xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 9fb29c73)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include <acpi/nfit.h>
27 #include "intel.h"
28 #include "nfit.h"
29 
30 /*
31  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
32  * irrelevant.
33  */
34 #include <linux/io-64-nonatomic-hi-lo.h>
35 
36 static bool force_enable_dimms;
37 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
38 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
39 
40 static bool disable_vendor_specific;
41 module_param(disable_vendor_specific, bool, S_IRUGO);
42 MODULE_PARM_DESC(disable_vendor_specific,
43 		"Limit commands to the publicly specified set");
44 
45 static unsigned long override_dsm_mask;
46 module_param(override_dsm_mask, ulong, S_IRUGO);
47 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
48 
49 static int default_dsm_family = -1;
50 module_param(default_dsm_family, int, S_IRUGO);
51 MODULE_PARM_DESC(default_dsm_family,
52 		"Try this DSM type first when identifying NVDIMM family");
53 
54 static bool no_init_ars;
55 module_param(no_init_ars, bool, 0644);
56 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
57 
58 LIST_HEAD(acpi_descs);
59 DEFINE_MUTEX(acpi_desc_lock);
60 
61 static struct workqueue_struct *nfit_wq;
62 
63 struct nfit_table_prev {
64 	struct list_head spas;
65 	struct list_head memdevs;
66 	struct list_head dcrs;
67 	struct list_head bdws;
68 	struct list_head idts;
69 	struct list_head flushes;
70 };
71 
72 static guid_t nfit_uuid[NFIT_UUID_MAX];
73 
74 const guid_t *to_nfit_uuid(enum nfit_uuids id)
75 {
76 	return &nfit_uuid[id];
77 }
78 EXPORT_SYMBOL(to_nfit_uuid);
79 
80 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
81 {
82 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
83 
84 	/*
85 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
86 	 * acpi_device.
87 	 */
88 	if (!nd_desc->provider_name
89 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
90 		return NULL;
91 
92 	return to_acpi_device(acpi_desc->dev);
93 }
94 
95 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
96 {
97 	struct nd_cmd_clear_error *clear_err;
98 	struct nd_cmd_ars_status *ars_status;
99 	u16 flags;
100 
101 	switch (cmd) {
102 	case ND_CMD_ARS_CAP:
103 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
104 			return -ENOTTY;
105 
106 		/* Command failed */
107 		if (status & 0xffff)
108 			return -EIO;
109 
110 		/* No supported scan types for this range */
111 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
112 		if ((status >> 16 & flags) == 0)
113 			return -ENOTTY;
114 		return 0;
115 	case ND_CMD_ARS_START:
116 		/* ARS is in progress */
117 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
118 			return -EBUSY;
119 
120 		/* Command failed */
121 		if (status & 0xffff)
122 			return -EIO;
123 		return 0;
124 	case ND_CMD_ARS_STATUS:
125 		ars_status = buf;
126 		/* Command failed */
127 		if (status & 0xffff)
128 			return -EIO;
129 		/* Check extended status (Upper two bytes) */
130 		if (status == NFIT_ARS_STATUS_DONE)
131 			return 0;
132 
133 		/* ARS is in progress */
134 		if (status == NFIT_ARS_STATUS_BUSY)
135 			return -EBUSY;
136 
137 		/* No ARS performed for the current boot */
138 		if (status == NFIT_ARS_STATUS_NONE)
139 			return -EAGAIN;
140 
141 		/*
142 		 * ARS interrupted, either we overflowed or some other
143 		 * agent wants the scan to stop.  If we didn't overflow
144 		 * then just continue with the returned results.
145 		 */
146 		if (status == NFIT_ARS_STATUS_INTR) {
147 			if (ars_status->out_length >= 40 && (ars_status->flags
148 						& NFIT_ARS_F_OVERFLOW))
149 				return -ENOSPC;
150 			return 0;
151 		}
152 
153 		/* Unknown status */
154 		if (status >> 16)
155 			return -EIO;
156 		return 0;
157 	case ND_CMD_CLEAR_ERROR:
158 		clear_err = buf;
159 		if (status & 0xffff)
160 			return -EIO;
161 		if (!clear_err->cleared)
162 			return -EIO;
163 		if (clear_err->length > clear_err->cleared)
164 			return clear_err->cleared;
165 		return 0;
166 	default:
167 		break;
168 	}
169 
170 	/* all other non-zero status results in an error */
171 	if (status)
172 		return -EIO;
173 	return 0;
174 }
175 
176 #define ACPI_LABELS_LOCKED 3
177 
178 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
179 		u32 status)
180 {
181 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
182 
183 	switch (cmd) {
184 	case ND_CMD_GET_CONFIG_SIZE:
185 		/*
186 		 * In the _LSI, _LSR, _LSW case the locked status is
187 		 * communicated via the read/write commands
188 		 */
189 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
190 			break;
191 
192 		if (status >> 16 & ND_CONFIG_LOCKED)
193 			return -EACCES;
194 		break;
195 	case ND_CMD_GET_CONFIG_DATA:
196 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
197 				&& status == ACPI_LABELS_LOCKED)
198 			return -EACCES;
199 		break;
200 	case ND_CMD_SET_CONFIG_DATA:
201 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
202 				&& status == ACPI_LABELS_LOCKED)
203 			return -EACCES;
204 		break;
205 	default:
206 		break;
207 	}
208 
209 	/* all other non-zero status results in an error */
210 	if (status)
211 		return -EIO;
212 	return 0;
213 }
214 
215 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
216 		u32 status)
217 {
218 	if (!nvdimm)
219 		return xlat_bus_status(buf, cmd, status);
220 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
221 }
222 
223 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
224 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
225 {
226 	int i;
227 	void *dst;
228 	size_t size = 0;
229 	union acpi_object *buf = NULL;
230 
231 	if (pkg->type != ACPI_TYPE_PACKAGE) {
232 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
233 				pkg->type);
234 		goto err;
235 	}
236 
237 	for (i = 0; i < pkg->package.count; i++) {
238 		union acpi_object *obj = &pkg->package.elements[i];
239 
240 		if (obj->type == ACPI_TYPE_INTEGER)
241 			size += 4;
242 		else if (obj->type == ACPI_TYPE_BUFFER)
243 			size += obj->buffer.length;
244 		else {
245 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
246 					obj->type);
247 			goto err;
248 		}
249 	}
250 
251 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
252 	if (!buf)
253 		goto err;
254 
255 	dst = buf + 1;
256 	buf->type = ACPI_TYPE_BUFFER;
257 	buf->buffer.length = size;
258 	buf->buffer.pointer = dst;
259 	for (i = 0; i < pkg->package.count; i++) {
260 		union acpi_object *obj = &pkg->package.elements[i];
261 
262 		if (obj->type == ACPI_TYPE_INTEGER) {
263 			memcpy(dst, &obj->integer.value, 4);
264 			dst += 4;
265 		} else if (obj->type == ACPI_TYPE_BUFFER) {
266 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
267 			dst += obj->buffer.length;
268 		}
269 	}
270 err:
271 	ACPI_FREE(pkg);
272 	return buf;
273 }
274 
275 static union acpi_object *int_to_buf(union acpi_object *integer)
276 {
277 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
278 	void *dst = NULL;
279 
280 	if (!buf)
281 		goto err;
282 
283 	if (integer->type != ACPI_TYPE_INTEGER) {
284 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
285 				integer->type);
286 		goto err;
287 	}
288 
289 	dst = buf + 1;
290 	buf->type = ACPI_TYPE_BUFFER;
291 	buf->buffer.length = 4;
292 	buf->buffer.pointer = dst;
293 	memcpy(dst, &integer->integer.value, 4);
294 err:
295 	ACPI_FREE(integer);
296 	return buf;
297 }
298 
299 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
300 		u32 len, void *data)
301 {
302 	acpi_status rc;
303 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
304 	struct acpi_object_list input = {
305 		.count = 3,
306 		.pointer = (union acpi_object []) {
307 			[0] = {
308 				.integer.type = ACPI_TYPE_INTEGER,
309 				.integer.value = offset,
310 			},
311 			[1] = {
312 				.integer.type = ACPI_TYPE_INTEGER,
313 				.integer.value = len,
314 			},
315 			[2] = {
316 				.buffer.type = ACPI_TYPE_BUFFER,
317 				.buffer.pointer = data,
318 				.buffer.length = len,
319 			},
320 		},
321 	};
322 
323 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
324 	if (ACPI_FAILURE(rc))
325 		return NULL;
326 	return int_to_buf(buf.pointer);
327 }
328 
329 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
330 		u32 len)
331 {
332 	acpi_status rc;
333 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
334 	struct acpi_object_list input = {
335 		.count = 2,
336 		.pointer = (union acpi_object []) {
337 			[0] = {
338 				.integer.type = ACPI_TYPE_INTEGER,
339 				.integer.value = offset,
340 			},
341 			[1] = {
342 				.integer.type = ACPI_TYPE_INTEGER,
343 				.integer.value = len,
344 			},
345 		},
346 	};
347 
348 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
349 	if (ACPI_FAILURE(rc))
350 		return NULL;
351 	return pkg_to_buf(buf.pointer);
352 }
353 
354 static union acpi_object *acpi_label_info(acpi_handle handle)
355 {
356 	acpi_status rc;
357 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
358 
359 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
360 	if (ACPI_FAILURE(rc))
361 		return NULL;
362 	return pkg_to_buf(buf.pointer);
363 }
364 
365 static u8 nfit_dsm_revid(unsigned family, unsigned func)
366 {
367 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
368 		[NVDIMM_FAMILY_INTEL] = {
369 			[NVDIMM_INTEL_GET_MODES] = 2,
370 			[NVDIMM_INTEL_GET_FWINFO] = 2,
371 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
372 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
373 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
374 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
375 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
376 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
377 			[NVDIMM_INTEL_GET_SECURITY_STATE] = 2,
378 			[NVDIMM_INTEL_SET_PASSPHRASE] = 2,
379 			[NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2,
380 			[NVDIMM_INTEL_UNLOCK_UNIT] = 2,
381 			[NVDIMM_INTEL_FREEZE_LOCK] = 2,
382 			[NVDIMM_INTEL_SECURE_ERASE] = 2,
383 			[NVDIMM_INTEL_OVERWRITE] = 2,
384 			[NVDIMM_INTEL_QUERY_OVERWRITE] = 2,
385 			[NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2,
386 			[NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2,
387 		},
388 	};
389 	u8 id;
390 
391 	if (family > NVDIMM_FAMILY_MAX)
392 		return 0;
393 	if (func > 31)
394 		return 0;
395 	id = revid_table[family][func];
396 	if (id == 0)
397 		return 1; /* default */
398 	return id;
399 }
400 
401 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
402 {
403 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
404 
405 	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
406 			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
407 			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
408 		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
409 	return true;
410 }
411 
412 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
413 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
414 {
415 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
416 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
417 	union acpi_object in_obj, in_buf, *out_obj;
418 	const struct nd_cmd_desc *desc = NULL;
419 	struct device *dev = acpi_desc->dev;
420 	struct nd_cmd_pkg *call_pkg = NULL;
421 	const char *cmd_name, *dimm_name;
422 	unsigned long cmd_mask, dsm_mask;
423 	u32 offset, fw_status = 0;
424 	acpi_handle handle;
425 	unsigned int func;
426 	const guid_t *guid;
427 	int rc, i;
428 
429 	if (cmd_rc)
430 		*cmd_rc = -EINVAL;
431 	func = cmd;
432 	if (cmd == ND_CMD_CALL) {
433 		call_pkg = buf;
434 		func = call_pkg->nd_command;
435 
436 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
437 			if (call_pkg->nd_reserved2[i])
438 				return -EINVAL;
439 	}
440 
441 	if (nvdimm) {
442 		struct acpi_device *adev = nfit_mem->adev;
443 
444 		if (!adev)
445 			return -ENOTTY;
446 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
447 			return -ENOTTY;
448 
449 		dimm_name = nvdimm_name(nvdimm);
450 		cmd_name = nvdimm_cmd_name(cmd);
451 		cmd_mask = nvdimm_cmd_mask(nvdimm);
452 		dsm_mask = nfit_mem->dsm_mask;
453 		desc = nd_cmd_dimm_desc(cmd);
454 		guid = to_nfit_uuid(nfit_mem->family);
455 		handle = adev->handle;
456 	} else {
457 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
458 
459 		cmd_name = nvdimm_bus_cmd_name(cmd);
460 		cmd_mask = nd_desc->cmd_mask;
461 		dsm_mask = cmd_mask;
462 		if (cmd == ND_CMD_CALL)
463 			dsm_mask = nd_desc->bus_dsm_mask;
464 		desc = nd_cmd_bus_desc(cmd);
465 		guid = to_nfit_uuid(NFIT_DEV_BUS);
466 		handle = adev->handle;
467 		dimm_name = "bus";
468 	}
469 
470 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
471 		return -ENOTTY;
472 
473 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
474 		return -ENOTTY;
475 
476 	in_obj.type = ACPI_TYPE_PACKAGE;
477 	in_obj.package.count = 1;
478 	in_obj.package.elements = &in_buf;
479 	in_buf.type = ACPI_TYPE_BUFFER;
480 	in_buf.buffer.pointer = buf;
481 	in_buf.buffer.length = 0;
482 
483 	/* libnvdimm has already validated the input envelope */
484 	for (i = 0; i < desc->in_num; i++)
485 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
486 				i, buf);
487 
488 	if (call_pkg) {
489 		/* skip over package wrapper */
490 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
491 		in_buf.buffer.length = call_pkg->nd_size_in;
492 	}
493 
494 	dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
495 		dimm_name, cmd, func, in_buf.buffer.length);
496 	if (payload_dumpable(nvdimm, func))
497 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
498 				in_buf.buffer.pointer,
499 				min_t(u32, 256, in_buf.buffer.length), true);
500 
501 	/* call the BIOS, prefer the named methods over _DSM if available */
502 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
503 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
504 		out_obj = acpi_label_info(handle);
505 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
506 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
507 		struct nd_cmd_get_config_data_hdr *p = buf;
508 
509 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
510 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
511 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
512 		struct nd_cmd_set_config_hdr *p = buf;
513 
514 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
515 				p->in_buf);
516 	} else {
517 		u8 revid;
518 
519 		if (nvdimm)
520 			revid = nfit_dsm_revid(nfit_mem->family, func);
521 		else
522 			revid = 1;
523 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
524 	}
525 
526 	if (!out_obj) {
527 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
528 		return -EINVAL;
529 	}
530 
531 	if (call_pkg) {
532 		call_pkg->nd_fw_size = out_obj->buffer.length;
533 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
534 			out_obj->buffer.pointer,
535 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
536 
537 		ACPI_FREE(out_obj);
538 		/*
539 		 * Need to support FW function w/o known size in advance.
540 		 * Caller can determine required size based upon nd_fw_size.
541 		 * If we return an error (like elsewhere) then caller wouldn't
542 		 * be able to rely upon data returned to make calculation.
543 		 */
544 		if (cmd_rc)
545 			*cmd_rc = 0;
546 		return 0;
547 	}
548 
549 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
550 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
551 				dimm_name, cmd_name, out_obj->type);
552 		rc = -EINVAL;
553 		goto out;
554 	}
555 
556 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
557 			cmd_name, out_obj->buffer.length);
558 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
559 			out_obj->buffer.pointer,
560 			min_t(u32, 128, out_obj->buffer.length), true);
561 
562 	for (i = 0, offset = 0; i < desc->out_num; i++) {
563 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
564 				(u32 *) out_obj->buffer.pointer,
565 				out_obj->buffer.length - offset);
566 
567 		if (offset + out_size > out_obj->buffer.length) {
568 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
569 					dimm_name, cmd_name, i);
570 			break;
571 		}
572 
573 		if (in_buf.buffer.length + offset + out_size > buf_len) {
574 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
575 					dimm_name, cmd_name, i);
576 			rc = -ENXIO;
577 			goto out;
578 		}
579 		memcpy(buf + in_buf.buffer.length + offset,
580 				out_obj->buffer.pointer + offset, out_size);
581 		offset += out_size;
582 	}
583 
584 	/*
585 	 * Set fw_status for all the commands with a known format to be
586 	 * later interpreted by xlat_status().
587 	 */
588 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
589 					&& cmd <= ND_CMD_CLEAR_ERROR)
590 				|| (nvdimm && cmd >= ND_CMD_SMART
591 					&& cmd <= ND_CMD_VENDOR)))
592 		fw_status = *(u32 *) out_obj->buffer.pointer;
593 
594 	if (offset + in_buf.buffer.length < buf_len) {
595 		if (i >= 1) {
596 			/*
597 			 * status valid, return the number of bytes left
598 			 * unfilled in the output buffer
599 			 */
600 			rc = buf_len - offset - in_buf.buffer.length;
601 			if (cmd_rc)
602 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
603 						fw_status);
604 		} else {
605 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
606 					__func__, dimm_name, cmd_name, buf_len,
607 					offset);
608 			rc = -ENXIO;
609 		}
610 	} else {
611 		rc = 0;
612 		if (cmd_rc)
613 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
614 	}
615 
616  out:
617 	ACPI_FREE(out_obj);
618 
619 	return rc;
620 }
621 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
622 
623 static const char *spa_type_name(u16 type)
624 {
625 	static const char *to_name[] = {
626 		[NFIT_SPA_VOLATILE] = "volatile",
627 		[NFIT_SPA_PM] = "pmem",
628 		[NFIT_SPA_DCR] = "dimm-control-region",
629 		[NFIT_SPA_BDW] = "block-data-window",
630 		[NFIT_SPA_VDISK] = "volatile-disk",
631 		[NFIT_SPA_VCD] = "volatile-cd",
632 		[NFIT_SPA_PDISK] = "persistent-disk",
633 		[NFIT_SPA_PCD] = "persistent-cd",
634 
635 	};
636 
637 	if (type > NFIT_SPA_PCD)
638 		return "unknown";
639 
640 	return to_name[type];
641 }
642 
643 int nfit_spa_type(struct acpi_nfit_system_address *spa)
644 {
645 	int i;
646 
647 	for (i = 0; i < NFIT_UUID_MAX; i++)
648 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
649 			return i;
650 	return -1;
651 }
652 
653 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
654 		struct nfit_table_prev *prev,
655 		struct acpi_nfit_system_address *spa)
656 {
657 	struct device *dev = acpi_desc->dev;
658 	struct nfit_spa *nfit_spa;
659 
660 	if (spa->header.length != sizeof(*spa))
661 		return false;
662 
663 	list_for_each_entry(nfit_spa, &prev->spas, list) {
664 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
665 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
666 			return true;
667 		}
668 	}
669 
670 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
671 			GFP_KERNEL);
672 	if (!nfit_spa)
673 		return false;
674 	INIT_LIST_HEAD(&nfit_spa->list);
675 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
676 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
677 	dev_dbg(dev, "spa index: %d type: %s\n",
678 			spa->range_index,
679 			spa_type_name(nfit_spa_type(spa)));
680 	return true;
681 }
682 
683 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
684 		struct nfit_table_prev *prev,
685 		struct acpi_nfit_memory_map *memdev)
686 {
687 	struct device *dev = acpi_desc->dev;
688 	struct nfit_memdev *nfit_memdev;
689 
690 	if (memdev->header.length != sizeof(*memdev))
691 		return false;
692 
693 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
694 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
695 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
696 			return true;
697 		}
698 
699 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
700 			GFP_KERNEL);
701 	if (!nfit_memdev)
702 		return false;
703 	INIT_LIST_HEAD(&nfit_memdev->list);
704 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
705 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
706 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
707 			memdev->device_handle, memdev->range_index,
708 			memdev->region_index, memdev->flags);
709 	return true;
710 }
711 
712 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
713 {
714 	struct acpi_nfit_memory_map *memdev;
715 	struct acpi_nfit_desc *acpi_desc;
716 	struct nfit_mem *nfit_mem;
717 	u16 physical_id;
718 
719 	mutex_lock(&acpi_desc_lock);
720 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
721 		mutex_lock(&acpi_desc->init_mutex);
722 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
723 			memdev = __to_nfit_memdev(nfit_mem);
724 			if (memdev->device_handle == device_handle) {
725 				*flags = memdev->flags;
726 				physical_id = memdev->physical_id;
727 				mutex_unlock(&acpi_desc->init_mutex);
728 				mutex_unlock(&acpi_desc_lock);
729 				return physical_id;
730 			}
731 		}
732 		mutex_unlock(&acpi_desc->init_mutex);
733 	}
734 	mutex_unlock(&acpi_desc_lock);
735 
736 	return -ENODEV;
737 }
738 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
739 
740 /*
741  * An implementation may provide a truncated control region if no block windows
742  * are defined.
743  */
744 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
745 {
746 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
747 				window_size))
748 		return 0;
749 	if (dcr->windows)
750 		return sizeof(*dcr);
751 	return offsetof(struct acpi_nfit_control_region, window_size);
752 }
753 
754 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
755 		struct nfit_table_prev *prev,
756 		struct acpi_nfit_control_region *dcr)
757 {
758 	struct device *dev = acpi_desc->dev;
759 	struct nfit_dcr *nfit_dcr;
760 
761 	if (!sizeof_dcr(dcr))
762 		return false;
763 
764 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
765 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
766 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
767 			return true;
768 		}
769 
770 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
771 			GFP_KERNEL);
772 	if (!nfit_dcr)
773 		return false;
774 	INIT_LIST_HEAD(&nfit_dcr->list);
775 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
776 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
777 	dev_dbg(dev, "dcr index: %d windows: %d\n",
778 			dcr->region_index, dcr->windows);
779 	return true;
780 }
781 
782 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
783 		struct nfit_table_prev *prev,
784 		struct acpi_nfit_data_region *bdw)
785 {
786 	struct device *dev = acpi_desc->dev;
787 	struct nfit_bdw *nfit_bdw;
788 
789 	if (bdw->header.length != sizeof(*bdw))
790 		return false;
791 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
792 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
793 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
794 			return true;
795 		}
796 
797 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
798 			GFP_KERNEL);
799 	if (!nfit_bdw)
800 		return false;
801 	INIT_LIST_HEAD(&nfit_bdw->list);
802 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
803 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
804 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
805 			bdw->region_index, bdw->windows);
806 	return true;
807 }
808 
809 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
810 {
811 	if (idt->header.length < sizeof(*idt))
812 		return 0;
813 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
814 }
815 
816 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
817 		struct nfit_table_prev *prev,
818 		struct acpi_nfit_interleave *idt)
819 {
820 	struct device *dev = acpi_desc->dev;
821 	struct nfit_idt *nfit_idt;
822 
823 	if (!sizeof_idt(idt))
824 		return false;
825 
826 	list_for_each_entry(nfit_idt, &prev->idts, list) {
827 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
828 			continue;
829 
830 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
831 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
832 			return true;
833 		}
834 	}
835 
836 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
837 			GFP_KERNEL);
838 	if (!nfit_idt)
839 		return false;
840 	INIT_LIST_HEAD(&nfit_idt->list);
841 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
842 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
843 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
844 			idt->interleave_index, idt->line_count);
845 	return true;
846 }
847 
848 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
849 {
850 	if (flush->header.length < sizeof(*flush))
851 		return 0;
852 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
853 }
854 
855 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
856 		struct nfit_table_prev *prev,
857 		struct acpi_nfit_flush_address *flush)
858 {
859 	struct device *dev = acpi_desc->dev;
860 	struct nfit_flush *nfit_flush;
861 
862 	if (!sizeof_flush(flush))
863 		return false;
864 
865 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
866 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
867 			continue;
868 
869 		if (memcmp(nfit_flush->flush, flush,
870 					sizeof_flush(flush)) == 0) {
871 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
872 			return true;
873 		}
874 	}
875 
876 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
877 			+ sizeof_flush(flush), GFP_KERNEL);
878 	if (!nfit_flush)
879 		return false;
880 	INIT_LIST_HEAD(&nfit_flush->list);
881 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
882 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
883 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
884 			flush->device_handle, flush->hint_count);
885 	return true;
886 }
887 
888 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
889 		struct acpi_nfit_capabilities *pcap)
890 {
891 	struct device *dev = acpi_desc->dev;
892 	u32 mask;
893 
894 	mask = (1 << (pcap->highest_capability + 1)) - 1;
895 	acpi_desc->platform_cap = pcap->capabilities & mask;
896 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
897 	return true;
898 }
899 
900 static void *add_table(struct acpi_nfit_desc *acpi_desc,
901 		struct nfit_table_prev *prev, void *table, const void *end)
902 {
903 	struct device *dev = acpi_desc->dev;
904 	struct acpi_nfit_header *hdr;
905 	void *err = ERR_PTR(-ENOMEM);
906 
907 	if (table >= end)
908 		return NULL;
909 
910 	hdr = table;
911 	if (!hdr->length) {
912 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
913 			hdr->type);
914 		return NULL;
915 	}
916 
917 	switch (hdr->type) {
918 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
919 		if (!add_spa(acpi_desc, prev, table))
920 			return err;
921 		break;
922 	case ACPI_NFIT_TYPE_MEMORY_MAP:
923 		if (!add_memdev(acpi_desc, prev, table))
924 			return err;
925 		break;
926 	case ACPI_NFIT_TYPE_CONTROL_REGION:
927 		if (!add_dcr(acpi_desc, prev, table))
928 			return err;
929 		break;
930 	case ACPI_NFIT_TYPE_DATA_REGION:
931 		if (!add_bdw(acpi_desc, prev, table))
932 			return err;
933 		break;
934 	case ACPI_NFIT_TYPE_INTERLEAVE:
935 		if (!add_idt(acpi_desc, prev, table))
936 			return err;
937 		break;
938 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
939 		if (!add_flush(acpi_desc, prev, table))
940 			return err;
941 		break;
942 	case ACPI_NFIT_TYPE_SMBIOS:
943 		dev_dbg(dev, "smbios\n");
944 		break;
945 	case ACPI_NFIT_TYPE_CAPABILITIES:
946 		if (!add_platform_cap(acpi_desc, table))
947 			return err;
948 		break;
949 	default:
950 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
951 		break;
952 	}
953 
954 	return table + hdr->length;
955 }
956 
957 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
958 		struct nfit_mem *nfit_mem)
959 {
960 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
961 	u16 dcr = nfit_mem->dcr->region_index;
962 	struct nfit_spa *nfit_spa;
963 
964 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
965 		u16 range_index = nfit_spa->spa->range_index;
966 		int type = nfit_spa_type(nfit_spa->spa);
967 		struct nfit_memdev *nfit_memdev;
968 
969 		if (type != NFIT_SPA_BDW)
970 			continue;
971 
972 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
973 			if (nfit_memdev->memdev->range_index != range_index)
974 				continue;
975 			if (nfit_memdev->memdev->device_handle != device_handle)
976 				continue;
977 			if (nfit_memdev->memdev->region_index != dcr)
978 				continue;
979 
980 			nfit_mem->spa_bdw = nfit_spa->spa;
981 			return;
982 		}
983 	}
984 
985 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
986 			nfit_mem->spa_dcr->range_index);
987 	nfit_mem->bdw = NULL;
988 }
989 
990 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
991 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
992 {
993 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
994 	struct nfit_memdev *nfit_memdev;
995 	struct nfit_bdw *nfit_bdw;
996 	struct nfit_idt *nfit_idt;
997 	u16 idt_idx, range_index;
998 
999 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1000 		if (nfit_bdw->bdw->region_index != dcr)
1001 			continue;
1002 		nfit_mem->bdw = nfit_bdw->bdw;
1003 		break;
1004 	}
1005 
1006 	if (!nfit_mem->bdw)
1007 		return;
1008 
1009 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1010 
1011 	if (!nfit_mem->spa_bdw)
1012 		return;
1013 
1014 	range_index = nfit_mem->spa_bdw->range_index;
1015 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1016 		if (nfit_memdev->memdev->range_index != range_index ||
1017 				nfit_memdev->memdev->region_index != dcr)
1018 			continue;
1019 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
1020 		idt_idx = nfit_memdev->memdev->interleave_index;
1021 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1022 			if (nfit_idt->idt->interleave_index != idt_idx)
1023 				continue;
1024 			nfit_mem->idt_bdw = nfit_idt->idt;
1025 			break;
1026 		}
1027 		break;
1028 	}
1029 }
1030 
1031 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1032 		struct acpi_nfit_system_address *spa)
1033 {
1034 	struct nfit_mem *nfit_mem, *found;
1035 	struct nfit_memdev *nfit_memdev;
1036 	int type = spa ? nfit_spa_type(spa) : 0;
1037 
1038 	switch (type) {
1039 	case NFIT_SPA_DCR:
1040 	case NFIT_SPA_PM:
1041 		break;
1042 	default:
1043 		if (spa)
1044 			return 0;
1045 	}
1046 
1047 	/*
1048 	 * This loop runs in two modes, when a dimm is mapped the loop
1049 	 * adds memdev associations to an existing dimm, or creates a
1050 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1051 	 * instances with an invalid / zero range_index and adds those
1052 	 * dimms without spa associations.
1053 	 */
1054 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1055 		struct nfit_flush *nfit_flush;
1056 		struct nfit_dcr *nfit_dcr;
1057 		u32 device_handle;
1058 		u16 dcr;
1059 
1060 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1061 			continue;
1062 		if (!spa && nfit_memdev->memdev->range_index)
1063 			continue;
1064 		found = NULL;
1065 		dcr = nfit_memdev->memdev->region_index;
1066 		device_handle = nfit_memdev->memdev->device_handle;
1067 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1068 			if (__to_nfit_memdev(nfit_mem)->device_handle
1069 					== device_handle) {
1070 				found = nfit_mem;
1071 				break;
1072 			}
1073 
1074 		if (found)
1075 			nfit_mem = found;
1076 		else {
1077 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1078 					sizeof(*nfit_mem), GFP_KERNEL);
1079 			if (!nfit_mem)
1080 				return -ENOMEM;
1081 			INIT_LIST_HEAD(&nfit_mem->list);
1082 			nfit_mem->acpi_desc = acpi_desc;
1083 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1084 		}
1085 
1086 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1087 			if (nfit_dcr->dcr->region_index != dcr)
1088 				continue;
1089 			/*
1090 			 * Record the control region for the dimm.  For
1091 			 * the ACPI 6.1 case, where there are separate
1092 			 * control regions for the pmem vs blk
1093 			 * interfaces, be sure to record the extended
1094 			 * blk details.
1095 			 */
1096 			if (!nfit_mem->dcr)
1097 				nfit_mem->dcr = nfit_dcr->dcr;
1098 			else if (nfit_mem->dcr->windows == 0
1099 					&& nfit_dcr->dcr->windows)
1100 				nfit_mem->dcr = nfit_dcr->dcr;
1101 			break;
1102 		}
1103 
1104 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1105 			struct acpi_nfit_flush_address *flush;
1106 			u16 i;
1107 
1108 			if (nfit_flush->flush->device_handle != device_handle)
1109 				continue;
1110 			nfit_mem->nfit_flush = nfit_flush;
1111 			flush = nfit_flush->flush;
1112 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1113 					flush->hint_count,
1114 					sizeof(struct resource),
1115 					GFP_KERNEL);
1116 			if (!nfit_mem->flush_wpq)
1117 				return -ENOMEM;
1118 			for (i = 0; i < flush->hint_count; i++) {
1119 				struct resource *res = &nfit_mem->flush_wpq[i];
1120 
1121 				res->start = flush->hint_address[i];
1122 				res->end = res->start + 8 - 1;
1123 			}
1124 			break;
1125 		}
1126 
1127 		if (dcr && !nfit_mem->dcr) {
1128 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1129 					spa->range_index, dcr);
1130 			return -ENODEV;
1131 		}
1132 
1133 		if (type == NFIT_SPA_DCR) {
1134 			struct nfit_idt *nfit_idt;
1135 			u16 idt_idx;
1136 
1137 			/* multiple dimms may share a SPA when interleaved */
1138 			nfit_mem->spa_dcr = spa;
1139 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1140 			idt_idx = nfit_memdev->memdev->interleave_index;
1141 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1142 				if (nfit_idt->idt->interleave_index != idt_idx)
1143 					continue;
1144 				nfit_mem->idt_dcr = nfit_idt->idt;
1145 				break;
1146 			}
1147 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1148 		} else if (type == NFIT_SPA_PM) {
1149 			/*
1150 			 * A single dimm may belong to multiple SPA-PM
1151 			 * ranges, record at least one in addition to
1152 			 * any SPA-DCR range.
1153 			 */
1154 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1155 		} else
1156 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1157 	}
1158 
1159 	return 0;
1160 }
1161 
1162 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1163 {
1164 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1165 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1166 	u32 handleA, handleB;
1167 
1168 	handleA = __to_nfit_memdev(a)->device_handle;
1169 	handleB = __to_nfit_memdev(b)->device_handle;
1170 	if (handleA < handleB)
1171 		return -1;
1172 	else if (handleA > handleB)
1173 		return 1;
1174 	return 0;
1175 }
1176 
1177 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1178 {
1179 	struct nfit_spa *nfit_spa;
1180 	int rc;
1181 
1182 
1183 	/*
1184 	 * For each SPA-DCR or SPA-PMEM address range find its
1185 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1186 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1187 	 * try to find a SPA-BDW and a corresponding BDW that references
1188 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1189 	 * BDWs are optional.
1190 	 */
1191 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1192 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1193 		if (rc)
1194 			return rc;
1195 	}
1196 
1197 	/*
1198 	 * If a DIMM has failed to be mapped into SPA there will be no
1199 	 * SPA entries above. Find and register all the unmapped DIMMs
1200 	 * for reporting and recovery purposes.
1201 	 */
1202 	rc = __nfit_mem_init(acpi_desc, NULL);
1203 	if (rc)
1204 		return rc;
1205 
1206 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1207 
1208 	return 0;
1209 }
1210 
1211 static ssize_t bus_dsm_mask_show(struct device *dev,
1212 		struct device_attribute *attr, char *buf)
1213 {
1214 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1215 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1216 
1217 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1218 }
1219 static struct device_attribute dev_attr_bus_dsm_mask =
1220 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1221 
1222 static ssize_t revision_show(struct device *dev,
1223 		struct device_attribute *attr, char *buf)
1224 {
1225 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1226 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1227 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1228 
1229 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1230 }
1231 static DEVICE_ATTR_RO(revision);
1232 
1233 static ssize_t hw_error_scrub_show(struct device *dev,
1234 		struct device_attribute *attr, char *buf)
1235 {
1236 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1237 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1238 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1239 
1240 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1241 }
1242 
1243 /*
1244  * The 'hw_error_scrub' attribute can have the following values written to it:
1245  * '0': Switch to the default mode where an exception will only insert
1246  *      the address of the memory error into the poison and badblocks lists.
1247  * '1': Enable a full scrub to happen if an exception for a memory error is
1248  *      received.
1249  */
1250 static ssize_t hw_error_scrub_store(struct device *dev,
1251 		struct device_attribute *attr, const char *buf, size_t size)
1252 {
1253 	struct nvdimm_bus_descriptor *nd_desc;
1254 	ssize_t rc;
1255 	long val;
1256 
1257 	rc = kstrtol(buf, 0, &val);
1258 	if (rc)
1259 		return rc;
1260 
1261 	device_lock(dev);
1262 	nd_desc = dev_get_drvdata(dev);
1263 	if (nd_desc) {
1264 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1265 
1266 		switch (val) {
1267 		case HW_ERROR_SCRUB_ON:
1268 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1269 			break;
1270 		case HW_ERROR_SCRUB_OFF:
1271 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1272 			break;
1273 		default:
1274 			rc = -EINVAL;
1275 			break;
1276 		}
1277 	}
1278 	device_unlock(dev);
1279 	if (rc)
1280 		return rc;
1281 	return size;
1282 }
1283 static DEVICE_ATTR_RW(hw_error_scrub);
1284 
1285 /*
1286  * This shows the number of full Address Range Scrubs that have been
1287  * completed since driver load time. Userspace can wait on this using
1288  * select/poll etc. A '+' at the end indicates an ARS is in progress
1289  */
1290 static ssize_t scrub_show(struct device *dev,
1291 		struct device_attribute *attr, char *buf)
1292 {
1293 	struct nvdimm_bus_descriptor *nd_desc;
1294 	ssize_t rc = -ENXIO;
1295 
1296 	device_lock(dev);
1297 	nd_desc = dev_get_drvdata(dev);
1298 	if (nd_desc) {
1299 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1300 
1301 		mutex_lock(&acpi_desc->init_mutex);
1302 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1303 				acpi_desc->scrub_busy
1304 				&& !acpi_desc->cancel ? "+\n" : "\n");
1305 		mutex_unlock(&acpi_desc->init_mutex);
1306 	}
1307 	device_unlock(dev);
1308 	return rc;
1309 }
1310 
1311 static ssize_t scrub_store(struct device *dev,
1312 		struct device_attribute *attr, const char *buf, size_t size)
1313 {
1314 	struct nvdimm_bus_descriptor *nd_desc;
1315 	ssize_t rc;
1316 	long val;
1317 
1318 	rc = kstrtol(buf, 0, &val);
1319 	if (rc)
1320 		return rc;
1321 	if (val != 1)
1322 		return -EINVAL;
1323 
1324 	device_lock(dev);
1325 	nd_desc = dev_get_drvdata(dev);
1326 	if (nd_desc) {
1327 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1328 
1329 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1330 	}
1331 	device_unlock(dev);
1332 	if (rc)
1333 		return rc;
1334 	return size;
1335 }
1336 static DEVICE_ATTR_RW(scrub);
1337 
1338 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1339 {
1340 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1341 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1342 		| 1 << ND_CMD_ARS_STATUS;
1343 
1344 	return (nd_desc->cmd_mask & mask) == mask;
1345 }
1346 
1347 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1348 {
1349 	struct device *dev = container_of(kobj, struct device, kobj);
1350 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1351 
1352 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1353 		return 0;
1354 	return a->mode;
1355 }
1356 
1357 static struct attribute *acpi_nfit_attributes[] = {
1358 	&dev_attr_revision.attr,
1359 	&dev_attr_scrub.attr,
1360 	&dev_attr_hw_error_scrub.attr,
1361 	&dev_attr_bus_dsm_mask.attr,
1362 	NULL,
1363 };
1364 
1365 static const struct attribute_group acpi_nfit_attribute_group = {
1366 	.name = "nfit",
1367 	.attrs = acpi_nfit_attributes,
1368 	.is_visible = nfit_visible,
1369 };
1370 
1371 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1372 	&nvdimm_bus_attribute_group,
1373 	&acpi_nfit_attribute_group,
1374 	NULL,
1375 };
1376 
1377 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1378 {
1379 	struct nvdimm *nvdimm = to_nvdimm(dev);
1380 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1381 
1382 	return __to_nfit_memdev(nfit_mem);
1383 }
1384 
1385 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1386 {
1387 	struct nvdimm *nvdimm = to_nvdimm(dev);
1388 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1389 
1390 	return nfit_mem->dcr;
1391 }
1392 
1393 static ssize_t handle_show(struct device *dev,
1394 		struct device_attribute *attr, char *buf)
1395 {
1396 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1397 
1398 	return sprintf(buf, "%#x\n", memdev->device_handle);
1399 }
1400 static DEVICE_ATTR_RO(handle);
1401 
1402 static ssize_t phys_id_show(struct device *dev,
1403 		struct device_attribute *attr, char *buf)
1404 {
1405 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1406 
1407 	return sprintf(buf, "%#x\n", memdev->physical_id);
1408 }
1409 static DEVICE_ATTR_RO(phys_id);
1410 
1411 static ssize_t vendor_show(struct device *dev,
1412 		struct device_attribute *attr, char *buf)
1413 {
1414 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1415 
1416 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1417 }
1418 static DEVICE_ATTR_RO(vendor);
1419 
1420 static ssize_t rev_id_show(struct device *dev,
1421 		struct device_attribute *attr, char *buf)
1422 {
1423 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1424 
1425 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1426 }
1427 static DEVICE_ATTR_RO(rev_id);
1428 
1429 static ssize_t device_show(struct device *dev,
1430 		struct device_attribute *attr, char *buf)
1431 {
1432 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1433 
1434 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1435 }
1436 static DEVICE_ATTR_RO(device);
1437 
1438 static ssize_t subsystem_vendor_show(struct device *dev,
1439 		struct device_attribute *attr, char *buf)
1440 {
1441 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1442 
1443 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1444 }
1445 static DEVICE_ATTR_RO(subsystem_vendor);
1446 
1447 static ssize_t subsystem_rev_id_show(struct device *dev,
1448 		struct device_attribute *attr, char *buf)
1449 {
1450 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1451 
1452 	return sprintf(buf, "0x%04x\n",
1453 			be16_to_cpu(dcr->subsystem_revision_id));
1454 }
1455 static DEVICE_ATTR_RO(subsystem_rev_id);
1456 
1457 static ssize_t subsystem_device_show(struct device *dev,
1458 		struct device_attribute *attr, char *buf)
1459 {
1460 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1461 
1462 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1463 }
1464 static DEVICE_ATTR_RO(subsystem_device);
1465 
1466 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1467 {
1468 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1469 	int formats = 0;
1470 
1471 	if (nfit_mem->memdev_pmem)
1472 		formats++;
1473 	if (nfit_mem->memdev_bdw)
1474 		formats++;
1475 	return formats;
1476 }
1477 
1478 static ssize_t format_show(struct device *dev,
1479 		struct device_attribute *attr, char *buf)
1480 {
1481 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1482 
1483 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1484 }
1485 static DEVICE_ATTR_RO(format);
1486 
1487 static ssize_t format1_show(struct device *dev,
1488 		struct device_attribute *attr, char *buf)
1489 {
1490 	u32 handle;
1491 	ssize_t rc = -ENXIO;
1492 	struct nfit_mem *nfit_mem;
1493 	struct nfit_memdev *nfit_memdev;
1494 	struct acpi_nfit_desc *acpi_desc;
1495 	struct nvdimm *nvdimm = to_nvdimm(dev);
1496 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1497 
1498 	nfit_mem = nvdimm_provider_data(nvdimm);
1499 	acpi_desc = nfit_mem->acpi_desc;
1500 	handle = to_nfit_memdev(dev)->device_handle;
1501 
1502 	/* assumes DIMMs have at most 2 published interface codes */
1503 	mutex_lock(&acpi_desc->init_mutex);
1504 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1505 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1506 		struct nfit_dcr *nfit_dcr;
1507 
1508 		if (memdev->device_handle != handle)
1509 			continue;
1510 
1511 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1512 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1513 				continue;
1514 			if (nfit_dcr->dcr->code == dcr->code)
1515 				continue;
1516 			rc = sprintf(buf, "0x%04x\n",
1517 					le16_to_cpu(nfit_dcr->dcr->code));
1518 			break;
1519 		}
1520 		if (rc != ENXIO)
1521 			break;
1522 	}
1523 	mutex_unlock(&acpi_desc->init_mutex);
1524 	return rc;
1525 }
1526 static DEVICE_ATTR_RO(format1);
1527 
1528 static ssize_t formats_show(struct device *dev,
1529 		struct device_attribute *attr, char *buf)
1530 {
1531 	struct nvdimm *nvdimm = to_nvdimm(dev);
1532 
1533 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1534 }
1535 static DEVICE_ATTR_RO(formats);
1536 
1537 static ssize_t serial_show(struct device *dev,
1538 		struct device_attribute *attr, char *buf)
1539 {
1540 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1541 
1542 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1543 }
1544 static DEVICE_ATTR_RO(serial);
1545 
1546 static ssize_t family_show(struct device *dev,
1547 		struct device_attribute *attr, char *buf)
1548 {
1549 	struct nvdimm *nvdimm = to_nvdimm(dev);
1550 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1551 
1552 	if (nfit_mem->family < 0)
1553 		return -ENXIO;
1554 	return sprintf(buf, "%d\n", nfit_mem->family);
1555 }
1556 static DEVICE_ATTR_RO(family);
1557 
1558 static ssize_t dsm_mask_show(struct device *dev,
1559 		struct device_attribute *attr, char *buf)
1560 {
1561 	struct nvdimm *nvdimm = to_nvdimm(dev);
1562 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1563 
1564 	if (nfit_mem->family < 0)
1565 		return -ENXIO;
1566 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1567 }
1568 static DEVICE_ATTR_RO(dsm_mask);
1569 
1570 static ssize_t flags_show(struct device *dev,
1571 		struct device_attribute *attr, char *buf)
1572 {
1573 	struct nvdimm *nvdimm = to_nvdimm(dev);
1574 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1575 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1576 
1577 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1578 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1579 
1580 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1581 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1582 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1583 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1584 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1585 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1586 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1587 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1588 }
1589 static DEVICE_ATTR_RO(flags);
1590 
1591 static ssize_t id_show(struct device *dev,
1592 		struct device_attribute *attr, char *buf)
1593 {
1594 	struct nvdimm *nvdimm = to_nvdimm(dev);
1595 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1596 
1597 	return sprintf(buf, "%s\n", nfit_mem->id);
1598 }
1599 static DEVICE_ATTR_RO(id);
1600 
1601 static ssize_t dirty_shutdown_show(struct device *dev,
1602 		struct device_attribute *attr, char *buf)
1603 {
1604 	struct nvdimm *nvdimm = to_nvdimm(dev);
1605 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1606 
1607 	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1608 }
1609 static DEVICE_ATTR_RO(dirty_shutdown);
1610 
1611 static struct attribute *acpi_nfit_dimm_attributes[] = {
1612 	&dev_attr_handle.attr,
1613 	&dev_attr_phys_id.attr,
1614 	&dev_attr_vendor.attr,
1615 	&dev_attr_device.attr,
1616 	&dev_attr_rev_id.attr,
1617 	&dev_attr_subsystem_vendor.attr,
1618 	&dev_attr_subsystem_device.attr,
1619 	&dev_attr_subsystem_rev_id.attr,
1620 	&dev_attr_format.attr,
1621 	&dev_attr_formats.attr,
1622 	&dev_attr_format1.attr,
1623 	&dev_attr_serial.attr,
1624 	&dev_attr_flags.attr,
1625 	&dev_attr_id.attr,
1626 	&dev_attr_family.attr,
1627 	&dev_attr_dsm_mask.attr,
1628 	&dev_attr_dirty_shutdown.attr,
1629 	NULL,
1630 };
1631 
1632 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1633 		struct attribute *a, int n)
1634 {
1635 	struct device *dev = container_of(kobj, struct device, kobj);
1636 	struct nvdimm *nvdimm = to_nvdimm(dev);
1637 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1638 
1639 	if (!to_nfit_dcr(dev)) {
1640 		/* Without a dcr only the memdev attributes can be surfaced */
1641 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1642 				|| a == &dev_attr_flags.attr
1643 				|| a == &dev_attr_family.attr
1644 				|| a == &dev_attr_dsm_mask.attr)
1645 			return a->mode;
1646 		return 0;
1647 	}
1648 
1649 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1650 		return 0;
1651 
1652 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1653 			&& a == &dev_attr_dirty_shutdown.attr)
1654 		return 0;
1655 
1656 	return a->mode;
1657 }
1658 
1659 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1660 	.name = "nfit",
1661 	.attrs = acpi_nfit_dimm_attributes,
1662 	.is_visible = acpi_nfit_dimm_attr_visible,
1663 };
1664 
1665 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1666 	&nvdimm_attribute_group,
1667 	&nd_device_attribute_group,
1668 	&acpi_nfit_dimm_attribute_group,
1669 	NULL,
1670 };
1671 
1672 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1673 		u32 device_handle)
1674 {
1675 	struct nfit_mem *nfit_mem;
1676 
1677 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1678 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1679 			return nfit_mem->nvdimm;
1680 
1681 	return NULL;
1682 }
1683 
1684 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1685 {
1686 	struct nfit_mem *nfit_mem;
1687 	struct acpi_nfit_desc *acpi_desc;
1688 
1689 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1690 			event);
1691 
1692 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1693 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1694 				event);
1695 		return;
1696 	}
1697 
1698 	acpi_desc = dev_get_drvdata(dev->parent);
1699 	if (!acpi_desc)
1700 		return;
1701 
1702 	/*
1703 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1704 	 * is still valid.
1705 	 */
1706 	nfit_mem = dev_get_drvdata(dev);
1707 	if (nfit_mem && nfit_mem->flags_attr)
1708 		sysfs_notify_dirent(nfit_mem->flags_attr);
1709 }
1710 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1711 
1712 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1713 {
1714 	struct acpi_device *adev = data;
1715 	struct device *dev = &adev->dev;
1716 
1717 	device_lock(dev->parent);
1718 	__acpi_nvdimm_notify(dev, event);
1719 	device_unlock(dev->parent);
1720 }
1721 
1722 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1723 {
1724 	acpi_handle handle;
1725 	acpi_status status;
1726 
1727 	status = acpi_get_handle(adev->handle, method, &handle);
1728 
1729 	if (ACPI_SUCCESS(status))
1730 		return true;
1731 	return false;
1732 }
1733 
1734 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1735 {
1736 	struct nd_intel_smart smart = { 0 };
1737 	union acpi_object in_buf = {
1738 		.type = ACPI_TYPE_BUFFER,
1739 		.buffer.pointer = (char *) &smart,
1740 		.buffer.length = sizeof(smart),
1741 	};
1742 	union acpi_object in_obj = {
1743 		.type = ACPI_TYPE_PACKAGE,
1744 		.package.count = 1,
1745 		.package.elements = &in_buf,
1746 	};
1747 	const u8 func = ND_INTEL_SMART;
1748 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1749 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1750 	struct acpi_device *adev = nfit_mem->adev;
1751 	acpi_handle handle = adev->handle;
1752 	union acpi_object *out_obj;
1753 
1754 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1755 		return;
1756 
1757 	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1758 	if (!out_obj)
1759 		return;
1760 
1761 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1762 		if (smart.shutdown_state)
1763 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1764 	}
1765 
1766 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1767 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1768 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1769 	}
1770 	ACPI_FREE(out_obj);
1771 }
1772 
1773 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1774 {
1775 	/*
1776 	 * For DIMMs that provide a dynamic facility to retrieve a
1777 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1778 	 * these values in nfit_mem.
1779 	 */
1780 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1781 		nfit_intel_shutdown_status(nfit_mem);
1782 }
1783 
1784 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1785 		struct nfit_mem *nfit_mem, u32 device_handle)
1786 {
1787 	struct acpi_device *adev, *adev_dimm;
1788 	struct device *dev = acpi_desc->dev;
1789 	unsigned long dsm_mask, label_mask;
1790 	const guid_t *guid;
1791 	int i;
1792 	int family = -1;
1793 	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1794 
1795 	/* nfit test assumes 1:1 relationship between commands and dsms */
1796 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1797 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1798 
1799 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1800 		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1801 				be16_to_cpu(dcr->vendor_id),
1802 				dcr->manufacturing_location,
1803 				be16_to_cpu(dcr->manufacturing_date),
1804 				be32_to_cpu(dcr->serial_number));
1805 	else
1806 		sprintf(nfit_mem->id, "%04x-%08x",
1807 				be16_to_cpu(dcr->vendor_id),
1808 				be32_to_cpu(dcr->serial_number));
1809 
1810 	adev = to_acpi_dev(acpi_desc);
1811 	if (!adev) {
1812 		/* unit test case */
1813 		populate_shutdown_status(nfit_mem);
1814 		return 0;
1815 	}
1816 
1817 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1818 	nfit_mem->adev = adev_dimm;
1819 	if (!adev_dimm) {
1820 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1821 				device_handle);
1822 		return force_enable_dimms ? 0 : -ENODEV;
1823 	}
1824 
1825 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1826 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1827 		dev_err(dev, "%s: notification registration failed\n",
1828 				dev_name(&adev_dimm->dev));
1829 		return -ENXIO;
1830 	}
1831 	/*
1832 	 * Record nfit_mem for the notification path to track back to
1833 	 * the nfit sysfs attributes for this dimm device object.
1834 	 */
1835 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1836 
1837 	/*
1838 	 * Until standardization materializes we need to consider 4
1839 	 * different command sets.  Note, that checking for function0 (bit0)
1840 	 * tells us if any commands are reachable through this GUID.
1841 	 */
1842 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1843 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1844 			if (family < 0 || i == default_dsm_family)
1845 				family = i;
1846 
1847 	/* limit the supported commands to those that are publicly documented */
1848 	nfit_mem->family = family;
1849 	if (override_dsm_mask && !disable_vendor_specific)
1850 		dsm_mask = override_dsm_mask;
1851 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1852 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1853 		if (disable_vendor_specific)
1854 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1855 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1856 		dsm_mask = 0x1c3c76;
1857 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1858 		dsm_mask = 0x1fe;
1859 		if (disable_vendor_specific)
1860 			dsm_mask &= ~(1 << 8);
1861 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1862 		dsm_mask = 0xffffffff;
1863 	} else {
1864 		dev_dbg(dev, "unknown dimm command family\n");
1865 		nfit_mem->family = -1;
1866 		/* DSMs are optional, continue loading the driver... */
1867 		return 0;
1868 	}
1869 
1870 	guid = to_nfit_uuid(nfit_mem->family);
1871 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1872 		if (acpi_check_dsm(adev_dimm->handle, guid,
1873 					nfit_dsm_revid(nfit_mem->family, i),
1874 					1ULL << i))
1875 			set_bit(i, &nfit_mem->dsm_mask);
1876 
1877 	/*
1878 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1879 	 * due to their better semantics handling locked capacity.
1880 	 */
1881 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1882 		| 1 << ND_CMD_SET_CONFIG_DATA;
1883 	if (family == NVDIMM_FAMILY_INTEL
1884 			&& (dsm_mask & label_mask) == label_mask)
1885 		return 0;
1886 
1887 	if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1888 			&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1889 		dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1890 		set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1891 	}
1892 
1893 	if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1894 			&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1895 		dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1896 		set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1897 	}
1898 
1899 	populate_shutdown_status(nfit_mem);
1900 
1901 	return 0;
1902 }
1903 
1904 static void shutdown_dimm_notify(void *data)
1905 {
1906 	struct acpi_nfit_desc *acpi_desc = data;
1907 	struct nfit_mem *nfit_mem;
1908 
1909 	mutex_lock(&acpi_desc->init_mutex);
1910 	/*
1911 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1912 	 * notifications.
1913 	 */
1914 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1915 		struct acpi_device *adev_dimm = nfit_mem->adev;
1916 
1917 		if (nfit_mem->flags_attr) {
1918 			sysfs_put(nfit_mem->flags_attr);
1919 			nfit_mem->flags_attr = NULL;
1920 		}
1921 		if (adev_dimm) {
1922 			acpi_remove_notify_handler(adev_dimm->handle,
1923 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1924 			dev_set_drvdata(&adev_dimm->dev, NULL);
1925 		}
1926 	}
1927 	mutex_unlock(&acpi_desc->init_mutex);
1928 }
1929 
1930 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1931 {
1932 	switch (family) {
1933 	case NVDIMM_FAMILY_INTEL:
1934 		return intel_security_ops;
1935 	default:
1936 		return NULL;
1937 	}
1938 }
1939 
1940 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1941 {
1942 	struct nfit_mem *nfit_mem;
1943 	int dimm_count = 0, rc;
1944 	struct nvdimm *nvdimm;
1945 
1946 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1947 		struct acpi_nfit_flush_address *flush;
1948 		unsigned long flags = 0, cmd_mask;
1949 		struct nfit_memdev *nfit_memdev;
1950 		u32 device_handle;
1951 		u16 mem_flags;
1952 
1953 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1954 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1955 		if (nvdimm) {
1956 			dimm_count++;
1957 			continue;
1958 		}
1959 
1960 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1961 			set_bit(NDD_ALIASING, &flags);
1962 
1963 		/* collate flags across all memdevs for this dimm */
1964 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1965 			struct acpi_nfit_memory_map *dimm_memdev;
1966 
1967 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1968 			if (dimm_memdev->device_handle
1969 					!= nfit_memdev->memdev->device_handle)
1970 				continue;
1971 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1972 		}
1973 
1974 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1975 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1976 			set_bit(NDD_UNARMED, &flags);
1977 
1978 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1979 		if (rc)
1980 			continue;
1981 
1982 		/*
1983 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1984 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1985 		 * userspace interface.
1986 		 */
1987 		cmd_mask = 1UL << ND_CMD_CALL;
1988 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1989 			/*
1990 			 * These commands have a 1:1 correspondence
1991 			 * between DSM payload and libnvdimm ioctl
1992 			 * payload format.
1993 			 */
1994 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
1995 		}
1996 
1997 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
1998 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
1999 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2000 		}
2001 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2002 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2003 
2004 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2005 			: NULL;
2006 		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2007 				acpi_nfit_dimm_attribute_groups,
2008 				flags, cmd_mask, flush ? flush->hint_count : 0,
2009 				nfit_mem->flush_wpq, &nfit_mem->id[0],
2010 				acpi_nfit_get_security_ops(nfit_mem->family));
2011 		if (!nvdimm)
2012 			return -ENOMEM;
2013 
2014 		nfit_mem->nvdimm = nvdimm;
2015 		dimm_count++;
2016 
2017 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2018 			continue;
2019 
2020 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
2021 				nvdimm_name(nvdimm),
2022 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2023 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2024 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2025 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2026 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2027 
2028 	}
2029 
2030 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2031 	if (rc)
2032 		return rc;
2033 
2034 	/*
2035 	 * Now that dimms are successfully registered, and async registration
2036 	 * is flushed, attempt to enable event notification.
2037 	 */
2038 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2039 		struct kernfs_node *nfit_kernfs;
2040 
2041 		nvdimm = nfit_mem->nvdimm;
2042 		if (!nvdimm)
2043 			continue;
2044 
2045 		rc = nvdimm_security_setup_events(nvdimm);
2046 		if (rc < 0)
2047 			dev_warn(acpi_desc->dev,
2048 				"security event setup failed: %d\n", rc);
2049 
2050 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2051 		if (nfit_kernfs)
2052 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2053 					"flags");
2054 		sysfs_put(nfit_kernfs);
2055 		if (!nfit_mem->flags_attr)
2056 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2057 					nvdimm_name(nvdimm));
2058 	}
2059 
2060 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2061 			acpi_desc);
2062 }
2063 
2064 /*
2065  * These constants are private because there are no kernel consumers of
2066  * these commands.
2067  */
2068 enum nfit_aux_cmds {
2069         NFIT_CMD_TRANSLATE_SPA = 5,
2070         NFIT_CMD_ARS_INJECT_SET = 7,
2071         NFIT_CMD_ARS_INJECT_CLEAR = 8,
2072         NFIT_CMD_ARS_INJECT_GET = 9,
2073 };
2074 
2075 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2076 {
2077 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2078 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2079 	struct acpi_device *adev;
2080 	unsigned long dsm_mask;
2081 	int i;
2082 
2083 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2084 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
2085 	adev = to_acpi_dev(acpi_desc);
2086 	if (!adev)
2087 		return;
2088 
2089 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2090 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2091 			set_bit(i, &nd_desc->cmd_mask);
2092 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2093 
2094 	dsm_mask =
2095 		(1 << ND_CMD_ARS_CAP) |
2096 		(1 << ND_CMD_ARS_START) |
2097 		(1 << ND_CMD_ARS_STATUS) |
2098 		(1 << ND_CMD_CLEAR_ERROR) |
2099 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2100 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2101 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2102 		(1 << NFIT_CMD_ARS_INJECT_GET);
2103 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2104 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2105 			set_bit(i, &nd_desc->bus_dsm_mask);
2106 }
2107 
2108 static ssize_t range_index_show(struct device *dev,
2109 		struct device_attribute *attr, char *buf)
2110 {
2111 	struct nd_region *nd_region = to_nd_region(dev);
2112 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2113 
2114 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2115 }
2116 static DEVICE_ATTR_RO(range_index);
2117 
2118 static struct attribute *acpi_nfit_region_attributes[] = {
2119 	&dev_attr_range_index.attr,
2120 	NULL,
2121 };
2122 
2123 static const struct attribute_group acpi_nfit_region_attribute_group = {
2124 	.name = "nfit",
2125 	.attrs = acpi_nfit_region_attributes,
2126 };
2127 
2128 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2129 	&nd_region_attribute_group,
2130 	&nd_mapping_attribute_group,
2131 	&nd_device_attribute_group,
2132 	&nd_numa_attribute_group,
2133 	&acpi_nfit_region_attribute_group,
2134 	NULL,
2135 };
2136 
2137 /* enough info to uniquely specify an interleave set */
2138 struct nfit_set_info {
2139 	struct nfit_set_info_map {
2140 		u64 region_offset;
2141 		u32 serial_number;
2142 		u32 pad;
2143 	} mapping[0];
2144 };
2145 
2146 struct nfit_set_info2 {
2147 	struct nfit_set_info_map2 {
2148 		u64 region_offset;
2149 		u32 serial_number;
2150 		u16 vendor_id;
2151 		u16 manufacturing_date;
2152 		u8  manufacturing_location;
2153 		u8  reserved[31];
2154 	} mapping[0];
2155 };
2156 
2157 static size_t sizeof_nfit_set_info(int num_mappings)
2158 {
2159 	return sizeof(struct nfit_set_info)
2160 		+ num_mappings * sizeof(struct nfit_set_info_map);
2161 }
2162 
2163 static size_t sizeof_nfit_set_info2(int num_mappings)
2164 {
2165 	return sizeof(struct nfit_set_info2)
2166 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2167 }
2168 
2169 static int cmp_map_compat(const void *m0, const void *m1)
2170 {
2171 	const struct nfit_set_info_map *map0 = m0;
2172 	const struct nfit_set_info_map *map1 = m1;
2173 
2174 	return memcmp(&map0->region_offset, &map1->region_offset,
2175 			sizeof(u64));
2176 }
2177 
2178 static int cmp_map(const void *m0, const void *m1)
2179 {
2180 	const struct nfit_set_info_map *map0 = m0;
2181 	const struct nfit_set_info_map *map1 = m1;
2182 
2183 	if (map0->region_offset < map1->region_offset)
2184 		return -1;
2185 	else if (map0->region_offset > map1->region_offset)
2186 		return 1;
2187 	return 0;
2188 }
2189 
2190 static int cmp_map2(const void *m0, const void *m1)
2191 {
2192 	const struct nfit_set_info_map2 *map0 = m0;
2193 	const struct nfit_set_info_map2 *map1 = m1;
2194 
2195 	if (map0->region_offset < map1->region_offset)
2196 		return -1;
2197 	else if (map0->region_offset > map1->region_offset)
2198 		return 1;
2199 	return 0;
2200 }
2201 
2202 /* Retrieve the nth entry referencing this spa */
2203 static struct acpi_nfit_memory_map *memdev_from_spa(
2204 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2205 {
2206 	struct nfit_memdev *nfit_memdev;
2207 
2208 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2209 		if (nfit_memdev->memdev->range_index == range_index)
2210 			if (n-- == 0)
2211 				return nfit_memdev->memdev;
2212 	return NULL;
2213 }
2214 
2215 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2216 		struct nd_region_desc *ndr_desc,
2217 		struct acpi_nfit_system_address *spa)
2218 {
2219 	struct device *dev = acpi_desc->dev;
2220 	struct nd_interleave_set *nd_set;
2221 	u16 nr = ndr_desc->num_mappings;
2222 	struct nfit_set_info2 *info2;
2223 	struct nfit_set_info *info;
2224 	int i;
2225 
2226 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2227 	if (!nd_set)
2228 		return -ENOMEM;
2229 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2230 
2231 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2232 	if (!info)
2233 		return -ENOMEM;
2234 
2235 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2236 	if (!info2)
2237 		return -ENOMEM;
2238 
2239 	for (i = 0; i < nr; i++) {
2240 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2241 		struct nfit_set_info_map *map = &info->mapping[i];
2242 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2243 		struct nvdimm *nvdimm = mapping->nvdimm;
2244 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2245 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2246 				spa->range_index, i);
2247 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2248 
2249 		if (!memdev || !nfit_mem->dcr) {
2250 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2251 			return -ENODEV;
2252 		}
2253 
2254 		map->region_offset = memdev->region_offset;
2255 		map->serial_number = dcr->serial_number;
2256 
2257 		map2->region_offset = memdev->region_offset;
2258 		map2->serial_number = dcr->serial_number;
2259 		map2->vendor_id = dcr->vendor_id;
2260 		map2->manufacturing_date = dcr->manufacturing_date;
2261 		map2->manufacturing_location = dcr->manufacturing_location;
2262 	}
2263 
2264 	/* v1.1 namespaces */
2265 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2266 			cmp_map, NULL);
2267 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2268 
2269 	/* v1.2 namespaces */
2270 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2271 			cmp_map2, NULL);
2272 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2273 
2274 	/* support v1.1 namespaces created with the wrong sort order */
2275 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2276 			cmp_map_compat, NULL);
2277 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2278 
2279 	/* record the result of the sort for the mapping position */
2280 	for (i = 0; i < nr; i++) {
2281 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2282 		int j;
2283 
2284 		for (j = 0; j < nr; j++) {
2285 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2286 			struct nvdimm *nvdimm = mapping->nvdimm;
2287 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2288 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2289 
2290 			if (map2->serial_number == dcr->serial_number &&
2291 			    map2->vendor_id == dcr->vendor_id &&
2292 			    map2->manufacturing_date == dcr->manufacturing_date &&
2293 			    map2->manufacturing_location
2294 				    == dcr->manufacturing_location) {
2295 				mapping->position = i;
2296 				break;
2297 			}
2298 		}
2299 	}
2300 
2301 	ndr_desc->nd_set = nd_set;
2302 	devm_kfree(dev, info);
2303 	devm_kfree(dev, info2);
2304 
2305 	return 0;
2306 }
2307 
2308 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2309 {
2310 	struct acpi_nfit_interleave *idt = mmio->idt;
2311 	u32 sub_line_offset, line_index, line_offset;
2312 	u64 line_no, table_skip_count, table_offset;
2313 
2314 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2315 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2316 	line_offset = idt->line_offset[line_index]
2317 		* mmio->line_size;
2318 	table_offset = table_skip_count * mmio->table_size;
2319 
2320 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2321 }
2322 
2323 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2324 {
2325 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2326 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2327 	const u32 STATUS_MASK = 0x80000037;
2328 
2329 	if (mmio->num_lines)
2330 		offset = to_interleave_offset(offset, mmio);
2331 
2332 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2333 }
2334 
2335 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2336 		resource_size_t dpa, unsigned int len, unsigned int write)
2337 {
2338 	u64 cmd, offset;
2339 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2340 
2341 	enum {
2342 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2343 		BCW_LEN_SHIFT = 48,
2344 		BCW_LEN_MASK = (1ULL << 8) - 1,
2345 		BCW_CMD_SHIFT = 56,
2346 	};
2347 
2348 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2349 	len = len >> L1_CACHE_SHIFT;
2350 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2351 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2352 
2353 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2354 	if (mmio->num_lines)
2355 		offset = to_interleave_offset(offset, mmio);
2356 
2357 	writeq(cmd, mmio->addr.base + offset);
2358 	nvdimm_flush(nfit_blk->nd_region);
2359 
2360 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2361 		readq(mmio->addr.base + offset);
2362 }
2363 
2364 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2365 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2366 		unsigned int lane)
2367 {
2368 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2369 	unsigned int copied = 0;
2370 	u64 base_offset;
2371 	int rc;
2372 
2373 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2374 		+ lane * mmio->size;
2375 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2376 	while (len) {
2377 		unsigned int c;
2378 		u64 offset;
2379 
2380 		if (mmio->num_lines) {
2381 			u32 line_offset;
2382 
2383 			offset = to_interleave_offset(base_offset + copied,
2384 					mmio);
2385 			div_u64_rem(offset, mmio->line_size, &line_offset);
2386 			c = min_t(size_t, len, mmio->line_size - line_offset);
2387 		} else {
2388 			offset = base_offset + nfit_blk->bdw_offset;
2389 			c = len;
2390 		}
2391 
2392 		if (rw)
2393 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2394 		else {
2395 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2396 				arch_invalidate_pmem((void __force *)
2397 					mmio->addr.aperture + offset, c);
2398 
2399 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2400 		}
2401 
2402 		copied += c;
2403 		len -= c;
2404 	}
2405 
2406 	if (rw)
2407 		nvdimm_flush(nfit_blk->nd_region);
2408 
2409 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2410 	return rc;
2411 }
2412 
2413 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2414 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2415 {
2416 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2417 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2418 	struct nd_region *nd_region = nfit_blk->nd_region;
2419 	unsigned int lane, copied = 0;
2420 	int rc = 0;
2421 
2422 	lane = nd_region_acquire_lane(nd_region);
2423 	while (len) {
2424 		u64 c = min(len, mmio->size);
2425 
2426 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2427 				iobuf + copied, c, rw, lane);
2428 		if (rc)
2429 			break;
2430 
2431 		copied += c;
2432 		len -= c;
2433 	}
2434 	nd_region_release_lane(nd_region, lane);
2435 
2436 	return rc;
2437 }
2438 
2439 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2440 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2441 {
2442 	if (idt) {
2443 		mmio->num_lines = idt->line_count;
2444 		mmio->line_size = idt->line_size;
2445 		if (interleave_ways == 0)
2446 			return -ENXIO;
2447 		mmio->table_size = mmio->num_lines * interleave_ways
2448 			* mmio->line_size;
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2455 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2456 {
2457 	struct nd_cmd_dimm_flags flags;
2458 	int rc;
2459 
2460 	memset(&flags, 0, sizeof(flags));
2461 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2462 			sizeof(flags), NULL);
2463 
2464 	if (rc >= 0 && flags.status == 0)
2465 		nfit_blk->dimm_flags = flags.flags;
2466 	else if (rc == -ENOTTY) {
2467 		/* fall back to a conservative default */
2468 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2469 		rc = 0;
2470 	} else
2471 		rc = -ENXIO;
2472 
2473 	return rc;
2474 }
2475 
2476 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2477 		struct device *dev)
2478 {
2479 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2480 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2481 	struct nfit_blk_mmio *mmio;
2482 	struct nfit_blk *nfit_blk;
2483 	struct nfit_mem *nfit_mem;
2484 	struct nvdimm *nvdimm;
2485 	int rc;
2486 
2487 	nvdimm = nd_blk_region_to_dimm(ndbr);
2488 	nfit_mem = nvdimm_provider_data(nvdimm);
2489 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2490 		dev_dbg(dev, "missing%s%s%s\n",
2491 				nfit_mem ? "" : " nfit_mem",
2492 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2493 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2494 		return -ENXIO;
2495 	}
2496 
2497 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2498 	if (!nfit_blk)
2499 		return -ENOMEM;
2500 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2501 	nfit_blk->nd_region = to_nd_region(dev);
2502 
2503 	/* map block aperture memory */
2504 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2505 	mmio = &nfit_blk->mmio[BDW];
2506 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2507                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2508 	if (!mmio->addr.base) {
2509 		dev_dbg(dev, "%s failed to map bdw\n",
2510 				nvdimm_name(nvdimm));
2511 		return -ENOMEM;
2512 	}
2513 	mmio->size = nfit_mem->bdw->size;
2514 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2515 	mmio->idt = nfit_mem->idt_bdw;
2516 	mmio->spa = nfit_mem->spa_bdw;
2517 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2518 			nfit_mem->memdev_bdw->interleave_ways);
2519 	if (rc) {
2520 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2521 				nvdimm_name(nvdimm));
2522 		return rc;
2523 	}
2524 
2525 	/* map block control memory */
2526 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2527 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2528 	mmio = &nfit_blk->mmio[DCR];
2529 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2530 			nfit_mem->spa_dcr->length);
2531 	if (!mmio->addr.base) {
2532 		dev_dbg(dev, "%s failed to map dcr\n",
2533 				nvdimm_name(nvdimm));
2534 		return -ENOMEM;
2535 	}
2536 	mmio->size = nfit_mem->dcr->window_size;
2537 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2538 	mmio->idt = nfit_mem->idt_dcr;
2539 	mmio->spa = nfit_mem->spa_dcr;
2540 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2541 			nfit_mem->memdev_dcr->interleave_ways);
2542 	if (rc) {
2543 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2544 				nvdimm_name(nvdimm));
2545 		return rc;
2546 	}
2547 
2548 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2549 	if (rc < 0) {
2550 		dev_dbg(dev, "%s failed get DIMM flags\n",
2551 				nvdimm_name(nvdimm));
2552 		return rc;
2553 	}
2554 
2555 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2556 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2557 
2558 	if (mmio->line_size == 0)
2559 		return 0;
2560 
2561 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2562 			+ 8 > mmio->line_size) {
2563 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2564 		return -ENXIO;
2565 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2566 			+ 8 > mmio->line_size) {
2567 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2568 		return -ENXIO;
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2575 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2576 {
2577 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2578 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2579 	int cmd_rc, rc;
2580 
2581 	cmd->address = spa->address;
2582 	cmd->length = spa->length;
2583 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2584 			sizeof(*cmd), &cmd_rc);
2585 	if (rc < 0)
2586 		return rc;
2587 	return cmd_rc;
2588 }
2589 
2590 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2591 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2592 {
2593 	int rc;
2594 	int cmd_rc;
2595 	struct nd_cmd_ars_start ars_start;
2596 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2597 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2598 
2599 	memset(&ars_start, 0, sizeof(ars_start));
2600 	ars_start.address = spa->address;
2601 	ars_start.length = spa->length;
2602 	if (req_type == ARS_REQ_SHORT)
2603 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2604 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2605 		ars_start.type = ND_ARS_PERSISTENT;
2606 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2607 		ars_start.type = ND_ARS_VOLATILE;
2608 	else
2609 		return -ENOTTY;
2610 
2611 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2612 			sizeof(ars_start), &cmd_rc);
2613 
2614 	if (rc < 0)
2615 		return rc;
2616 	return cmd_rc;
2617 }
2618 
2619 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2620 {
2621 	int rc, cmd_rc;
2622 	struct nd_cmd_ars_start ars_start;
2623 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2624 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2625 
2626 	memset(&ars_start, 0, sizeof(ars_start));
2627 	ars_start.address = ars_status->restart_address;
2628 	ars_start.length = ars_status->restart_length;
2629 	ars_start.type = ars_status->type;
2630 	ars_start.flags = acpi_desc->ars_start_flags;
2631 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2632 			sizeof(ars_start), &cmd_rc);
2633 	if (rc < 0)
2634 		return rc;
2635 	return cmd_rc;
2636 }
2637 
2638 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2639 {
2640 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2641 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2642 	int rc, cmd_rc;
2643 
2644 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2645 			acpi_desc->max_ars, &cmd_rc);
2646 	if (rc < 0)
2647 		return rc;
2648 	return cmd_rc;
2649 }
2650 
2651 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2652 		struct nfit_spa *nfit_spa)
2653 {
2654 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2655 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2656 	struct nd_region *nd_region = nfit_spa->nd_region;
2657 	struct device *dev;
2658 
2659 	lockdep_assert_held(&acpi_desc->init_mutex);
2660 	/*
2661 	 * Only advance the ARS state for ARS runs initiated by the
2662 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2663 	 * completion tracking.
2664 	 */
2665 	if (acpi_desc->scrub_spa != nfit_spa)
2666 		return;
2667 
2668 	if ((ars_status->address >= spa->address && ars_status->address
2669 				< spa->address + spa->length)
2670 			|| (ars_status->address < spa->address)) {
2671 		/*
2672 		 * Assume that if a scrub starts at an offset from the
2673 		 * start of nfit_spa that we are in the continuation
2674 		 * case.
2675 		 *
2676 		 * Otherwise, if the scrub covers the spa range, mark
2677 		 * any pending request complete.
2678 		 */
2679 		if (ars_status->address + ars_status->length
2680 				>= spa->address + spa->length)
2681 				/* complete */;
2682 		else
2683 			return;
2684 	} else
2685 		return;
2686 
2687 	acpi_desc->scrub_spa = NULL;
2688 	if (nd_region) {
2689 		dev = nd_region_dev(nd_region);
2690 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2691 	} else
2692 		dev = acpi_desc->dev;
2693 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2694 }
2695 
2696 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2697 {
2698 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2699 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2700 	int rc;
2701 	u32 i;
2702 
2703 	/*
2704 	 * First record starts at 44 byte offset from the start of the
2705 	 * payload.
2706 	 */
2707 	if (ars_status->out_length < 44)
2708 		return 0;
2709 	for (i = 0; i < ars_status->num_records; i++) {
2710 		/* only process full records */
2711 		if (ars_status->out_length
2712 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2713 			break;
2714 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2715 				ars_status->records[i].err_address,
2716 				ars_status->records[i].length);
2717 		if (rc)
2718 			return rc;
2719 	}
2720 	if (i < ars_status->num_records)
2721 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2722 
2723 	return 0;
2724 }
2725 
2726 static void acpi_nfit_remove_resource(void *data)
2727 {
2728 	struct resource *res = data;
2729 
2730 	remove_resource(res);
2731 }
2732 
2733 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2734 		struct nd_region_desc *ndr_desc)
2735 {
2736 	struct resource *res, *nd_res = ndr_desc->res;
2737 	int is_pmem, ret;
2738 
2739 	/* No operation if the region is already registered as PMEM */
2740 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2741 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2742 	if (is_pmem == REGION_INTERSECTS)
2743 		return 0;
2744 
2745 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2746 	if (!res)
2747 		return -ENOMEM;
2748 
2749 	res->name = "Persistent Memory";
2750 	res->start = nd_res->start;
2751 	res->end = nd_res->end;
2752 	res->flags = IORESOURCE_MEM;
2753 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2754 
2755 	ret = insert_resource(&iomem_resource, res);
2756 	if (ret)
2757 		return ret;
2758 
2759 	ret = devm_add_action_or_reset(acpi_desc->dev,
2760 					acpi_nfit_remove_resource,
2761 					res);
2762 	if (ret)
2763 		return ret;
2764 
2765 	return 0;
2766 }
2767 
2768 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2769 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2770 		struct acpi_nfit_memory_map *memdev,
2771 		struct nfit_spa *nfit_spa)
2772 {
2773 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2774 			memdev->device_handle);
2775 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2776 	struct nd_blk_region_desc *ndbr_desc;
2777 	struct nfit_mem *nfit_mem;
2778 	int rc;
2779 
2780 	if (!nvdimm) {
2781 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2782 				spa->range_index, memdev->device_handle);
2783 		return -ENODEV;
2784 	}
2785 
2786 	mapping->nvdimm = nvdimm;
2787 	switch (nfit_spa_type(spa)) {
2788 	case NFIT_SPA_PM:
2789 	case NFIT_SPA_VOLATILE:
2790 		mapping->start = memdev->address;
2791 		mapping->size = memdev->region_size;
2792 		break;
2793 	case NFIT_SPA_DCR:
2794 		nfit_mem = nvdimm_provider_data(nvdimm);
2795 		if (!nfit_mem || !nfit_mem->bdw) {
2796 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2797 					spa->range_index, nvdimm_name(nvdimm));
2798 			break;
2799 		}
2800 
2801 		mapping->size = nfit_mem->bdw->capacity;
2802 		mapping->start = nfit_mem->bdw->start_address;
2803 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2804 		ndr_desc->mapping = mapping;
2805 		ndr_desc->num_mappings = 1;
2806 		ndbr_desc = to_blk_region_desc(ndr_desc);
2807 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2808 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2809 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2810 		if (rc)
2811 			return rc;
2812 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2813 				ndr_desc);
2814 		if (!nfit_spa->nd_region)
2815 			return -ENOMEM;
2816 		break;
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2823 {
2824 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2825 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2826 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2827 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2828 }
2829 
2830 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2831 {
2832 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2833 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2834 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2835 }
2836 
2837 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2838 		struct nfit_spa *nfit_spa)
2839 {
2840 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2841 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2842 	struct nd_blk_region_desc ndbr_desc;
2843 	struct nd_region_desc *ndr_desc;
2844 	struct nfit_memdev *nfit_memdev;
2845 	struct nvdimm_bus *nvdimm_bus;
2846 	struct resource res;
2847 	int count = 0, rc;
2848 
2849 	if (nfit_spa->nd_region)
2850 		return 0;
2851 
2852 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2853 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2854 		return 0;
2855 	}
2856 
2857 	memset(&res, 0, sizeof(res));
2858 	memset(&mappings, 0, sizeof(mappings));
2859 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2860 	res.start = spa->address;
2861 	res.end = res.start + spa->length - 1;
2862 	ndr_desc = &ndbr_desc.ndr_desc;
2863 	ndr_desc->res = &res;
2864 	ndr_desc->provider_data = nfit_spa;
2865 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2866 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2867 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2868 						spa->proximity_domain);
2869 	else
2870 		ndr_desc->numa_node = NUMA_NO_NODE;
2871 
2872 	/*
2873 	 * Persistence domain bits are hierarchical, if
2874 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2875 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2876 	 */
2877 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2878 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2879 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2880 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2881 
2882 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2883 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2884 		struct nd_mapping_desc *mapping;
2885 
2886 		if (memdev->range_index != spa->range_index)
2887 			continue;
2888 		if (count >= ND_MAX_MAPPINGS) {
2889 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2890 					spa->range_index, ND_MAX_MAPPINGS);
2891 			return -ENXIO;
2892 		}
2893 		mapping = &mappings[count++];
2894 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2895 				memdev, nfit_spa);
2896 		if (rc)
2897 			goto out;
2898 	}
2899 
2900 	ndr_desc->mapping = mappings;
2901 	ndr_desc->num_mappings = count;
2902 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2903 	if (rc)
2904 		goto out;
2905 
2906 	nvdimm_bus = acpi_desc->nvdimm_bus;
2907 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2908 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2909 		if (rc) {
2910 			dev_warn(acpi_desc->dev,
2911 				"failed to insert pmem resource to iomem: %d\n",
2912 				rc);
2913 			goto out;
2914 		}
2915 
2916 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2917 				ndr_desc);
2918 		if (!nfit_spa->nd_region)
2919 			rc = -ENOMEM;
2920 	} else if (nfit_spa_is_volatile(spa)) {
2921 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2922 				ndr_desc);
2923 		if (!nfit_spa->nd_region)
2924 			rc = -ENOMEM;
2925 	} else if (nfit_spa_is_virtual(spa)) {
2926 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2927 				ndr_desc);
2928 		if (!nfit_spa->nd_region)
2929 			rc = -ENOMEM;
2930 	}
2931 
2932  out:
2933 	if (rc)
2934 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2935 				nfit_spa->spa->range_index);
2936 	return rc;
2937 }
2938 
2939 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2940 {
2941 	struct device *dev = acpi_desc->dev;
2942 	struct nd_cmd_ars_status *ars_status;
2943 
2944 	if (acpi_desc->ars_status) {
2945 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2946 		return 0;
2947 	}
2948 
2949 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2950 	if (!ars_status)
2951 		return -ENOMEM;
2952 	acpi_desc->ars_status = ars_status;
2953 	return 0;
2954 }
2955 
2956 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2957 {
2958 	int rc;
2959 
2960 	if (ars_status_alloc(acpi_desc))
2961 		return -ENOMEM;
2962 
2963 	rc = ars_get_status(acpi_desc);
2964 
2965 	if (rc < 0 && rc != -ENOSPC)
2966 		return rc;
2967 
2968 	if (ars_status_process_records(acpi_desc))
2969 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2970 
2971 	return rc;
2972 }
2973 
2974 static int ars_register(struct acpi_nfit_desc *acpi_desc,
2975 		struct nfit_spa *nfit_spa)
2976 {
2977 	int rc;
2978 
2979 	if (no_init_ars || test_bit(ARS_FAILED, &nfit_spa->ars_state))
2980 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2981 
2982 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2983 	set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2984 
2985 	switch (acpi_nfit_query_poison(acpi_desc)) {
2986 	case 0:
2987 	case -EAGAIN:
2988 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2989 		/* shouldn't happen, try again later */
2990 		if (rc == -EBUSY)
2991 			break;
2992 		if (rc) {
2993 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2994 			break;
2995 		}
2996 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2997 		rc = acpi_nfit_query_poison(acpi_desc);
2998 		if (rc)
2999 			break;
3000 		acpi_desc->scrub_spa = nfit_spa;
3001 		ars_complete(acpi_desc, nfit_spa);
3002 		/*
3003 		 * If ars_complete() says we didn't complete the
3004 		 * short scrub, we'll try again with a long
3005 		 * request.
3006 		 */
3007 		acpi_desc->scrub_spa = NULL;
3008 		break;
3009 	case -EBUSY:
3010 	case -ENOMEM:
3011 	case -ENOSPC:
3012 		/*
3013 		 * BIOS was using ARS, wait for it to complete (or
3014 		 * resources to become available) and then perform our
3015 		 * own scrubs.
3016 		 */
3017 		break;
3018 	default:
3019 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3020 		break;
3021 	}
3022 
3023 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
3024 }
3025 
3026 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3027 {
3028 	struct nfit_spa *nfit_spa;
3029 
3030 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3031 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3032 			continue;
3033 		ars_complete(acpi_desc, nfit_spa);
3034 	}
3035 }
3036 
3037 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3038 		int query_rc)
3039 {
3040 	unsigned int tmo = acpi_desc->scrub_tmo;
3041 	struct device *dev = acpi_desc->dev;
3042 	struct nfit_spa *nfit_spa;
3043 
3044 	lockdep_assert_held(&acpi_desc->init_mutex);
3045 
3046 	if (acpi_desc->cancel)
3047 		return 0;
3048 
3049 	if (query_rc == -EBUSY) {
3050 		dev_dbg(dev, "ARS: ARS busy\n");
3051 		return min(30U * 60U, tmo * 2);
3052 	}
3053 	if (query_rc == -ENOSPC) {
3054 		dev_dbg(dev, "ARS: ARS continue\n");
3055 		ars_continue(acpi_desc);
3056 		return 1;
3057 	}
3058 	if (query_rc && query_rc != -EAGAIN) {
3059 		unsigned long long addr, end;
3060 
3061 		addr = acpi_desc->ars_status->address;
3062 		end = addr + acpi_desc->ars_status->length;
3063 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3064 				query_rc);
3065 	}
3066 
3067 	ars_complete_all(acpi_desc);
3068 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3069 		enum nfit_ars_state req_type;
3070 		int rc;
3071 
3072 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3073 			continue;
3074 
3075 		/* prefer short ARS requests first */
3076 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3077 			req_type = ARS_REQ_SHORT;
3078 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3079 			req_type = ARS_REQ_LONG;
3080 		else
3081 			continue;
3082 		rc = ars_start(acpi_desc, nfit_spa, req_type);
3083 
3084 		dev = nd_region_dev(nfit_spa->nd_region);
3085 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3086 				nfit_spa->spa->range_index,
3087 				req_type == ARS_REQ_SHORT ? "short" : "long",
3088 				rc);
3089 		/*
3090 		 * Hmm, we raced someone else starting ARS? Try again in
3091 		 * a bit.
3092 		 */
3093 		if (rc == -EBUSY)
3094 			return 1;
3095 		if (rc == 0) {
3096 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3097 					"scrub start while range %d active\n",
3098 					acpi_desc->scrub_spa->spa->range_index);
3099 			clear_bit(req_type, &nfit_spa->ars_state);
3100 			acpi_desc->scrub_spa = nfit_spa;
3101 			/*
3102 			 * Consider this spa last for future scrub
3103 			 * requests
3104 			 */
3105 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3106 			return 1;
3107 		}
3108 
3109 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3110 				nfit_spa->spa->range_index, rc);
3111 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3112 	}
3113 	return 0;
3114 }
3115 
3116 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3117 {
3118 	lockdep_assert_held(&acpi_desc->init_mutex);
3119 
3120 	acpi_desc->scrub_busy = 1;
3121 	/* note this should only be set from within the workqueue */
3122 	if (tmo)
3123 		acpi_desc->scrub_tmo = tmo;
3124 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3125 }
3126 
3127 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3128 {
3129 	__sched_ars(acpi_desc, 0);
3130 }
3131 
3132 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3133 {
3134 	lockdep_assert_held(&acpi_desc->init_mutex);
3135 
3136 	acpi_desc->scrub_busy = 0;
3137 	acpi_desc->scrub_count++;
3138 	if (acpi_desc->scrub_count_state)
3139 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3140 }
3141 
3142 static void acpi_nfit_scrub(struct work_struct *work)
3143 {
3144 	struct acpi_nfit_desc *acpi_desc;
3145 	unsigned int tmo;
3146 	int query_rc;
3147 
3148 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3149 	mutex_lock(&acpi_desc->init_mutex);
3150 	query_rc = acpi_nfit_query_poison(acpi_desc);
3151 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3152 	if (tmo)
3153 		__sched_ars(acpi_desc, tmo);
3154 	else
3155 		notify_ars_done(acpi_desc);
3156 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3157 	mutex_unlock(&acpi_desc->init_mutex);
3158 }
3159 
3160 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3161 		struct nfit_spa *nfit_spa)
3162 {
3163 	int type = nfit_spa_type(nfit_spa->spa);
3164 	struct nd_cmd_ars_cap ars_cap;
3165 	int rc;
3166 
3167 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
3168 	memset(&ars_cap, 0, sizeof(ars_cap));
3169 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3170 	if (rc < 0)
3171 		return;
3172 	/* check that the supported scrub types match the spa type */
3173 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3174 				& ND_ARS_VOLATILE) == 0)
3175 		return;
3176 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3177 				& ND_ARS_PERSISTENT) == 0)
3178 		return;
3179 
3180 	nfit_spa->max_ars = ars_cap.max_ars_out;
3181 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3182 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3183 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3184 }
3185 
3186 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3187 {
3188 	struct nfit_spa *nfit_spa;
3189 	int rc;
3190 
3191 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3192 		switch (nfit_spa_type(nfit_spa->spa)) {
3193 		case NFIT_SPA_VOLATILE:
3194 		case NFIT_SPA_PM:
3195 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3196 			break;
3197 		}
3198 	}
3199 
3200 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3201 		switch (nfit_spa_type(nfit_spa->spa)) {
3202 		case NFIT_SPA_VOLATILE:
3203 		case NFIT_SPA_PM:
3204 			/* register regions and kick off initial ARS run */
3205 			rc = ars_register(acpi_desc, nfit_spa);
3206 			if (rc)
3207 				return rc;
3208 			break;
3209 		case NFIT_SPA_BDW:
3210 			/* nothing to register */
3211 			break;
3212 		case NFIT_SPA_DCR:
3213 		case NFIT_SPA_VDISK:
3214 		case NFIT_SPA_VCD:
3215 		case NFIT_SPA_PDISK:
3216 		case NFIT_SPA_PCD:
3217 			/* register known regions that don't support ARS */
3218 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3219 			if (rc)
3220 				return rc;
3221 			break;
3222 		default:
3223 			/* don't register unknown regions */
3224 			break;
3225 		}
3226 
3227 	sched_ars(acpi_desc);
3228 	return 0;
3229 }
3230 
3231 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3232 		struct nfit_table_prev *prev)
3233 {
3234 	struct device *dev = acpi_desc->dev;
3235 
3236 	if (!list_empty(&prev->spas) ||
3237 			!list_empty(&prev->memdevs) ||
3238 			!list_empty(&prev->dcrs) ||
3239 			!list_empty(&prev->bdws) ||
3240 			!list_empty(&prev->idts) ||
3241 			!list_empty(&prev->flushes)) {
3242 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3243 		return -ENXIO;
3244 	}
3245 	return 0;
3246 }
3247 
3248 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3249 {
3250 	struct device *dev = acpi_desc->dev;
3251 	struct kernfs_node *nfit;
3252 	struct device *bus_dev;
3253 
3254 	if (!ars_supported(acpi_desc->nvdimm_bus))
3255 		return 0;
3256 
3257 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3258 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3259 	if (!nfit) {
3260 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3261 		return -ENODEV;
3262 	}
3263 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3264 	sysfs_put(nfit);
3265 	if (!acpi_desc->scrub_count_state) {
3266 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3267 		return -ENODEV;
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 static void acpi_nfit_unregister(void *data)
3274 {
3275 	struct acpi_nfit_desc *acpi_desc = data;
3276 
3277 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3278 }
3279 
3280 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3281 {
3282 	struct device *dev = acpi_desc->dev;
3283 	struct nfit_table_prev prev;
3284 	const void *end;
3285 	int rc;
3286 
3287 	if (!acpi_desc->nvdimm_bus) {
3288 		acpi_nfit_init_dsms(acpi_desc);
3289 
3290 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3291 				&acpi_desc->nd_desc);
3292 		if (!acpi_desc->nvdimm_bus)
3293 			return -ENOMEM;
3294 
3295 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3296 				acpi_desc);
3297 		if (rc)
3298 			return rc;
3299 
3300 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3301 		if (rc)
3302 			return rc;
3303 
3304 		/* register this acpi_desc for mce notifications */
3305 		mutex_lock(&acpi_desc_lock);
3306 		list_add_tail(&acpi_desc->list, &acpi_descs);
3307 		mutex_unlock(&acpi_desc_lock);
3308 	}
3309 
3310 	mutex_lock(&acpi_desc->init_mutex);
3311 
3312 	INIT_LIST_HEAD(&prev.spas);
3313 	INIT_LIST_HEAD(&prev.memdevs);
3314 	INIT_LIST_HEAD(&prev.dcrs);
3315 	INIT_LIST_HEAD(&prev.bdws);
3316 	INIT_LIST_HEAD(&prev.idts);
3317 	INIT_LIST_HEAD(&prev.flushes);
3318 
3319 	list_cut_position(&prev.spas, &acpi_desc->spas,
3320 				acpi_desc->spas.prev);
3321 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3322 				acpi_desc->memdevs.prev);
3323 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3324 				acpi_desc->dcrs.prev);
3325 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3326 				acpi_desc->bdws.prev);
3327 	list_cut_position(&prev.idts, &acpi_desc->idts,
3328 				acpi_desc->idts.prev);
3329 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3330 				acpi_desc->flushes.prev);
3331 
3332 	end = data + sz;
3333 	while (!IS_ERR_OR_NULL(data))
3334 		data = add_table(acpi_desc, &prev, data, end);
3335 
3336 	if (IS_ERR(data)) {
3337 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3338 		rc = PTR_ERR(data);
3339 		goto out_unlock;
3340 	}
3341 
3342 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3343 	if (rc)
3344 		goto out_unlock;
3345 
3346 	rc = nfit_mem_init(acpi_desc);
3347 	if (rc)
3348 		goto out_unlock;
3349 
3350 	rc = acpi_nfit_register_dimms(acpi_desc);
3351 	if (rc)
3352 		goto out_unlock;
3353 
3354 	rc = acpi_nfit_register_regions(acpi_desc);
3355 
3356  out_unlock:
3357 	mutex_unlock(&acpi_desc->init_mutex);
3358 	return rc;
3359 }
3360 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3361 
3362 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3363 {
3364 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3365 	struct device *dev = acpi_desc->dev;
3366 
3367 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3368 	device_lock(dev);
3369 	device_unlock(dev);
3370 
3371 	/* Bounce the init_mutex to complete initial registration */
3372 	mutex_lock(&acpi_desc->init_mutex);
3373 	mutex_unlock(&acpi_desc->init_mutex);
3374 
3375 	return 0;
3376 }
3377 
3378 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3379 		struct nvdimm *nvdimm, unsigned int cmd)
3380 {
3381 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3382 
3383 	if (nvdimm)
3384 		return 0;
3385 	if (cmd != ND_CMD_ARS_START)
3386 		return 0;
3387 
3388 	/*
3389 	 * The kernel and userspace may race to initiate a scrub, but
3390 	 * the scrub thread is prepared to lose that initial race.  It
3391 	 * just needs guarantees that any ARS it initiates are not
3392 	 * interrupted by any intervening start requests from userspace.
3393 	 */
3394 	if (work_busy(&acpi_desc->dwork.work))
3395 		return -EBUSY;
3396 
3397 	return 0;
3398 }
3399 
3400 /* prevent security commands from being issued via ioctl */
3401 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3402 		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3403 {
3404 	struct nd_cmd_pkg *call_pkg = buf;
3405 	unsigned int func;
3406 
3407 	if (nvdimm && cmd == ND_CMD_CALL &&
3408 			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3409 		func = call_pkg->nd_command;
3410 		if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK)
3411 			return -EOPNOTSUPP;
3412 	}
3413 
3414 	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3415 }
3416 
3417 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3418 		enum nfit_ars_state req_type)
3419 {
3420 	struct device *dev = acpi_desc->dev;
3421 	int scheduled = 0, busy = 0;
3422 	struct nfit_spa *nfit_spa;
3423 
3424 	mutex_lock(&acpi_desc->init_mutex);
3425 	if (acpi_desc->cancel) {
3426 		mutex_unlock(&acpi_desc->init_mutex);
3427 		return 0;
3428 	}
3429 
3430 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3431 		int type = nfit_spa_type(nfit_spa->spa);
3432 
3433 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3434 			continue;
3435 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3436 			continue;
3437 
3438 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3439 			busy++;
3440 		else
3441 			scheduled++;
3442 	}
3443 	if (scheduled) {
3444 		sched_ars(acpi_desc);
3445 		dev_dbg(dev, "ars_scan triggered\n");
3446 	}
3447 	mutex_unlock(&acpi_desc->init_mutex);
3448 
3449 	if (scheduled)
3450 		return 0;
3451 	if (busy)
3452 		return -EBUSY;
3453 	return -ENOTTY;
3454 }
3455 
3456 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3457 {
3458 	struct nvdimm_bus_descriptor *nd_desc;
3459 
3460 	dev_set_drvdata(dev, acpi_desc);
3461 	acpi_desc->dev = dev;
3462 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3463 	nd_desc = &acpi_desc->nd_desc;
3464 	nd_desc->provider_name = "ACPI.NFIT";
3465 	nd_desc->module = THIS_MODULE;
3466 	nd_desc->ndctl = acpi_nfit_ctl;
3467 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3468 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3469 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3470 
3471 	INIT_LIST_HEAD(&acpi_desc->spas);
3472 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3473 	INIT_LIST_HEAD(&acpi_desc->bdws);
3474 	INIT_LIST_HEAD(&acpi_desc->idts);
3475 	INIT_LIST_HEAD(&acpi_desc->flushes);
3476 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3477 	INIT_LIST_HEAD(&acpi_desc->dimms);
3478 	INIT_LIST_HEAD(&acpi_desc->list);
3479 	mutex_init(&acpi_desc->init_mutex);
3480 	acpi_desc->scrub_tmo = 1;
3481 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3482 }
3483 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3484 
3485 static void acpi_nfit_put_table(void *table)
3486 {
3487 	acpi_put_table(table);
3488 }
3489 
3490 void acpi_nfit_shutdown(void *data)
3491 {
3492 	struct acpi_nfit_desc *acpi_desc = data;
3493 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3494 
3495 	/*
3496 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3497 	 * race teardown
3498 	 */
3499 	mutex_lock(&acpi_desc_lock);
3500 	list_del(&acpi_desc->list);
3501 	mutex_unlock(&acpi_desc_lock);
3502 
3503 	mutex_lock(&acpi_desc->init_mutex);
3504 	acpi_desc->cancel = 1;
3505 	cancel_delayed_work_sync(&acpi_desc->dwork);
3506 	mutex_unlock(&acpi_desc->init_mutex);
3507 
3508 	/*
3509 	 * Bounce the nvdimm bus lock to make sure any in-flight
3510 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3511 	 * either submit or see ->cancel set.
3512 	 */
3513 	device_lock(bus_dev);
3514 	device_unlock(bus_dev);
3515 
3516 	flush_workqueue(nfit_wq);
3517 }
3518 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3519 
3520 static int acpi_nfit_add(struct acpi_device *adev)
3521 {
3522 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3523 	struct acpi_nfit_desc *acpi_desc;
3524 	struct device *dev = &adev->dev;
3525 	struct acpi_table_header *tbl;
3526 	acpi_status status = AE_OK;
3527 	acpi_size sz;
3528 	int rc = 0;
3529 
3530 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3531 	if (ACPI_FAILURE(status)) {
3532 		/* The NVDIMM root device allows OS to trigger enumeration of
3533 		 * NVDIMMs through NFIT at boot time and re-enumeration at
3534 		 * root level via the _FIT method during runtime.
3535 		 * This is ok to return 0 here, we could have an nvdimm
3536 		 * hotplugged later and evaluate _FIT method which returns
3537 		 * data in the format of a series of NFIT Structures.
3538 		 */
3539 		dev_dbg(dev, "failed to find NFIT at startup\n");
3540 		return 0;
3541 	}
3542 
3543 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3544 	if (rc)
3545 		return rc;
3546 	sz = tbl->length;
3547 
3548 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3549 	if (!acpi_desc)
3550 		return -ENOMEM;
3551 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3552 
3553 	/* Save the acpi header for exporting the revision via sysfs */
3554 	acpi_desc->acpi_header = *tbl;
3555 
3556 	/* Evaluate _FIT and override with that if present */
3557 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3558 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3559 		union acpi_object *obj = buf.pointer;
3560 
3561 		if (obj->type == ACPI_TYPE_BUFFER)
3562 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3563 					obj->buffer.length);
3564 		else
3565 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3566 				(int) obj->type);
3567 		kfree(buf.pointer);
3568 	} else
3569 		/* skip over the lead-in header table */
3570 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3571 				+ sizeof(struct acpi_table_nfit),
3572 				sz - sizeof(struct acpi_table_nfit));
3573 
3574 	if (rc)
3575 		return rc;
3576 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3577 }
3578 
3579 static int acpi_nfit_remove(struct acpi_device *adev)
3580 {
3581 	/* see acpi_nfit_unregister */
3582 	return 0;
3583 }
3584 
3585 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3586 {
3587 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3588 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3589 	union acpi_object *obj;
3590 	acpi_status status;
3591 	int ret;
3592 
3593 	if (!dev->driver) {
3594 		/* dev->driver may be null if we're being removed */
3595 		dev_dbg(dev, "no driver found for dev\n");
3596 		return;
3597 	}
3598 
3599 	if (!acpi_desc) {
3600 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3601 		if (!acpi_desc)
3602 			return;
3603 		acpi_nfit_desc_init(acpi_desc, dev);
3604 	} else {
3605 		/*
3606 		 * Finish previous registration before considering new
3607 		 * regions.
3608 		 */
3609 		flush_workqueue(nfit_wq);
3610 	}
3611 
3612 	/* Evaluate _FIT */
3613 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3614 	if (ACPI_FAILURE(status)) {
3615 		dev_err(dev, "failed to evaluate _FIT\n");
3616 		return;
3617 	}
3618 
3619 	obj = buf.pointer;
3620 	if (obj->type == ACPI_TYPE_BUFFER) {
3621 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3622 				obj->buffer.length);
3623 		if (ret)
3624 			dev_err(dev, "failed to merge updated NFIT\n");
3625 	} else
3626 		dev_err(dev, "Invalid _FIT\n");
3627 	kfree(buf.pointer);
3628 }
3629 
3630 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3631 {
3632 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3633 
3634 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3635 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3636 	else
3637 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3638 }
3639 
3640 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3641 {
3642 	dev_dbg(dev, "event: 0x%x\n", event);
3643 
3644 	switch (event) {
3645 	case NFIT_NOTIFY_UPDATE:
3646 		return acpi_nfit_update_notify(dev, handle);
3647 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3648 		return acpi_nfit_uc_error_notify(dev, handle);
3649 	default:
3650 		return;
3651 	}
3652 }
3653 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3654 
3655 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3656 {
3657 	device_lock(&adev->dev);
3658 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3659 	device_unlock(&adev->dev);
3660 }
3661 
3662 static const struct acpi_device_id acpi_nfit_ids[] = {
3663 	{ "ACPI0012", 0 },
3664 	{ "", 0 },
3665 };
3666 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3667 
3668 static struct acpi_driver acpi_nfit_driver = {
3669 	.name = KBUILD_MODNAME,
3670 	.ids = acpi_nfit_ids,
3671 	.ops = {
3672 		.add = acpi_nfit_add,
3673 		.remove = acpi_nfit_remove,
3674 		.notify = acpi_nfit_notify,
3675 	},
3676 };
3677 
3678 static __init int nfit_init(void)
3679 {
3680 	int ret;
3681 
3682 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3683 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3684 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3685 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3686 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3687 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3688 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3689 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3690 
3691 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3692 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3693 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3694 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3695 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3696 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3697 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3698 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3699 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3700 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3701 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3702 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3703 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3704 
3705 	nfit_wq = create_singlethread_workqueue("nfit");
3706 	if (!nfit_wq)
3707 		return -ENOMEM;
3708 
3709 	nfit_mce_register();
3710 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3711 	if (ret) {
3712 		nfit_mce_unregister();
3713 		destroy_workqueue(nfit_wq);
3714 	}
3715 
3716 	return ret;
3717 
3718 }
3719 
3720 static __exit void nfit_exit(void)
3721 {
3722 	nfit_mce_unregister();
3723 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3724 	destroy_workqueue(nfit_wq);
3725 	WARN_ON(!list_empty(&acpi_descs));
3726 }
3727 
3728 module_init(nfit_init);
3729 module_exit(nfit_exit);
3730 MODULE_LICENSE("GPL v2");
3731 MODULE_AUTHOR("Intel Corporation");
3732