1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/list_sort.h> 6 #include <linux/libnvdimm.h> 7 #include <linux/module.h> 8 #include <linux/nospec.h> 9 #include <linux/mutex.h> 10 #include <linux/ndctl.h> 11 #include <linux/sysfs.h> 12 #include <linux/delay.h> 13 #include <linux/list.h> 14 #include <linux/acpi.h> 15 #include <linux/sort.h> 16 #include <linux/io.h> 17 #include <linux/nd.h> 18 #include <asm/cacheflush.h> 19 #include <acpi/nfit.h> 20 #include "intel.h" 21 #include "nfit.h" 22 23 /* 24 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 25 * irrelevant. 26 */ 27 #include <linux/io-64-nonatomic-hi-lo.h> 28 29 static bool force_enable_dimms; 30 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); 31 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); 32 33 static bool disable_vendor_specific; 34 module_param(disable_vendor_specific, bool, S_IRUGO); 35 MODULE_PARM_DESC(disable_vendor_specific, 36 "Limit commands to the publicly specified set"); 37 38 static unsigned long override_dsm_mask; 39 module_param(override_dsm_mask, ulong, S_IRUGO); 40 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); 41 42 static int default_dsm_family = -1; 43 module_param(default_dsm_family, int, S_IRUGO); 44 MODULE_PARM_DESC(default_dsm_family, 45 "Try this DSM type first when identifying NVDIMM family"); 46 47 static bool no_init_ars; 48 module_param(no_init_ars, bool, 0644); 49 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); 50 51 static bool force_labels; 52 module_param(force_labels, bool, 0444); 53 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods"); 54 55 LIST_HEAD(acpi_descs); 56 DEFINE_MUTEX(acpi_desc_lock); 57 58 static struct workqueue_struct *nfit_wq; 59 60 struct nfit_table_prev { 61 struct list_head spas; 62 struct list_head memdevs; 63 struct list_head dcrs; 64 struct list_head bdws; 65 struct list_head idts; 66 struct list_head flushes; 67 }; 68 69 static guid_t nfit_uuid[NFIT_UUID_MAX]; 70 71 const guid_t *to_nfit_uuid(enum nfit_uuids id) 72 { 73 return &nfit_uuid[id]; 74 } 75 EXPORT_SYMBOL(to_nfit_uuid); 76 77 static const guid_t *to_nfit_bus_uuid(int family) 78 { 79 if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT, 80 "only secondary bus families can be translated\n")) 81 return NULL; 82 /* 83 * The index of bus UUIDs starts immediately following the last 84 * NVDIMM/leaf family. 85 */ 86 return to_nfit_uuid(family + NVDIMM_FAMILY_MAX); 87 } 88 89 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) 90 { 91 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 92 93 /* 94 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct 95 * acpi_device. 96 */ 97 if (!nd_desc->provider_name 98 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) 99 return NULL; 100 101 return to_acpi_device(acpi_desc->dev); 102 } 103 104 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) 105 { 106 struct nd_cmd_clear_error *clear_err; 107 struct nd_cmd_ars_status *ars_status; 108 u16 flags; 109 110 switch (cmd) { 111 case ND_CMD_ARS_CAP: 112 if ((status & 0xffff) == NFIT_ARS_CAP_NONE) 113 return -ENOTTY; 114 115 /* Command failed */ 116 if (status & 0xffff) 117 return -EIO; 118 119 /* No supported scan types for this range */ 120 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; 121 if ((status >> 16 & flags) == 0) 122 return -ENOTTY; 123 return 0; 124 case ND_CMD_ARS_START: 125 /* ARS is in progress */ 126 if ((status & 0xffff) == NFIT_ARS_START_BUSY) 127 return -EBUSY; 128 129 /* Command failed */ 130 if (status & 0xffff) 131 return -EIO; 132 return 0; 133 case ND_CMD_ARS_STATUS: 134 ars_status = buf; 135 /* Command failed */ 136 if (status & 0xffff) 137 return -EIO; 138 /* Check extended status (Upper two bytes) */ 139 if (status == NFIT_ARS_STATUS_DONE) 140 return 0; 141 142 /* ARS is in progress */ 143 if (status == NFIT_ARS_STATUS_BUSY) 144 return -EBUSY; 145 146 /* No ARS performed for the current boot */ 147 if (status == NFIT_ARS_STATUS_NONE) 148 return -EAGAIN; 149 150 /* 151 * ARS interrupted, either we overflowed or some other 152 * agent wants the scan to stop. If we didn't overflow 153 * then just continue with the returned results. 154 */ 155 if (status == NFIT_ARS_STATUS_INTR) { 156 if (ars_status->out_length >= 40 && (ars_status->flags 157 & NFIT_ARS_F_OVERFLOW)) 158 return -ENOSPC; 159 return 0; 160 } 161 162 /* Unknown status */ 163 if (status >> 16) 164 return -EIO; 165 return 0; 166 case ND_CMD_CLEAR_ERROR: 167 clear_err = buf; 168 if (status & 0xffff) 169 return -EIO; 170 if (!clear_err->cleared) 171 return -EIO; 172 if (clear_err->length > clear_err->cleared) 173 return clear_err->cleared; 174 return 0; 175 default: 176 break; 177 } 178 179 /* all other non-zero status results in an error */ 180 if (status) 181 return -EIO; 182 return 0; 183 } 184 185 #define ACPI_LABELS_LOCKED 3 186 187 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 188 u32 status) 189 { 190 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 191 192 switch (cmd) { 193 case ND_CMD_GET_CONFIG_SIZE: 194 /* 195 * In the _LSI, _LSR, _LSW case the locked status is 196 * communicated via the read/write commands 197 */ 198 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 199 break; 200 201 if (status >> 16 & ND_CONFIG_LOCKED) 202 return -EACCES; 203 break; 204 case ND_CMD_GET_CONFIG_DATA: 205 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 206 && status == ACPI_LABELS_LOCKED) 207 return -EACCES; 208 break; 209 case ND_CMD_SET_CONFIG_DATA: 210 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 211 && status == ACPI_LABELS_LOCKED) 212 return -EACCES; 213 break; 214 default: 215 break; 216 } 217 218 /* all other non-zero status results in an error */ 219 if (status) 220 return -EIO; 221 return 0; 222 } 223 224 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 225 u32 status) 226 { 227 if (!nvdimm) 228 return xlat_bus_status(buf, cmd, status); 229 return xlat_nvdimm_status(nvdimm, buf, cmd, status); 230 } 231 232 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ 233 static union acpi_object *pkg_to_buf(union acpi_object *pkg) 234 { 235 int i; 236 void *dst; 237 size_t size = 0; 238 union acpi_object *buf = NULL; 239 240 if (pkg->type != ACPI_TYPE_PACKAGE) { 241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 242 pkg->type); 243 goto err; 244 } 245 246 for (i = 0; i < pkg->package.count; i++) { 247 union acpi_object *obj = &pkg->package.elements[i]; 248 249 if (obj->type == ACPI_TYPE_INTEGER) 250 size += 4; 251 else if (obj->type == ACPI_TYPE_BUFFER) 252 size += obj->buffer.length; 253 else { 254 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 255 obj->type); 256 goto err; 257 } 258 } 259 260 buf = ACPI_ALLOCATE(sizeof(*buf) + size); 261 if (!buf) 262 goto err; 263 264 dst = buf + 1; 265 buf->type = ACPI_TYPE_BUFFER; 266 buf->buffer.length = size; 267 buf->buffer.pointer = dst; 268 for (i = 0; i < pkg->package.count; i++) { 269 union acpi_object *obj = &pkg->package.elements[i]; 270 271 if (obj->type == ACPI_TYPE_INTEGER) { 272 memcpy(dst, &obj->integer.value, 4); 273 dst += 4; 274 } else if (obj->type == ACPI_TYPE_BUFFER) { 275 memcpy(dst, obj->buffer.pointer, obj->buffer.length); 276 dst += obj->buffer.length; 277 } 278 } 279 err: 280 ACPI_FREE(pkg); 281 return buf; 282 } 283 284 static union acpi_object *int_to_buf(union acpi_object *integer) 285 { 286 union acpi_object *buf = NULL; 287 void *dst = NULL; 288 289 if (integer->type != ACPI_TYPE_INTEGER) { 290 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 291 integer->type); 292 goto err; 293 } 294 295 buf = ACPI_ALLOCATE(sizeof(*buf) + 4); 296 if (!buf) 297 goto err; 298 299 dst = buf + 1; 300 buf->type = ACPI_TYPE_BUFFER; 301 buf->buffer.length = 4; 302 buf->buffer.pointer = dst; 303 memcpy(dst, &integer->integer.value, 4); 304 err: 305 ACPI_FREE(integer); 306 return buf; 307 } 308 309 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, 310 u32 len, void *data) 311 { 312 acpi_status rc; 313 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 314 struct acpi_object_list input = { 315 .count = 3, 316 .pointer = (union acpi_object []) { 317 [0] = { 318 .integer.type = ACPI_TYPE_INTEGER, 319 .integer.value = offset, 320 }, 321 [1] = { 322 .integer.type = ACPI_TYPE_INTEGER, 323 .integer.value = len, 324 }, 325 [2] = { 326 .buffer.type = ACPI_TYPE_BUFFER, 327 .buffer.pointer = data, 328 .buffer.length = len, 329 }, 330 }, 331 }; 332 333 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); 334 if (ACPI_FAILURE(rc)) 335 return NULL; 336 return int_to_buf(buf.pointer); 337 } 338 339 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, 340 u32 len) 341 { 342 acpi_status rc; 343 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 344 struct acpi_object_list input = { 345 .count = 2, 346 .pointer = (union acpi_object []) { 347 [0] = { 348 .integer.type = ACPI_TYPE_INTEGER, 349 .integer.value = offset, 350 }, 351 [1] = { 352 .integer.type = ACPI_TYPE_INTEGER, 353 .integer.value = len, 354 }, 355 }, 356 }; 357 358 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); 359 if (ACPI_FAILURE(rc)) 360 return NULL; 361 return pkg_to_buf(buf.pointer); 362 } 363 364 static union acpi_object *acpi_label_info(acpi_handle handle) 365 { 366 acpi_status rc; 367 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 368 369 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); 370 if (ACPI_FAILURE(rc)) 371 return NULL; 372 return pkg_to_buf(buf.pointer); 373 } 374 375 static u8 nfit_dsm_revid(unsigned family, unsigned func) 376 { 377 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = { 378 [NVDIMM_FAMILY_INTEL] = { 379 [NVDIMM_INTEL_GET_MODES ... 380 NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2, 381 }, 382 }; 383 u8 id; 384 385 if (family > NVDIMM_FAMILY_MAX) 386 return 0; 387 if (func > NVDIMM_CMD_MAX) 388 return 0; 389 id = revid_table[family][func]; 390 if (id == 0) 391 return 1; /* default */ 392 return id; 393 } 394 395 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) 396 { 397 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 398 399 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL 400 && func >= NVDIMM_INTEL_GET_SECURITY_STATE 401 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) 402 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); 403 return true; 404 } 405 406 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, 407 struct nd_cmd_pkg *call_pkg, int *family) 408 { 409 if (call_pkg) { 410 int i; 411 412 if (nfit_mem && nfit_mem->family != call_pkg->nd_family) 413 return -ENOTTY; 414 415 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) 416 if (call_pkg->nd_reserved2[i]) 417 return -EINVAL; 418 *family = call_pkg->nd_family; 419 return call_pkg->nd_command; 420 } 421 422 /* In the !call_pkg case, bus commands == bus functions */ 423 if (!nfit_mem) 424 return cmd; 425 426 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ 427 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 428 return cmd; 429 430 /* 431 * Force function number validation to fail since 0 is never 432 * published as a valid function in dsm_mask. 433 */ 434 return 0; 435 } 436 437 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, 438 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) 439 { 440 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 441 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 442 union acpi_object in_obj, in_buf, *out_obj; 443 const struct nd_cmd_desc *desc = NULL; 444 struct device *dev = acpi_desc->dev; 445 struct nd_cmd_pkg *call_pkg = NULL; 446 const char *cmd_name, *dimm_name; 447 unsigned long cmd_mask, dsm_mask; 448 u32 offset, fw_status = 0; 449 acpi_handle handle; 450 const guid_t *guid; 451 int func, rc, i; 452 int family = 0; 453 454 if (cmd_rc) 455 *cmd_rc = -EINVAL; 456 457 if (cmd == ND_CMD_CALL) 458 call_pkg = buf; 459 func = cmd_to_func(nfit_mem, cmd, call_pkg, &family); 460 if (func < 0) 461 return func; 462 463 if (nvdimm) { 464 struct acpi_device *adev = nfit_mem->adev; 465 466 if (!adev) 467 return -ENOTTY; 468 469 dimm_name = nvdimm_name(nvdimm); 470 cmd_name = nvdimm_cmd_name(cmd); 471 cmd_mask = nvdimm_cmd_mask(nvdimm); 472 dsm_mask = nfit_mem->dsm_mask; 473 desc = nd_cmd_dimm_desc(cmd); 474 guid = to_nfit_uuid(nfit_mem->family); 475 handle = adev->handle; 476 } else { 477 struct acpi_device *adev = to_acpi_dev(acpi_desc); 478 479 cmd_name = nvdimm_bus_cmd_name(cmd); 480 cmd_mask = nd_desc->cmd_mask; 481 if (cmd == ND_CMD_CALL && call_pkg->nd_family) { 482 family = call_pkg->nd_family; 483 if (family > NVDIMM_BUS_FAMILY_MAX || 484 !test_bit(family, &nd_desc->bus_family_mask)) 485 return -EINVAL; 486 family = array_index_nospec(family, 487 NVDIMM_BUS_FAMILY_MAX + 1); 488 dsm_mask = acpi_desc->family_dsm_mask[family]; 489 guid = to_nfit_bus_uuid(family); 490 } else { 491 dsm_mask = acpi_desc->bus_dsm_mask; 492 guid = to_nfit_uuid(NFIT_DEV_BUS); 493 } 494 desc = nd_cmd_bus_desc(cmd); 495 handle = adev->handle; 496 dimm_name = "bus"; 497 } 498 499 if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) 500 return -ENOTTY; 501 502 /* 503 * Check for a valid command. For ND_CMD_CALL, we also have to 504 * make sure that the DSM function is supported. 505 */ 506 if (cmd == ND_CMD_CALL && 507 (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask))) 508 return -ENOTTY; 509 else if (!test_bit(cmd, &cmd_mask)) 510 return -ENOTTY; 511 512 in_obj.type = ACPI_TYPE_PACKAGE; 513 in_obj.package.count = 1; 514 in_obj.package.elements = &in_buf; 515 in_buf.type = ACPI_TYPE_BUFFER; 516 in_buf.buffer.pointer = buf; 517 in_buf.buffer.length = 0; 518 519 /* libnvdimm has already validated the input envelope */ 520 for (i = 0; i < desc->in_num; i++) 521 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, 522 i, buf); 523 524 if (call_pkg) { 525 /* skip over package wrapper */ 526 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; 527 in_buf.buffer.length = call_pkg->nd_size_in; 528 } 529 530 dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n", 531 dimm_name, cmd, family, func, in_buf.buffer.length); 532 if (payload_dumpable(nvdimm, func)) 533 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, 534 in_buf.buffer.pointer, 535 min_t(u32, 256, in_buf.buffer.length), true); 536 537 /* call the BIOS, prefer the named methods over _DSM if available */ 538 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE 539 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 540 out_obj = acpi_label_info(handle); 541 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA 542 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 543 struct nd_cmd_get_config_data_hdr *p = buf; 544 545 out_obj = acpi_label_read(handle, p->in_offset, p->in_length); 546 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA 547 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { 548 struct nd_cmd_set_config_hdr *p = buf; 549 550 out_obj = acpi_label_write(handle, p->in_offset, p->in_length, 551 p->in_buf); 552 } else { 553 u8 revid; 554 555 if (nvdimm) 556 revid = nfit_dsm_revid(nfit_mem->family, func); 557 else 558 revid = 1; 559 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 560 } 561 562 if (!out_obj) { 563 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); 564 return -EINVAL; 565 } 566 567 if (out_obj->type != ACPI_TYPE_BUFFER) { 568 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", 569 dimm_name, cmd_name, out_obj->type); 570 rc = -EINVAL; 571 goto out; 572 } 573 574 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, 575 cmd_name, out_obj->buffer.length); 576 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, 577 out_obj->buffer.pointer, 578 min_t(u32, 128, out_obj->buffer.length), true); 579 580 if (call_pkg) { 581 call_pkg->nd_fw_size = out_obj->buffer.length; 582 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, 583 out_obj->buffer.pointer, 584 min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); 585 586 ACPI_FREE(out_obj); 587 /* 588 * Need to support FW function w/o known size in advance. 589 * Caller can determine required size based upon nd_fw_size. 590 * If we return an error (like elsewhere) then caller wouldn't 591 * be able to rely upon data returned to make calculation. 592 */ 593 if (cmd_rc) 594 *cmd_rc = 0; 595 return 0; 596 } 597 598 for (i = 0, offset = 0; i < desc->out_num; i++) { 599 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, 600 (u32 *) out_obj->buffer.pointer, 601 out_obj->buffer.length - offset); 602 603 if (offset + out_size > out_obj->buffer.length) { 604 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", 605 dimm_name, cmd_name, i); 606 break; 607 } 608 609 if (in_buf.buffer.length + offset + out_size > buf_len) { 610 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", 611 dimm_name, cmd_name, i); 612 rc = -ENXIO; 613 goto out; 614 } 615 memcpy(buf + in_buf.buffer.length + offset, 616 out_obj->buffer.pointer + offset, out_size); 617 offset += out_size; 618 } 619 620 /* 621 * Set fw_status for all the commands with a known format to be 622 * later interpreted by xlat_status(). 623 */ 624 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP 625 && cmd <= ND_CMD_CLEAR_ERROR) 626 || (nvdimm && cmd >= ND_CMD_SMART 627 && cmd <= ND_CMD_VENDOR))) 628 fw_status = *(u32 *) out_obj->buffer.pointer; 629 630 if (offset + in_buf.buffer.length < buf_len) { 631 if (i >= 1) { 632 /* 633 * status valid, return the number of bytes left 634 * unfilled in the output buffer 635 */ 636 rc = buf_len - offset - in_buf.buffer.length; 637 if (cmd_rc) 638 *cmd_rc = xlat_status(nvdimm, buf, cmd, 639 fw_status); 640 } else { 641 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", 642 __func__, dimm_name, cmd_name, buf_len, 643 offset); 644 rc = -ENXIO; 645 } 646 } else { 647 rc = 0; 648 if (cmd_rc) 649 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); 650 } 651 652 out: 653 ACPI_FREE(out_obj); 654 655 return rc; 656 } 657 EXPORT_SYMBOL_GPL(acpi_nfit_ctl); 658 659 static const char *spa_type_name(u16 type) 660 { 661 static const char *to_name[] = { 662 [NFIT_SPA_VOLATILE] = "volatile", 663 [NFIT_SPA_PM] = "pmem", 664 [NFIT_SPA_DCR] = "dimm-control-region", 665 [NFIT_SPA_BDW] = "block-data-window", 666 [NFIT_SPA_VDISK] = "volatile-disk", 667 [NFIT_SPA_VCD] = "volatile-cd", 668 [NFIT_SPA_PDISK] = "persistent-disk", 669 [NFIT_SPA_PCD] = "persistent-cd", 670 671 }; 672 673 if (type > NFIT_SPA_PCD) 674 return "unknown"; 675 676 return to_name[type]; 677 } 678 679 int nfit_spa_type(struct acpi_nfit_system_address *spa) 680 { 681 int i; 682 683 for (i = 0; i < NFIT_UUID_MAX; i++) 684 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) 685 return i; 686 return -1; 687 } 688 689 static bool add_spa(struct acpi_nfit_desc *acpi_desc, 690 struct nfit_table_prev *prev, 691 struct acpi_nfit_system_address *spa) 692 { 693 struct device *dev = acpi_desc->dev; 694 struct nfit_spa *nfit_spa; 695 696 if (spa->header.length != sizeof(*spa)) 697 return false; 698 699 list_for_each_entry(nfit_spa, &prev->spas, list) { 700 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { 701 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 702 return true; 703 } 704 } 705 706 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), 707 GFP_KERNEL); 708 if (!nfit_spa) 709 return false; 710 INIT_LIST_HEAD(&nfit_spa->list); 711 memcpy(nfit_spa->spa, spa, sizeof(*spa)); 712 list_add_tail(&nfit_spa->list, &acpi_desc->spas); 713 dev_dbg(dev, "spa index: %d type: %s\n", 714 spa->range_index, 715 spa_type_name(nfit_spa_type(spa))); 716 return true; 717 } 718 719 static bool add_memdev(struct acpi_nfit_desc *acpi_desc, 720 struct nfit_table_prev *prev, 721 struct acpi_nfit_memory_map *memdev) 722 { 723 struct device *dev = acpi_desc->dev; 724 struct nfit_memdev *nfit_memdev; 725 726 if (memdev->header.length != sizeof(*memdev)) 727 return false; 728 729 list_for_each_entry(nfit_memdev, &prev->memdevs, list) 730 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { 731 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); 732 return true; 733 } 734 735 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), 736 GFP_KERNEL); 737 if (!nfit_memdev) 738 return false; 739 INIT_LIST_HEAD(&nfit_memdev->list); 740 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); 741 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); 742 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", 743 memdev->device_handle, memdev->range_index, 744 memdev->region_index, memdev->flags); 745 return true; 746 } 747 748 int nfit_get_smbios_id(u32 device_handle, u16 *flags) 749 { 750 struct acpi_nfit_memory_map *memdev; 751 struct acpi_nfit_desc *acpi_desc; 752 struct nfit_mem *nfit_mem; 753 u16 physical_id; 754 755 mutex_lock(&acpi_desc_lock); 756 list_for_each_entry(acpi_desc, &acpi_descs, list) { 757 mutex_lock(&acpi_desc->init_mutex); 758 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 759 memdev = __to_nfit_memdev(nfit_mem); 760 if (memdev->device_handle == device_handle) { 761 *flags = memdev->flags; 762 physical_id = memdev->physical_id; 763 mutex_unlock(&acpi_desc->init_mutex); 764 mutex_unlock(&acpi_desc_lock); 765 return physical_id; 766 } 767 } 768 mutex_unlock(&acpi_desc->init_mutex); 769 } 770 mutex_unlock(&acpi_desc_lock); 771 772 return -ENODEV; 773 } 774 EXPORT_SYMBOL_GPL(nfit_get_smbios_id); 775 776 /* 777 * An implementation may provide a truncated control region if no block windows 778 * are defined. 779 */ 780 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) 781 { 782 if (dcr->header.length < offsetof(struct acpi_nfit_control_region, 783 window_size)) 784 return 0; 785 if (dcr->windows) 786 return sizeof(*dcr); 787 return offsetof(struct acpi_nfit_control_region, window_size); 788 } 789 790 static bool add_dcr(struct acpi_nfit_desc *acpi_desc, 791 struct nfit_table_prev *prev, 792 struct acpi_nfit_control_region *dcr) 793 { 794 struct device *dev = acpi_desc->dev; 795 struct nfit_dcr *nfit_dcr; 796 797 if (!sizeof_dcr(dcr)) 798 return false; 799 800 list_for_each_entry(nfit_dcr, &prev->dcrs, list) 801 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { 802 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); 803 return true; 804 } 805 806 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), 807 GFP_KERNEL); 808 if (!nfit_dcr) 809 return false; 810 INIT_LIST_HEAD(&nfit_dcr->list); 811 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); 812 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); 813 dev_dbg(dev, "dcr index: %d windows: %d\n", 814 dcr->region_index, dcr->windows); 815 return true; 816 } 817 818 static bool add_bdw(struct acpi_nfit_desc *acpi_desc, 819 struct nfit_table_prev *prev, 820 struct acpi_nfit_data_region *bdw) 821 { 822 struct device *dev = acpi_desc->dev; 823 struct nfit_bdw *nfit_bdw; 824 825 if (bdw->header.length != sizeof(*bdw)) 826 return false; 827 list_for_each_entry(nfit_bdw, &prev->bdws, list) 828 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { 829 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); 830 return true; 831 } 832 833 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), 834 GFP_KERNEL); 835 if (!nfit_bdw) 836 return false; 837 INIT_LIST_HEAD(&nfit_bdw->list); 838 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); 839 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); 840 dev_dbg(dev, "bdw dcr: %d windows: %d\n", 841 bdw->region_index, bdw->windows); 842 return true; 843 } 844 845 static size_t sizeof_idt(struct acpi_nfit_interleave *idt) 846 { 847 if (idt->header.length < sizeof(*idt)) 848 return 0; 849 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); 850 } 851 852 static bool add_idt(struct acpi_nfit_desc *acpi_desc, 853 struct nfit_table_prev *prev, 854 struct acpi_nfit_interleave *idt) 855 { 856 struct device *dev = acpi_desc->dev; 857 struct nfit_idt *nfit_idt; 858 859 if (!sizeof_idt(idt)) 860 return false; 861 862 list_for_each_entry(nfit_idt, &prev->idts, list) { 863 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) 864 continue; 865 866 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { 867 list_move_tail(&nfit_idt->list, &acpi_desc->idts); 868 return true; 869 } 870 } 871 872 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), 873 GFP_KERNEL); 874 if (!nfit_idt) 875 return false; 876 INIT_LIST_HEAD(&nfit_idt->list); 877 memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); 878 list_add_tail(&nfit_idt->list, &acpi_desc->idts); 879 dev_dbg(dev, "idt index: %d num_lines: %d\n", 880 idt->interleave_index, idt->line_count); 881 return true; 882 } 883 884 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) 885 { 886 if (flush->header.length < sizeof(*flush)) 887 return 0; 888 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); 889 } 890 891 static bool add_flush(struct acpi_nfit_desc *acpi_desc, 892 struct nfit_table_prev *prev, 893 struct acpi_nfit_flush_address *flush) 894 { 895 struct device *dev = acpi_desc->dev; 896 struct nfit_flush *nfit_flush; 897 898 if (!sizeof_flush(flush)) 899 return false; 900 901 list_for_each_entry(nfit_flush, &prev->flushes, list) { 902 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) 903 continue; 904 905 if (memcmp(nfit_flush->flush, flush, 906 sizeof_flush(flush)) == 0) { 907 list_move_tail(&nfit_flush->list, &acpi_desc->flushes); 908 return true; 909 } 910 } 911 912 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) 913 + sizeof_flush(flush), GFP_KERNEL); 914 if (!nfit_flush) 915 return false; 916 INIT_LIST_HEAD(&nfit_flush->list); 917 memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); 918 list_add_tail(&nfit_flush->list, &acpi_desc->flushes); 919 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", 920 flush->device_handle, flush->hint_count); 921 return true; 922 } 923 924 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, 925 struct acpi_nfit_capabilities *pcap) 926 { 927 struct device *dev = acpi_desc->dev; 928 u32 mask; 929 930 mask = (1 << (pcap->highest_capability + 1)) - 1; 931 acpi_desc->platform_cap = pcap->capabilities & mask; 932 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); 933 return true; 934 } 935 936 static void *add_table(struct acpi_nfit_desc *acpi_desc, 937 struct nfit_table_prev *prev, void *table, const void *end) 938 { 939 struct device *dev = acpi_desc->dev; 940 struct acpi_nfit_header *hdr; 941 void *err = ERR_PTR(-ENOMEM); 942 943 if (table >= end) 944 return NULL; 945 946 hdr = table; 947 if (!hdr->length) { 948 dev_warn(dev, "found a zero length table '%d' parsing nfit\n", 949 hdr->type); 950 return NULL; 951 } 952 953 switch (hdr->type) { 954 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: 955 if (!add_spa(acpi_desc, prev, table)) 956 return err; 957 break; 958 case ACPI_NFIT_TYPE_MEMORY_MAP: 959 if (!add_memdev(acpi_desc, prev, table)) 960 return err; 961 break; 962 case ACPI_NFIT_TYPE_CONTROL_REGION: 963 if (!add_dcr(acpi_desc, prev, table)) 964 return err; 965 break; 966 case ACPI_NFIT_TYPE_DATA_REGION: 967 if (!add_bdw(acpi_desc, prev, table)) 968 return err; 969 break; 970 case ACPI_NFIT_TYPE_INTERLEAVE: 971 if (!add_idt(acpi_desc, prev, table)) 972 return err; 973 break; 974 case ACPI_NFIT_TYPE_FLUSH_ADDRESS: 975 if (!add_flush(acpi_desc, prev, table)) 976 return err; 977 break; 978 case ACPI_NFIT_TYPE_SMBIOS: 979 dev_dbg(dev, "smbios\n"); 980 break; 981 case ACPI_NFIT_TYPE_CAPABILITIES: 982 if (!add_platform_cap(acpi_desc, table)) 983 return err; 984 break; 985 default: 986 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); 987 break; 988 } 989 990 return table + hdr->length; 991 } 992 993 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, 994 struct nfit_mem *nfit_mem) 995 { 996 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 997 u16 dcr = nfit_mem->dcr->region_index; 998 struct nfit_spa *nfit_spa; 999 1000 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1001 u16 range_index = nfit_spa->spa->range_index; 1002 int type = nfit_spa_type(nfit_spa->spa); 1003 struct nfit_memdev *nfit_memdev; 1004 1005 if (type != NFIT_SPA_BDW) 1006 continue; 1007 1008 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1009 if (nfit_memdev->memdev->range_index != range_index) 1010 continue; 1011 if (nfit_memdev->memdev->device_handle != device_handle) 1012 continue; 1013 if (nfit_memdev->memdev->region_index != dcr) 1014 continue; 1015 1016 nfit_mem->spa_bdw = nfit_spa->spa; 1017 return; 1018 } 1019 } 1020 1021 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", 1022 nfit_mem->spa_dcr->range_index); 1023 nfit_mem->bdw = NULL; 1024 } 1025 1026 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, 1027 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) 1028 { 1029 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; 1030 struct nfit_memdev *nfit_memdev; 1031 struct nfit_bdw *nfit_bdw; 1032 struct nfit_idt *nfit_idt; 1033 u16 idt_idx, range_index; 1034 1035 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { 1036 if (nfit_bdw->bdw->region_index != dcr) 1037 continue; 1038 nfit_mem->bdw = nfit_bdw->bdw; 1039 break; 1040 } 1041 1042 if (!nfit_mem->bdw) 1043 return; 1044 1045 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); 1046 1047 if (!nfit_mem->spa_bdw) 1048 return; 1049 1050 range_index = nfit_mem->spa_bdw->range_index; 1051 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1052 if (nfit_memdev->memdev->range_index != range_index || 1053 nfit_memdev->memdev->region_index != dcr) 1054 continue; 1055 nfit_mem->memdev_bdw = nfit_memdev->memdev; 1056 idt_idx = nfit_memdev->memdev->interleave_index; 1057 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1058 if (nfit_idt->idt->interleave_index != idt_idx) 1059 continue; 1060 nfit_mem->idt_bdw = nfit_idt->idt; 1061 break; 1062 } 1063 break; 1064 } 1065 } 1066 1067 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, 1068 struct acpi_nfit_system_address *spa) 1069 { 1070 struct nfit_mem *nfit_mem, *found; 1071 struct nfit_memdev *nfit_memdev; 1072 int type = spa ? nfit_spa_type(spa) : 0; 1073 1074 switch (type) { 1075 case NFIT_SPA_DCR: 1076 case NFIT_SPA_PM: 1077 break; 1078 default: 1079 if (spa) 1080 return 0; 1081 } 1082 1083 /* 1084 * This loop runs in two modes, when a dimm is mapped the loop 1085 * adds memdev associations to an existing dimm, or creates a 1086 * dimm. In the unmapped dimm case this loop sweeps for memdev 1087 * instances with an invalid / zero range_index and adds those 1088 * dimms without spa associations. 1089 */ 1090 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1091 struct nfit_flush *nfit_flush; 1092 struct nfit_dcr *nfit_dcr; 1093 u32 device_handle; 1094 u16 dcr; 1095 1096 if (spa && nfit_memdev->memdev->range_index != spa->range_index) 1097 continue; 1098 if (!spa && nfit_memdev->memdev->range_index) 1099 continue; 1100 found = NULL; 1101 dcr = nfit_memdev->memdev->region_index; 1102 device_handle = nfit_memdev->memdev->device_handle; 1103 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1104 if (__to_nfit_memdev(nfit_mem)->device_handle 1105 == device_handle) { 1106 found = nfit_mem; 1107 break; 1108 } 1109 1110 if (found) 1111 nfit_mem = found; 1112 else { 1113 nfit_mem = devm_kzalloc(acpi_desc->dev, 1114 sizeof(*nfit_mem), GFP_KERNEL); 1115 if (!nfit_mem) 1116 return -ENOMEM; 1117 INIT_LIST_HEAD(&nfit_mem->list); 1118 nfit_mem->acpi_desc = acpi_desc; 1119 list_add(&nfit_mem->list, &acpi_desc->dimms); 1120 } 1121 1122 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1123 if (nfit_dcr->dcr->region_index != dcr) 1124 continue; 1125 /* 1126 * Record the control region for the dimm. For 1127 * the ACPI 6.1 case, where there are separate 1128 * control regions for the pmem vs blk 1129 * interfaces, be sure to record the extended 1130 * blk details. 1131 */ 1132 if (!nfit_mem->dcr) 1133 nfit_mem->dcr = nfit_dcr->dcr; 1134 else if (nfit_mem->dcr->windows == 0 1135 && nfit_dcr->dcr->windows) 1136 nfit_mem->dcr = nfit_dcr->dcr; 1137 break; 1138 } 1139 1140 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { 1141 struct acpi_nfit_flush_address *flush; 1142 u16 i; 1143 1144 if (nfit_flush->flush->device_handle != device_handle) 1145 continue; 1146 nfit_mem->nfit_flush = nfit_flush; 1147 flush = nfit_flush->flush; 1148 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, 1149 flush->hint_count, 1150 sizeof(struct resource), 1151 GFP_KERNEL); 1152 if (!nfit_mem->flush_wpq) 1153 return -ENOMEM; 1154 for (i = 0; i < flush->hint_count; i++) { 1155 struct resource *res = &nfit_mem->flush_wpq[i]; 1156 1157 res->start = flush->hint_address[i]; 1158 res->end = res->start + 8 - 1; 1159 } 1160 break; 1161 } 1162 1163 if (dcr && !nfit_mem->dcr) { 1164 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", 1165 spa->range_index, dcr); 1166 return -ENODEV; 1167 } 1168 1169 if (type == NFIT_SPA_DCR) { 1170 struct nfit_idt *nfit_idt; 1171 u16 idt_idx; 1172 1173 /* multiple dimms may share a SPA when interleaved */ 1174 nfit_mem->spa_dcr = spa; 1175 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1176 idt_idx = nfit_memdev->memdev->interleave_index; 1177 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1178 if (nfit_idt->idt->interleave_index != idt_idx) 1179 continue; 1180 nfit_mem->idt_dcr = nfit_idt->idt; 1181 break; 1182 } 1183 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); 1184 } else if (type == NFIT_SPA_PM) { 1185 /* 1186 * A single dimm may belong to multiple SPA-PM 1187 * ranges, record at least one in addition to 1188 * any SPA-DCR range. 1189 */ 1190 nfit_mem->memdev_pmem = nfit_memdev->memdev; 1191 } else 1192 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1193 } 1194 1195 return 0; 1196 } 1197 1198 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) 1199 { 1200 struct nfit_mem *a = container_of(_a, typeof(*a), list); 1201 struct nfit_mem *b = container_of(_b, typeof(*b), list); 1202 u32 handleA, handleB; 1203 1204 handleA = __to_nfit_memdev(a)->device_handle; 1205 handleB = __to_nfit_memdev(b)->device_handle; 1206 if (handleA < handleB) 1207 return -1; 1208 else if (handleA > handleB) 1209 return 1; 1210 return 0; 1211 } 1212 1213 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) 1214 { 1215 struct nfit_spa *nfit_spa; 1216 int rc; 1217 1218 1219 /* 1220 * For each SPA-DCR or SPA-PMEM address range find its 1221 * corresponding MEMDEV(s). From each MEMDEV find the 1222 * corresponding DCR. Then, if we're operating on a SPA-DCR, 1223 * try to find a SPA-BDW and a corresponding BDW that references 1224 * the DCR. Throw it all into an nfit_mem object. Note, that 1225 * BDWs are optional. 1226 */ 1227 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1228 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); 1229 if (rc) 1230 return rc; 1231 } 1232 1233 /* 1234 * If a DIMM has failed to be mapped into SPA there will be no 1235 * SPA entries above. Find and register all the unmapped DIMMs 1236 * for reporting and recovery purposes. 1237 */ 1238 rc = __nfit_mem_init(acpi_desc, NULL); 1239 if (rc) 1240 return rc; 1241 1242 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); 1243 1244 return 0; 1245 } 1246 1247 static ssize_t bus_dsm_mask_show(struct device *dev, 1248 struct device_attribute *attr, char *buf) 1249 { 1250 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1251 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1252 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1253 1254 return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask); 1255 } 1256 static struct device_attribute dev_attr_bus_dsm_mask = 1257 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); 1258 1259 static ssize_t revision_show(struct device *dev, 1260 struct device_attribute *attr, char *buf) 1261 { 1262 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1263 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1264 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1265 1266 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); 1267 } 1268 static DEVICE_ATTR_RO(revision); 1269 1270 static ssize_t hw_error_scrub_show(struct device *dev, 1271 struct device_attribute *attr, char *buf) 1272 { 1273 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1274 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1275 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1276 1277 return sprintf(buf, "%d\n", acpi_desc->scrub_mode); 1278 } 1279 1280 /* 1281 * The 'hw_error_scrub' attribute can have the following values written to it: 1282 * '0': Switch to the default mode where an exception will only insert 1283 * the address of the memory error into the poison and badblocks lists. 1284 * '1': Enable a full scrub to happen if an exception for a memory error is 1285 * received. 1286 */ 1287 static ssize_t hw_error_scrub_store(struct device *dev, 1288 struct device_attribute *attr, const char *buf, size_t size) 1289 { 1290 struct nvdimm_bus_descriptor *nd_desc; 1291 ssize_t rc; 1292 long val; 1293 1294 rc = kstrtol(buf, 0, &val); 1295 if (rc) 1296 return rc; 1297 1298 nfit_device_lock(dev); 1299 nd_desc = dev_get_drvdata(dev); 1300 if (nd_desc) { 1301 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1302 1303 switch (val) { 1304 case HW_ERROR_SCRUB_ON: 1305 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; 1306 break; 1307 case HW_ERROR_SCRUB_OFF: 1308 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; 1309 break; 1310 default: 1311 rc = -EINVAL; 1312 break; 1313 } 1314 } 1315 nfit_device_unlock(dev); 1316 if (rc) 1317 return rc; 1318 return size; 1319 } 1320 static DEVICE_ATTR_RW(hw_error_scrub); 1321 1322 /* 1323 * This shows the number of full Address Range Scrubs that have been 1324 * completed since driver load time. Userspace can wait on this using 1325 * select/poll etc. A '+' at the end indicates an ARS is in progress 1326 */ 1327 static ssize_t scrub_show(struct device *dev, 1328 struct device_attribute *attr, char *buf) 1329 { 1330 struct nvdimm_bus_descriptor *nd_desc; 1331 struct acpi_nfit_desc *acpi_desc; 1332 ssize_t rc = -ENXIO; 1333 bool busy; 1334 1335 nfit_device_lock(dev); 1336 nd_desc = dev_get_drvdata(dev); 1337 if (!nd_desc) { 1338 nfit_device_unlock(dev); 1339 return rc; 1340 } 1341 acpi_desc = to_acpi_desc(nd_desc); 1342 1343 mutex_lock(&acpi_desc->init_mutex); 1344 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags) 1345 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 1346 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n"); 1347 /* Allow an admin to poll the busy state at a higher rate */ 1348 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL, 1349 &acpi_desc->scrub_flags)) { 1350 acpi_desc->scrub_tmo = 1; 1351 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ); 1352 } 1353 1354 mutex_unlock(&acpi_desc->init_mutex); 1355 nfit_device_unlock(dev); 1356 return rc; 1357 } 1358 1359 static ssize_t scrub_store(struct device *dev, 1360 struct device_attribute *attr, const char *buf, size_t size) 1361 { 1362 struct nvdimm_bus_descriptor *nd_desc; 1363 ssize_t rc; 1364 long val; 1365 1366 rc = kstrtol(buf, 0, &val); 1367 if (rc) 1368 return rc; 1369 if (val != 1) 1370 return -EINVAL; 1371 1372 nfit_device_lock(dev); 1373 nd_desc = dev_get_drvdata(dev); 1374 if (nd_desc) { 1375 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1376 1377 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 1378 } 1379 nfit_device_unlock(dev); 1380 if (rc) 1381 return rc; 1382 return size; 1383 } 1384 static DEVICE_ATTR_RW(scrub); 1385 1386 static bool ars_supported(struct nvdimm_bus *nvdimm_bus) 1387 { 1388 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1389 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START 1390 | 1 << ND_CMD_ARS_STATUS; 1391 1392 return (nd_desc->cmd_mask & mask) == mask; 1393 } 1394 1395 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) 1396 { 1397 struct device *dev = kobj_to_dev(kobj); 1398 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1399 1400 if (a == &dev_attr_scrub.attr) 1401 return ars_supported(nvdimm_bus) ? a->mode : 0; 1402 1403 if (a == &dev_attr_firmware_activate_noidle.attr) 1404 return intel_fwa_supported(nvdimm_bus) ? a->mode : 0; 1405 1406 return a->mode; 1407 } 1408 1409 static struct attribute *acpi_nfit_attributes[] = { 1410 &dev_attr_revision.attr, 1411 &dev_attr_scrub.attr, 1412 &dev_attr_hw_error_scrub.attr, 1413 &dev_attr_bus_dsm_mask.attr, 1414 &dev_attr_firmware_activate_noidle.attr, 1415 NULL, 1416 }; 1417 1418 static const struct attribute_group acpi_nfit_attribute_group = { 1419 .name = "nfit", 1420 .attrs = acpi_nfit_attributes, 1421 .is_visible = nfit_visible, 1422 }; 1423 1424 static const struct attribute_group *acpi_nfit_attribute_groups[] = { 1425 &acpi_nfit_attribute_group, 1426 NULL, 1427 }; 1428 1429 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) 1430 { 1431 struct nvdimm *nvdimm = to_nvdimm(dev); 1432 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1433 1434 return __to_nfit_memdev(nfit_mem); 1435 } 1436 1437 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) 1438 { 1439 struct nvdimm *nvdimm = to_nvdimm(dev); 1440 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1441 1442 return nfit_mem->dcr; 1443 } 1444 1445 static ssize_t handle_show(struct device *dev, 1446 struct device_attribute *attr, char *buf) 1447 { 1448 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1449 1450 return sprintf(buf, "%#x\n", memdev->device_handle); 1451 } 1452 static DEVICE_ATTR_RO(handle); 1453 1454 static ssize_t phys_id_show(struct device *dev, 1455 struct device_attribute *attr, char *buf) 1456 { 1457 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1458 1459 return sprintf(buf, "%#x\n", memdev->physical_id); 1460 } 1461 static DEVICE_ATTR_RO(phys_id); 1462 1463 static ssize_t vendor_show(struct device *dev, 1464 struct device_attribute *attr, char *buf) 1465 { 1466 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1467 1468 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); 1469 } 1470 static DEVICE_ATTR_RO(vendor); 1471 1472 static ssize_t rev_id_show(struct device *dev, 1473 struct device_attribute *attr, char *buf) 1474 { 1475 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1476 1477 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); 1478 } 1479 static DEVICE_ATTR_RO(rev_id); 1480 1481 static ssize_t device_show(struct device *dev, 1482 struct device_attribute *attr, char *buf) 1483 { 1484 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1485 1486 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); 1487 } 1488 static DEVICE_ATTR_RO(device); 1489 1490 static ssize_t subsystem_vendor_show(struct device *dev, 1491 struct device_attribute *attr, char *buf) 1492 { 1493 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1494 1495 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); 1496 } 1497 static DEVICE_ATTR_RO(subsystem_vendor); 1498 1499 static ssize_t subsystem_rev_id_show(struct device *dev, 1500 struct device_attribute *attr, char *buf) 1501 { 1502 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1503 1504 return sprintf(buf, "0x%04x\n", 1505 be16_to_cpu(dcr->subsystem_revision_id)); 1506 } 1507 static DEVICE_ATTR_RO(subsystem_rev_id); 1508 1509 static ssize_t subsystem_device_show(struct device *dev, 1510 struct device_attribute *attr, char *buf) 1511 { 1512 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1513 1514 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); 1515 } 1516 static DEVICE_ATTR_RO(subsystem_device); 1517 1518 static int num_nvdimm_formats(struct nvdimm *nvdimm) 1519 { 1520 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1521 int formats = 0; 1522 1523 if (nfit_mem->memdev_pmem) 1524 formats++; 1525 if (nfit_mem->memdev_bdw) 1526 formats++; 1527 return formats; 1528 } 1529 1530 static ssize_t format_show(struct device *dev, 1531 struct device_attribute *attr, char *buf) 1532 { 1533 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1534 1535 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); 1536 } 1537 static DEVICE_ATTR_RO(format); 1538 1539 static ssize_t format1_show(struct device *dev, 1540 struct device_attribute *attr, char *buf) 1541 { 1542 u32 handle; 1543 ssize_t rc = -ENXIO; 1544 struct nfit_mem *nfit_mem; 1545 struct nfit_memdev *nfit_memdev; 1546 struct acpi_nfit_desc *acpi_desc; 1547 struct nvdimm *nvdimm = to_nvdimm(dev); 1548 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1549 1550 nfit_mem = nvdimm_provider_data(nvdimm); 1551 acpi_desc = nfit_mem->acpi_desc; 1552 handle = to_nfit_memdev(dev)->device_handle; 1553 1554 /* assumes DIMMs have at most 2 published interface codes */ 1555 mutex_lock(&acpi_desc->init_mutex); 1556 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1557 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 1558 struct nfit_dcr *nfit_dcr; 1559 1560 if (memdev->device_handle != handle) 1561 continue; 1562 1563 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1564 if (nfit_dcr->dcr->region_index != memdev->region_index) 1565 continue; 1566 if (nfit_dcr->dcr->code == dcr->code) 1567 continue; 1568 rc = sprintf(buf, "0x%04x\n", 1569 le16_to_cpu(nfit_dcr->dcr->code)); 1570 break; 1571 } 1572 if (rc != -ENXIO) 1573 break; 1574 } 1575 mutex_unlock(&acpi_desc->init_mutex); 1576 return rc; 1577 } 1578 static DEVICE_ATTR_RO(format1); 1579 1580 static ssize_t formats_show(struct device *dev, 1581 struct device_attribute *attr, char *buf) 1582 { 1583 struct nvdimm *nvdimm = to_nvdimm(dev); 1584 1585 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); 1586 } 1587 static DEVICE_ATTR_RO(formats); 1588 1589 static ssize_t serial_show(struct device *dev, 1590 struct device_attribute *attr, char *buf) 1591 { 1592 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1593 1594 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); 1595 } 1596 static DEVICE_ATTR_RO(serial); 1597 1598 static ssize_t family_show(struct device *dev, 1599 struct device_attribute *attr, char *buf) 1600 { 1601 struct nvdimm *nvdimm = to_nvdimm(dev); 1602 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1603 1604 if (nfit_mem->family < 0) 1605 return -ENXIO; 1606 return sprintf(buf, "%d\n", nfit_mem->family); 1607 } 1608 static DEVICE_ATTR_RO(family); 1609 1610 static ssize_t dsm_mask_show(struct device *dev, 1611 struct device_attribute *attr, char *buf) 1612 { 1613 struct nvdimm *nvdimm = to_nvdimm(dev); 1614 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1615 1616 if (nfit_mem->family < 0) 1617 return -ENXIO; 1618 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); 1619 } 1620 static DEVICE_ATTR_RO(dsm_mask); 1621 1622 static ssize_t flags_show(struct device *dev, 1623 struct device_attribute *attr, char *buf) 1624 { 1625 struct nvdimm *nvdimm = to_nvdimm(dev); 1626 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1627 u16 flags = __to_nfit_memdev(nfit_mem)->flags; 1628 1629 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) 1630 flags |= ACPI_NFIT_MEM_FLUSH_FAILED; 1631 1632 return sprintf(buf, "%s%s%s%s%s%s%s\n", 1633 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", 1634 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", 1635 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", 1636 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", 1637 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", 1638 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", 1639 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); 1640 } 1641 static DEVICE_ATTR_RO(flags); 1642 1643 static ssize_t id_show(struct device *dev, 1644 struct device_attribute *attr, char *buf) 1645 { 1646 struct nvdimm *nvdimm = to_nvdimm(dev); 1647 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1648 1649 return sprintf(buf, "%s\n", nfit_mem->id); 1650 } 1651 static DEVICE_ATTR_RO(id); 1652 1653 static ssize_t dirty_shutdown_show(struct device *dev, 1654 struct device_attribute *attr, char *buf) 1655 { 1656 struct nvdimm *nvdimm = to_nvdimm(dev); 1657 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1658 1659 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); 1660 } 1661 static DEVICE_ATTR_RO(dirty_shutdown); 1662 1663 static struct attribute *acpi_nfit_dimm_attributes[] = { 1664 &dev_attr_handle.attr, 1665 &dev_attr_phys_id.attr, 1666 &dev_attr_vendor.attr, 1667 &dev_attr_device.attr, 1668 &dev_attr_rev_id.attr, 1669 &dev_attr_subsystem_vendor.attr, 1670 &dev_attr_subsystem_device.attr, 1671 &dev_attr_subsystem_rev_id.attr, 1672 &dev_attr_format.attr, 1673 &dev_attr_formats.attr, 1674 &dev_attr_format1.attr, 1675 &dev_attr_serial.attr, 1676 &dev_attr_flags.attr, 1677 &dev_attr_id.attr, 1678 &dev_attr_family.attr, 1679 &dev_attr_dsm_mask.attr, 1680 &dev_attr_dirty_shutdown.attr, 1681 NULL, 1682 }; 1683 1684 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, 1685 struct attribute *a, int n) 1686 { 1687 struct device *dev = kobj_to_dev(kobj); 1688 struct nvdimm *nvdimm = to_nvdimm(dev); 1689 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1690 1691 if (!to_nfit_dcr(dev)) { 1692 /* Without a dcr only the memdev attributes can be surfaced */ 1693 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr 1694 || a == &dev_attr_flags.attr 1695 || a == &dev_attr_family.attr 1696 || a == &dev_attr_dsm_mask.attr) 1697 return a->mode; 1698 return 0; 1699 } 1700 1701 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) 1702 return 0; 1703 1704 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) 1705 && a == &dev_attr_dirty_shutdown.attr) 1706 return 0; 1707 1708 return a->mode; 1709 } 1710 1711 static const struct attribute_group acpi_nfit_dimm_attribute_group = { 1712 .name = "nfit", 1713 .attrs = acpi_nfit_dimm_attributes, 1714 .is_visible = acpi_nfit_dimm_attr_visible, 1715 }; 1716 1717 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { 1718 &acpi_nfit_dimm_attribute_group, 1719 NULL, 1720 }; 1721 1722 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, 1723 u32 device_handle) 1724 { 1725 struct nfit_mem *nfit_mem; 1726 1727 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1728 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) 1729 return nfit_mem->nvdimm; 1730 1731 return NULL; 1732 } 1733 1734 void __acpi_nvdimm_notify(struct device *dev, u32 event) 1735 { 1736 struct nfit_mem *nfit_mem; 1737 struct acpi_nfit_desc *acpi_desc; 1738 1739 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), 1740 event); 1741 1742 if (event != NFIT_NOTIFY_DIMM_HEALTH) { 1743 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), 1744 event); 1745 return; 1746 } 1747 1748 acpi_desc = dev_get_drvdata(dev->parent); 1749 if (!acpi_desc) 1750 return; 1751 1752 /* 1753 * If we successfully retrieved acpi_desc, then we know nfit_mem data 1754 * is still valid. 1755 */ 1756 nfit_mem = dev_get_drvdata(dev); 1757 if (nfit_mem && nfit_mem->flags_attr) 1758 sysfs_notify_dirent(nfit_mem->flags_attr); 1759 } 1760 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); 1761 1762 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) 1763 { 1764 struct acpi_device *adev = data; 1765 struct device *dev = &adev->dev; 1766 1767 nfit_device_lock(dev->parent); 1768 __acpi_nvdimm_notify(dev, event); 1769 nfit_device_unlock(dev->parent); 1770 } 1771 1772 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) 1773 { 1774 acpi_handle handle; 1775 acpi_status status; 1776 1777 status = acpi_get_handle(adev->handle, method, &handle); 1778 1779 if (ACPI_SUCCESS(status)) 1780 return true; 1781 return false; 1782 } 1783 1784 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) 1785 { 1786 struct device *dev = &nfit_mem->adev->dev; 1787 struct nd_intel_smart smart = { 0 }; 1788 union acpi_object in_buf = { 1789 .buffer.type = ACPI_TYPE_BUFFER, 1790 .buffer.length = 0, 1791 }; 1792 union acpi_object in_obj = { 1793 .package.type = ACPI_TYPE_PACKAGE, 1794 .package.count = 1, 1795 .package.elements = &in_buf, 1796 }; 1797 const u8 func = ND_INTEL_SMART; 1798 const guid_t *guid = to_nfit_uuid(nfit_mem->family); 1799 u8 revid = nfit_dsm_revid(nfit_mem->family, func); 1800 struct acpi_device *adev = nfit_mem->adev; 1801 acpi_handle handle = adev->handle; 1802 union acpi_object *out_obj; 1803 1804 if ((nfit_mem->dsm_mask & (1 << func)) == 0) 1805 return; 1806 1807 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 1808 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER 1809 || out_obj->buffer.length < sizeof(smart)) { 1810 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n", 1811 dev_name(dev)); 1812 ACPI_FREE(out_obj); 1813 return; 1814 } 1815 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart)); 1816 ACPI_FREE(out_obj); 1817 1818 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { 1819 if (smart.shutdown_state) 1820 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); 1821 } 1822 1823 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { 1824 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); 1825 nfit_mem->dirty_shutdown = smart.shutdown_count; 1826 } 1827 } 1828 1829 static void populate_shutdown_status(struct nfit_mem *nfit_mem) 1830 { 1831 /* 1832 * For DIMMs that provide a dynamic facility to retrieve a 1833 * dirty-shutdown status and/or a dirty-shutdown count, cache 1834 * these values in nfit_mem. 1835 */ 1836 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 1837 nfit_intel_shutdown_status(nfit_mem); 1838 } 1839 1840 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, 1841 struct nfit_mem *nfit_mem, u32 device_handle) 1842 { 1843 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 1844 struct acpi_device *adev, *adev_dimm; 1845 struct device *dev = acpi_desc->dev; 1846 unsigned long dsm_mask, label_mask; 1847 const guid_t *guid; 1848 int i; 1849 int family = -1; 1850 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 1851 1852 /* nfit test assumes 1:1 relationship between commands and dsms */ 1853 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; 1854 nfit_mem->family = NVDIMM_FAMILY_INTEL; 1855 set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask); 1856 1857 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) 1858 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", 1859 be16_to_cpu(dcr->vendor_id), 1860 dcr->manufacturing_location, 1861 be16_to_cpu(dcr->manufacturing_date), 1862 be32_to_cpu(dcr->serial_number)); 1863 else 1864 sprintf(nfit_mem->id, "%04x-%08x", 1865 be16_to_cpu(dcr->vendor_id), 1866 be32_to_cpu(dcr->serial_number)); 1867 1868 adev = to_acpi_dev(acpi_desc); 1869 if (!adev) { 1870 /* unit test case */ 1871 populate_shutdown_status(nfit_mem); 1872 return 0; 1873 } 1874 1875 adev_dimm = acpi_find_child_device(adev, device_handle, false); 1876 nfit_mem->adev = adev_dimm; 1877 if (!adev_dimm) { 1878 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", 1879 device_handle); 1880 return force_enable_dimms ? 0 : -ENODEV; 1881 } 1882 1883 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, 1884 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { 1885 dev_err(dev, "%s: notification registration failed\n", 1886 dev_name(&adev_dimm->dev)); 1887 return -ENXIO; 1888 } 1889 /* 1890 * Record nfit_mem for the notification path to track back to 1891 * the nfit sysfs attributes for this dimm device object. 1892 */ 1893 dev_set_drvdata(&adev_dimm->dev, nfit_mem); 1894 1895 /* 1896 * There are 4 "legacy" NVDIMM command sets 1897 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before 1898 * an EFI working group was established to constrain this 1899 * proliferation. The nfit driver probes for the supported command 1900 * set by GUID. Note, if you're a platform developer looking to add 1901 * a new command set to this probe, consider using an existing set, 1902 * or otherwise seek approval to publish the command set at 1903 * http://www.uefi.org/RFIC_LIST. 1904 * 1905 * Note, that checking for function0 (bit0) tells us if any commands 1906 * are reachable through this GUID. 1907 */ 1908 clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask); 1909 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) 1910 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) { 1911 set_bit(i, &nd_desc->dimm_family_mask); 1912 if (family < 0 || i == default_dsm_family) 1913 family = i; 1914 } 1915 1916 /* limit the supported commands to those that are publicly documented */ 1917 nfit_mem->family = family; 1918 if (override_dsm_mask && !disable_vendor_specific) 1919 dsm_mask = override_dsm_mask; 1920 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 1921 dsm_mask = NVDIMM_INTEL_CMDMASK; 1922 if (disable_vendor_specific) 1923 dsm_mask &= ~(1 << ND_CMD_VENDOR); 1924 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { 1925 dsm_mask = 0x1c3c76; 1926 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { 1927 dsm_mask = 0x1fe; 1928 if (disable_vendor_specific) 1929 dsm_mask &= ~(1 << 8); 1930 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { 1931 dsm_mask = 0xffffffff; 1932 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) { 1933 dsm_mask = 0x1f; 1934 } else { 1935 dev_dbg(dev, "unknown dimm command family\n"); 1936 nfit_mem->family = -1; 1937 /* DSMs are optional, continue loading the driver... */ 1938 return 0; 1939 } 1940 1941 /* 1942 * Function 0 is the command interrogation function, don't 1943 * export it to potential userspace use, and enable it to be 1944 * used as an error value in acpi_nfit_ctl(). 1945 */ 1946 dsm_mask &= ~1UL; 1947 1948 guid = to_nfit_uuid(nfit_mem->family); 1949 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1950 if (acpi_check_dsm(adev_dimm->handle, guid, 1951 nfit_dsm_revid(nfit_mem->family, i), 1952 1ULL << i)) 1953 set_bit(i, &nfit_mem->dsm_mask); 1954 1955 /* 1956 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present 1957 * due to their better semantics handling locked capacity. 1958 */ 1959 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA 1960 | 1 << ND_CMD_SET_CONFIG_DATA; 1961 if (family == NVDIMM_FAMILY_INTEL 1962 && (dsm_mask & label_mask) == label_mask) 1963 /* skip _LS{I,R,W} enabling */; 1964 else { 1965 if (acpi_nvdimm_has_method(adev_dimm, "_LSI") 1966 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { 1967 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); 1968 set_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1969 } 1970 1971 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 1972 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { 1973 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); 1974 set_bit(NFIT_MEM_LSW, &nfit_mem->flags); 1975 } 1976 1977 /* 1978 * Quirk read-only label configurations to preserve 1979 * access to label-less namespaces by default. 1980 */ 1981 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 1982 && !force_labels) { 1983 dev_dbg(dev, "%s: No _LSW, disable labels\n", 1984 dev_name(&adev_dimm->dev)); 1985 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1986 } else 1987 dev_dbg(dev, "%s: Force enable labels\n", 1988 dev_name(&adev_dimm->dev)); 1989 } 1990 1991 populate_shutdown_status(nfit_mem); 1992 1993 return 0; 1994 } 1995 1996 static void shutdown_dimm_notify(void *data) 1997 { 1998 struct acpi_nfit_desc *acpi_desc = data; 1999 struct nfit_mem *nfit_mem; 2000 2001 mutex_lock(&acpi_desc->init_mutex); 2002 /* 2003 * Clear out the nfit_mem->flags_attr and shut down dimm event 2004 * notifications. 2005 */ 2006 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2007 struct acpi_device *adev_dimm = nfit_mem->adev; 2008 2009 if (nfit_mem->flags_attr) { 2010 sysfs_put(nfit_mem->flags_attr); 2011 nfit_mem->flags_attr = NULL; 2012 } 2013 if (adev_dimm) { 2014 acpi_remove_notify_handler(adev_dimm->handle, 2015 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); 2016 dev_set_drvdata(&adev_dimm->dev, NULL); 2017 } 2018 } 2019 mutex_unlock(&acpi_desc->init_mutex); 2020 } 2021 2022 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) 2023 { 2024 switch (family) { 2025 case NVDIMM_FAMILY_INTEL: 2026 return intel_security_ops; 2027 default: 2028 return NULL; 2029 } 2030 } 2031 2032 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops( 2033 struct nfit_mem *nfit_mem) 2034 { 2035 unsigned long mask; 2036 struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc; 2037 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2038 2039 if (!nd_desc->fw_ops) 2040 return NULL; 2041 2042 if (nfit_mem->family != NVDIMM_FAMILY_INTEL) 2043 return NULL; 2044 2045 mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK; 2046 if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK) 2047 return NULL; 2048 2049 return intel_fw_ops; 2050 } 2051 2052 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) 2053 { 2054 struct nfit_mem *nfit_mem; 2055 int dimm_count = 0, rc; 2056 struct nvdimm *nvdimm; 2057 2058 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2059 struct acpi_nfit_flush_address *flush; 2060 unsigned long flags = 0, cmd_mask; 2061 struct nfit_memdev *nfit_memdev; 2062 u32 device_handle; 2063 u16 mem_flags; 2064 2065 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 2066 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); 2067 if (nvdimm) { 2068 dimm_count++; 2069 continue; 2070 } 2071 2072 if (nfit_mem->bdw && nfit_mem->memdev_pmem) { 2073 set_bit(NDD_ALIASING, &flags); 2074 set_bit(NDD_LABELING, &flags); 2075 } 2076 2077 /* collate flags across all memdevs for this dimm */ 2078 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2079 struct acpi_nfit_memory_map *dimm_memdev; 2080 2081 dimm_memdev = __to_nfit_memdev(nfit_mem); 2082 if (dimm_memdev->device_handle 2083 != nfit_memdev->memdev->device_handle) 2084 continue; 2085 dimm_memdev->flags |= nfit_memdev->memdev->flags; 2086 } 2087 2088 mem_flags = __to_nfit_memdev(nfit_mem)->flags; 2089 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) 2090 set_bit(NDD_UNARMED, &flags); 2091 2092 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); 2093 if (rc) 2094 continue; 2095 2096 /* 2097 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL 2098 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the 2099 * userspace interface. 2100 */ 2101 cmd_mask = 1UL << ND_CMD_CALL; 2102 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 2103 /* 2104 * These commands have a 1:1 correspondence 2105 * between DSM payload and libnvdimm ioctl 2106 * payload format. 2107 */ 2108 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; 2109 } 2110 2111 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */ 2112 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) 2113 set_bit(NDD_NOBLK, &flags); 2114 2115 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 2116 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); 2117 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); 2118 } 2119 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) 2120 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); 2121 2122 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush 2123 : NULL; 2124 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, 2125 acpi_nfit_dimm_attribute_groups, 2126 flags, cmd_mask, flush ? flush->hint_count : 0, 2127 nfit_mem->flush_wpq, &nfit_mem->id[0], 2128 acpi_nfit_get_security_ops(nfit_mem->family), 2129 acpi_nfit_get_fw_ops(nfit_mem)); 2130 if (!nvdimm) 2131 return -ENOMEM; 2132 2133 nfit_mem->nvdimm = nvdimm; 2134 dimm_count++; 2135 2136 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) 2137 continue; 2138 2139 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n", 2140 nvdimm_name(nvdimm), 2141 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", 2142 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", 2143 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", 2144 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", 2145 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); 2146 2147 } 2148 2149 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); 2150 if (rc) 2151 return rc; 2152 2153 /* 2154 * Now that dimms are successfully registered, and async registration 2155 * is flushed, attempt to enable event notification. 2156 */ 2157 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2158 struct kernfs_node *nfit_kernfs; 2159 2160 nvdimm = nfit_mem->nvdimm; 2161 if (!nvdimm) 2162 continue; 2163 2164 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); 2165 if (nfit_kernfs) 2166 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, 2167 "flags"); 2168 sysfs_put(nfit_kernfs); 2169 if (!nfit_mem->flags_attr) 2170 dev_warn(acpi_desc->dev, "%s: notifications disabled\n", 2171 nvdimm_name(nvdimm)); 2172 } 2173 2174 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, 2175 acpi_desc); 2176 } 2177 2178 /* 2179 * These constants are private because there are no kernel consumers of 2180 * these commands. 2181 */ 2182 enum nfit_aux_cmds { 2183 NFIT_CMD_TRANSLATE_SPA = 5, 2184 NFIT_CMD_ARS_INJECT_SET = 7, 2185 NFIT_CMD_ARS_INJECT_CLEAR = 8, 2186 NFIT_CMD_ARS_INJECT_GET = 9, 2187 }; 2188 2189 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) 2190 { 2191 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2192 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); 2193 unsigned long dsm_mask, *mask; 2194 struct acpi_device *adev; 2195 int i; 2196 2197 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); 2198 set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask); 2199 2200 /* enable nfit_test to inject bus command emulation */ 2201 if (acpi_desc->bus_cmd_force_en) { 2202 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; 2203 mask = &nd_desc->bus_family_mask; 2204 if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) { 2205 set_bit(NVDIMM_BUS_FAMILY_INTEL, mask); 2206 nd_desc->fw_ops = intel_bus_fw_ops; 2207 } 2208 } 2209 2210 adev = to_acpi_dev(acpi_desc); 2211 if (!adev) 2212 return; 2213 2214 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) 2215 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2216 set_bit(i, &nd_desc->cmd_mask); 2217 2218 dsm_mask = 2219 (1 << ND_CMD_ARS_CAP) | 2220 (1 << ND_CMD_ARS_START) | 2221 (1 << ND_CMD_ARS_STATUS) | 2222 (1 << ND_CMD_CLEAR_ERROR) | 2223 (1 << NFIT_CMD_TRANSLATE_SPA) | 2224 (1 << NFIT_CMD_ARS_INJECT_SET) | 2225 (1 << NFIT_CMD_ARS_INJECT_CLEAR) | 2226 (1 << NFIT_CMD_ARS_INJECT_GET); 2227 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2228 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2229 set_bit(i, &acpi_desc->bus_dsm_mask); 2230 2231 /* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */ 2232 dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK; 2233 guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL); 2234 mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]; 2235 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2236 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2237 set_bit(i, mask); 2238 2239 if (*mask == dsm_mask) { 2240 set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask); 2241 nd_desc->fw_ops = intel_bus_fw_ops; 2242 } 2243 } 2244 2245 static ssize_t range_index_show(struct device *dev, 2246 struct device_attribute *attr, char *buf) 2247 { 2248 struct nd_region *nd_region = to_nd_region(dev); 2249 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); 2250 2251 return sprintf(buf, "%d\n", nfit_spa->spa->range_index); 2252 } 2253 static DEVICE_ATTR_RO(range_index); 2254 2255 static struct attribute *acpi_nfit_region_attributes[] = { 2256 &dev_attr_range_index.attr, 2257 NULL, 2258 }; 2259 2260 static const struct attribute_group acpi_nfit_region_attribute_group = { 2261 .name = "nfit", 2262 .attrs = acpi_nfit_region_attributes, 2263 }; 2264 2265 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { 2266 &acpi_nfit_region_attribute_group, 2267 NULL, 2268 }; 2269 2270 /* enough info to uniquely specify an interleave set */ 2271 struct nfit_set_info { 2272 u64 region_offset; 2273 u32 serial_number; 2274 u32 pad; 2275 }; 2276 2277 struct nfit_set_info2 { 2278 u64 region_offset; 2279 u32 serial_number; 2280 u16 vendor_id; 2281 u16 manufacturing_date; 2282 u8 manufacturing_location; 2283 u8 reserved[31]; 2284 }; 2285 2286 static int cmp_map_compat(const void *m0, const void *m1) 2287 { 2288 const struct nfit_set_info *map0 = m0; 2289 const struct nfit_set_info *map1 = m1; 2290 2291 return memcmp(&map0->region_offset, &map1->region_offset, 2292 sizeof(u64)); 2293 } 2294 2295 static int cmp_map(const void *m0, const void *m1) 2296 { 2297 const struct nfit_set_info *map0 = m0; 2298 const struct nfit_set_info *map1 = m1; 2299 2300 if (map0->region_offset < map1->region_offset) 2301 return -1; 2302 else if (map0->region_offset > map1->region_offset) 2303 return 1; 2304 return 0; 2305 } 2306 2307 static int cmp_map2(const void *m0, const void *m1) 2308 { 2309 const struct nfit_set_info2 *map0 = m0; 2310 const struct nfit_set_info2 *map1 = m1; 2311 2312 if (map0->region_offset < map1->region_offset) 2313 return -1; 2314 else if (map0->region_offset > map1->region_offset) 2315 return 1; 2316 return 0; 2317 } 2318 2319 /* Retrieve the nth entry referencing this spa */ 2320 static struct acpi_nfit_memory_map *memdev_from_spa( 2321 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) 2322 { 2323 struct nfit_memdev *nfit_memdev; 2324 2325 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) 2326 if (nfit_memdev->memdev->range_index == range_index) 2327 if (n-- == 0) 2328 return nfit_memdev->memdev; 2329 return NULL; 2330 } 2331 2332 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, 2333 struct nd_region_desc *ndr_desc, 2334 struct acpi_nfit_system_address *spa) 2335 { 2336 struct device *dev = acpi_desc->dev; 2337 struct nd_interleave_set *nd_set; 2338 u16 nr = ndr_desc->num_mappings; 2339 struct nfit_set_info2 *info2; 2340 struct nfit_set_info *info; 2341 int i; 2342 2343 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); 2344 if (!nd_set) 2345 return -ENOMEM; 2346 import_guid(&nd_set->type_guid, spa->range_guid); 2347 2348 info = devm_kcalloc(dev, nr, sizeof(*info), GFP_KERNEL); 2349 if (!info) 2350 return -ENOMEM; 2351 2352 info2 = devm_kcalloc(dev, nr, sizeof(*info2), GFP_KERNEL); 2353 if (!info2) 2354 return -ENOMEM; 2355 2356 for (i = 0; i < nr; i++) { 2357 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 2358 struct nvdimm *nvdimm = mapping->nvdimm; 2359 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2360 struct nfit_set_info *map = &info[i]; 2361 struct nfit_set_info2 *map2 = &info2[i]; 2362 struct acpi_nfit_memory_map *memdev = 2363 memdev_from_spa(acpi_desc, spa->range_index, i); 2364 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2365 2366 if (!memdev || !nfit_mem->dcr) { 2367 dev_err(dev, "%s: failed to find DCR\n", __func__); 2368 return -ENODEV; 2369 } 2370 2371 map->region_offset = memdev->region_offset; 2372 map->serial_number = dcr->serial_number; 2373 2374 map2->region_offset = memdev->region_offset; 2375 map2->serial_number = dcr->serial_number; 2376 map2->vendor_id = dcr->vendor_id; 2377 map2->manufacturing_date = dcr->manufacturing_date; 2378 map2->manufacturing_location = dcr->manufacturing_location; 2379 } 2380 2381 /* v1.1 namespaces */ 2382 sort(info, nr, sizeof(*info), cmp_map, NULL); 2383 nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0); 2384 2385 /* v1.2 namespaces */ 2386 sort(info2, nr, sizeof(*info2), cmp_map2, NULL); 2387 nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0); 2388 2389 /* support v1.1 namespaces created with the wrong sort order */ 2390 sort(info, nr, sizeof(*info), cmp_map_compat, NULL); 2391 nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0); 2392 2393 /* record the result of the sort for the mapping position */ 2394 for (i = 0; i < nr; i++) { 2395 struct nfit_set_info2 *map2 = &info2[i]; 2396 int j; 2397 2398 for (j = 0; j < nr; j++) { 2399 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; 2400 struct nvdimm *nvdimm = mapping->nvdimm; 2401 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2402 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2403 2404 if (map2->serial_number == dcr->serial_number && 2405 map2->vendor_id == dcr->vendor_id && 2406 map2->manufacturing_date == dcr->manufacturing_date && 2407 map2->manufacturing_location 2408 == dcr->manufacturing_location) { 2409 mapping->position = i; 2410 break; 2411 } 2412 } 2413 } 2414 2415 ndr_desc->nd_set = nd_set; 2416 devm_kfree(dev, info); 2417 devm_kfree(dev, info2); 2418 2419 return 0; 2420 } 2421 2422 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) 2423 { 2424 struct acpi_nfit_interleave *idt = mmio->idt; 2425 u32 sub_line_offset, line_index, line_offset; 2426 u64 line_no, table_skip_count, table_offset; 2427 2428 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); 2429 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); 2430 line_offset = idt->line_offset[line_index] 2431 * mmio->line_size; 2432 table_offset = table_skip_count * mmio->table_size; 2433 2434 return mmio->base_offset + line_offset + table_offset + sub_line_offset; 2435 } 2436 2437 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) 2438 { 2439 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2440 u64 offset = nfit_blk->stat_offset + mmio->size * bw; 2441 const u32 STATUS_MASK = 0x80000037; 2442 2443 if (mmio->num_lines) 2444 offset = to_interleave_offset(offset, mmio); 2445 2446 return readl(mmio->addr.base + offset) & STATUS_MASK; 2447 } 2448 2449 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, 2450 resource_size_t dpa, unsigned int len, unsigned int write) 2451 { 2452 u64 cmd, offset; 2453 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2454 2455 enum { 2456 BCW_OFFSET_MASK = (1ULL << 48)-1, 2457 BCW_LEN_SHIFT = 48, 2458 BCW_LEN_MASK = (1ULL << 8) - 1, 2459 BCW_CMD_SHIFT = 56, 2460 }; 2461 2462 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; 2463 len = len >> L1_CACHE_SHIFT; 2464 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; 2465 cmd |= ((u64) write) << BCW_CMD_SHIFT; 2466 2467 offset = nfit_blk->cmd_offset + mmio->size * bw; 2468 if (mmio->num_lines) 2469 offset = to_interleave_offset(offset, mmio); 2470 2471 writeq(cmd, mmio->addr.base + offset); 2472 nvdimm_flush(nfit_blk->nd_region, NULL); 2473 2474 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) 2475 readq(mmio->addr.base + offset); 2476 } 2477 2478 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, 2479 resource_size_t dpa, void *iobuf, size_t len, int rw, 2480 unsigned int lane) 2481 { 2482 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2483 unsigned int copied = 0; 2484 u64 base_offset; 2485 int rc; 2486 2487 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES 2488 + lane * mmio->size; 2489 write_blk_ctl(nfit_blk, lane, dpa, len, rw); 2490 while (len) { 2491 unsigned int c; 2492 u64 offset; 2493 2494 if (mmio->num_lines) { 2495 u32 line_offset; 2496 2497 offset = to_interleave_offset(base_offset + copied, 2498 mmio); 2499 div_u64_rem(offset, mmio->line_size, &line_offset); 2500 c = min_t(size_t, len, mmio->line_size - line_offset); 2501 } else { 2502 offset = base_offset + nfit_blk->bdw_offset; 2503 c = len; 2504 } 2505 2506 if (rw) 2507 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); 2508 else { 2509 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) 2510 arch_invalidate_pmem((void __force *) 2511 mmio->addr.aperture + offset, c); 2512 2513 memcpy(iobuf + copied, mmio->addr.aperture + offset, c); 2514 } 2515 2516 copied += c; 2517 len -= c; 2518 } 2519 2520 if (rw) 2521 nvdimm_flush(nfit_blk->nd_region, NULL); 2522 2523 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; 2524 return rc; 2525 } 2526 2527 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, 2528 resource_size_t dpa, void *iobuf, u64 len, int rw) 2529 { 2530 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); 2531 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2532 struct nd_region *nd_region = nfit_blk->nd_region; 2533 unsigned int lane, copied = 0; 2534 int rc = 0; 2535 2536 lane = nd_region_acquire_lane(nd_region); 2537 while (len) { 2538 u64 c = min(len, mmio->size); 2539 2540 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, 2541 iobuf + copied, c, rw, lane); 2542 if (rc) 2543 break; 2544 2545 copied += c; 2546 len -= c; 2547 } 2548 nd_region_release_lane(nd_region, lane); 2549 2550 return rc; 2551 } 2552 2553 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, 2554 struct acpi_nfit_interleave *idt, u16 interleave_ways) 2555 { 2556 if (idt) { 2557 mmio->num_lines = idt->line_count; 2558 mmio->line_size = idt->line_size; 2559 if (interleave_ways == 0) 2560 return -ENXIO; 2561 mmio->table_size = mmio->num_lines * interleave_ways 2562 * mmio->line_size; 2563 } 2564 2565 return 0; 2566 } 2567 2568 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, 2569 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) 2570 { 2571 struct nd_cmd_dimm_flags flags; 2572 int rc; 2573 2574 memset(&flags, 0, sizeof(flags)); 2575 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, 2576 sizeof(flags), NULL); 2577 2578 if (rc >= 0 && flags.status == 0) 2579 nfit_blk->dimm_flags = flags.flags; 2580 else if (rc == -ENOTTY) { 2581 /* fall back to a conservative default */ 2582 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; 2583 rc = 0; 2584 } else 2585 rc = -ENXIO; 2586 2587 return rc; 2588 } 2589 2590 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, 2591 struct device *dev) 2592 { 2593 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 2594 struct nd_blk_region *ndbr = to_nd_blk_region(dev); 2595 struct nfit_blk_mmio *mmio; 2596 struct nfit_blk *nfit_blk; 2597 struct nfit_mem *nfit_mem; 2598 struct nvdimm *nvdimm; 2599 int rc; 2600 2601 nvdimm = nd_blk_region_to_dimm(ndbr); 2602 nfit_mem = nvdimm_provider_data(nvdimm); 2603 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { 2604 dev_dbg(dev, "missing%s%s%s\n", 2605 nfit_mem ? "" : " nfit_mem", 2606 (nfit_mem && nfit_mem->dcr) ? "" : " dcr", 2607 (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); 2608 return -ENXIO; 2609 } 2610 2611 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); 2612 if (!nfit_blk) 2613 return -ENOMEM; 2614 nd_blk_region_set_provider_data(ndbr, nfit_blk); 2615 nfit_blk->nd_region = to_nd_region(dev); 2616 2617 /* map block aperture memory */ 2618 nfit_blk->bdw_offset = nfit_mem->bdw->offset; 2619 mmio = &nfit_blk->mmio[BDW]; 2620 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, 2621 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); 2622 if (!mmio->addr.base) { 2623 dev_dbg(dev, "%s failed to map bdw\n", 2624 nvdimm_name(nvdimm)); 2625 return -ENOMEM; 2626 } 2627 mmio->size = nfit_mem->bdw->size; 2628 mmio->base_offset = nfit_mem->memdev_bdw->region_offset; 2629 mmio->idt = nfit_mem->idt_bdw; 2630 mmio->spa = nfit_mem->spa_bdw; 2631 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, 2632 nfit_mem->memdev_bdw->interleave_ways); 2633 if (rc) { 2634 dev_dbg(dev, "%s failed to init bdw interleave\n", 2635 nvdimm_name(nvdimm)); 2636 return rc; 2637 } 2638 2639 /* map block control memory */ 2640 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; 2641 nfit_blk->stat_offset = nfit_mem->dcr->status_offset; 2642 mmio = &nfit_blk->mmio[DCR]; 2643 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, 2644 nfit_mem->spa_dcr->length); 2645 if (!mmio->addr.base) { 2646 dev_dbg(dev, "%s failed to map dcr\n", 2647 nvdimm_name(nvdimm)); 2648 return -ENOMEM; 2649 } 2650 mmio->size = nfit_mem->dcr->window_size; 2651 mmio->base_offset = nfit_mem->memdev_dcr->region_offset; 2652 mmio->idt = nfit_mem->idt_dcr; 2653 mmio->spa = nfit_mem->spa_dcr; 2654 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, 2655 nfit_mem->memdev_dcr->interleave_ways); 2656 if (rc) { 2657 dev_dbg(dev, "%s failed to init dcr interleave\n", 2658 nvdimm_name(nvdimm)); 2659 return rc; 2660 } 2661 2662 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); 2663 if (rc < 0) { 2664 dev_dbg(dev, "%s failed get DIMM flags\n", 2665 nvdimm_name(nvdimm)); 2666 return rc; 2667 } 2668 2669 if (nvdimm_has_flush(nfit_blk->nd_region) < 0) 2670 dev_warn(dev, "unable to guarantee persistence of writes\n"); 2671 2672 if (mmio->line_size == 0) 2673 return 0; 2674 2675 if ((u32) nfit_blk->cmd_offset % mmio->line_size 2676 + 8 > mmio->line_size) { 2677 dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); 2678 return -ENXIO; 2679 } else if ((u32) nfit_blk->stat_offset % mmio->line_size 2680 + 8 > mmio->line_size) { 2681 dev_dbg(dev, "stat_offset crosses interleave boundary\n"); 2682 return -ENXIO; 2683 } 2684 2685 return 0; 2686 } 2687 2688 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, 2689 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) 2690 { 2691 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2692 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2693 int cmd_rc, rc; 2694 2695 cmd->address = spa->address; 2696 cmd->length = spa->length; 2697 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, 2698 sizeof(*cmd), &cmd_rc); 2699 if (rc < 0) 2700 return rc; 2701 return cmd_rc; 2702 } 2703 2704 static int ars_start(struct acpi_nfit_desc *acpi_desc, 2705 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) 2706 { 2707 int rc; 2708 int cmd_rc; 2709 struct nd_cmd_ars_start ars_start; 2710 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2711 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2712 2713 memset(&ars_start, 0, sizeof(ars_start)); 2714 ars_start.address = spa->address; 2715 ars_start.length = spa->length; 2716 if (req_type == ARS_REQ_SHORT) 2717 ars_start.flags = ND_ARS_RETURN_PREV_DATA; 2718 if (nfit_spa_type(spa) == NFIT_SPA_PM) 2719 ars_start.type = ND_ARS_PERSISTENT; 2720 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) 2721 ars_start.type = ND_ARS_VOLATILE; 2722 else 2723 return -ENOTTY; 2724 2725 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2726 sizeof(ars_start), &cmd_rc); 2727 2728 if (rc < 0) 2729 return rc; 2730 if (cmd_rc < 0) 2731 return cmd_rc; 2732 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 2733 return 0; 2734 } 2735 2736 static int ars_continue(struct acpi_nfit_desc *acpi_desc) 2737 { 2738 int rc, cmd_rc; 2739 struct nd_cmd_ars_start ars_start; 2740 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2741 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2742 2743 ars_start = (struct nd_cmd_ars_start) { 2744 .address = ars_status->restart_address, 2745 .length = ars_status->restart_length, 2746 .type = ars_status->type, 2747 }; 2748 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2749 sizeof(ars_start), &cmd_rc); 2750 if (rc < 0) 2751 return rc; 2752 return cmd_rc; 2753 } 2754 2755 static int ars_get_status(struct acpi_nfit_desc *acpi_desc) 2756 { 2757 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2758 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2759 int rc, cmd_rc; 2760 2761 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, 2762 acpi_desc->max_ars, &cmd_rc); 2763 if (rc < 0) 2764 return rc; 2765 return cmd_rc; 2766 } 2767 2768 static void ars_complete(struct acpi_nfit_desc *acpi_desc, 2769 struct nfit_spa *nfit_spa) 2770 { 2771 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2772 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2773 struct nd_region *nd_region = nfit_spa->nd_region; 2774 struct device *dev; 2775 2776 lockdep_assert_held(&acpi_desc->init_mutex); 2777 /* 2778 * Only advance the ARS state for ARS runs initiated by the 2779 * kernel, ignore ARS results from BIOS initiated runs for scrub 2780 * completion tracking. 2781 */ 2782 if (acpi_desc->scrub_spa != nfit_spa) 2783 return; 2784 2785 if ((ars_status->address >= spa->address && ars_status->address 2786 < spa->address + spa->length) 2787 || (ars_status->address < spa->address)) { 2788 /* 2789 * Assume that if a scrub starts at an offset from the 2790 * start of nfit_spa that we are in the continuation 2791 * case. 2792 * 2793 * Otherwise, if the scrub covers the spa range, mark 2794 * any pending request complete. 2795 */ 2796 if (ars_status->address + ars_status->length 2797 >= spa->address + spa->length) 2798 /* complete */; 2799 else 2800 return; 2801 } else 2802 return; 2803 2804 acpi_desc->scrub_spa = NULL; 2805 if (nd_region) { 2806 dev = nd_region_dev(nd_region); 2807 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); 2808 } else 2809 dev = acpi_desc->dev; 2810 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); 2811 } 2812 2813 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) 2814 { 2815 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; 2816 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2817 int rc; 2818 u32 i; 2819 2820 /* 2821 * First record starts at 44 byte offset from the start of the 2822 * payload. 2823 */ 2824 if (ars_status->out_length < 44) 2825 return 0; 2826 2827 /* 2828 * Ignore potentially stale results that are only refreshed 2829 * after a start-ARS event. 2830 */ 2831 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) { 2832 dev_dbg(acpi_desc->dev, "skip %d stale records\n", 2833 ars_status->num_records); 2834 return 0; 2835 } 2836 2837 for (i = 0; i < ars_status->num_records; i++) { 2838 /* only process full records */ 2839 if (ars_status->out_length 2840 < 44 + sizeof(struct nd_ars_record) * (i + 1)) 2841 break; 2842 rc = nvdimm_bus_add_badrange(nvdimm_bus, 2843 ars_status->records[i].err_address, 2844 ars_status->records[i].length); 2845 if (rc) 2846 return rc; 2847 } 2848 if (i < ars_status->num_records) 2849 dev_warn(acpi_desc->dev, "detected truncated ars results\n"); 2850 2851 return 0; 2852 } 2853 2854 static void acpi_nfit_remove_resource(void *data) 2855 { 2856 struct resource *res = data; 2857 2858 remove_resource(res); 2859 } 2860 2861 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, 2862 struct nd_region_desc *ndr_desc) 2863 { 2864 struct resource *res, *nd_res = ndr_desc->res; 2865 int is_pmem, ret; 2866 2867 /* No operation if the region is already registered as PMEM */ 2868 is_pmem = region_intersects(nd_res->start, resource_size(nd_res), 2869 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); 2870 if (is_pmem == REGION_INTERSECTS) 2871 return 0; 2872 2873 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); 2874 if (!res) 2875 return -ENOMEM; 2876 2877 res->name = "Persistent Memory"; 2878 res->start = nd_res->start; 2879 res->end = nd_res->end; 2880 res->flags = IORESOURCE_MEM; 2881 res->desc = IORES_DESC_PERSISTENT_MEMORY; 2882 2883 ret = insert_resource(&iomem_resource, res); 2884 if (ret) 2885 return ret; 2886 2887 ret = devm_add_action_or_reset(acpi_desc->dev, 2888 acpi_nfit_remove_resource, 2889 res); 2890 if (ret) 2891 return ret; 2892 2893 return 0; 2894 } 2895 2896 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, 2897 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, 2898 struct acpi_nfit_memory_map *memdev, 2899 struct nfit_spa *nfit_spa) 2900 { 2901 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, 2902 memdev->device_handle); 2903 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2904 struct nd_blk_region_desc *ndbr_desc; 2905 struct nfit_mem *nfit_mem; 2906 int rc; 2907 2908 if (!nvdimm) { 2909 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", 2910 spa->range_index, memdev->device_handle); 2911 return -ENODEV; 2912 } 2913 2914 mapping->nvdimm = nvdimm; 2915 switch (nfit_spa_type(spa)) { 2916 case NFIT_SPA_PM: 2917 case NFIT_SPA_VOLATILE: 2918 mapping->start = memdev->address; 2919 mapping->size = memdev->region_size; 2920 break; 2921 case NFIT_SPA_DCR: 2922 nfit_mem = nvdimm_provider_data(nvdimm); 2923 if (!nfit_mem || !nfit_mem->bdw) { 2924 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", 2925 spa->range_index, nvdimm_name(nvdimm)); 2926 break; 2927 } 2928 2929 mapping->size = nfit_mem->bdw->capacity; 2930 mapping->start = nfit_mem->bdw->start_address; 2931 ndr_desc->num_lanes = nfit_mem->bdw->windows; 2932 ndr_desc->mapping = mapping; 2933 ndr_desc->num_mappings = 1; 2934 ndbr_desc = to_blk_region_desc(ndr_desc); 2935 ndbr_desc->enable = acpi_nfit_blk_region_enable; 2936 ndbr_desc->do_io = acpi_desc->blk_do_io; 2937 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2938 if (rc) 2939 return rc; 2940 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, 2941 ndr_desc); 2942 if (!nfit_spa->nd_region) 2943 return -ENOMEM; 2944 break; 2945 } 2946 2947 return 0; 2948 } 2949 2950 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) 2951 { 2952 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2953 nfit_spa_type(spa) == NFIT_SPA_VCD || 2954 nfit_spa_type(spa) == NFIT_SPA_PDISK || 2955 nfit_spa_type(spa) == NFIT_SPA_PCD); 2956 } 2957 2958 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) 2959 { 2960 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2961 nfit_spa_type(spa) == NFIT_SPA_VCD || 2962 nfit_spa_type(spa) == NFIT_SPA_VOLATILE); 2963 } 2964 2965 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, 2966 struct nfit_spa *nfit_spa) 2967 { 2968 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; 2969 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2970 struct nd_blk_region_desc ndbr_desc; 2971 struct nd_region_desc *ndr_desc; 2972 struct nfit_memdev *nfit_memdev; 2973 struct nvdimm_bus *nvdimm_bus; 2974 struct resource res; 2975 int count = 0, rc; 2976 2977 if (nfit_spa->nd_region) 2978 return 0; 2979 2980 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { 2981 dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); 2982 return 0; 2983 } 2984 2985 memset(&res, 0, sizeof(res)); 2986 memset(&mappings, 0, sizeof(mappings)); 2987 memset(&ndbr_desc, 0, sizeof(ndbr_desc)); 2988 res.start = spa->address; 2989 res.end = res.start + spa->length - 1; 2990 ndr_desc = &ndbr_desc.ndr_desc; 2991 ndr_desc->res = &res; 2992 ndr_desc->provider_data = nfit_spa; 2993 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; 2994 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) { 2995 ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain); 2996 ndr_desc->target_node = pxm_to_node(spa->proximity_domain); 2997 } else { 2998 ndr_desc->numa_node = NUMA_NO_NODE; 2999 ndr_desc->target_node = NUMA_NO_NODE; 3000 } 3001 3002 /* 3003 * Persistence domain bits are hierarchical, if 3004 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then 3005 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. 3006 */ 3007 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) 3008 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); 3009 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) 3010 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); 3011 3012 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 3013 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 3014 struct nd_mapping_desc *mapping; 3015 3016 if (memdev->range_index != spa->range_index) 3017 continue; 3018 if (count >= ND_MAX_MAPPINGS) { 3019 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", 3020 spa->range_index, ND_MAX_MAPPINGS); 3021 return -ENXIO; 3022 } 3023 mapping = &mappings[count++]; 3024 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, 3025 memdev, nfit_spa); 3026 if (rc) 3027 goto out; 3028 } 3029 3030 ndr_desc->mapping = mappings; 3031 ndr_desc->num_mappings = count; 3032 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 3033 if (rc) 3034 goto out; 3035 3036 nvdimm_bus = acpi_desc->nvdimm_bus; 3037 if (nfit_spa_type(spa) == NFIT_SPA_PM) { 3038 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); 3039 if (rc) { 3040 dev_warn(acpi_desc->dev, 3041 "failed to insert pmem resource to iomem: %d\n", 3042 rc); 3043 goto out; 3044 } 3045 3046 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3047 ndr_desc); 3048 if (!nfit_spa->nd_region) 3049 rc = -ENOMEM; 3050 } else if (nfit_spa_is_volatile(spa)) { 3051 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, 3052 ndr_desc); 3053 if (!nfit_spa->nd_region) 3054 rc = -ENOMEM; 3055 } else if (nfit_spa_is_virtual(spa)) { 3056 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3057 ndr_desc); 3058 if (!nfit_spa->nd_region) 3059 rc = -ENOMEM; 3060 } 3061 3062 out: 3063 if (rc) 3064 dev_err(acpi_desc->dev, "failed to register spa range %d\n", 3065 nfit_spa->spa->range_index); 3066 return rc; 3067 } 3068 3069 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) 3070 { 3071 struct device *dev = acpi_desc->dev; 3072 struct nd_cmd_ars_status *ars_status; 3073 3074 if (acpi_desc->ars_status) { 3075 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3076 return 0; 3077 } 3078 3079 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); 3080 if (!ars_status) 3081 return -ENOMEM; 3082 acpi_desc->ars_status = ars_status; 3083 return 0; 3084 } 3085 3086 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) 3087 { 3088 int rc; 3089 3090 if (ars_status_alloc(acpi_desc)) 3091 return -ENOMEM; 3092 3093 rc = ars_get_status(acpi_desc); 3094 3095 if (rc < 0 && rc != -ENOSPC) 3096 return rc; 3097 3098 if (ars_status_process_records(acpi_desc)) 3099 dev_err(acpi_desc->dev, "Failed to process ARS records\n"); 3100 3101 return rc; 3102 } 3103 3104 static int ars_register(struct acpi_nfit_desc *acpi_desc, 3105 struct nfit_spa *nfit_spa) 3106 { 3107 int rc; 3108 3109 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3110 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3111 3112 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3113 if (!no_init_ars) 3114 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); 3115 3116 switch (acpi_nfit_query_poison(acpi_desc)) { 3117 case 0: 3118 case -ENOSPC: 3119 case -EAGAIN: 3120 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); 3121 /* shouldn't happen, try again later */ 3122 if (rc == -EBUSY) 3123 break; 3124 if (rc) { 3125 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3126 break; 3127 } 3128 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3129 rc = acpi_nfit_query_poison(acpi_desc); 3130 if (rc) 3131 break; 3132 acpi_desc->scrub_spa = nfit_spa; 3133 ars_complete(acpi_desc, nfit_spa); 3134 /* 3135 * If ars_complete() says we didn't complete the 3136 * short scrub, we'll try again with a long 3137 * request. 3138 */ 3139 acpi_desc->scrub_spa = NULL; 3140 break; 3141 case -EBUSY: 3142 case -ENOMEM: 3143 /* 3144 * BIOS was using ARS, wait for it to complete (or 3145 * resources to become available) and then perform our 3146 * own scrubs. 3147 */ 3148 break; 3149 default: 3150 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3151 break; 3152 } 3153 3154 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3155 } 3156 3157 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) 3158 { 3159 struct nfit_spa *nfit_spa; 3160 3161 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3162 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3163 continue; 3164 ars_complete(acpi_desc, nfit_spa); 3165 } 3166 } 3167 3168 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, 3169 int query_rc) 3170 { 3171 unsigned int tmo = acpi_desc->scrub_tmo; 3172 struct device *dev = acpi_desc->dev; 3173 struct nfit_spa *nfit_spa; 3174 3175 lockdep_assert_held(&acpi_desc->init_mutex); 3176 3177 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) 3178 return 0; 3179 3180 if (query_rc == -EBUSY) { 3181 dev_dbg(dev, "ARS: ARS busy\n"); 3182 return min(30U * 60U, tmo * 2); 3183 } 3184 if (query_rc == -ENOSPC) { 3185 dev_dbg(dev, "ARS: ARS continue\n"); 3186 ars_continue(acpi_desc); 3187 return 1; 3188 } 3189 if (query_rc && query_rc != -EAGAIN) { 3190 unsigned long long addr, end; 3191 3192 addr = acpi_desc->ars_status->address; 3193 end = addr + acpi_desc->ars_status->length; 3194 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, 3195 query_rc); 3196 } 3197 3198 ars_complete_all(acpi_desc); 3199 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3200 enum nfit_ars_state req_type; 3201 int rc; 3202 3203 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3204 continue; 3205 3206 /* prefer short ARS requests first */ 3207 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) 3208 req_type = ARS_REQ_SHORT; 3209 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) 3210 req_type = ARS_REQ_LONG; 3211 else 3212 continue; 3213 rc = ars_start(acpi_desc, nfit_spa, req_type); 3214 3215 dev = nd_region_dev(nfit_spa->nd_region); 3216 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", 3217 nfit_spa->spa->range_index, 3218 req_type == ARS_REQ_SHORT ? "short" : "long", 3219 rc); 3220 /* 3221 * Hmm, we raced someone else starting ARS? Try again in 3222 * a bit. 3223 */ 3224 if (rc == -EBUSY) 3225 return 1; 3226 if (rc == 0) { 3227 dev_WARN_ONCE(dev, acpi_desc->scrub_spa, 3228 "scrub start while range %d active\n", 3229 acpi_desc->scrub_spa->spa->range_index); 3230 clear_bit(req_type, &nfit_spa->ars_state); 3231 acpi_desc->scrub_spa = nfit_spa; 3232 /* 3233 * Consider this spa last for future scrub 3234 * requests 3235 */ 3236 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 3237 return 1; 3238 } 3239 3240 dev_err(dev, "ARS: range %d ARS failed (%d)\n", 3241 nfit_spa->spa->range_index, rc); 3242 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3243 } 3244 return 0; 3245 } 3246 3247 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) 3248 { 3249 lockdep_assert_held(&acpi_desc->init_mutex); 3250 3251 set_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3252 /* note this should only be set from within the workqueue */ 3253 if (tmo) 3254 acpi_desc->scrub_tmo = tmo; 3255 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); 3256 } 3257 3258 static void sched_ars(struct acpi_nfit_desc *acpi_desc) 3259 { 3260 __sched_ars(acpi_desc, 0); 3261 } 3262 3263 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) 3264 { 3265 lockdep_assert_held(&acpi_desc->init_mutex); 3266 3267 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3268 acpi_desc->scrub_count++; 3269 if (acpi_desc->scrub_count_state) 3270 sysfs_notify_dirent(acpi_desc->scrub_count_state); 3271 } 3272 3273 static void acpi_nfit_scrub(struct work_struct *work) 3274 { 3275 struct acpi_nfit_desc *acpi_desc; 3276 unsigned int tmo; 3277 int query_rc; 3278 3279 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); 3280 mutex_lock(&acpi_desc->init_mutex); 3281 query_rc = acpi_nfit_query_poison(acpi_desc); 3282 tmo = __acpi_nfit_scrub(acpi_desc, query_rc); 3283 if (tmo) 3284 __sched_ars(acpi_desc, tmo); 3285 else 3286 notify_ars_done(acpi_desc); 3287 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3288 clear_bit(ARS_POLL, &acpi_desc->scrub_flags); 3289 mutex_unlock(&acpi_desc->init_mutex); 3290 } 3291 3292 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, 3293 struct nfit_spa *nfit_spa) 3294 { 3295 int type = nfit_spa_type(nfit_spa->spa); 3296 struct nd_cmd_ars_cap ars_cap; 3297 int rc; 3298 3299 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3300 memset(&ars_cap, 0, sizeof(ars_cap)); 3301 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); 3302 if (rc < 0) 3303 return; 3304 /* check that the supported scrub types match the spa type */ 3305 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) 3306 & ND_ARS_VOLATILE) == 0) 3307 return; 3308 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) 3309 & ND_ARS_PERSISTENT) == 0) 3310 return; 3311 3312 nfit_spa->max_ars = ars_cap.max_ars_out; 3313 nfit_spa->clear_err_unit = ars_cap.clear_err_unit; 3314 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); 3315 clear_bit(ARS_FAILED, &nfit_spa->ars_state); 3316 } 3317 3318 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) 3319 { 3320 struct nfit_spa *nfit_spa; 3321 int rc, do_sched_ars = 0; 3322 3323 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 3324 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3325 switch (nfit_spa_type(nfit_spa->spa)) { 3326 case NFIT_SPA_VOLATILE: 3327 case NFIT_SPA_PM: 3328 acpi_nfit_init_ars(acpi_desc, nfit_spa); 3329 break; 3330 } 3331 } 3332 3333 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3334 switch (nfit_spa_type(nfit_spa->spa)) { 3335 case NFIT_SPA_VOLATILE: 3336 case NFIT_SPA_PM: 3337 /* register regions and kick off initial ARS run */ 3338 rc = ars_register(acpi_desc, nfit_spa); 3339 if (rc) 3340 return rc; 3341 3342 /* 3343 * Kick off background ARS if at least one 3344 * region successfully registered ARS 3345 */ 3346 if (!test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3347 do_sched_ars++; 3348 break; 3349 case NFIT_SPA_BDW: 3350 /* nothing to register */ 3351 break; 3352 case NFIT_SPA_DCR: 3353 case NFIT_SPA_VDISK: 3354 case NFIT_SPA_VCD: 3355 case NFIT_SPA_PDISK: 3356 case NFIT_SPA_PCD: 3357 /* register known regions that don't support ARS */ 3358 rc = acpi_nfit_register_region(acpi_desc, nfit_spa); 3359 if (rc) 3360 return rc; 3361 break; 3362 default: 3363 /* don't register unknown regions */ 3364 break; 3365 } 3366 } 3367 3368 if (do_sched_ars) 3369 sched_ars(acpi_desc); 3370 return 0; 3371 } 3372 3373 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, 3374 struct nfit_table_prev *prev) 3375 { 3376 struct device *dev = acpi_desc->dev; 3377 3378 if (!list_empty(&prev->spas) || 3379 !list_empty(&prev->memdevs) || 3380 !list_empty(&prev->dcrs) || 3381 !list_empty(&prev->bdws) || 3382 !list_empty(&prev->idts) || 3383 !list_empty(&prev->flushes)) { 3384 dev_err(dev, "new nfit deletes entries (unsupported)\n"); 3385 return -ENXIO; 3386 } 3387 return 0; 3388 } 3389 3390 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) 3391 { 3392 struct device *dev = acpi_desc->dev; 3393 struct kernfs_node *nfit; 3394 struct device *bus_dev; 3395 3396 if (!ars_supported(acpi_desc->nvdimm_bus)) 3397 return 0; 3398 3399 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3400 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); 3401 if (!nfit) { 3402 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); 3403 return -ENODEV; 3404 } 3405 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); 3406 sysfs_put(nfit); 3407 if (!acpi_desc->scrub_count_state) { 3408 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); 3409 return -ENODEV; 3410 } 3411 3412 return 0; 3413 } 3414 3415 static void acpi_nfit_unregister(void *data) 3416 { 3417 struct acpi_nfit_desc *acpi_desc = data; 3418 3419 nvdimm_bus_unregister(acpi_desc->nvdimm_bus); 3420 } 3421 3422 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) 3423 { 3424 struct device *dev = acpi_desc->dev; 3425 struct nfit_table_prev prev; 3426 const void *end; 3427 int rc; 3428 3429 if (!acpi_desc->nvdimm_bus) { 3430 acpi_nfit_init_dsms(acpi_desc); 3431 3432 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, 3433 &acpi_desc->nd_desc); 3434 if (!acpi_desc->nvdimm_bus) 3435 return -ENOMEM; 3436 3437 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, 3438 acpi_desc); 3439 if (rc) 3440 return rc; 3441 3442 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); 3443 if (rc) 3444 return rc; 3445 3446 /* register this acpi_desc for mce notifications */ 3447 mutex_lock(&acpi_desc_lock); 3448 list_add_tail(&acpi_desc->list, &acpi_descs); 3449 mutex_unlock(&acpi_desc_lock); 3450 } 3451 3452 mutex_lock(&acpi_desc->init_mutex); 3453 3454 INIT_LIST_HEAD(&prev.spas); 3455 INIT_LIST_HEAD(&prev.memdevs); 3456 INIT_LIST_HEAD(&prev.dcrs); 3457 INIT_LIST_HEAD(&prev.bdws); 3458 INIT_LIST_HEAD(&prev.idts); 3459 INIT_LIST_HEAD(&prev.flushes); 3460 3461 list_cut_position(&prev.spas, &acpi_desc->spas, 3462 acpi_desc->spas.prev); 3463 list_cut_position(&prev.memdevs, &acpi_desc->memdevs, 3464 acpi_desc->memdevs.prev); 3465 list_cut_position(&prev.dcrs, &acpi_desc->dcrs, 3466 acpi_desc->dcrs.prev); 3467 list_cut_position(&prev.bdws, &acpi_desc->bdws, 3468 acpi_desc->bdws.prev); 3469 list_cut_position(&prev.idts, &acpi_desc->idts, 3470 acpi_desc->idts.prev); 3471 list_cut_position(&prev.flushes, &acpi_desc->flushes, 3472 acpi_desc->flushes.prev); 3473 3474 end = data + sz; 3475 while (!IS_ERR_OR_NULL(data)) 3476 data = add_table(acpi_desc, &prev, data, end); 3477 3478 if (IS_ERR(data)) { 3479 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); 3480 rc = PTR_ERR(data); 3481 goto out_unlock; 3482 } 3483 3484 rc = acpi_nfit_check_deletions(acpi_desc, &prev); 3485 if (rc) 3486 goto out_unlock; 3487 3488 rc = nfit_mem_init(acpi_desc); 3489 if (rc) 3490 goto out_unlock; 3491 3492 rc = acpi_nfit_register_dimms(acpi_desc); 3493 if (rc) 3494 goto out_unlock; 3495 3496 rc = acpi_nfit_register_regions(acpi_desc); 3497 3498 out_unlock: 3499 mutex_unlock(&acpi_desc->init_mutex); 3500 return rc; 3501 } 3502 EXPORT_SYMBOL_GPL(acpi_nfit_init); 3503 3504 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) 3505 { 3506 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3507 struct device *dev = acpi_desc->dev; 3508 3509 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ 3510 nfit_device_lock(dev); 3511 nfit_device_unlock(dev); 3512 3513 /* Bounce the init_mutex to complete initial registration */ 3514 mutex_lock(&acpi_desc->init_mutex); 3515 mutex_unlock(&acpi_desc->init_mutex); 3516 3517 return 0; 3518 } 3519 3520 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3521 struct nvdimm *nvdimm, unsigned int cmd) 3522 { 3523 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3524 3525 if (nvdimm) 3526 return 0; 3527 if (cmd != ND_CMD_ARS_START) 3528 return 0; 3529 3530 /* 3531 * The kernel and userspace may race to initiate a scrub, but 3532 * the scrub thread is prepared to lose that initial race. It 3533 * just needs guarantees that any ARS it initiates are not 3534 * interrupted by any intervening start requests from userspace. 3535 */ 3536 if (work_busy(&acpi_desc->dwork.work)) 3537 return -EBUSY; 3538 3539 return 0; 3540 } 3541 3542 /* 3543 * Prevent security and firmware activate commands from being issued via 3544 * ioctl. 3545 */ 3546 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3547 struct nvdimm *nvdimm, unsigned int cmd, void *buf) 3548 { 3549 struct nd_cmd_pkg *call_pkg = buf; 3550 unsigned int func; 3551 3552 if (nvdimm && cmd == ND_CMD_CALL && 3553 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { 3554 func = call_pkg->nd_command; 3555 if (func > NVDIMM_CMD_MAX || 3556 (1 << func) & NVDIMM_INTEL_DENY_CMDMASK) 3557 return -EOPNOTSUPP; 3558 } 3559 3560 /* block all non-nfit bus commands */ 3561 if (!nvdimm && cmd == ND_CMD_CALL && 3562 call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT) 3563 return -EOPNOTSUPP; 3564 3565 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); 3566 } 3567 3568 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, 3569 enum nfit_ars_state req_type) 3570 { 3571 struct device *dev = acpi_desc->dev; 3572 int scheduled = 0, busy = 0; 3573 struct nfit_spa *nfit_spa; 3574 3575 mutex_lock(&acpi_desc->init_mutex); 3576 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) { 3577 mutex_unlock(&acpi_desc->init_mutex); 3578 return 0; 3579 } 3580 3581 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3582 int type = nfit_spa_type(nfit_spa->spa); 3583 3584 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) 3585 continue; 3586 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3587 continue; 3588 3589 if (test_and_set_bit(req_type, &nfit_spa->ars_state)) 3590 busy++; 3591 else 3592 scheduled++; 3593 } 3594 if (scheduled) { 3595 sched_ars(acpi_desc); 3596 dev_dbg(dev, "ars_scan triggered\n"); 3597 } 3598 mutex_unlock(&acpi_desc->init_mutex); 3599 3600 if (scheduled) 3601 return 0; 3602 if (busy) 3603 return -EBUSY; 3604 return -ENOTTY; 3605 } 3606 3607 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) 3608 { 3609 struct nvdimm_bus_descriptor *nd_desc; 3610 3611 dev_set_drvdata(dev, acpi_desc); 3612 acpi_desc->dev = dev; 3613 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; 3614 nd_desc = &acpi_desc->nd_desc; 3615 nd_desc->provider_name = "ACPI.NFIT"; 3616 nd_desc->module = THIS_MODULE; 3617 nd_desc->ndctl = acpi_nfit_ctl; 3618 nd_desc->flush_probe = acpi_nfit_flush_probe; 3619 nd_desc->clear_to_send = acpi_nfit_clear_to_send; 3620 nd_desc->attr_groups = acpi_nfit_attribute_groups; 3621 3622 INIT_LIST_HEAD(&acpi_desc->spas); 3623 INIT_LIST_HEAD(&acpi_desc->dcrs); 3624 INIT_LIST_HEAD(&acpi_desc->bdws); 3625 INIT_LIST_HEAD(&acpi_desc->idts); 3626 INIT_LIST_HEAD(&acpi_desc->flushes); 3627 INIT_LIST_HEAD(&acpi_desc->memdevs); 3628 INIT_LIST_HEAD(&acpi_desc->dimms); 3629 INIT_LIST_HEAD(&acpi_desc->list); 3630 mutex_init(&acpi_desc->init_mutex); 3631 acpi_desc->scrub_tmo = 1; 3632 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); 3633 } 3634 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); 3635 3636 static void acpi_nfit_put_table(void *table) 3637 { 3638 acpi_put_table(table); 3639 } 3640 3641 void acpi_nfit_shutdown(void *data) 3642 { 3643 struct acpi_nfit_desc *acpi_desc = data; 3644 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3645 3646 /* 3647 * Destruct under acpi_desc_lock so that nfit_handle_mce does not 3648 * race teardown 3649 */ 3650 mutex_lock(&acpi_desc_lock); 3651 list_del(&acpi_desc->list); 3652 mutex_unlock(&acpi_desc_lock); 3653 3654 mutex_lock(&acpi_desc->init_mutex); 3655 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 3656 cancel_delayed_work_sync(&acpi_desc->dwork); 3657 mutex_unlock(&acpi_desc->init_mutex); 3658 3659 /* 3660 * Bounce the nvdimm bus lock to make sure any in-flight 3661 * acpi_nfit_ars_rescan() submissions have had a chance to 3662 * either submit or see ->cancel set. 3663 */ 3664 nfit_device_lock(bus_dev); 3665 nfit_device_unlock(bus_dev); 3666 3667 flush_workqueue(nfit_wq); 3668 } 3669 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); 3670 3671 static int acpi_nfit_add(struct acpi_device *adev) 3672 { 3673 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3674 struct acpi_nfit_desc *acpi_desc; 3675 struct device *dev = &adev->dev; 3676 struct acpi_table_header *tbl; 3677 acpi_status status = AE_OK; 3678 acpi_size sz; 3679 int rc = 0; 3680 3681 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); 3682 if (ACPI_FAILURE(status)) { 3683 /* The NVDIMM root device allows OS to trigger enumeration of 3684 * NVDIMMs through NFIT at boot time and re-enumeration at 3685 * root level via the _FIT method during runtime. 3686 * This is ok to return 0 here, we could have an nvdimm 3687 * hotplugged later and evaluate _FIT method which returns 3688 * data in the format of a series of NFIT Structures. 3689 */ 3690 dev_dbg(dev, "failed to find NFIT at startup\n"); 3691 return 0; 3692 } 3693 3694 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); 3695 if (rc) 3696 return rc; 3697 sz = tbl->length; 3698 3699 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3700 if (!acpi_desc) 3701 return -ENOMEM; 3702 acpi_nfit_desc_init(acpi_desc, &adev->dev); 3703 3704 /* Save the acpi header for exporting the revision via sysfs */ 3705 acpi_desc->acpi_header = *tbl; 3706 3707 /* Evaluate _FIT and override with that if present */ 3708 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); 3709 if (ACPI_SUCCESS(status) && buf.length > 0) { 3710 union acpi_object *obj = buf.pointer; 3711 3712 if (obj->type == ACPI_TYPE_BUFFER) 3713 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3714 obj->buffer.length); 3715 else 3716 dev_dbg(dev, "invalid type %d, ignoring _FIT\n", 3717 (int) obj->type); 3718 kfree(buf.pointer); 3719 } else 3720 /* skip over the lead-in header table */ 3721 rc = acpi_nfit_init(acpi_desc, (void *) tbl 3722 + sizeof(struct acpi_table_nfit), 3723 sz - sizeof(struct acpi_table_nfit)); 3724 3725 if (rc) 3726 return rc; 3727 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); 3728 } 3729 3730 static int acpi_nfit_remove(struct acpi_device *adev) 3731 { 3732 /* see acpi_nfit_unregister */ 3733 return 0; 3734 } 3735 3736 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) 3737 { 3738 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3739 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3740 union acpi_object *obj; 3741 acpi_status status; 3742 int ret; 3743 3744 if (!dev->driver) { 3745 /* dev->driver may be null if we're being removed */ 3746 dev_dbg(dev, "no driver found for dev\n"); 3747 return; 3748 } 3749 3750 if (!acpi_desc) { 3751 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3752 if (!acpi_desc) 3753 return; 3754 acpi_nfit_desc_init(acpi_desc, dev); 3755 } else { 3756 /* 3757 * Finish previous registration before considering new 3758 * regions. 3759 */ 3760 flush_workqueue(nfit_wq); 3761 } 3762 3763 /* Evaluate _FIT */ 3764 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); 3765 if (ACPI_FAILURE(status)) { 3766 dev_err(dev, "failed to evaluate _FIT\n"); 3767 return; 3768 } 3769 3770 obj = buf.pointer; 3771 if (obj->type == ACPI_TYPE_BUFFER) { 3772 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3773 obj->buffer.length); 3774 if (ret) 3775 dev_err(dev, "failed to merge updated NFIT\n"); 3776 } else 3777 dev_err(dev, "Invalid _FIT\n"); 3778 kfree(buf.pointer); 3779 } 3780 3781 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) 3782 { 3783 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3784 3785 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) 3786 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 3787 else 3788 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); 3789 } 3790 3791 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) 3792 { 3793 dev_dbg(dev, "event: 0x%x\n", event); 3794 3795 switch (event) { 3796 case NFIT_NOTIFY_UPDATE: 3797 return acpi_nfit_update_notify(dev, handle); 3798 case NFIT_NOTIFY_UC_MEMORY_ERROR: 3799 return acpi_nfit_uc_error_notify(dev, handle); 3800 default: 3801 return; 3802 } 3803 } 3804 EXPORT_SYMBOL_GPL(__acpi_nfit_notify); 3805 3806 static void acpi_nfit_notify(struct acpi_device *adev, u32 event) 3807 { 3808 nfit_device_lock(&adev->dev); 3809 __acpi_nfit_notify(&adev->dev, adev->handle, event); 3810 nfit_device_unlock(&adev->dev); 3811 } 3812 3813 static const struct acpi_device_id acpi_nfit_ids[] = { 3814 { "ACPI0012", 0 }, 3815 { "", 0 }, 3816 }; 3817 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); 3818 3819 static struct acpi_driver acpi_nfit_driver = { 3820 .name = KBUILD_MODNAME, 3821 .ids = acpi_nfit_ids, 3822 .ops = { 3823 .add = acpi_nfit_add, 3824 .remove = acpi_nfit_remove, 3825 .notify = acpi_nfit_notify, 3826 }, 3827 }; 3828 3829 static __init int nfit_init(void) 3830 { 3831 int ret; 3832 3833 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); 3834 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); 3835 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); 3836 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); 3837 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); 3838 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); 3839 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); 3840 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); 3841 3842 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); 3843 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); 3844 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); 3845 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); 3846 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); 3847 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); 3848 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); 3849 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); 3850 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); 3851 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); 3852 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); 3853 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); 3854 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); 3855 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]); 3856 guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]); 3857 3858 nfit_wq = create_singlethread_workqueue("nfit"); 3859 if (!nfit_wq) 3860 return -ENOMEM; 3861 3862 nfit_mce_register(); 3863 ret = acpi_bus_register_driver(&acpi_nfit_driver); 3864 if (ret) { 3865 nfit_mce_unregister(); 3866 destroy_workqueue(nfit_wq); 3867 } 3868 3869 return ret; 3870 3871 } 3872 3873 static __exit void nfit_exit(void) 3874 { 3875 nfit_mce_unregister(); 3876 acpi_bus_unregister_driver(&acpi_nfit_driver); 3877 destroy_workqueue(nfit_wq); 3878 WARN_ON(!list_empty(&acpi_descs)); 3879 } 3880 3881 module_init(nfit_init); 3882 module_exit(nfit_exit); 3883 MODULE_LICENSE("GPL v2"); 3884 MODULE_AUTHOR("Intel Corporation"); 3885