribute *attr, char *buf)
1959 {
1960 	struct nd_region *nd_region = to_nd_region(dev);
1961 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1962 
1963 	return sprintf(buf, "%d\n", nfit_spa->clear_err_unit);
1964 }
1965 static DEVICE_ATTR_RO(ecc_unit_size);
1966 
1967 static struct attribute *acpi_nfit_region_attributes[] = {
1968 	&dev_attr_range_index.attr,
1969 	&dev_attr_ecc_unit_size.attr,
1970 	NULL,
1971 };
1972 
1973 static const struct attribute_group acpi_nfit_region_attribute_group = {
1974 	.name = "nfit",
1975 	.attrs = acpi_nfit_region_attributes,
1976 };
1977 
1978 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1979 	&nd_region_attribute_group,
1980 	&nd_mapping_attribute_group,
1981 	&nd_device_attribute_group,
1982 	&nd_numa_attribute_group,
1983 	&acpi_nfit_region_attribute_group,
1984 	NULL,
1985 };
1986 
1987 /* enough info to uniquely specify an interleave set */
1988 struct nfit_set_info {
1989 	struct nfit_set_info_map {
1990 		u64 region_offset;
1991 		u32 serial_number;
1992 		u32 pad;
1993 	} mapping[0];
1994 };
1995 
1996 struct nfit_set_info2 {
1997 	struct nfit_set_info_map2 {
1998 		u64 region_offset;
1999 		u32 serial_number;
2000 		u16 vendor_id;
2001 		u16 manufacturing_date;
2002 		u8  manufacturing_location;
2003 		u8  reserved[31];
2004 	} mapping[0];
2005 };
2006 
2007 static size_t sizeof_nfit_set_info(int num_mappings)
2008 {
2009 	return sizeof(struct nfit_set_info)
2010 		+ num_mappings * sizeof(struct nfit_set_info_map);
2011 }
2012 
2013 static size_t sizeof_nfit_set_info2(int num_mappings)
2014 {
2015 	return sizeof(struct nfit_set_info2)
2016 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2017 }
2018 
2019 static int cmp_map_compat(const void *m0, const void *m1)
2020 {
2021 	const struct nfit_set_info_map *map0 = m0;
2022 	const struct nfit_set_info_map *map1 = m1;
2023 
2024 	return memcmp(&map0->region_offset, &map1->region_offset,
2025 			sizeof(u64));
2026 }
2027 
2028 static int cmp_map(const void *m0, const void *m1)
2029 {
2030 	const struct nfit_set_info_map *map0 = m0;
2031 	const struct nfit_set_info_map *map1 = m1;
2032 
2033 	if (map0->region_offset < map1->region_offset)
2034 		return -1;
2035 	else if (map0->region_offset > map1->region_offset)
2036 		return 1;
2037 	return 0;
2038 }
2039 
2040 static int cmp_map2(const void *m0, const void *m1)
2041 {
2042 	const struct nfit_set_info_map2 *map0 = m0;
2043 	const struct nfit_set_info_map2 *map1 = m1;
2044 
2045 	if (map0->region_offset < map1->region_offset)
2046 		return -1;
2047 	else if (map0->region_offset > map1->region_offset)
2048 		return 1;
2049 	return 0;
2050 }
2051 
2052 /* Retrieve the nth entry referencing this spa */
2053 static struct acpi_nfit_memory_map *memdev_from_spa(
2054 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2055 {
2056 	struct nfit_memdev *nfit_memdev;
2057 
2058 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2059 		if (nfit_memdev->memdev->range_index == range_index)
2060 			if (n-- == 0)
2061 				return nfit_memdev->memdev;
2062 	return NULL;
2063 }
2064 
2065 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2066 		struct nd_region_desc *ndr_desc,
2067 		struct acpi_nfit_system_address *spa)
2068 {
2069 	struct device *dev = acpi_desc->dev;
2070 	struct nd_interleave_set *nd_set;
2071 	u16 nr = ndr_desc->num_mappings;
2072 	struct nfit_set_info2 *info2;
2073 	struct nfit_set_info *info;
2074 	int i;
2075 
2076 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2077 	if (!nd_set)
2078 		return -ENOMEM;
2079 	ndr_desc->nd_set = nd_set;
2080 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2081 
2082 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2083 	if (!info)
2084 		return -ENOMEM;
2085 
2086 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2087 	if (!info2)
2088 		return -ENOMEM;
2089 
2090 	for (i = 0; i < nr; i++) {
2091 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2092 		struct nfit_set_info_map *map = &info->mapping[i];
2093 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2094 		struct nvdimm *nvdimm = mapping->nvdimm;
2095 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2096 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2097 				spa->range_index, i);
2098 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2099 
2100 		if (!memdev || !nfit_mem->dcr) {
2101 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2102 			return -ENODEV;
2103 		}
2104 
2105 		map->region_offset = memdev->region_offset;
2106 		map->serial_number = dcr->serial_number;
2107 
2108 		map2->region_offset = memdev->region_offset;
2109 		map2->serial_number = dcr->serial_number;
2110 		map2->vendor_id = dcr->vendor_id;
2111 		map2->manufacturing_date = dcr->manufacturing_date;
2112 		map2->manufacturing_location = dcr->manufacturing_location;
2113 	}
2114 
2115 	/* v1.1 namespaces */
2116 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2117 			cmp_map, NULL);
2118 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2119 
2120 	/* v1.2 namespaces */
2121 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2122 			cmp_map2, NULL);
2123 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2124 
2125 	/* support v1.1 namespaces created with the wrong sort order */
2126 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2127 			cmp_map_compat, NULL);
2128 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2129 
2130 	/* record the result of the sort for the mapping position */
2131 	for (i = 0; i < nr; i++) {
2132 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2133 		int j;
2134 
2135 		for (j = 0; j < nr; j++) {
2136 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2137 			struct nvdimm *nvdimm = mapping->nvdimm;
2138 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2139 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2140 
2141 			if (map2->serial_number == dcr->serial_number &&
2142 			    map2->vendor_id == dcr->vendor_id &&
2143 			    map2->manufacturing_date == dcr->manufacturing_date &&
2144 			    map2->manufacturing_location
2145 				    == dcr->manufacturing_location) {
2146 				mapping->position = i;
2147 				break;
2148 			}
2149 		}
2150 	}
2151 
2152 	ndr_desc->nd_set = nd_set;
2153 	devm_kfree(dev, info);
2154 	devm_kfree(dev, info2);
2155 
2156 	return 0;
2157 }
2158 
2159 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2160 {
2161 	struct acpi_nfit_interleave *idt = mmio->idt;
2162 	u32 sub_line_offset, line_index, line_offset;
2163 	u64 line_no, table_skip_count, table_offset;
2164 
2165 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2166 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2167 	line_offset = idt->line_offset[line_index]
2168 		* mmio->line_size;
2169 	table_offset = table_skip_count * mmio->table_size;
2170 
2171 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2172 }
2173 
2174 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2175 {
2176 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2177 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2178 	const u32 STATUS_MASK = 0x80000037;
2179 
2180 	if (mmio->num_lines)
2181 		offset = to_interleave_offset(offset, mmio);
2182 
2183 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2184 }
2185 
2186 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2187 		resource_size_t dpa, unsigned int len, unsigned int write)
2188 {
2189 	u64 cmd, offset;
2190 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2191 
2192 	enum {
2193 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2194 		BCW_LEN_SHIFT = 48,
2195 		BCW_LEN_MASK = (1ULL << 8) - 1,
2196 		BCW_CMD_SHIFT = 56,
2197 	};
2198 
2199 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2200 	len = len >> L1_CACHE_SHIFT;
2201 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2202 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2203 
2204 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2205 	if (mmio->num_lines)
2206 		offset = to_interleave_offset(offset, mmio);
2207 
2208 	writeq(cmd, mmio->addr.base + offset);
2209 	nvdimm_flush(nfit_blk->nd_region);
2210 
2211 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2212 		readq(mmio->addr.base + offset);
2213 }
2214 
2215 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2216 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2217 		unsigned int lane)
2218 {
2219 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2220 	unsigned int copied = 0;
2221 	u64 base_offset;
2222 	int rc;
2223 
2224 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2225 		+ lane * mmio->size;
2226 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2227 	while (len) {
2228 		unsigned int c;
2229 		u64 offset;
2230 
2231 		if (mmio->num_lines) {
2232 			u32 line_offset;
2233 
2234 			offset = to_interleave_offset(base_offset + copied,
2235 					mmio);
2236 			div_u64_rem(offset, mmio->line_size, &line_offset);
2237 			c = min_t(size_t, len, mmio->line_size - line_offset);
2238 		} else {
2239 			offset = base_offset + nfit_blk->bdw_offset;
2240 			c = len;
2241 		}
2242 
2243 		if (rw)
2244 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2245 		else {
2246 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2247 				arch_invalidate_pmem((void __force *)
2248 					mmio->addr.aperture + offset, c);
2249 
2250 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2251 		}
2252 
2253 		copied += c;
2254 		len -= c;
2255 	}
2256 
2257 	if (rw)
2258 		nvdimm_flush(nfit_blk->nd_region);
2259 
2260 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2261 	return rc;
2262 }
2263 
2264 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2265 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2266 {
2267 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2268 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2269 	struct nd_region *nd_region = nfit_blk->nd_region;
2270 	unsigned int lane, copied = 0;
2271 	int rc = 0;
2272 
2273 	lane = nd_region_acquire_lane(nd_region);
2274 	while (len) {
2275 		u64 c = min(len, mmio->size);
2276 
2277 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2278 				iobuf + copied, c, rw, lane);
2279 		if (rc)
2280 			break;
2281 
2282 		copied += c;
2283 		len -= c;
2284 	}
2285 	nd_region_release_lane(nd_region, lane);
2286 
2287 	return rc;
2288 }
2289 
2290 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2291 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2292 {
2293 	if (idt) {
2294 		mmio->num_lines = idt->line_count;
2295 		mmio->line_size = idt->line_size;
2296 		if (interleave_ways == 0)
2297 			return -ENXIO;
2298 		mmio->table_size = mmio->num_lines * interleave_ways
2299 			* mmio->line_size;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2306 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2307 {
2308 	struct nd_cmd_dimm_flags flags;
2309 	int rc;
2310 
2311 	memset(&flags, 0, sizeof(flags));
2312 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2313 			sizeof(flags), NULL);
2314 
2315 	if (rc >= 0 && flags.status == 0)
2316 		nfit_blk->dimm_flags = flags.flags;
2317 	else if (rc == -ENOTTY) {
2318 		/* fall back to a conservative default */
2319 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2320 		rc = 0;
2321 	} else
2322 		rc = -ENXIO;
2323 
2324 	return rc;
2325 }
2326 
2327 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2328 		struct device *dev)
2329 {
2330 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2331 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2332 	struct nfit_blk_mmio *mmio;
2333 	struct nfit_blk *nfit_blk;
2334 	struct nfit_mem *nfit_mem;
2335 	struct nvdimm *nvdimm;
2336 	int rc;
2337 
2338 	nvdimm = nd_blk_region_to_dimm(ndbr);
2339 	nfit_mem = nvdimm_provider_data(nvdimm);
2340 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2341 		dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
2342 				nfit_mem ? "" : " nfit_mem",
2343 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2344 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2345 		return -ENXIO;
2346 	}
2347 
2348 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2349 	if (!nfit_blk)
2350 		return -ENOMEM;
2351 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2352 	nfit_blk->nd_region = to_nd_region(dev);
2353 
2354 	/* map block aperture memory */
2355 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2356 	mmio = &nfit_blk->mmio[BDW];
2357 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2358                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2359 	if (!mmio->addr.base) {
2360 		dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
2361 				nvdimm_name(nvdimm));
2362 		return -ENOMEM;
2363 	}
2364 	mmio->size = nfit_mem->bdw->size;
2365 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2366 	mmio->idt = nfit_mem->idt_bdw;
2367 	mmio->spa = nfit_mem->spa_bdw;
2368 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2369 			nfit_mem->memdev_bdw->interleave_ways);
2370 	if (rc) {
2371 		dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
2372 				__func__, nvdimm_name(nvdimm));
2373 		return rc;
2374 	}
2375 
2376 	/* map block control memory */
2377 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2378 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2379 	mmio = &nfit_blk->mmio[DCR];
2380 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2381 			nfit_mem->spa_dcr->length);
2382 	if (!mmio->addr.base) {
2383 		dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
2384 				nvdimm_name(nvdimm));
2385 		return -ENOMEM;
2386 	}
2387 	mmio->size = nfit_mem->dcr->window_size;
2388 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2389 	mmio->idt = nfit_mem->idt_dcr;
2390 	mmio->spa = nfit_mem->spa_dcr;
2391 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2392 			nfit_mem->memdev_dcr->interleave_ways);
2393 	if (rc) {
2394 		dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
2395 				__func__, nvdimm_name(nvdimm));
2396 		return rc;
2397 	}
2398 
2399 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2400 	if (rc < 0) {
2401 		dev_dbg(dev, "%s: %s failed get DIMM flags\n",
2402 				__func__, nvdimm_name(nvdimm));
2403 		return rc;
2404 	}
2405 
2406 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2407 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2408 
2409 	if (mmio->line_size == 0)
2410 		return 0;
2411 
2412 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2413 			+ 8 > mmio->line_size) {
2414 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2415 		return -ENXIO;
2416 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2417 			+ 8 > mmio->line_size) {
2418 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2419 		return -ENXIO;
2420 	}
2421 
2422 	return 0;
2423 }
2424 
2425 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2426 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2427 {
2428 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2429 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2430 	int cmd_rc, rc;
2431 
2432 	cmd->address = spa->address;
2433 	cmd->length = spa->length;
2434 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2435 			sizeof(*cmd), &cmd_rc);
2436 	if (rc < 0)
2437 		return rc;
2438 	return cmd_rc;
2439 }
2440 
2441 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
2442 {
2443 	int rc;
2444 	int cmd_rc;
2445 	struct nd_cmd_ars_start ars_start;
2446 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2447 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2448 
2449 	memset(&ars_start, 0, sizeof(ars_start));
2450 	ars_start.address = spa->address;
2451 	ars_start.length = spa->length;
2452 	ars_start.flags = acpi_desc->ars_start_flags;
2453 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2454 		ars_start.type = ND_ARS_PERSISTENT;
2455 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2456 		ars_start.type = ND_ARS_VOLATILE;
2457 	else
2458 		return -ENOTTY;
2459 
2460 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2461 			sizeof(ars_start), &cmd_rc);
2462 
2463 	if (rc < 0)
2464 		return rc;
2465 	return cmd_rc;
2466 }
2467 
2468 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2469 {
2470 	int rc, cmd_rc;
2471 	struct nd_cmd_ars_start ars_start;
2472 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2473 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2474 
2475 	memset(&ars_start, 0, sizeof(ars_start));
2476 	ars_start.address = ars_status->restart_address;
2477 	ars_start.length = ars_status->restart_length;
2478 	ars_start.type = ars_status->type;
2479 	ars_start.flags = acpi_desc->ars_start_flags;
2480 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2481 			sizeof(ars_start), &cmd_rc);
2482 	if (rc < 0)
2483 		return rc;
2484 	return cmd_rc;
2485 }
2486 
2487 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2488 {
2489 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2490 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2491 	int rc, cmd_rc;
2492 
2493 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2494 			acpi_desc->ars_status_size, &cmd_rc);
2495 	if (rc < 0)
2496 		return rc;
2497 	return cmd_rc;
2498 }
2499 
2500 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc,
2501 		struct nd_cmd_ars_status *ars_status)
2502 {
2503 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2504 	int rc;
2505 	u32 i;
2506 
2507 	/*
2508 	 * First record starts at 44 byte offset from the start of the
2509 	 * payload.
2510 	 */
2511 	if (ars_status->out_length < 44)
2512 		return 0;
2513 	for (i = 0; i < ars_status->num_records; i++) {
2514 		/* only process full records */
2515 		if (ars_status->out_length
2516 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2517 			break;
2518 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2519 				ars_status->records[i].err_address,
2520 				ars_status->records[i].length);
2521 		if (rc)
2522 			return rc;
2523 	}
2524 	if (i < ars_status->num_records)
2525 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2526 
2527 	return 0;
2528 }
2529 
2530 static void acpi_nfit_remove_resource(void *data)
2531 {
2532 	struct resource *res = data;
2533 
2534 	remove_resource(res);
2535 }
2536 
2537 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2538 		struct nd_region_desc *ndr_desc)
2539 {
2540 	struct resource *res, *nd_res = ndr_desc->res;
2541 	int is_pmem, ret;
2542 
2543 	/* No operation if the region is already registered as PMEM */
2544 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2545 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2546 	if (is_pmem == REGION_INTERSECTS)
2547 		return 0;
2548 
2549 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2550 	if (!res)
2551 		return -ENOMEM;
2552 
2553 	res->name = "Persistent Memory";
2554 	res->start = nd_res->start;
2555 	res->end = nd_res->end;
2556 	res->flags = IORESOURCE_MEM;
2557 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2558 
2559 	ret = insert_resource(&iomem_resource, res);
2560 	if (ret)
2561 		return ret;
2562 
2563 	ret = devm_add_action_or_reset(acpi_desc->dev,
2564 					acpi_nfit_remove_resource,
2565 					res);
2566 	if (ret)
2567 		return ret;
2568 
2569 	return 0;
2570 }
2571 
2572 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2573 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2574 		struct acpi_nfit_memory_map *memdev,
2575 		struct nfit_spa *nfit_spa)
2576 {
2577 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2578 			memdev->device_handle);
2579 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2580 	struct nd_blk_region_desc *ndbr_desc;
2581 	struct nfit_mem *nfit_mem;
2582 	int blk_valid = 0, rc;
2583 
2584 	if (!nvdimm) {
2585 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2586 				spa->range_index, memdev->device_handle);
2587 		return -ENODEV;
2588 	}
2589 
2590 	mapping->nvdimm = nvdimm;
2591 	switch (nfit_spa_type(spa)) {
2592 	case NFIT_SPA_PM:
2593 	case NFIT_SPA_VOLATILE:
2594 		mapping->start = memdev->address;
2595 		mapping->size = memdev->region_size;
2596 		break;
2597 	case NFIT_SPA_DCR:
2598 		nfit_mem = nvdimm_provider_data(nvdimm);
2599 		if (!nfit_mem || !nfit_mem->bdw) {
2600 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2601 					spa->range_index, nvdimm_name(nvdimm));
2602 		} else {
2603 			mapping->size = nfit_mem->bdw->capacity;
2604 			mapping->start = nfit_mem->bdw->start_address;
2605 			ndr_desc->num_lanes = nfit_mem->bdw->windows;
2606 			blk_valid = 1;
2607 		}
2608 
2609 		ndr_desc->mapping = mapping;
2610 		ndr_desc->num_mappings = blk_valid;
2611 		ndbr_desc = to_blk_region_desc(ndr_desc);
2612 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2613 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2614 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2615 		if (rc)
2616 			return rc;
2617 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2618 				ndr_desc);
2619 		if (!nfit_spa->nd_region)
2620 			return -ENOMEM;
2621 		break;
2622 	}
2623 
2624 	return 0;
2625 }
2626 
2627 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2628 {
2629 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2630 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2631 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2632 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2633 }
2634 
2635 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2636 {
2637 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2638 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2639 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2640 }
2641 
2642 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2643 		struct nfit_spa *nfit_spa)
2644 {
2645 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2646 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2647 	struct nd_blk_region_desc ndbr_desc;
2648 	struct nd_region_desc *ndr_desc;
2649 	struct nfit_memdev *nfit_memdev;
2650 	struct nvdimm_bus *nvdimm_bus;
2651 	struct resource res;
2652 	int count = 0, rc;
2653 
2654 	if (nfit_spa->nd_region)
2655 		return 0;
2656 
2657 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2658 		dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
2659 				__func__);
2660 		return 0;
2661 	}
2662 
2663 	memset(&res, 0, sizeof(res));
2664 	memset(&mappings, 0, sizeof(mappings));
2665 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2666 	res.start = spa->address;
2667 	res.end = res.start + spa->length - 1;
2668 	ndr_desc = &ndbr_desc.ndr_desc;
2669 	ndr_desc->res = &res;
2670 	ndr_desc->provider_data = nfit_spa;
2671 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2672 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2673 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2674 						spa->proximity_domain);
2675 	else
2676 		ndr_desc->numa_node = NUMA_NO_NODE;
2677 
2678 	/*
2679 	 * Persistence domain bits are hierarchical, if
2680 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2681 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2682 	 */
2683 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2684 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2685 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2686 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2687 
2688 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2689 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2690 		struct nd_mapping_desc *mapping;
2691 
2692 		if (memdev->range_index != spa->range_index)
2693 			continue;
2694 		if (count >= ND_MAX_MAPPINGS) {
2695 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2696 					spa->range_index, ND_MAX_MAPPINGS);
2697 			return -ENXIO;
2698 		}
2699 		mapping = &mappings[count++];
2700 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2701 				memdev, nfit_spa);
2702 		if (rc)
2703 			goto out;
2704 	}
2705 
2706 	ndr_desc->mapping = mappings;
2707 	ndr_desc->num_mappings = count;
2708 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2709 	if (rc)
2710 		goto out;
2711 
2712 	nvdimm_bus = acpi_desc->nvdimm_bus;
2713 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2714 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2715 		if (rc) {
2716 			dev_warn(acpi_desc->dev,
2717 				"failed to insert pmem resource to iomem: %d\n",
2718 				rc);
2719 			goto out;
2720 		}
2721 
2722 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2723 				ndr_desc);
2724 		if (!nfit_spa->nd_region)
2725 			rc = -ENOMEM;
2726 	} else if (nfit_spa_is_volatile(spa)) {
2727 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2728 				ndr_desc);
2729 		if (!nfit_spa->nd_region)
2730 			rc = -ENOMEM;
2731 	} else if (nfit_spa_is_virtual(spa)) {
2732 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2733 				ndr_desc);
2734 		if (!nfit_spa->nd_region)
2735 			rc = -ENOMEM;
2736 	}
2737 
2738  out:
2739 	if (rc)
2740 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2741 				nfit_spa->spa->range_index);
2742 	return rc;
2743 }
2744 
2745 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2746 		u32 max_ars)
2747 {
2748 	struct device *dev = acpi_desc->dev;
2749 	struct nd_cmd_ars_status *ars_status;
2750 
2751 	if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2752 		memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2753 		return 0;
2754 	}
2755 
2756 	if (acpi_desc->ars_status)
2757 		devm_kfree(dev, acpi_desc->ars_status);
2758 	acpi_desc->ars_status = NULL;
2759 	ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2760 	if (!ars_status)
2761 		return -ENOMEM;
2762 	acpi_desc->ars_status = ars_status;
2763 	acpi_desc->ars_status_size = max_ars;
2764 	return 0;
2765 }
2766 
2767 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2768 		struct nfit_spa *nfit_spa)
2769 {
2770 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2771 	int rc;
2772 
2773 	if (!nfit_spa->max_ars) {
2774 		struct nd_cmd_ars_cap ars_cap;
2775 
2776 		memset(&ars_cap, 0, sizeof(ars_cap));
2777 		rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2778 		if (rc < 0)
2779 			return rc;
2780 		nfit_spa->max_ars = ars_cap.max_ars_out;
2781 		nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2782 		/* check that the supported scrub types match the spa type */
2783 		if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2784 				((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2785 			return -ENOTTY;
2786 		else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2787 				((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2788 			return -ENOTTY;
2789 	}
2790 
2791 	if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2792 		return -ENOMEM;
2793 
2794 	rc = ars_get_status(acpi_desc);
2795 	if (rc < 0 && rc != -ENOSPC)
2796 		return rc;
2797 
2798 	if (ars_status_process_records(acpi_desc, acpi_desc->ars_status))
2799 		return -ENOMEM;
2800 
2801 	return 0;
2802 }
2803 
2804 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2805 		struct nfit_spa *nfit_spa)
2806 {
2807 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2808 	unsigned int overflow_retry = scrub_overflow_abort;
2809 	u64 init_ars_start = 0, init_ars_len = 0;
2810 	struct device *dev = acpi_desc->dev;
2811 	unsigned int tmo = scrub_timeout;
2812 	int rc;
2813 
2814 	if (!nfit_spa->ars_required || !nfit_spa->nd_region)
2815 		return;
2816 
2817 	rc = ars_start(acpi_desc, nfit_spa);
2818 	/*
2819 	 * If we timed out the initial scan we'll still be busy here,
2820 	 * and will wait another timeout before giving up permanently.
2821 	 */
2822 	if (rc < 0 && rc != -EBUSY)
2823 		return;
2824 
2825 	do {
2826 		u64 ars_start, ars_len;
2827 
2828 		if (acpi_desc->cancel)
2829 			break;
2830 		rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2831 		if (rc == -ENOTTY)
2832 			break;
2833 		if (rc == -EBUSY && !tmo) {
2834 			dev_warn(dev, "range %d ars timeout, aborting\n",
2835 					spa->range_index);
2836 			break;
2837 		}
2838 
2839 		if (rc == -EBUSY) {
2840 			/*
2841 			 * Note, entries may be appended to the list
2842 			 * while the lock is dropped, but the workqueue
2843 			 * being active prevents entries being deleted /
2844 			 * freed.
2845 			 */
2846 			mutex_unlock(&acpi_desc->init_mutex);
2847 			ssleep(1);
2848 			tmo--;
2849 			mutex_lock(&acpi_desc->init_mutex);
2850 			continue;
2851 		}
2852 
2853 		/* we got some results, but there are more pending... */
2854 		if (rc == -ENOSPC && overflow_retry--) {
2855 			if (!init_ars_len) {
2856 				init_ars_len = acpi_desc->ars_status->length;
2857 				init_ars_start = acpi_desc->ars_status->address;
2858 			}
2859 			rc = ars_continue(acpi_desc);
2860 		}
2861 
2862 		if (rc < 0) {
2863 			dev_warn(dev, "range %d ars continuation failed\n",
2864 					spa->range_index);
2865 			break;
2866 		}
2867 
2868 		if (init_ars_len) {
2869 			ars_start = init_ars_start;
2870 			ars_len = init_ars_len;
2871 		} else {
2872 			ars_start = acpi_desc->ars_status->address;
2873 			ars_len = acpi_desc->ars_status->length;
2874 		}
2875 		dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2876 				spa->range_index, ars_start, ars_len);
2877 		/* notify the region about new poison entries */
2878 		nvdimm_region_notify(nfit_spa->nd_region,
2879 				NVDIMM_REVALIDATE_POISON);
2880 		break;
2881 	} while (1);
2882 }
2883 
2884 static void acpi_nfit_scrub(struct work_struct *work)
2885 {
2886 	struct device *dev;
2887 	u64 init_scrub_length = 0;
2888 	struct nfit_spa *nfit_spa;
2889 	u64 init_scrub_address = 0;
2890 	bool init_ars_done = false;
2891 	struct acpi_nfit_desc *acpi_desc;
2892 	unsigned int tmo = scrub_timeout;
2893 	unsigned int overflow_retry = scrub_overflow_abort;
2894 
2895 	acpi_desc = container_of(work, typeof(*acpi_desc), work);
2896 	dev = acpi_desc->dev;
2897 
2898 	/*
2899 	 * We scrub in 2 phases.  The first phase waits for any platform
2900 	 * firmware initiated scrubs to complete and then we go search for the
2901 	 * affected spa regions to mark them scanned.  In the second phase we
2902 	 * initiate a directed scrub for every range that was not scrubbed in
2903 	 * phase 1. If we're called for a 'rescan', we harmlessly pass through
2904 	 * the first phase, but really only care about running phase 2, where
2905 	 * regions can be notified of new poison.
2906 	 */
2907 
2908 	/* process platform firmware initiated scrubs */
2909  retry:
2910 	mutex_lock(&acpi_desc->init_mutex);
2911 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2912 		struct nd_cmd_ars_status *ars_status;
2913 		struct acpi_nfit_system_address *spa;
2914 		u64 ars_start, ars_len;
2915 		int rc;
2916 
2917 		if (acpi_desc->cancel)
2918 			break;
2919 
2920 		if (nfit_spa->nd_region)
2921 			continue;
2922 
2923 		if (init_ars_done) {
2924 			/*
2925 			 * No need to re-query, we're now just
2926 			 * reconciling all the ranges covered by the
2927 			 * initial scrub
2928 			 */
2929 			rc = 0;
2930 		} else
2931 			rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2932 
2933 		if (rc == -ENOTTY) {
2934 			/* no ars capability, just register spa and move on */
2935 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2936 			continue;
2937 		}
2938 
2939 		if (rc == -EBUSY && !tmo) {
2940 			/* fallthrough to directed scrub in phase 2 */
2941 			dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2942 			break;
2943 		} else if (rc == -EBUSY) {
2944 			mutex_unlock(&acpi_desc->init_mutex);
2945 			ssleep(1);
2946 			tmo--;
2947 			goto retry;
2948 		}
2949 
2950 		/* we got some results, but there are more pending... */
2951 		if (rc == -ENOSPC && overflow_retry--) {
2952 			ars_status = acpi_desc->ars_status;
2953 			/*
2954 			 * Record the original scrub range, so that we
2955 			 * can recall all the ranges impacted by the
2956 			 * initial scrub.
2957 			 */
2958 			if (!init_scrub_length) {
2959 				init_scrub_length = ars_status->length;
2960 				init_scrub_address = ars_status->address;
2961 			}
2962 			rc = ars_continue(acpi_desc);
2963 			if (rc == 0) {
2964 				mutex_unlock(&acpi_desc->init_mutex);
2965 				goto retry;
2966 			}
2967 		}
2968 
2969 		if (rc < 0) {
2970 			/*
2971 			 * Initial scrub failed, we'll give it one more
2972 			 * try below...
2973 			 */
2974 			break;
2975 		}
2976 
2977 		/* We got some final results, record completed ranges */
2978 		ars_status = acpi_desc->ars_status;
2979 		if (init_scrub_length) {
2980 			ars_start = init_scrub_address;
2981 			ars_len = ars_start + init_scrub_length;
2982 		} else {
2983 			ars_start = ars_status->address;
2984 			ars_len = ars_status->length;
2985 		}
2986 		spa = nfit_spa->spa;
2987 
2988 		if (!init_ars_done) {
2989 			init_ars_done = true;
2990 			dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2991 					ars_start, ars_len);
2992 		}
2993 		if (ars_start <= spa->address && ars_start + ars_len
2994 				>= spa->address + spa->length)
2995 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2996 	}
2997 
2998 	/*
2999 	 * For all the ranges not covered by an initial scrub we still
3000 	 * want to see if there are errors, but it's ok to discover them
3001 	 * asynchronously.
3002 	 */
3003 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3004 		/*
3005 		 * Flag all the ranges that still need scrubbing, but
3006 		 * register them now to make data available.
3007 		 */
3008 		if (!nfit_spa->nd_region) {
3009 			nfit_spa->ars_required = 1;
3010 			acpi_nfit_register_region(acpi_desc, nfit_spa);
3011 		}
3012 	}
3013 	acpi_desc->init_complete = 1;
3014 
3015 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3016 		acpi_nfit_async_scrub(acpi_desc, nfit_spa);
3017 	acpi_desc->scrub_count++;
3018 	acpi_desc->ars_start_flags = 0;
3019 	if (acpi_desc->scrub_count_state)
3020 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3021 	mutex_unlock(&acpi_desc->init_mutex);
3022 }
3023 
3024 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3025 {
3026 	struct nfit_spa *nfit_spa;
3027 	int rc;
3028 
3029 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3030 		if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) {
3031 			/* BLK regions don't need to wait for ars results */
3032 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3033 			if (rc)
3034 				return rc;
3035 		}
3036 
3037 	acpi_desc->ars_start_flags = 0;
3038 	if (!acpi_desc->cancel)
3039 		queue_work(nfit_wq, &acpi_desc->work);
3040 	return 0;
3041 }
3042 
3043 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3044 		struct nfit_table_prev *prev)
3045 {
3046 	struct device *dev = acpi_desc->dev;
3047 
3048 	if (!list_empty(&prev->spas) ||
3049 			!list_empty(&prev->memdevs) ||
3050 			!list_empty(&prev->dcrs) ||
3051 			!list_empty(&prev->bdws) ||
3052 			!list_empty(&prev->idts) ||
3053 			!list_empty(&prev->flushes)) {
3054 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3055 		return -ENXIO;
3056 	}
3057 	return 0;
3058 }
3059 
3060 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3061 {
3062 	struct device *dev = acpi_desc->dev;
3063 	struct kernfs_node *nfit;
3064 	struct device *bus_dev;
3065 
3066 	if (!ars_supported(acpi_desc->nvdimm_bus))
3067 		return 0;
3068 
3069 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3070 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3071 	if (!nfit) {
3072 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3073 		return -ENODEV;
3074 	}
3075 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3076 	sysfs_put(nfit);
3077 	if (!acpi_desc->scrub_count_state) {
3078 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3079 		return -ENODEV;
3080 	}
3081 
3082 	return 0;
3083 }
3084 
3085 static void acpi_nfit_unregister(void *data)
3086 {
3087 	struct acpi_nfit_desc *acpi_desc = data;
3088 
3089 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3090 }
3091 
3092 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3093 {
3094 	struct device *dev = acpi_desc->dev;
3095 	struct nfit_table_prev prev;
3096 	const void *end;
3097 	int rc;
3098 
3099 	if (!acpi_desc->nvdimm_bus) {
3100 		acpi_nfit_init_dsms(acpi_desc);
3101 
3102 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3103 				&acpi_desc->nd_desc);
3104 		if (!acpi_desc->nvdimm_bus)
3105 			return -ENOMEM;
3106 
3107 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3108 				acpi_desc);
3109 		if (rc)
3110 			return rc;
3111 
3112 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3113 		if (rc)
3114 			return rc;
3115 
3116 		/* register this acpi_desc for mce notifications */
3117 		mutex_lock(&acpi_desc_lock);
3118 		list_add_tail(&acpi_desc->list, &acpi_descs);
3119 		mutex_unlock(&acpi_desc_lock);
3120 	}
3121 
3122 	mutex_lock(&acpi_desc->init_mutex);
3123 
3124 	INIT_LIST_HEAD(&prev.spas);
3125 	INIT_LIST_HEAD(&prev.memdevs);
3126 	INIT_LIST_HEAD(&prev.dcrs);
3127 	INIT_LIST_HEAD(&prev.bdws);
3128 	INIT_LIST_HEAD(&prev.idts);
3129 	INIT_LIST_HEAD(&prev.flushes);
3130 
3131 	list_cut_position(&prev.spas, &acpi_desc->spas,
3132 				acpi_desc->spas.prev);
3133 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3134 				acpi_desc->memdevs.prev);
3135 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3136 				acpi_desc->dcrs.prev);
3137 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3138 				acpi_desc->bdws.prev);
3139 	list_cut_position(&prev.idts, &acpi_desc->idts,
3140 				acpi_desc->idts.prev);
3141 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3142 				acpi_desc->flushes.prev);
3143 
3144 	end = data + sz;
3145 	while (!IS_ERR_OR_NULL(data))
3146 		data = add_table(acpi_desc, &prev, data, end);
3147 
3148 	if (IS_ERR(data)) {
3149 		dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
3150 				PTR_ERR(data));
3151 		rc = PTR_ERR(data);
3152 		goto out_unlock;
3153 	}
3154 
3155 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3156 	if (rc)
3157 		goto out_unlock;
3158 
3159 	rc = nfit_mem_init(acpi_desc);
3160 	if (rc)
3161 		goto out_unlock;
3162 
3163 	rc = acpi_nfit_register_dimms(acpi_desc);
3164 	if (rc)
3165 		goto out_unlock;
3166 
3167 	rc = acpi_nfit_register_regions(acpi_desc);
3168 
3169  out_unlock:
3170 	mutex_unlock(&acpi_desc->init_mutex);
3171 	return rc;
3172 }
3173 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3174 
3175 struct acpi_nfit_flush_work {
3176 	struct work_struct work;
3177 	struct completion cmp;
3178 };
3179 
3180 static void flush_probe(struct work_struct *work)
3181 {
3182 	struct acpi_nfit_flush_work *flush;
3183 
3184 	flush = container_of(work, typeof(*flush), work);
3185 	complete(&flush->cmp);
3186 }
3187 
3188 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3189 {
3190 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3191 	struct device *dev = acpi_desc->dev;
3192 	struct acpi_nfit_flush_work flush;
3193 	int rc;
3194 
3195 	/* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3196 	device_lock(dev);
3197 	device_unlock(dev);
3198 
3199 	/* bounce the init_mutex to make init_complete valid */
3200 	mutex_lock(&acpi_desc->init_mutex);
3201 	if (acpi_desc->cancel || acpi_desc->init_complete) {
3202 		mutex_unlock(&acpi_desc->init_mutex);
3203 		return 0;
3204 	}
3205 
3206 	/*
3207 	 * Scrub work could take 10s of seconds, userspace may give up so we
3208 	 * need to be interruptible while waiting.
3209 	 */
3210 	INIT_WORK_ONSTACK(&flush.work, flush_probe);
3211 	init_completion(&flush.cmp);
3212 	queue_work(nfit_wq, &flush.work);
3213 	mutex_unlock(&acpi_desc->init_mutex);
3214 
3215 	rc = wait_for_completion_interruptible(&flush.cmp);
3216 	cancel_work_sync(&flush.work);
3217 	return rc;
3218 }
3219 
3220 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3221 		struct nvdimm *nvdimm, unsigned int cmd)
3222 {
3223 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3224 
3225 	if (nvdimm)
3226 		return 0;
3227 	if (cmd != ND_CMD_ARS_START)
3228 		return 0;
3229 
3230 	/*
3231 	 * The kernel and userspace may race to initiate a scrub, but
3232 	 * the scrub thread is prepared to lose that initial race.  It
3233 	 * just needs guarantees that any ars it initiates are not
3234 	 * interrupted by any intervening start reqeusts from userspace.
3235 	 */
3236 	if (work_busy(&acpi_desc->work))
3237 		return -EBUSY;
3238 
3239 	return 0;
3240 }
3241 
3242 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, u8 flags)
3243 {
3244 	struct device *dev = acpi_desc->dev;
3245 	struct nfit_spa *nfit_spa;
3246 
3247 	if (work_busy(&acpi_desc->work))
3248 		return -EBUSY;
3249 
3250 	mutex_lock(&acpi_desc->init_mutex);
3251 	if (acpi_desc->cancel) {
3252 		mutex_unlock(&acpi_desc->init_mutex);
3253 		return 0;
3254 	}
3255 
3256 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3257 		struct acpi_nfit_system_address *spa = nfit_spa->spa;
3258 
3259 		if (nfit_spa_type(spa) != NFIT_SPA_PM)
3260 			continue;
3261 
3262 		nfit_spa->ars_required = 1;
3263 	}
3264 	acpi_desc->ars_start_flags = flags;
3265 	queue_work(nfit_wq, &acpi_desc->work);
3266 	dev_dbg(dev, "%s: ars_scan triggered\n", __func__);
3267 	mutex_unlock(&acpi_desc->init_mutex);
3268 
3269 	return 0;
3270 }
3271 
3272 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3273 {
3274 	struct nvdimm_bus_descriptor *nd_desc;
3275 
3276 	dev_set_drvdata(dev, acpi_desc);
3277 	acpi_desc->dev = dev;
3278 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3279 	nd_desc = &acpi_desc->nd_desc;
3280 	nd_desc->provider_name = "ACPI.NFIT";
3281 	nd_desc->module = THIS_MODULE;
3282 	nd_desc->ndctl = acpi_nfit_ctl;
3283 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3284 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3285 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3286 
3287 	INIT_LIST_HEAD(&acpi_desc->spas);
3288 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3289 	INIT_LIST_HEAD(&acpi_desc->bdws);
3290 	INIT_LIST_HEAD(&acpi_desc->idts);
3291 	INIT_LIST_HEAD(&acpi_desc->flushes);
3292 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3293 	INIT_LIST_HEAD(&acpi_desc->dimms);
3294 	INIT_LIST_HEAD(&acpi_desc->list);
3295 	mutex_init(&acpi_desc->init_mutex);
3296 	INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
3297 }
3298 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3299 
3300 static void acpi_nfit_put_table(void *table)
3301 {
3302 	acpi_put_table(table);
3303 }
3304 
3305 void acpi_nfit_shutdown(void *data)
3306 {
3307 	struct acpi_nfit_desc *acpi_desc = data;
3308 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3309 
3310 	/*
3311 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3312 	 * race teardown
3313 	 */
3314 	mutex_lock(&acpi_desc_lock);
3315 	list_del(&acpi_desc->list);
3316 	mutex_unlock(&acpi_desc_lock);
3317 
3318 	mutex_lock(&acpi_desc->init_mutex);
3319 	acpi_desc->cancel = 1;
3320 	mutex_unlock(&acpi_desc->init_mutex);
3321 
3322 	/*
3323 	 * Bounce the nvdimm bus lock to make sure any in-flight
3324 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3325 	 * either submit or see ->cancel set.
3326 	 */
3327 	device_lock(bus_dev);
3328 	device_unlock(bus_dev);
3329 
3330 	flush_workqueue(nfit_wq);
3331 }
3332 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3333 
3334 static int acpi_nfit_add(struct acpi_device *adev)
3335 {
3336 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3337 	struct acpi_nfit_desc *acpi_desc;
3338 	struct device *dev = &adev->dev;
3339 	struct acpi_table_header *tbl;
3340 	acpi_status status = AE_OK;
3341 	acpi_size sz;
3342 	int rc = 0;
3343 
3344 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3345 	if (ACPI_FAILURE(status)) {
3346 		/* This is ok, we could have an nvdimm hotplugged later */
3347 		dev_dbg(dev, "failed to find NFIT at startup\n");
3348 		return 0;
3349 	}
3350 
3351 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3352 	if (rc)
3353 		return rc;
3354 	sz = tbl->length;
3355 
3356 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3357 	if (!acpi_desc)
3358 		return -ENOMEM;
3359 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3360 
3361 	/* Save the acpi header for exporting the revision via sysfs */
3362 	acpi_desc->acpi_header = *tbl;
3363 
3364 	/* Evaluate _FIT and override with that if present */
3365 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3366 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3367 		union acpi_object *obj = buf.pointer;
3368 
3369 		if (obj->type == ACPI_TYPE_BUFFER)
3370 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3371 					obj->buffer.length);
3372 		else
3373 			dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
3374 				 __func__, (int) obj->type);
3375 		kfree(buf.pointer);
3376 	} else
3377 		/* skip over the lead-in header table */
3378 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3379 				+ sizeof(struct acpi_table_nfit),
3380 				sz - sizeof(struct acpi_table_nfit));
3381 
3382 	if (rc)
3383 		return rc;
3384 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3385 }
3386 
3387 static int acpi_nfit_remove(struct acpi_device *adev)
3388 {
3389 	/* see acpi_nfit_unregister */
3390 	return 0;
3391 }
3392 
3393 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3394 {
3395 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3396 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3397 	union acpi_object *obj;
3398 	acpi_status status;
3399 	int ret;
3400 
3401 	if (!dev->driver) {
3402 		/* dev->driver may be null if we're being removed */
3403 		dev_dbg(dev, "%s: no driver found for dev\n", __func__);
3404 		return;
3405 	}
3406 
3407 	if (!acpi_desc) {
3408 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3409 		if (!acpi_desc)
3410 			return;
3411 		acpi_nfit_desc_init(acpi_desc, dev);
3412 	} else {
3413 		/*
3414 		 * Finish previous registration before considering new
3415 		 * regions.
3416 		 */
3417 		flush_workqueue(nfit_wq);
3418 	}
3419 
3420 	/* Evaluate _FIT */
3421 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3422 	if (ACPI_FAILURE(status)) {
3423 		dev_err(dev, "failed to evaluate _FIT\n");
3424 		return;
3425 	}
3426 
3427 	obj = buf.pointer;
3428 	if (obj->type == ACPI_TYPE_BUFFER) {
3429 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3430 				obj->buffer.length);
3431 		if (ret)
3432 			dev_err(dev, "failed to merge updated NFIT\n");
3433 	} else
3434 		dev_err(dev, "Invalid _FIT\n");
3435 	kfree(buf.pointer);
3436 }
3437 
3438 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3439 {
3440 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3441 	u8 flags = (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) ?
3442 			0 : ND_ARS_RETURN_PREV_DATA;
3443 
3444 	acpi_nfit_ars_rescan(acpi_desc, flags);
3445 }
3446 
3447 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3448 {
3449 	dev_dbg(dev, "%s: event: 0x%x\n", __func__, event);
3450 
3451 	switch (event) {
3452 	case NFIT_NOTIFY_UPDATE:
3453 		return acpi_nfit_update_notify(dev, handle);
3454 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3455 		return acpi_nfit_uc_error_notify(dev, handle);
3456 	default:
3457 		return;
3458 	}
3459 }
3460 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3461 
3462 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3463 {
3464 	device_lock(&adev->dev);
3465 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3466 	device_unlock(&adev->dev);
3467 }
3468 
3469 static const struct acpi_device_id acpi_nfit_ids[] = {
3470 	{ "ACPI0012", 0 },
3471 	{ "", 0 },
3472 };
3473 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3474 
3475 static struct acpi_driver acpi_nfit_driver = {
3476 	.name = KBUILD_MODNAME,
3477 	.ids = acpi_nfit_ids,
3478 	.ops = {
3479 		.add = acpi_nfit_add,
3480 		.remove = acpi_nfit_remove,
3481 		.notify = acpi_nfit_notify,
3482 	},
3483 };
3484 
3485 static __init int nfit_init(void)
3486 {
3487 	int ret;
3488 
3489 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3490 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3491 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3492 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3493 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3494 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3495 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3496 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3497 
3498 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3499 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3500 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3501 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3502 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3503 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3504 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3505 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3506 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3507 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3508 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3509 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3510 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3511 
3512 	nfit_wq = create_singlethread_workqueue("nfit");
3513 	if (!nfit_wq)
3514 		return -ENOMEM;
3515 
3516 	nfit_mce_register();
3517 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3518 	if (ret) {
3519 		nfit_mce_unregister();
3520 		destroy_workqueue(nfit_wq);
3521 	}
3522 
3523 	return ret;
3524 
3525 }
3526 
3527 static __exit void nfit_exit(void)
3528 {
3529 	nfit_mce_unregister();
3530 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3531 	destroy_workqueue(nfit_wq);
3532 	WARN_ON(!list_empty(&acpi_descs));
3533 }
3534 
3535 module_init(nfit_init);
3536 module_exit(nfit_exit);
3537 MODULE_LICENSE("GPL v2");
3538 MODULE_AUTHOR("Intel Corporation");
3539