xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 8134d27103b35dbdc94d762f82ca0bfb00f349ff)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include <acpi/nfit.h>
27 #include "nfit.h"
28 
29 /*
30  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
31  * irrelevant.
32  */
33 #include <linux/io-64-nonatomic-hi-lo.h>
34 
35 static bool force_enable_dimms;
36 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
37 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
38 
39 static bool disable_vendor_specific;
40 module_param(disable_vendor_specific, bool, S_IRUGO);
41 MODULE_PARM_DESC(disable_vendor_specific,
42 		"Limit commands to the publicly specified set");
43 
44 static unsigned long override_dsm_mask;
45 module_param(override_dsm_mask, ulong, S_IRUGO);
46 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
47 
48 static int default_dsm_family = -1;
49 module_param(default_dsm_family, int, S_IRUGO);
50 MODULE_PARM_DESC(default_dsm_family,
51 		"Try this DSM type first when identifying NVDIMM family");
52 
53 static bool no_init_ars;
54 module_param(no_init_ars, bool, 0644);
55 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
56 
57 LIST_HEAD(acpi_descs);
58 DEFINE_MUTEX(acpi_desc_lock);
59 
60 static struct workqueue_struct *nfit_wq;
61 
62 struct nfit_table_prev {
63 	struct list_head spas;
64 	struct list_head memdevs;
65 	struct list_head dcrs;
66 	struct list_head bdws;
67 	struct list_head idts;
68 	struct list_head flushes;
69 };
70 
71 static guid_t nfit_uuid[NFIT_UUID_MAX];
72 
73 const guid_t *to_nfit_uuid(enum nfit_uuids id)
74 {
75 	return &nfit_uuid[id];
76 }
77 EXPORT_SYMBOL(to_nfit_uuid);
78 
79 static struct acpi_nfit_desc *to_acpi_nfit_desc(
80 		struct nvdimm_bus_descriptor *nd_desc)
81 {
82 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
83 }
84 
85 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
86 {
87 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
88 
89 	/*
90 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
91 	 * acpi_device.
92 	 */
93 	if (!nd_desc->provider_name
94 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
95 		return NULL;
96 
97 	return to_acpi_device(acpi_desc->dev);
98 }
99 
100 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
101 {
102 	struct nd_cmd_clear_error *clear_err;
103 	struct nd_cmd_ars_status *ars_status;
104 	u16 flags;
105 
106 	switch (cmd) {
107 	case ND_CMD_ARS_CAP:
108 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
109 			return -ENOTTY;
110 
111 		/* Command failed */
112 		if (status & 0xffff)
113 			return -EIO;
114 
115 		/* No supported scan types for this range */
116 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
117 		if ((status >> 16 & flags) == 0)
118 			return -ENOTTY;
119 		return 0;
120 	case ND_CMD_ARS_START:
121 		/* ARS is in progress */
122 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
123 			return -EBUSY;
124 
125 		/* Command failed */
126 		if (status & 0xffff)
127 			return -EIO;
128 		return 0;
129 	case ND_CMD_ARS_STATUS:
130 		ars_status = buf;
131 		/* Command failed */
132 		if (status & 0xffff)
133 			return -EIO;
134 		/* Check extended status (Upper two bytes) */
135 		if (status == NFIT_ARS_STATUS_DONE)
136 			return 0;
137 
138 		/* ARS is in progress */
139 		if (status == NFIT_ARS_STATUS_BUSY)
140 			return -EBUSY;
141 
142 		/* No ARS performed for the current boot */
143 		if (status == NFIT_ARS_STATUS_NONE)
144 			return -EAGAIN;
145 
146 		/*
147 		 * ARS interrupted, either we overflowed or some other
148 		 * agent wants the scan to stop.  If we didn't overflow
149 		 * then just continue with the returned results.
150 		 */
151 		if (status == NFIT_ARS_STATUS_INTR) {
152 			if (ars_status->out_length >= 40 && (ars_status->flags
153 						& NFIT_ARS_F_OVERFLOW))
154 				return -ENOSPC;
155 			return 0;
156 		}
157 
158 		/* Unknown status */
159 		if (status >> 16)
160 			return -EIO;
161 		return 0;
162 	case ND_CMD_CLEAR_ERROR:
163 		clear_err = buf;
164 		if (status & 0xffff)
165 			return -EIO;
166 		if (!clear_err->cleared)
167 			return -EIO;
168 		if (clear_err->length > clear_err->cleared)
169 			return clear_err->cleared;
170 		return 0;
171 	default:
172 		break;
173 	}
174 
175 	/* all other non-zero status results in an error */
176 	if (status)
177 		return -EIO;
178 	return 0;
179 }
180 
181 #define ACPI_LABELS_LOCKED 3
182 
183 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
184 		u32 status)
185 {
186 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
187 
188 	switch (cmd) {
189 	case ND_CMD_GET_CONFIG_SIZE:
190 		/*
191 		 * In the _LSI, _LSR, _LSW case the locked status is
192 		 * communicated via the read/write commands
193 		 */
194 		if (nfit_mem->has_lsr)
195 			break;
196 
197 		if (status >> 16 & ND_CONFIG_LOCKED)
198 			return -EACCES;
199 		break;
200 	case ND_CMD_GET_CONFIG_DATA:
201 		if (nfit_mem->has_lsr && status == ACPI_LABELS_LOCKED)
202 			return -EACCES;
203 		break;
204 	case ND_CMD_SET_CONFIG_DATA:
205 		if (nfit_mem->has_lsw && status == ACPI_LABELS_LOCKED)
206 			return -EACCES;
207 		break;
208 	default:
209 		break;
210 	}
211 
212 	/* all other non-zero status results in an error */
213 	if (status)
214 		return -EIO;
215 	return 0;
216 }
217 
218 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
219 		u32 status)
220 {
221 	if (!nvdimm)
222 		return xlat_bus_status(buf, cmd, status);
223 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
224 }
225 
226 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
227 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
228 {
229 	int i;
230 	void *dst;
231 	size_t size = 0;
232 	union acpi_object *buf = NULL;
233 
234 	if (pkg->type != ACPI_TYPE_PACKAGE) {
235 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
236 				pkg->type);
237 		goto err;
238 	}
239 
240 	for (i = 0; i < pkg->package.count; i++) {
241 		union acpi_object *obj = &pkg->package.elements[i];
242 
243 		if (obj->type == ACPI_TYPE_INTEGER)
244 			size += 4;
245 		else if (obj->type == ACPI_TYPE_BUFFER)
246 			size += obj->buffer.length;
247 		else {
248 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
249 					obj->type);
250 			goto err;
251 		}
252 	}
253 
254 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
255 	if (!buf)
256 		goto err;
257 
258 	dst = buf + 1;
259 	buf->type = ACPI_TYPE_BUFFER;
260 	buf->buffer.length = size;
261 	buf->buffer.pointer = dst;
262 	for (i = 0; i < pkg->package.count; i++) {
263 		union acpi_object *obj = &pkg->package.elements[i];
264 
265 		if (obj->type == ACPI_TYPE_INTEGER) {
266 			memcpy(dst, &obj->integer.value, 4);
267 			dst += 4;
268 		} else if (obj->type == ACPI_TYPE_BUFFER) {
269 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
270 			dst += obj->buffer.length;
271 		}
272 	}
273 err:
274 	ACPI_FREE(pkg);
275 	return buf;
276 }
277 
278 static union acpi_object *int_to_buf(union acpi_object *integer)
279 {
280 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
281 	void *dst = NULL;
282 
283 	if (!buf)
284 		goto err;
285 
286 	if (integer->type != ACPI_TYPE_INTEGER) {
287 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
288 				integer->type);
289 		goto err;
290 	}
291 
292 	dst = buf + 1;
293 	buf->type = ACPI_TYPE_BUFFER;
294 	buf->buffer.length = 4;
295 	buf->buffer.pointer = dst;
296 	memcpy(dst, &integer->integer.value, 4);
297 err:
298 	ACPI_FREE(integer);
299 	return buf;
300 }
301 
302 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
303 		u32 len, void *data)
304 {
305 	acpi_status rc;
306 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
307 	struct acpi_object_list input = {
308 		.count = 3,
309 		.pointer = (union acpi_object []) {
310 			[0] = {
311 				.integer.type = ACPI_TYPE_INTEGER,
312 				.integer.value = offset,
313 			},
314 			[1] = {
315 				.integer.type = ACPI_TYPE_INTEGER,
316 				.integer.value = len,
317 			},
318 			[2] = {
319 				.buffer.type = ACPI_TYPE_BUFFER,
320 				.buffer.pointer = data,
321 				.buffer.length = len,
322 			},
323 		},
324 	};
325 
326 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
327 	if (ACPI_FAILURE(rc))
328 		return NULL;
329 	return int_to_buf(buf.pointer);
330 }
331 
332 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
333 		u32 len)
334 {
335 	acpi_status rc;
336 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
337 	struct acpi_object_list input = {
338 		.count = 2,
339 		.pointer = (union acpi_object []) {
340 			[0] = {
341 				.integer.type = ACPI_TYPE_INTEGER,
342 				.integer.value = offset,
343 			},
344 			[1] = {
345 				.integer.type = ACPI_TYPE_INTEGER,
346 				.integer.value = len,
347 			},
348 		},
349 	};
350 
351 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
352 	if (ACPI_FAILURE(rc))
353 		return NULL;
354 	return pkg_to_buf(buf.pointer);
355 }
356 
357 static union acpi_object *acpi_label_info(acpi_handle handle)
358 {
359 	acpi_status rc;
360 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
361 
362 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
363 	if (ACPI_FAILURE(rc))
364 		return NULL;
365 	return pkg_to_buf(buf.pointer);
366 }
367 
368 static u8 nfit_dsm_revid(unsigned family, unsigned func)
369 {
370 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
371 		[NVDIMM_FAMILY_INTEL] = {
372 			[NVDIMM_INTEL_GET_MODES] = 2,
373 			[NVDIMM_INTEL_GET_FWINFO] = 2,
374 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
375 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
376 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
377 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
378 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
379 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
380 		},
381 	};
382 	u8 id;
383 
384 	if (family > NVDIMM_FAMILY_MAX)
385 		return 0;
386 	if (func > 31)
387 		return 0;
388 	id = revid_table[family][func];
389 	if (id == 0)
390 		return 1; /* default */
391 	return id;
392 }
393 
394 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
395 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
396 {
397 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
398 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
399 	union acpi_object in_obj, in_buf, *out_obj;
400 	const struct nd_cmd_desc *desc = NULL;
401 	struct device *dev = acpi_desc->dev;
402 	struct nd_cmd_pkg *call_pkg = NULL;
403 	const char *cmd_name, *dimm_name;
404 	unsigned long cmd_mask, dsm_mask;
405 	u32 offset, fw_status = 0;
406 	acpi_handle handle;
407 	unsigned int func;
408 	const guid_t *guid;
409 	int rc, i;
410 
411 	func = cmd;
412 	if (cmd == ND_CMD_CALL) {
413 		call_pkg = buf;
414 		func = call_pkg->nd_command;
415 
416 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
417 			if (call_pkg->nd_reserved2[i])
418 				return -EINVAL;
419 	}
420 
421 	if (nvdimm) {
422 		struct acpi_device *adev = nfit_mem->adev;
423 
424 		if (!adev)
425 			return -ENOTTY;
426 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
427 			return -ENOTTY;
428 
429 		dimm_name = nvdimm_name(nvdimm);
430 		cmd_name = nvdimm_cmd_name(cmd);
431 		cmd_mask = nvdimm_cmd_mask(nvdimm);
432 		dsm_mask = nfit_mem->dsm_mask;
433 		desc = nd_cmd_dimm_desc(cmd);
434 		guid = to_nfit_uuid(nfit_mem->family);
435 		handle = adev->handle;
436 	} else {
437 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
438 
439 		cmd_name = nvdimm_bus_cmd_name(cmd);
440 		cmd_mask = nd_desc->cmd_mask;
441 		dsm_mask = cmd_mask;
442 		if (cmd == ND_CMD_CALL)
443 			dsm_mask = nd_desc->bus_dsm_mask;
444 		desc = nd_cmd_bus_desc(cmd);
445 		guid = to_nfit_uuid(NFIT_DEV_BUS);
446 		handle = adev->handle;
447 		dimm_name = "bus";
448 	}
449 
450 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
451 		return -ENOTTY;
452 
453 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
454 		return -ENOTTY;
455 
456 	in_obj.type = ACPI_TYPE_PACKAGE;
457 	in_obj.package.count = 1;
458 	in_obj.package.elements = &in_buf;
459 	in_buf.type = ACPI_TYPE_BUFFER;
460 	in_buf.buffer.pointer = buf;
461 	in_buf.buffer.length = 0;
462 
463 	/* libnvdimm has already validated the input envelope */
464 	for (i = 0; i < desc->in_num; i++)
465 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
466 				i, buf);
467 
468 	if (call_pkg) {
469 		/* skip over package wrapper */
470 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
471 		in_buf.buffer.length = call_pkg->nd_size_in;
472 	}
473 
474 	dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
475 		dimm_name, cmd, func, in_buf.buffer.length);
476 	print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
477 			in_buf.buffer.pointer,
478 			min_t(u32, 256, in_buf.buffer.length), true);
479 
480 	/* call the BIOS, prefer the named methods over _DSM if available */
481 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE && nfit_mem->has_lsr)
482 		out_obj = acpi_label_info(handle);
483 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && nfit_mem->has_lsr) {
484 		struct nd_cmd_get_config_data_hdr *p = buf;
485 
486 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
487 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
488 			&& nfit_mem->has_lsw) {
489 		struct nd_cmd_set_config_hdr *p = buf;
490 
491 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
492 				p->in_buf);
493 	} else {
494 		u8 revid;
495 
496 		if (nvdimm)
497 			revid = nfit_dsm_revid(nfit_mem->family, func);
498 		else
499 			revid = 1;
500 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
501 	}
502 
503 	if (!out_obj) {
504 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
505 		return -EINVAL;
506 	}
507 
508 	if (call_pkg) {
509 		call_pkg->nd_fw_size = out_obj->buffer.length;
510 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
511 			out_obj->buffer.pointer,
512 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
513 
514 		ACPI_FREE(out_obj);
515 		/*
516 		 * Need to support FW function w/o known size in advance.
517 		 * Caller can determine required size based upon nd_fw_size.
518 		 * If we return an error (like elsewhere) then caller wouldn't
519 		 * be able to rely upon data returned to make calculation.
520 		 */
521 		return 0;
522 	}
523 
524 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
525 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
526 				dimm_name, cmd_name, out_obj->type);
527 		rc = -EINVAL;
528 		goto out;
529 	}
530 
531 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
532 			cmd_name, out_obj->buffer.length);
533 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
534 			out_obj->buffer.pointer,
535 			min_t(u32, 128, out_obj->buffer.length), true);
536 
537 	for (i = 0, offset = 0; i < desc->out_num; i++) {
538 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
539 				(u32 *) out_obj->buffer.pointer,
540 				out_obj->buffer.length - offset);
541 
542 		if (offset + out_size > out_obj->buffer.length) {
543 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
544 					dimm_name, cmd_name, i);
545 			break;
546 		}
547 
548 		if (in_buf.buffer.length + offset + out_size > buf_len) {
549 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
550 					dimm_name, cmd_name, i);
551 			rc = -ENXIO;
552 			goto out;
553 		}
554 		memcpy(buf + in_buf.buffer.length + offset,
555 				out_obj->buffer.pointer + offset, out_size);
556 		offset += out_size;
557 	}
558 
559 	/*
560 	 * Set fw_status for all the commands with a known format to be
561 	 * later interpreted by xlat_status().
562 	 */
563 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
564 					&& cmd <= ND_CMD_CLEAR_ERROR)
565 				|| (nvdimm && cmd >= ND_CMD_SMART
566 					&& cmd <= ND_CMD_VENDOR)))
567 		fw_status = *(u32 *) out_obj->buffer.pointer;
568 
569 	if (offset + in_buf.buffer.length < buf_len) {
570 		if (i >= 1) {
571 			/*
572 			 * status valid, return the number of bytes left
573 			 * unfilled in the output buffer
574 			 */
575 			rc = buf_len - offset - in_buf.buffer.length;
576 			if (cmd_rc)
577 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
578 						fw_status);
579 		} else {
580 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
581 					__func__, dimm_name, cmd_name, buf_len,
582 					offset);
583 			rc = -ENXIO;
584 		}
585 	} else {
586 		rc = 0;
587 		if (cmd_rc)
588 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
589 	}
590 
591  out:
592 	ACPI_FREE(out_obj);
593 
594 	return rc;
595 }
596 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
597 
598 static const char *spa_type_name(u16 type)
599 {
600 	static const char *to_name[] = {
601 		[NFIT_SPA_VOLATILE] = "volatile",
602 		[NFIT_SPA_PM] = "pmem",
603 		[NFIT_SPA_DCR] = "dimm-control-region",
604 		[NFIT_SPA_BDW] = "block-data-window",
605 		[NFIT_SPA_VDISK] = "volatile-disk",
606 		[NFIT_SPA_VCD] = "volatile-cd",
607 		[NFIT_SPA_PDISK] = "persistent-disk",
608 		[NFIT_SPA_PCD] = "persistent-cd",
609 
610 	};
611 
612 	if (type > NFIT_SPA_PCD)
613 		return "unknown";
614 
615 	return to_name[type];
616 }
617 
618 int nfit_spa_type(struct acpi_nfit_system_address *spa)
619 {
620 	int i;
621 
622 	for (i = 0; i < NFIT_UUID_MAX; i++)
623 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
624 			return i;
625 	return -1;
626 }
627 
628 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
629 		struct nfit_table_prev *prev,
630 		struct acpi_nfit_system_address *spa)
631 {
632 	struct device *dev = acpi_desc->dev;
633 	struct nfit_spa *nfit_spa;
634 
635 	if (spa->header.length != sizeof(*spa))
636 		return false;
637 
638 	list_for_each_entry(nfit_spa, &prev->spas, list) {
639 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
640 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
641 			return true;
642 		}
643 	}
644 
645 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
646 			GFP_KERNEL);
647 	if (!nfit_spa)
648 		return false;
649 	INIT_LIST_HEAD(&nfit_spa->list);
650 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
651 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
652 	dev_dbg(dev, "spa index: %d type: %s\n",
653 			spa->range_index,
654 			spa_type_name(nfit_spa_type(spa)));
655 	return true;
656 }
657 
658 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
659 		struct nfit_table_prev *prev,
660 		struct acpi_nfit_memory_map *memdev)
661 {
662 	struct device *dev = acpi_desc->dev;
663 	struct nfit_memdev *nfit_memdev;
664 
665 	if (memdev->header.length != sizeof(*memdev))
666 		return false;
667 
668 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
669 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
670 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
671 			return true;
672 		}
673 
674 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
675 			GFP_KERNEL);
676 	if (!nfit_memdev)
677 		return false;
678 	INIT_LIST_HEAD(&nfit_memdev->list);
679 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
680 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
681 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
682 			memdev->device_handle, memdev->range_index,
683 			memdev->region_index, memdev->flags);
684 	return true;
685 }
686 
687 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
688 {
689 	struct acpi_nfit_memory_map *memdev;
690 	struct acpi_nfit_desc *acpi_desc;
691 	struct nfit_mem *nfit_mem;
692 
693 	mutex_lock(&acpi_desc_lock);
694 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
695 		mutex_lock(&acpi_desc->init_mutex);
696 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
697 			memdev = __to_nfit_memdev(nfit_mem);
698 			if (memdev->device_handle == device_handle) {
699 				mutex_unlock(&acpi_desc->init_mutex);
700 				mutex_unlock(&acpi_desc_lock);
701 				*flags = memdev->flags;
702 				return memdev->physical_id;
703 			}
704 		}
705 		mutex_unlock(&acpi_desc->init_mutex);
706 	}
707 	mutex_unlock(&acpi_desc_lock);
708 
709 	return -ENODEV;
710 }
711 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
712 
713 /*
714  * An implementation may provide a truncated control region if no block windows
715  * are defined.
716  */
717 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
718 {
719 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
720 				window_size))
721 		return 0;
722 	if (dcr->windows)
723 		return sizeof(*dcr);
724 	return offsetof(struct acpi_nfit_control_region, window_size);
725 }
726 
727 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
728 		struct nfit_table_prev *prev,
729 		struct acpi_nfit_control_region *dcr)
730 {
731 	struct device *dev = acpi_desc->dev;
732 	struct nfit_dcr *nfit_dcr;
733 
734 	if (!sizeof_dcr(dcr))
735 		return false;
736 
737 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
738 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
739 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
740 			return true;
741 		}
742 
743 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
744 			GFP_KERNEL);
745 	if (!nfit_dcr)
746 		return false;
747 	INIT_LIST_HEAD(&nfit_dcr->list);
748 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
749 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
750 	dev_dbg(dev, "dcr index: %d windows: %d\n",
751 			dcr->region_index, dcr->windows);
752 	return true;
753 }
754 
755 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
756 		struct nfit_table_prev *prev,
757 		struct acpi_nfit_data_region *bdw)
758 {
759 	struct device *dev = acpi_desc->dev;
760 	struct nfit_bdw *nfit_bdw;
761 
762 	if (bdw->header.length != sizeof(*bdw))
763 		return false;
764 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
765 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
766 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
767 			return true;
768 		}
769 
770 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
771 			GFP_KERNEL);
772 	if (!nfit_bdw)
773 		return false;
774 	INIT_LIST_HEAD(&nfit_bdw->list);
775 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
776 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
777 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
778 			bdw->region_index, bdw->windows);
779 	return true;
780 }
781 
782 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
783 {
784 	if (idt->header.length < sizeof(*idt))
785 		return 0;
786 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
787 }
788 
789 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
790 		struct nfit_table_prev *prev,
791 		struct acpi_nfit_interleave *idt)
792 {
793 	struct device *dev = acpi_desc->dev;
794 	struct nfit_idt *nfit_idt;
795 
796 	if (!sizeof_idt(idt))
797 		return false;
798 
799 	list_for_each_entry(nfit_idt, &prev->idts, list) {
800 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
801 			continue;
802 
803 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
804 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
805 			return true;
806 		}
807 	}
808 
809 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
810 			GFP_KERNEL);
811 	if (!nfit_idt)
812 		return false;
813 	INIT_LIST_HEAD(&nfit_idt->list);
814 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
815 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
816 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
817 			idt->interleave_index, idt->line_count);
818 	return true;
819 }
820 
821 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
822 {
823 	if (flush->header.length < sizeof(*flush))
824 		return 0;
825 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
826 }
827 
828 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
829 		struct nfit_table_prev *prev,
830 		struct acpi_nfit_flush_address *flush)
831 {
832 	struct device *dev = acpi_desc->dev;
833 	struct nfit_flush *nfit_flush;
834 
835 	if (!sizeof_flush(flush))
836 		return false;
837 
838 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
839 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
840 			continue;
841 
842 		if (memcmp(nfit_flush->flush, flush,
843 					sizeof_flush(flush)) == 0) {
844 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
845 			return true;
846 		}
847 	}
848 
849 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
850 			+ sizeof_flush(flush), GFP_KERNEL);
851 	if (!nfit_flush)
852 		return false;
853 	INIT_LIST_HEAD(&nfit_flush->list);
854 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
855 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
856 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
857 			flush->device_handle, flush->hint_count);
858 	return true;
859 }
860 
861 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
862 		struct acpi_nfit_capabilities *pcap)
863 {
864 	struct device *dev = acpi_desc->dev;
865 	u32 mask;
866 
867 	mask = (1 << (pcap->highest_capability + 1)) - 1;
868 	acpi_desc->platform_cap = pcap->capabilities & mask;
869 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
870 	return true;
871 }
872 
873 static void *add_table(struct acpi_nfit_desc *acpi_desc,
874 		struct nfit_table_prev *prev, void *table, const void *end)
875 {
876 	struct device *dev = acpi_desc->dev;
877 	struct acpi_nfit_header *hdr;
878 	void *err = ERR_PTR(-ENOMEM);
879 
880 	if (table >= end)
881 		return NULL;
882 
883 	hdr = table;
884 	if (!hdr->length) {
885 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
886 			hdr->type);
887 		return NULL;
888 	}
889 
890 	switch (hdr->type) {
891 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
892 		if (!add_spa(acpi_desc, prev, table))
893 			return err;
894 		break;
895 	case ACPI_NFIT_TYPE_MEMORY_MAP:
896 		if (!add_memdev(acpi_desc, prev, table))
897 			return err;
898 		break;
899 	case ACPI_NFIT_TYPE_CONTROL_REGION:
900 		if (!add_dcr(acpi_desc, prev, table))
901 			return err;
902 		break;
903 	case ACPI_NFIT_TYPE_DATA_REGION:
904 		if (!add_bdw(acpi_desc, prev, table))
905 			return err;
906 		break;
907 	case ACPI_NFIT_TYPE_INTERLEAVE:
908 		if (!add_idt(acpi_desc, prev, table))
909 			return err;
910 		break;
911 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
912 		if (!add_flush(acpi_desc, prev, table))
913 			return err;
914 		break;
915 	case ACPI_NFIT_TYPE_SMBIOS:
916 		dev_dbg(dev, "smbios\n");
917 		break;
918 	case ACPI_NFIT_TYPE_CAPABILITIES:
919 		if (!add_platform_cap(acpi_desc, table))
920 			return err;
921 		break;
922 	default:
923 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
924 		break;
925 	}
926 
927 	return table + hdr->length;
928 }
929 
930 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
931 		struct nfit_mem *nfit_mem)
932 {
933 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
934 	u16 dcr = nfit_mem->dcr->region_index;
935 	struct nfit_spa *nfit_spa;
936 
937 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
938 		u16 range_index = nfit_spa->spa->range_index;
939 		int type = nfit_spa_type(nfit_spa->spa);
940 		struct nfit_memdev *nfit_memdev;
941 
942 		if (type != NFIT_SPA_BDW)
943 			continue;
944 
945 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
946 			if (nfit_memdev->memdev->range_index != range_index)
947 				continue;
948 			if (nfit_memdev->memdev->device_handle != device_handle)
949 				continue;
950 			if (nfit_memdev->memdev->region_index != dcr)
951 				continue;
952 
953 			nfit_mem->spa_bdw = nfit_spa->spa;
954 			return;
955 		}
956 	}
957 
958 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
959 			nfit_mem->spa_dcr->range_index);
960 	nfit_mem->bdw = NULL;
961 }
962 
963 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
964 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
965 {
966 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
967 	struct nfit_memdev *nfit_memdev;
968 	struct nfit_bdw *nfit_bdw;
969 	struct nfit_idt *nfit_idt;
970 	u16 idt_idx, range_index;
971 
972 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
973 		if (nfit_bdw->bdw->region_index != dcr)
974 			continue;
975 		nfit_mem->bdw = nfit_bdw->bdw;
976 		break;
977 	}
978 
979 	if (!nfit_mem->bdw)
980 		return;
981 
982 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
983 
984 	if (!nfit_mem->spa_bdw)
985 		return;
986 
987 	range_index = nfit_mem->spa_bdw->range_index;
988 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
989 		if (nfit_memdev->memdev->range_index != range_index ||
990 				nfit_memdev->memdev->region_index != dcr)
991 			continue;
992 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
993 		idt_idx = nfit_memdev->memdev->interleave_index;
994 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
995 			if (nfit_idt->idt->interleave_index != idt_idx)
996 				continue;
997 			nfit_mem->idt_bdw = nfit_idt->idt;
998 			break;
999 		}
1000 		break;
1001 	}
1002 }
1003 
1004 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1005 		struct acpi_nfit_system_address *spa)
1006 {
1007 	struct nfit_mem *nfit_mem, *found;
1008 	struct nfit_memdev *nfit_memdev;
1009 	int type = spa ? nfit_spa_type(spa) : 0;
1010 
1011 	switch (type) {
1012 	case NFIT_SPA_DCR:
1013 	case NFIT_SPA_PM:
1014 		break;
1015 	default:
1016 		if (spa)
1017 			return 0;
1018 	}
1019 
1020 	/*
1021 	 * This loop runs in two modes, when a dimm is mapped the loop
1022 	 * adds memdev associations to an existing dimm, or creates a
1023 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1024 	 * instances with an invalid / zero range_index and adds those
1025 	 * dimms without spa associations.
1026 	 */
1027 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1028 		struct nfit_flush *nfit_flush;
1029 		struct nfit_dcr *nfit_dcr;
1030 		u32 device_handle;
1031 		u16 dcr;
1032 
1033 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1034 			continue;
1035 		if (!spa && nfit_memdev->memdev->range_index)
1036 			continue;
1037 		found = NULL;
1038 		dcr = nfit_memdev->memdev->region_index;
1039 		device_handle = nfit_memdev->memdev->device_handle;
1040 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1041 			if (__to_nfit_memdev(nfit_mem)->device_handle
1042 					== device_handle) {
1043 				found = nfit_mem;
1044 				break;
1045 			}
1046 
1047 		if (found)
1048 			nfit_mem = found;
1049 		else {
1050 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1051 					sizeof(*nfit_mem), GFP_KERNEL);
1052 			if (!nfit_mem)
1053 				return -ENOMEM;
1054 			INIT_LIST_HEAD(&nfit_mem->list);
1055 			nfit_mem->acpi_desc = acpi_desc;
1056 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1057 		}
1058 
1059 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1060 			if (nfit_dcr->dcr->region_index != dcr)
1061 				continue;
1062 			/*
1063 			 * Record the control region for the dimm.  For
1064 			 * the ACPI 6.1 case, where there are separate
1065 			 * control regions for the pmem vs blk
1066 			 * interfaces, be sure to record the extended
1067 			 * blk details.
1068 			 */
1069 			if (!nfit_mem->dcr)
1070 				nfit_mem->dcr = nfit_dcr->dcr;
1071 			else if (nfit_mem->dcr->windows == 0
1072 					&& nfit_dcr->dcr->windows)
1073 				nfit_mem->dcr = nfit_dcr->dcr;
1074 			break;
1075 		}
1076 
1077 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1078 			struct acpi_nfit_flush_address *flush;
1079 			u16 i;
1080 
1081 			if (nfit_flush->flush->device_handle != device_handle)
1082 				continue;
1083 			nfit_mem->nfit_flush = nfit_flush;
1084 			flush = nfit_flush->flush;
1085 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1086 					flush->hint_count,
1087 					sizeof(struct resource),
1088 					GFP_KERNEL);
1089 			if (!nfit_mem->flush_wpq)
1090 				return -ENOMEM;
1091 			for (i = 0; i < flush->hint_count; i++) {
1092 				struct resource *res = &nfit_mem->flush_wpq[i];
1093 
1094 				res->start = flush->hint_address[i];
1095 				res->end = res->start + 8 - 1;
1096 			}
1097 			break;
1098 		}
1099 
1100 		if (dcr && !nfit_mem->dcr) {
1101 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1102 					spa->range_index, dcr);
1103 			return -ENODEV;
1104 		}
1105 
1106 		if (type == NFIT_SPA_DCR) {
1107 			struct nfit_idt *nfit_idt;
1108 			u16 idt_idx;
1109 
1110 			/* multiple dimms may share a SPA when interleaved */
1111 			nfit_mem->spa_dcr = spa;
1112 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1113 			idt_idx = nfit_memdev->memdev->interleave_index;
1114 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1115 				if (nfit_idt->idt->interleave_index != idt_idx)
1116 					continue;
1117 				nfit_mem->idt_dcr = nfit_idt->idt;
1118 				break;
1119 			}
1120 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1121 		} else if (type == NFIT_SPA_PM) {
1122 			/*
1123 			 * A single dimm may belong to multiple SPA-PM
1124 			 * ranges, record at least one in addition to
1125 			 * any SPA-DCR range.
1126 			 */
1127 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1128 		} else
1129 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1136 {
1137 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1138 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1139 	u32 handleA, handleB;
1140 
1141 	handleA = __to_nfit_memdev(a)->device_handle;
1142 	handleB = __to_nfit_memdev(b)->device_handle;
1143 	if (handleA < handleB)
1144 		return -1;
1145 	else if (handleA > handleB)
1146 		return 1;
1147 	return 0;
1148 }
1149 
1150 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1151 {
1152 	struct nfit_spa *nfit_spa;
1153 	int rc;
1154 
1155 
1156 	/*
1157 	 * For each SPA-DCR or SPA-PMEM address range find its
1158 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1159 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1160 	 * try to find a SPA-BDW and a corresponding BDW that references
1161 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1162 	 * BDWs are optional.
1163 	 */
1164 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1165 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1166 		if (rc)
1167 			return rc;
1168 	}
1169 
1170 	/*
1171 	 * If a DIMM has failed to be mapped into SPA there will be no
1172 	 * SPA entries above. Find and register all the unmapped DIMMs
1173 	 * for reporting and recovery purposes.
1174 	 */
1175 	rc = __nfit_mem_init(acpi_desc, NULL);
1176 	if (rc)
1177 		return rc;
1178 
1179 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1180 
1181 	return 0;
1182 }
1183 
1184 static ssize_t bus_dsm_mask_show(struct device *dev,
1185 		struct device_attribute *attr, char *buf)
1186 {
1187 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1188 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1189 
1190 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1191 }
1192 static struct device_attribute dev_attr_bus_dsm_mask =
1193 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1194 
1195 static ssize_t revision_show(struct device *dev,
1196 		struct device_attribute *attr, char *buf)
1197 {
1198 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1199 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1200 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1201 
1202 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1203 }
1204 static DEVICE_ATTR_RO(revision);
1205 
1206 static ssize_t hw_error_scrub_show(struct device *dev,
1207 		struct device_attribute *attr, char *buf)
1208 {
1209 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1210 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1211 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1212 
1213 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1214 }
1215 
1216 /*
1217  * The 'hw_error_scrub' attribute can have the following values written to it:
1218  * '0': Switch to the default mode where an exception will only insert
1219  *      the address of the memory error into the poison and badblocks lists.
1220  * '1': Enable a full scrub to happen if an exception for a memory error is
1221  *      received.
1222  */
1223 static ssize_t hw_error_scrub_store(struct device *dev,
1224 		struct device_attribute *attr, const char *buf, size_t size)
1225 {
1226 	struct nvdimm_bus_descriptor *nd_desc;
1227 	ssize_t rc;
1228 	long val;
1229 
1230 	rc = kstrtol(buf, 0, &val);
1231 	if (rc)
1232 		return rc;
1233 
1234 	device_lock(dev);
1235 	nd_desc = dev_get_drvdata(dev);
1236 	if (nd_desc) {
1237 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1238 
1239 		switch (val) {
1240 		case HW_ERROR_SCRUB_ON:
1241 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1242 			break;
1243 		case HW_ERROR_SCRUB_OFF:
1244 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1245 			break;
1246 		default:
1247 			rc = -EINVAL;
1248 			break;
1249 		}
1250 	}
1251 	device_unlock(dev);
1252 	if (rc)
1253 		return rc;
1254 	return size;
1255 }
1256 static DEVICE_ATTR_RW(hw_error_scrub);
1257 
1258 /*
1259  * This shows the number of full Address Range Scrubs that have been
1260  * completed since driver load time. Userspace can wait on this using
1261  * select/poll etc. A '+' at the end indicates an ARS is in progress
1262  */
1263 static ssize_t scrub_show(struct device *dev,
1264 		struct device_attribute *attr, char *buf)
1265 {
1266 	struct nvdimm_bus_descriptor *nd_desc;
1267 	ssize_t rc = -ENXIO;
1268 
1269 	device_lock(dev);
1270 	nd_desc = dev_get_drvdata(dev);
1271 	if (nd_desc) {
1272 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1273 
1274 		mutex_lock(&acpi_desc->init_mutex);
1275 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1276 				work_busy(&acpi_desc->dwork.work)
1277 				&& !acpi_desc->cancel ? "+\n" : "\n");
1278 		mutex_unlock(&acpi_desc->init_mutex);
1279 	}
1280 	device_unlock(dev);
1281 	return rc;
1282 }
1283 
1284 static ssize_t scrub_store(struct device *dev,
1285 		struct device_attribute *attr, const char *buf, size_t size)
1286 {
1287 	struct nvdimm_bus_descriptor *nd_desc;
1288 	ssize_t rc;
1289 	long val;
1290 
1291 	rc = kstrtol(buf, 0, &val);
1292 	if (rc)
1293 		return rc;
1294 	if (val != 1)
1295 		return -EINVAL;
1296 
1297 	device_lock(dev);
1298 	nd_desc = dev_get_drvdata(dev);
1299 	if (nd_desc) {
1300 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1301 
1302 		rc = acpi_nfit_ars_rescan(acpi_desc, 0);
1303 	}
1304 	device_unlock(dev);
1305 	if (rc)
1306 		return rc;
1307 	return size;
1308 }
1309 static DEVICE_ATTR_RW(scrub);
1310 
1311 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1312 {
1313 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1314 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1315 		| 1 << ND_CMD_ARS_STATUS;
1316 
1317 	return (nd_desc->cmd_mask & mask) == mask;
1318 }
1319 
1320 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1321 {
1322 	struct device *dev = container_of(kobj, struct device, kobj);
1323 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1324 
1325 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1326 		return 0;
1327 	return a->mode;
1328 }
1329 
1330 static struct attribute *acpi_nfit_attributes[] = {
1331 	&dev_attr_revision.attr,
1332 	&dev_attr_scrub.attr,
1333 	&dev_attr_hw_error_scrub.attr,
1334 	&dev_attr_bus_dsm_mask.attr,
1335 	NULL,
1336 };
1337 
1338 static const struct attribute_group acpi_nfit_attribute_group = {
1339 	.name = "nfit",
1340 	.attrs = acpi_nfit_attributes,
1341 	.is_visible = nfit_visible,
1342 };
1343 
1344 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1345 	&nvdimm_bus_attribute_group,
1346 	&acpi_nfit_attribute_group,
1347 	NULL,
1348 };
1349 
1350 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1351 {
1352 	struct nvdimm *nvdimm = to_nvdimm(dev);
1353 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1354 
1355 	return __to_nfit_memdev(nfit_mem);
1356 }
1357 
1358 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1359 {
1360 	struct nvdimm *nvdimm = to_nvdimm(dev);
1361 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1362 
1363 	return nfit_mem->dcr;
1364 }
1365 
1366 static ssize_t handle_show(struct device *dev,
1367 		struct device_attribute *attr, char *buf)
1368 {
1369 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1370 
1371 	return sprintf(buf, "%#x\n", memdev->device_handle);
1372 }
1373 static DEVICE_ATTR_RO(handle);
1374 
1375 static ssize_t phys_id_show(struct device *dev,
1376 		struct device_attribute *attr, char *buf)
1377 {
1378 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1379 
1380 	return sprintf(buf, "%#x\n", memdev->physical_id);
1381 }
1382 static DEVICE_ATTR_RO(phys_id);
1383 
1384 static ssize_t vendor_show(struct device *dev,
1385 		struct device_attribute *attr, char *buf)
1386 {
1387 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1388 
1389 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1390 }
1391 static DEVICE_ATTR_RO(vendor);
1392 
1393 static ssize_t rev_id_show(struct device *dev,
1394 		struct device_attribute *attr, char *buf)
1395 {
1396 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1397 
1398 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1399 }
1400 static DEVICE_ATTR_RO(rev_id);
1401 
1402 static ssize_t device_show(struct device *dev,
1403 		struct device_attribute *attr, char *buf)
1404 {
1405 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1406 
1407 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1408 }
1409 static DEVICE_ATTR_RO(device);
1410 
1411 static ssize_t subsystem_vendor_show(struct device *dev,
1412 		struct device_attribute *attr, char *buf)
1413 {
1414 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1415 
1416 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1417 }
1418 static DEVICE_ATTR_RO(subsystem_vendor);
1419 
1420 static ssize_t subsystem_rev_id_show(struct device *dev,
1421 		struct device_attribute *attr, char *buf)
1422 {
1423 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1424 
1425 	return sprintf(buf, "0x%04x\n",
1426 			be16_to_cpu(dcr->subsystem_revision_id));
1427 }
1428 static DEVICE_ATTR_RO(subsystem_rev_id);
1429 
1430 static ssize_t subsystem_device_show(struct device *dev,
1431 		struct device_attribute *attr, char *buf)
1432 {
1433 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1434 
1435 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1436 }
1437 static DEVICE_ATTR_RO(subsystem_device);
1438 
1439 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1440 {
1441 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1442 	int formats = 0;
1443 
1444 	if (nfit_mem->memdev_pmem)
1445 		formats++;
1446 	if (nfit_mem->memdev_bdw)
1447 		formats++;
1448 	return formats;
1449 }
1450 
1451 static ssize_t format_show(struct device *dev,
1452 		struct device_attribute *attr, char *buf)
1453 {
1454 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1455 
1456 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1457 }
1458 static DEVICE_ATTR_RO(format);
1459 
1460 static ssize_t format1_show(struct device *dev,
1461 		struct device_attribute *attr, char *buf)
1462 {
1463 	u32 handle;
1464 	ssize_t rc = -ENXIO;
1465 	struct nfit_mem *nfit_mem;
1466 	struct nfit_memdev *nfit_memdev;
1467 	struct acpi_nfit_desc *acpi_desc;
1468 	struct nvdimm *nvdimm = to_nvdimm(dev);
1469 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1470 
1471 	nfit_mem = nvdimm_provider_data(nvdimm);
1472 	acpi_desc = nfit_mem->acpi_desc;
1473 	handle = to_nfit_memdev(dev)->device_handle;
1474 
1475 	/* assumes DIMMs have at most 2 published interface codes */
1476 	mutex_lock(&acpi_desc->init_mutex);
1477 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1478 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1479 		struct nfit_dcr *nfit_dcr;
1480 
1481 		if (memdev->device_handle != handle)
1482 			continue;
1483 
1484 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1485 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1486 				continue;
1487 			if (nfit_dcr->dcr->code == dcr->code)
1488 				continue;
1489 			rc = sprintf(buf, "0x%04x\n",
1490 					le16_to_cpu(nfit_dcr->dcr->code));
1491 			break;
1492 		}
1493 		if (rc != ENXIO)
1494 			break;
1495 	}
1496 	mutex_unlock(&acpi_desc->init_mutex);
1497 	return rc;
1498 }
1499 static DEVICE_ATTR_RO(format1);
1500 
1501 static ssize_t formats_show(struct device *dev,
1502 		struct device_attribute *attr, char *buf)
1503 {
1504 	struct nvdimm *nvdimm = to_nvdimm(dev);
1505 
1506 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1507 }
1508 static DEVICE_ATTR_RO(formats);
1509 
1510 static ssize_t serial_show(struct device *dev,
1511 		struct device_attribute *attr, char *buf)
1512 {
1513 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1514 
1515 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1516 }
1517 static DEVICE_ATTR_RO(serial);
1518 
1519 static ssize_t family_show(struct device *dev,
1520 		struct device_attribute *attr, char *buf)
1521 {
1522 	struct nvdimm *nvdimm = to_nvdimm(dev);
1523 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1524 
1525 	if (nfit_mem->family < 0)
1526 		return -ENXIO;
1527 	return sprintf(buf, "%d\n", nfit_mem->family);
1528 }
1529 static DEVICE_ATTR_RO(family);
1530 
1531 static ssize_t dsm_mask_show(struct device *dev,
1532 		struct device_attribute *attr, char *buf)
1533 {
1534 	struct nvdimm *nvdimm = to_nvdimm(dev);
1535 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1536 
1537 	if (nfit_mem->family < 0)
1538 		return -ENXIO;
1539 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1540 }
1541 static DEVICE_ATTR_RO(dsm_mask);
1542 
1543 static ssize_t flags_show(struct device *dev,
1544 		struct device_attribute *attr, char *buf)
1545 {
1546 	u16 flags = to_nfit_memdev(dev)->flags;
1547 
1548 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1549 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1550 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1551 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1552 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1553 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1554 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1555 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1556 }
1557 static DEVICE_ATTR_RO(flags);
1558 
1559 static ssize_t id_show(struct device *dev,
1560 		struct device_attribute *attr, char *buf)
1561 {
1562 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1563 
1564 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1565 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1566 				be16_to_cpu(dcr->vendor_id),
1567 				dcr->manufacturing_location,
1568 				be16_to_cpu(dcr->manufacturing_date),
1569 				be32_to_cpu(dcr->serial_number));
1570 	else
1571 		return sprintf(buf, "%04x-%08x\n",
1572 				be16_to_cpu(dcr->vendor_id),
1573 				be32_to_cpu(dcr->serial_number));
1574 }
1575 static DEVICE_ATTR_RO(id);
1576 
1577 static struct attribute *acpi_nfit_dimm_attributes[] = {
1578 	&dev_attr_handle.attr,
1579 	&dev_attr_phys_id.attr,
1580 	&dev_attr_vendor.attr,
1581 	&dev_attr_device.attr,
1582 	&dev_attr_rev_id.attr,
1583 	&dev_attr_subsystem_vendor.attr,
1584 	&dev_attr_subsystem_device.attr,
1585 	&dev_attr_subsystem_rev_id.attr,
1586 	&dev_attr_format.attr,
1587 	&dev_attr_formats.attr,
1588 	&dev_attr_format1.attr,
1589 	&dev_attr_serial.attr,
1590 	&dev_attr_flags.attr,
1591 	&dev_attr_id.attr,
1592 	&dev_attr_family.attr,
1593 	&dev_attr_dsm_mask.attr,
1594 	NULL,
1595 };
1596 
1597 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1598 		struct attribute *a, int n)
1599 {
1600 	struct device *dev = container_of(kobj, struct device, kobj);
1601 	struct nvdimm *nvdimm = to_nvdimm(dev);
1602 
1603 	if (!to_nfit_dcr(dev)) {
1604 		/* Without a dcr only the memdev attributes can be surfaced */
1605 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1606 				|| a == &dev_attr_flags.attr
1607 				|| a == &dev_attr_family.attr
1608 				|| a == &dev_attr_dsm_mask.attr)
1609 			return a->mode;
1610 		return 0;
1611 	}
1612 
1613 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1614 		return 0;
1615 	return a->mode;
1616 }
1617 
1618 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1619 	.name = "nfit",
1620 	.attrs = acpi_nfit_dimm_attributes,
1621 	.is_visible = acpi_nfit_dimm_attr_visible,
1622 };
1623 
1624 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1625 	&nvdimm_attribute_group,
1626 	&nd_device_attribute_group,
1627 	&acpi_nfit_dimm_attribute_group,
1628 	NULL,
1629 };
1630 
1631 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1632 		u32 device_handle)
1633 {
1634 	struct nfit_mem *nfit_mem;
1635 
1636 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1637 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1638 			return nfit_mem->nvdimm;
1639 
1640 	return NULL;
1641 }
1642 
1643 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1644 {
1645 	struct nfit_mem *nfit_mem;
1646 	struct acpi_nfit_desc *acpi_desc;
1647 
1648 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1649 			event);
1650 
1651 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1652 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1653 				event);
1654 		return;
1655 	}
1656 
1657 	acpi_desc = dev_get_drvdata(dev->parent);
1658 	if (!acpi_desc)
1659 		return;
1660 
1661 	/*
1662 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1663 	 * is still valid.
1664 	 */
1665 	nfit_mem = dev_get_drvdata(dev);
1666 	if (nfit_mem && nfit_mem->flags_attr)
1667 		sysfs_notify_dirent(nfit_mem->flags_attr);
1668 }
1669 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1670 
1671 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1672 {
1673 	struct acpi_device *adev = data;
1674 	struct device *dev = &adev->dev;
1675 
1676 	device_lock(dev->parent);
1677 	__acpi_nvdimm_notify(dev, event);
1678 	device_unlock(dev->parent);
1679 }
1680 
1681 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1682 {
1683 	acpi_handle handle;
1684 	acpi_status status;
1685 
1686 	status = acpi_get_handle(adev->handle, method, &handle);
1687 
1688 	if (ACPI_SUCCESS(status))
1689 		return true;
1690 	return false;
1691 }
1692 
1693 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1694 		struct nfit_mem *nfit_mem, u32 device_handle)
1695 {
1696 	struct acpi_device *adev, *adev_dimm;
1697 	struct device *dev = acpi_desc->dev;
1698 	unsigned long dsm_mask;
1699 	const guid_t *guid;
1700 	int i;
1701 	int family = -1;
1702 
1703 	/* nfit test assumes 1:1 relationship between commands and dsms */
1704 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1705 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1706 	adev = to_acpi_dev(acpi_desc);
1707 	if (!adev)
1708 		return 0;
1709 
1710 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1711 	nfit_mem->adev = adev_dimm;
1712 	if (!adev_dimm) {
1713 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1714 				device_handle);
1715 		return force_enable_dimms ? 0 : -ENODEV;
1716 	}
1717 
1718 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1719 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1720 		dev_err(dev, "%s: notification registration failed\n",
1721 				dev_name(&adev_dimm->dev));
1722 		return -ENXIO;
1723 	}
1724 	/*
1725 	 * Record nfit_mem for the notification path to track back to
1726 	 * the nfit sysfs attributes for this dimm device object.
1727 	 */
1728 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1729 
1730 	/*
1731 	 * Until standardization materializes we need to consider 4
1732 	 * different command sets.  Note, that checking for function0 (bit0)
1733 	 * tells us if any commands are reachable through this GUID.
1734 	 */
1735 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1736 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1737 			if (family < 0 || i == default_dsm_family)
1738 				family = i;
1739 
1740 	/* limit the supported commands to those that are publicly documented */
1741 	nfit_mem->family = family;
1742 	if (override_dsm_mask && !disable_vendor_specific)
1743 		dsm_mask = override_dsm_mask;
1744 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1745 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1746 		if (disable_vendor_specific)
1747 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1748 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1749 		dsm_mask = 0x1c3c76;
1750 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1751 		dsm_mask = 0x1fe;
1752 		if (disable_vendor_specific)
1753 			dsm_mask &= ~(1 << 8);
1754 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1755 		dsm_mask = 0xffffffff;
1756 	} else {
1757 		dev_dbg(dev, "unknown dimm command family\n");
1758 		nfit_mem->family = -1;
1759 		/* DSMs are optional, continue loading the driver... */
1760 		return 0;
1761 	}
1762 
1763 	guid = to_nfit_uuid(nfit_mem->family);
1764 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1765 		if (acpi_check_dsm(adev_dimm->handle, guid,
1766 					nfit_dsm_revid(nfit_mem->family, i),
1767 					1ULL << i))
1768 			set_bit(i, &nfit_mem->dsm_mask);
1769 
1770 	if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1771 			&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1772 		dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1773 		nfit_mem->has_lsr = true;
1774 	}
1775 
1776 	if (nfit_mem->has_lsr && acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1777 		dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1778 		nfit_mem->has_lsw = true;
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static void shutdown_dimm_notify(void *data)
1785 {
1786 	struct acpi_nfit_desc *acpi_desc = data;
1787 	struct nfit_mem *nfit_mem;
1788 
1789 	mutex_lock(&acpi_desc->init_mutex);
1790 	/*
1791 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1792 	 * notifications.
1793 	 */
1794 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1795 		struct acpi_device *adev_dimm = nfit_mem->adev;
1796 
1797 		if (nfit_mem->flags_attr) {
1798 			sysfs_put(nfit_mem->flags_attr);
1799 			nfit_mem->flags_attr = NULL;
1800 		}
1801 		if (adev_dimm) {
1802 			acpi_remove_notify_handler(adev_dimm->handle,
1803 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1804 			dev_set_drvdata(&adev_dimm->dev, NULL);
1805 		}
1806 	}
1807 	mutex_unlock(&acpi_desc->init_mutex);
1808 }
1809 
1810 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1811 {
1812 	struct nfit_mem *nfit_mem;
1813 	int dimm_count = 0, rc;
1814 	struct nvdimm *nvdimm;
1815 
1816 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1817 		struct acpi_nfit_flush_address *flush;
1818 		unsigned long flags = 0, cmd_mask;
1819 		struct nfit_memdev *nfit_memdev;
1820 		u32 device_handle;
1821 		u16 mem_flags;
1822 
1823 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1824 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1825 		if (nvdimm) {
1826 			dimm_count++;
1827 			continue;
1828 		}
1829 
1830 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1831 			set_bit(NDD_ALIASING, &flags);
1832 
1833 		/* collate flags across all memdevs for this dimm */
1834 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1835 			struct acpi_nfit_memory_map *dimm_memdev;
1836 
1837 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1838 			if (dimm_memdev->device_handle
1839 					!= nfit_memdev->memdev->device_handle)
1840 				continue;
1841 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1842 		}
1843 
1844 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1845 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1846 			set_bit(NDD_UNARMED, &flags);
1847 
1848 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1849 		if (rc)
1850 			continue;
1851 
1852 		/*
1853 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1854 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1855 		 * userspace interface.
1856 		 */
1857 		cmd_mask = 1UL << ND_CMD_CALL;
1858 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1859 			/*
1860 			 * These commands have a 1:1 correspondence
1861 			 * between DSM payload and libnvdimm ioctl
1862 			 * payload format.
1863 			 */
1864 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
1865 		}
1866 
1867 		if (nfit_mem->has_lsr) {
1868 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
1869 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
1870 		}
1871 		if (nfit_mem->has_lsw)
1872 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
1873 
1874 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1875 			: NULL;
1876 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1877 				acpi_nfit_dimm_attribute_groups,
1878 				flags, cmd_mask, flush ? flush->hint_count : 0,
1879 				nfit_mem->flush_wpq);
1880 		if (!nvdimm)
1881 			return -ENOMEM;
1882 
1883 		nfit_mem->nvdimm = nvdimm;
1884 		dimm_count++;
1885 
1886 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1887 			continue;
1888 
1889 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
1890 				nvdimm_name(nvdimm),
1891 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1892 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1893 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1894 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
1895 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
1896 
1897 	}
1898 
1899 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1900 	if (rc)
1901 		return rc;
1902 
1903 	/*
1904 	 * Now that dimms are successfully registered, and async registration
1905 	 * is flushed, attempt to enable event notification.
1906 	 */
1907 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1908 		struct kernfs_node *nfit_kernfs;
1909 
1910 		nvdimm = nfit_mem->nvdimm;
1911 		if (!nvdimm)
1912 			continue;
1913 
1914 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1915 		if (nfit_kernfs)
1916 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1917 					"flags");
1918 		sysfs_put(nfit_kernfs);
1919 		if (!nfit_mem->flags_attr)
1920 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1921 					nvdimm_name(nvdimm));
1922 	}
1923 
1924 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1925 			acpi_desc);
1926 }
1927 
1928 /*
1929  * These constants are private because there are no kernel consumers of
1930  * these commands.
1931  */
1932 enum nfit_aux_cmds {
1933         NFIT_CMD_TRANSLATE_SPA = 5,
1934         NFIT_CMD_ARS_INJECT_SET = 7,
1935         NFIT_CMD_ARS_INJECT_CLEAR = 8,
1936         NFIT_CMD_ARS_INJECT_GET = 9,
1937 };
1938 
1939 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1940 {
1941 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1942 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
1943 	struct acpi_device *adev;
1944 	unsigned long dsm_mask;
1945 	int i;
1946 
1947 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1948 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
1949 	adev = to_acpi_dev(acpi_desc);
1950 	if (!adev)
1951 		return;
1952 
1953 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1954 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1955 			set_bit(i, &nd_desc->cmd_mask);
1956 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
1957 
1958 	dsm_mask =
1959 		(1 << ND_CMD_ARS_CAP) |
1960 		(1 << ND_CMD_ARS_START) |
1961 		(1 << ND_CMD_ARS_STATUS) |
1962 		(1 << ND_CMD_CLEAR_ERROR) |
1963 		(1 << NFIT_CMD_TRANSLATE_SPA) |
1964 		(1 << NFIT_CMD_ARS_INJECT_SET) |
1965 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
1966 		(1 << NFIT_CMD_ARS_INJECT_GET);
1967 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1968 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1969 			set_bit(i, &nd_desc->bus_dsm_mask);
1970 }
1971 
1972 static ssize_t range_index_show(struct device *dev,
1973 		struct device_attribute *attr, char *buf)
1974 {
1975 	struct nd_region *nd_region = to_nd_region(dev);
1976 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1977 
1978 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1979 }
1980 static DEVICE_ATTR_RO(range_index);
1981 
1982 static struct attribute *acpi_nfit_region_attributes[] = {
1983 	&dev_attr_range_index.attr,
1984 	NULL,
1985 };
1986 
1987 static const struct attribute_group acpi_nfit_region_attribute_group = {
1988 	.name = "nfit",
1989 	.attrs = acpi_nfit_region_attributes,
1990 };
1991 
1992 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1993 	&nd_region_attribute_group,
1994 	&nd_mapping_attribute_group,
1995 	&nd_device_attribute_group,
1996 	&nd_numa_attribute_group,
1997 	&acpi_nfit_region_attribute_group,
1998 	NULL,
1999 };
2000 
2001 /* enough info to uniquely specify an interleave set */
2002 struct nfit_set_info {
2003 	struct nfit_set_info_map {
2004 		u64 region_offset;
2005 		u32 serial_number;
2006 		u32 pad;
2007 	} mapping[0];
2008 };
2009 
2010 struct nfit_set_info2 {
2011 	struct nfit_set_info_map2 {
2012 		u64 region_offset;
2013 		u32 serial_number;
2014 		u16 vendor_id;
2015 		u16 manufacturing_date;
2016 		u8  manufacturing_location;
2017 		u8  reserved[31];
2018 	} mapping[0];
2019 };
2020 
2021 static size_t sizeof_nfit_set_info(int num_mappings)
2022 {
2023 	return sizeof(struct nfit_set_info)
2024 		+ num_mappings * sizeof(struct nfit_set_info_map);
2025 }
2026 
2027 static size_t sizeof_nfit_set_info2(int num_mappings)
2028 {
2029 	return sizeof(struct nfit_set_info2)
2030 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2031 }
2032 
2033 static int cmp_map_compat(const void *m0, const void *m1)
2034 {
2035 	const struct nfit_set_info_map *map0 = m0;
2036 	const struct nfit_set_info_map *map1 = m1;
2037 
2038 	return memcmp(&map0->region_offset, &map1->region_offset,
2039 			sizeof(u64));
2040 }
2041 
2042 static int cmp_map(const void *m0, const void *m1)
2043 {
2044 	const struct nfit_set_info_map *map0 = m0;
2045 	const struct nfit_set_info_map *map1 = m1;
2046 
2047 	if (map0->region_offset < map1->region_offset)
2048 		return -1;
2049 	else if (map0->region_offset > map1->region_offset)
2050 		return 1;
2051 	return 0;
2052 }
2053 
2054 static int cmp_map2(const void *m0, const void *m1)
2055 {
2056 	const struct nfit_set_info_map2 *map0 = m0;
2057 	const struct nfit_set_info_map2 *map1 = m1;
2058 
2059 	if (map0->region_offset < map1->region_offset)
2060 		return -1;
2061 	else if (map0->region_offset > map1->region_offset)
2062 		return 1;
2063 	return 0;
2064 }
2065 
2066 /* Retrieve the nth entry referencing this spa */
2067 static struct acpi_nfit_memory_map *memdev_from_spa(
2068 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2069 {
2070 	struct nfit_memdev *nfit_memdev;
2071 
2072 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2073 		if (nfit_memdev->memdev->range_index == range_index)
2074 			if (n-- == 0)
2075 				return nfit_memdev->memdev;
2076 	return NULL;
2077 }
2078 
2079 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2080 		struct nd_region_desc *ndr_desc,
2081 		struct acpi_nfit_system_address *spa)
2082 {
2083 	struct device *dev = acpi_desc->dev;
2084 	struct nd_interleave_set *nd_set;
2085 	u16 nr = ndr_desc->num_mappings;
2086 	struct nfit_set_info2 *info2;
2087 	struct nfit_set_info *info;
2088 	int i;
2089 
2090 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2091 	if (!nd_set)
2092 		return -ENOMEM;
2093 	ndr_desc->nd_set = nd_set;
2094 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2095 
2096 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2097 	if (!info)
2098 		return -ENOMEM;
2099 
2100 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2101 	if (!info2)
2102 		return -ENOMEM;
2103 
2104 	for (i = 0; i < nr; i++) {
2105 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2106 		struct nfit_set_info_map *map = &info->mapping[i];
2107 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2108 		struct nvdimm *nvdimm = mapping->nvdimm;
2109 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2110 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2111 				spa->range_index, i);
2112 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2113 
2114 		if (!memdev || !nfit_mem->dcr) {
2115 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2116 			return -ENODEV;
2117 		}
2118 
2119 		map->region_offset = memdev->region_offset;
2120 		map->serial_number = dcr->serial_number;
2121 
2122 		map2->region_offset = memdev->region_offset;
2123 		map2->serial_number = dcr->serial_number;
2124 		map2->vendor_id = dcr->vendor_id;
2125 		map2->manufacturing_date = dcr->manufacturing_date;
2126 		map2->manufacturing_location = dcr->manufacturing_location;
2127 	}
2128 
2129 	/* v1.1 namespaces */
2130 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2131 			cmp_map, NULL);
2132 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2133 
2134 	/* v1.2 namespaces */
2135 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2136 			cmp_map2, NULL);
2137 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2138 
2139 	/* support v1.1 namespaces created with the wrong sort order */
2140 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2141 			cmp_map_compat, NULL);
2142 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2143 
2144 	/* record the result of the sort for the mapping position */
2145 	for (i = 0; i < nr; i++) {
2146 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2147 		int j;
2148 
2149 		for (j = 0; j < nr; j++) {
2150 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2151 			struct nvdimm *nvdimm = mapping->nvdimm;
2152 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2153 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2154 
2155 			if (map2->serial_number == dcr->serial_number &&
2156 			    map2->vendor_id == dcr->vendor_id &&
2157 			    map2->manufacturing_date == dcr->manufacturing_date &&
2158 			    map2->manufacturing_location
2159 				    == dcr->manufacturing_location) {
2160 				mapping->position = i;
2161 				break;
2162 			}
2163 		}
2164 	}
2165 
2166 	ndr_desc->nd_set = nd_set;
2167 	devm_kfree(dev, info);
2168 	devm_kfree(dev, info2);
2169 
2170 	return 0;
2171 }
2172 
2173 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2174 {
2175 	struct acpi_nfit_interleave *idt = mmio->idt;
2176 	u32 sub_line_offset, line_index, line_offset;
2177 	u64 line_no, table_skip_count, table_offset;
2178 
2179 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2180 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2181 	line_offset = idt->line_offset[line_index]
2182 		* mmio->line_size;
2183 	table_offset = table_skip_count * mmio->table_size;
2184 
2185 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2186 }
2187 
2188 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2189 {
2190 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2191 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2192 	const u32 STATUS_MASK = 0x80000037;
2193 
2194 	if (mmio->num_lines)
2195 		offset = to_interleave_offset(offset, mmio);
2196 
2197 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2198 }
2199 
2200 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2201 		resource_size_t dpa, unsigned int len, unsigned int write)
2202 {
2203 	u64 cmd, offset;
2204 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2205 
2206 	enum {
2207 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2208 		BCW_LEN_SHIFT = 48,
2209 		BCW_LEN_MASK = (1ULL << 8) - 1,
2210 		BCW_CMD_SHIFT = 56,
2211 	};
2212 
2213 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2214 	len = len >> L1_CACHE_SHIFT;
2215 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2216 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2217 
2218 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2219 	if (mmio->num_lines)
2220 		offset = to_interleave_offset(offset, mmio);
2221 
2222 	writeq(cmd, mmio->addr.base + offset);
2223 	nvdimm_flush(nfit_blk->nd_region);
2224 
2225 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2226 		readq(mmio->addr.base + offset);
2227 }
2228 
2229 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2230 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2231 		unsigned int lane)
2232 {
2233 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2234 	unsigned int copied = 0;
2235 	u64 base_offset;
2236 	int rc;
2237 
2238 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2239 		+ lane * mmio->size;
2240 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2241 	while (len) {
2242 		unsigned int c;
2243 		u64 offset;
2244 
2245 		if (mmio->num_lines) {
2246 			u32 line_offset;
2247 
2248 			offset = to_interleave_offset(base_offset + copied,
2249 					mmio);
2250 			div_u64_rem(offset, mmio->line_size, &line_offset);
2251 			c = min_t(size_t, len, mmio->line_size - line_offset);
2252 		} else {
2253 			offset = base_offset + nfit_blk->bdw_offset;
2254 			c = len;
2255 		}
2256 
2257 		if (rw)
2258 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2259 		else {
2260 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2261 				arch_invalidate_pmem((void __force *)
2262 					mmio->addr.aperture + offset, c);
2263 
2264 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2265 		}
2266 
2267 		copied += c;
2268 		len -= c;
2269 	}
2270 
2271 	if (rw)
2272 		nvdimm_flush(nfit_blk->nd_region);
2273 
2274 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2275 	return rc;
2276 }
2277 
2278 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2279 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2280 {
2281 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2282 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2283 	struct nd_region *nd_region = nfit_blk->nd_region;
2284 	unsigned int lane, copied = 0;
2285 	int rc = 0;
2286 
2287 	lane = nd_region_acquire_lane(nd_region);
2288 	while (len) {
2289 		u64 c = min(len, mmio->size);
2290 
2291 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2292 				iobuf + copied, c, rw, lane);
2293 		if (rc)
2294 			break;
2295 
2296 		copied += c;
2297 		len -= c;
2298 	}
2299 	nd_region_release_lane(nd_region, lane);
2300 
2301 	return rc;
2302 }
2303 
2304 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2305 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2306 {
2307 	if (idt) {
2308 		mmio->num_lines = idt->line_count;
2309 		mmio->line_size = idt->line_size;
2310 		if (interleave_ways == 0)
2311 			return -ENXIO;
2312 		mmio->table_size = mmio->num_lines * interleave_ways
2313 			* mmio->line_size;
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2320 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2321 {
2322 	struct nd_cmd_dimm_flags flags;
2323 	int rc;
2324 
2325 	memset(&flags, 0, sizeof(flags));
2326 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2327 			sizeof(flags), NULL);
2328 
2329 	if (rc >= 0 && flags.status == 0)
2330 		nfit_blk->dimm_flags = flags.flags;
2331 	else if (rc == -ENOTTY) {
2332 		/* fall back to a conservative default */
2333 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2334 		rc = 0;
2335 	} else
2336 		rc = -ENXIO;
2337 
2338 	return rc;
2339 }
2340 
2341 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2342 		struct device *dev)
2343 {
2344 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2345 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2346 	struct nfit_blk_mmio *mmio;
2347 	struct nfit_blk *nfit_blk;
2348 	struct nfit_mem *nfit_mem;
2349 	struct nvdimm *nvdimm;
2350 	int rc;
2351 
2352 	nvdimm = nd_blk_region_to_dimm(ndbr);
2353 	nfit_mem = nvdimm_provider_data(nvdimm);
2354 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2355 		dev_dbg(dev, "missing%s%s%s\n",
2356 				nfit_mem ? "" : " nfit_mem",
2357 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2358 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2359 		return -ENXIO;
2360 	}
2361 
2362 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2363 	if (!nfit_blk)
2364 		return -ENOMEM;
2365 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2366 	nfit_blk->nd_region = to_nd_region(dev);
2367 
2368 	/* map block aperture memory */
2369 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2370 	mmio = &nfit_blk->mmio[BDW];
2371 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2372                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2373 	if (!mmio->addr.base) {
2374 		dev_dbg(dev, "%s failed to map bdw\n",
2375 				nvdimm_name(nvdimm));
2376 		return -ENOMEM;
2377 	}
2378 	mmio->size = nfit_mem->bdw->size;
2379 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2380 	mmio->idt = nfit_mem->idt_bdw;
2381 	mmio->spa = nfit_mem->spa_bdw;
2382 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2383 			nfit_mem->memdev_bdw->interleave_ways);
2384 	if (rc) {
2385 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2386 				nvdimm_name(nvdimm));
2387 		return rc;
2388 	}
2389 
2390 	/* map block control memory */
2391 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2392 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2393 	mmio = &nfit_blk->mmio[DCR];
2394 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2395 			nfit_mem->spa_dcr->length);
2396 	if (!mmio->addr.base) {
2397 		dev_dbg(dev, "%s failed to map dcr\n",
2398 				nvdimm_name(nvdimm));
2399 		return -ENOMEM;
2400 	}
2401 	mmio->size = nfit_mem->dcr->window_size;
2402 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2403 	mmio->idt = nfit_mem->idt_dcr;
2404 	mmio->spa = nfit_mem->spa_dcr;
2405 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2406 			nfit_mem->memdev_dcr->interleave_ways);
2407 	if (rc) {
2408 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2409 				nvdimm_name(nvdimm));
2410 		return rc;
2411 	}
2412 
2413 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2414 	if (rc < 0) {
2415 		dev_dbg(dev, "%s failed get DIMM flags\n",
2416 				nvdimm_name(nvdimm));
2417 		return rc;
2418 	}
2419 
2420 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2421 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2422 
2423 	if (mmio->line_size == 0)
2424 		return 0;
2425 
2426 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2427 			+ 8 > mmio->line_size) {
2428 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2429 		return -ENXIO;
2430 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2431 			+ 8 > mmio->line_size) {
2432 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2433 		return -ENXIO;
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2440 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2441 {
2442 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2443 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2444 	int cmd_rc, rc;
2445 
2446 	cmd->address = spa->address;
2447 	cmd->length = spa->length;
2448 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2449 			sizeof(*cmd), &cmd_rc);
2450 	if (rc < 0)
2451 		return rc;
2452 	return cmd_rc;
2453 }
2454 
2455 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
2456 {
2457 	int rc;
2458 	int cmd_rc;
2459 	struct nd_cmd_ars_start ars_start;
2460 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2461 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2462 
2463 	memset(&ars_start, 0, sizeof(ars_start));
2464 	ars_start.address = spa->address;
2465 	ars_start.length = spa->length;
2466 	if (test_bit(ARS_SHORT, &nfit_spa->ars_state))
2467 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2468 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2469 		ars_start.type = ND_ARS_PERSISTENT;
2470 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2471 		ars_start.type = ND_ARS_VOLATILE;
2472 	else
2473 		return -ENOTTY;
2474 
2475 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2476 			sizeof(ars_start), &cmd_rc);
2477 
2478 	if (rc < 0)
2479 		return rc;
2480 	return cmd_rc;
2481 }
2482 
2483 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2484 {
2485 	int rc, cmd_rc;
2486 	struct nd_cmd_ars_start ars_start;
2487 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2488 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2489 
2490 	memset(&ars_start, 0, sizeof(ars_start));
2491 	ars_start.address = ars_status->restart_address;
2492 	ars_start.length = ars_status->restart_length;
2493 	ars_start.type = ars_status->type;
2494 	ars_start.flags = acpi_desc->ars_start_flags;
2495 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2496 			sizeof(ars_start), &cmd_rc);
2497 	if (rc < 0)
2498 		return rc;
2499 	return cmd_rc;
2500 }
2501 
2502 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2503 {
2504 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2505 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2506 	int rc, cmd_rc;
2507 
2508 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2509 			acpi_desc->max_ars, &cmd_rc);
2510 	if (rc < 0)
2511 		return rc;
2512 	return cmd_rc;
2513 }
2514 
2515 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2516 		struct nfit_spa *nfit_spa)
2517 {
2518 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2519 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2520 	struct nd_region *nd_region = nfit_spa->nd_region;
2521 	struct device *dev;
2522 
2523 	if ((ars_status->address >= spa->address && ars_status->address
2524 				< spa->address + spa->length)
2525 			|| (ars_status->address < spa->address)) {
2526 		/*
2527 		 * Assume that if a scrub starts at an offset from the
2528 		 * start of nfit_spa that we are in the continuation
2529 		 * case.
2530 		 *
2531 		 * Otherwise, if the scrub covers the spa range, mark
2532 		 * any pending request complete.
2533 		 */
2534 		if (ars_status->address + ars_status->length
2535 				>= spa->address + spa->length)
2536 				/* complete */;
2537 		else
2538 			return;
2539 	} else
2540 		return;
2541 
2542 	if (test_bit(ARS_DONE, &nfit_spa->ars_state))
2543 		return;
2544 
2545 	if (!test_and_clear_bit(ARS_REQ, &nfit_spa->ars_state))
2546 		return;
2547 
2548 	if (nd_region) {
2549 		dev = nd_region_dev(nd_region);
2550 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2551 	} else
2552 		dev = acpi_desc->dev;
2553 
2554 	dev_dbg(dev, "ARS: range %d %s complete\n", spa->range_index,
2555 			test_bit(ARS_SHORT, &nfit_spa->ars_state)
2556 			? "short" : "long");
2557 	clear_bit(ARS_SHORT, &nfit_spa->ars_state);
2558 	set_bit(ARS_DONE, &nfit_spa->ars_state);
2559 }
2560 
2561 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2562 {
2563 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2564 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2565 	int rc;
2566 	u32 i;
2567 
2568 	/*
2569 	 * First record starts at 44 byte offset from the start of the
2570 	 * payload.
2571 	 */
2572 	if (ars_status->out_length < 44)
2573 		return 0;
2574 	for (i = 0; i < ars_status->num_records; i++) {
2575 		/* only process full records */
2576 		if (ars_status->out_length
2577 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2578 			break;
2579 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2580 				ars_status->records[i].err_address,
2581 				ars_status->records[i].length);
2582 		if (rc)
2583 			return rc;
2584 	}
2585 	if (i < ars_status->num_records)
2586 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2587 
2588 	return 0;
2589 }
2590 
2591 static void acpi_nfit_remove_resource(void *data)
2592 {
2593 	struct resource *res = data;
2594 
2595 	remove_resource(res);
2596 }
2597 
2598 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2599 		struct nd_region_desc *ndr_desc)
2600 {
2601 	struct resource *res, *nd_res = ndr_desc->res;
2602 	int is_pmem, ret;
2603 
2604 	/* No operation if the region is already registered as PMEM */
2605 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2606 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2607 	if (is_pmem == REGION_INTERSECTS)
2608 		return 0;
2609 
2610 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2611 	if (!res)
2612 		return -ENOMEM;
2613 
2614 	res->name = "Persistent Memory";
2615 	res->start = nd_res->start;
2616 	res->end = nd_res->end;
2617 	res->flags = IORESOURCE_MEM;
2618 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2619 
2620 	ret = insert_resource(&iomem_resource, res);
2621 	if (ret)
2622 		return ret;
2623 
2624 	ret = devm_add_action_or_reset(acpi_desc->dev,
2625 					acpi_nfit_remove_resource,
2626 					res);
2627 	if (ret)
2628 		return ret;
2629 
2630 	return 0;
2631 }
2632 
2633 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2634 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2635 		struct acpi_nfit_memory_map *memdev,
2636 		struct nfit_spa *nfit_spa)
2637 {
2638 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2639 			memdev->device_handle);
2640 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2641 	struct nd_blk_region_desc *ndbr_desc;
2642 	struct nfit_mem *nfit_mem;
2643 	int rc;
2644 
2645 	if (!nvdimm) {
2646 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2647 				spa->range_index, memdev->device_handle);
2648 		return -ENODEV;
2649 	}
2650 
2651 	mapping->nvdimm = nvdimm;
2652 	switch (nfit_spa_type(spa)) {
2653 	case NFIT_SPA_PM:
2654 	case NFIT_SPA_VOLATILE:
2655 		mapping->start = memdev->address;
2656 		mapping->size = memdev->region_size;
2657 		break;
2658 	case NFIT_SPA_DCR:
2659 		nfit_mem = nvdimm_provider_data(nvdimm);
2660 		if (!nfit_mem || !nfit_mem->bdw) {
2661 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2662 					spa->range_index, nvdimm_name(nvdimm));
2663 			break;
2664 		}
2665 
2666 		mapping->size = nfit_mem->bdw->capacity;
2667 		mapping->start = nfit_mem->bdw->start_address;
2668 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2669 		ndr_desc->mapping = mapping;
2670 		ndr_desc->num_mappings = 1;
2671 		ndbr_desc = to_blk_region_desc(ndr_desc);
2672 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2673 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2674 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2675 		if (rc)
2676 			return rc;
2677 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2678 				ndr_desc);
2679 		if (!nfit_spa->nd_region)
2680 			return -ENOMEM;
2681 		break;
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2688 {
2689 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2690 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2691 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2692 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2693 }
2694 
2695 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2696 {
2697 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2698 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2699 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2700 }
2701 
2702 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2703 		struct nfit_spa *nfit_spa)
2704 {
2705 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2706 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2707 	struct nd_blk_region_desc ndbr_desc;
2708 	struct nd_region_desc *ndr_desc;
2709 	struct nfit_memdev *nfit_memdev;
2710 	struct nvdimm_bus *nvdimm_bus;
2711 	struct resource res;
2712 	int count = 0, rc;
2713 
2714 	if (nfit_spa->nd_region)
2715 		return 0;
2716 
2717 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2718 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2719 		return 0;
2720 	}
2721 
2722 	memset(&res, 0, sizeof(res));
2723 	memset(&mappings, 0, sizeof(mappings));
2724 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2725 	res.start = spa->address;
2726 	res.end = res.start + spa->length - 1;
2727 	ndr_desc = &ndbr_desc.ndr_desc;
2728 	ndr_desc->res = &res;
2729 	ndr_desc->provider_data = nfit_spa;
2730 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2731 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2732 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2733 						spa->proximity_domain);
2734 	else
2735 		ndr_desc->numa_node = NUMA_NO_NODE;
2736 
2737 	/*
2738 	 * Persistence domain bits are hierarchical, if
2739 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2740 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2741 	 */
2742 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2743 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2744 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2745 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2746 
2747 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2748 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2749 		struct nd_mapping_desc *mapping;
2750 
2751 		if (memdev->range_index != spa->range_index)
2752 			continue;
2753 		if (count >= ND_MAX_MAPPINGS) {
2754 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2755 					spa->range_index, ND_MAX_MAPPINGS);
2756 			return -ENXIO;
2757 		}
2758 		mapping = &mappings[count++];
2759 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2760 				memdev, nfit_spa);
2761 		if (rc)
2762 			goto out;
2763 	}
2764 
2765 	ndr_desc->mapping = mappings;
2766 	ndr_desc->num_mappings = count;
2767 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2768 	if (rc)
2769 		goto out;
2770 
2771 	nvdimm_bus = acpi_desc->nvdimm_bus;
2772 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2773 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2774 		if (rc) {
2775 			dev_warn(acpi_desc->dev,
2776 				"failed to insert pmem resource to iomem: %d\n",
2777 				rc);
2778 			goto out;
2779 		}
2780 
2781 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2782 				ndr_desc);
2783 		if (!nfit_spa->nd_region)
2784 			rc = -ENOMEM;
2785 	} else if (nfit_spa_is_volatile(spa)) {
2786 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2787 				ndr_desc);
2788 		if (!nfit_spa->nd_region)
2789 			rc = -ENOMEM;
2790 	} else if (nfit_spa_is_virtual(spa)) {
2791 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2792 				ndr_desc);
2793 		if (!nfit_spa->nd_region)
2794 			rc = -ENOMEM;
2795 	}
2796 
2797  out:
2798 	if (rc)
2799 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2800 				nfit_spa->spa->range_index);
2801 	return rc;
2802 }
2803 
2804 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2805 {
2806 	struct device *dev = acpi_desc->dev;
2807 	struct nd_cmd_ars_status *ars_status;
2808 
2809 	if (acpi_desc->ars_status) {
2810 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2811 		return 0;
2812 	}
2813 
2814 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2815 	if (!ars_status)
2816 		return -ENOMEM;
2817 	acpi_desc->ars_status = ars_status;
2818 	return 0;
2819 }
2820 
2821 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2822 {
2823 	int rc;
2824 
2825 	if (ars_status_alloc(acpi_desc))
2826 		return -ENOMEM;
2827 
2828 	rc = ars_get_status(acpi_desc);
2829 
2830 	if (rc < 0 && rc != -ENOSPC)
2831 		return rc;
2832 
2833 	if (ars_status_process_records(acpi_desc))
2834 		return -ENOMEM;
2835 
2836 	return 0;
2837 }
2838 
2839 static int ars_register(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa,
2840 		int *query_rc)
2841 {
2842 	int rc = *query_rc;
2843 
2844 	if (no_init_ars)
2845 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2846 
2847 	set_bit(ARS_REQ, &nfit_spa->ars_state);
2848 	set_bit(ARS_SHORT, &nfit_spa->ars_state);
2849 
2850 	switch (rc) {
2851 	case 0:
2852 	case -EAGAIN:
2853 		rc = ars_start(acpi_desc, nfit_spa);
2854 		if (rc == -EBUSY) {
2855 			*query_rc = rc;
2856 			break;
2857 		} else if (rc == 0) {
2858 			rc = acpi_nfit_query_poison(acpi_desc);
2859 		} else {
2860 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2861 			break;
2862 		}
2863 		if (rc == -EAGAIN)
2864 			clear_bit(ARS_SHORT, &nfit_spa->ars_state);
2865 		else if (rc == 0)
2866 			ars_complete(acpi_desc, nfit_spa);
2867 		break;
2868 	case -EBUSY:
2869 	case -ENOSPC:
2870 		break;
2871 	default:
2872 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2873 		break;
2874 	}
2875 
2876 	if (test_and_clear_bit(ARS_DONE, &nfit_spa->ars_state))
2877 		set_bit(ARS_REQ, &nfit_spa->ars_state);
2878 
2879 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2880 }
2881 
2882 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2883 {
2884 	struct nfit_spa *nfit_spa;
2885 
2886 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2887 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2888 			continue;
2889 		ars_complete(acpi_desc, nfit_spa);
2890 	}
2891 }
2892 
2893 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2894 		int query_rc)
2895 {
2896 	unsigned int tmo = acpi_desc->scrub_tmo;
2897 	struct device *dev = acpi_desc->dev;
2898 	struct nfit_spa *nfit_spa;
2899 
2900 	if (acpi_desc->cancel)
2901 		return 0;
2902 
2903 	if (query_rc == -EBUSY) {
2904 		dev_dbg(dev, "ARS: ARS busy\n");
2905 		return min(30U * 60U, tmo * 2);
2906 	}
2907 	if (query_rc == -ENOSPC) {
2908 		dev_dbg(dev, "ARS: ARS continue\n");
2909 		ars_continue(acpi_desc);
2910 		return 1;
2911 	}
2912 	if (query_rc && query_rc != -EAGAIN) {
2913 		unsigned long long addr, end;
2914 
2915 		addr = acpi_desc->ars_status->address;
2916 		end = addr + acpi_desc->ars_status->length;
2917 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
2918 				query_rc);
2919 	}
2920 
2921 	ars_complete_all(acpi_desc);
2922 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2923 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2924 			continue;
2925 		if (test_bit(ARS_REQ, &nfit_spa->ars_state)) {
2926 			int rc = ars_start(acpi_desc, nfit_spa);
2927 
2928 			clear_bit(ARS_DONE, &nfit_spa->ars_state);
2929 			dev = nd_region_dev(nfit_spa->nd_region);
2930 			dev_dbg(dev, "ARS: range %d ARS start (%d)\n",
2931 					nfit_spa->spa->range_index, rc);
2932 			if (rc == 0 || rc == -EBUSY)
2933 				return 1;
2934 			dev_err(dev, "ARS: range %d ARS failed (%d)\n",
2935 					nfit_spa->spa->range_index, rc);
2936 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2937 		}
2938 	}
2939 	return 0;
2940 }
2941 
2942 static void acpi_nfit_scrub(struct work_struct *work)
2943 {
2944 	struct acpi_nfit_desc *acpi_desc;
2945 	unsigned int tmo;
2946 	int query_rc;
2947 
2948 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
2949 	mutex_lock(&acpi_desc->init_mutex);
2950 	query_rc = acpi_nfit_query_poison(acpi_desc);
2951 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
2952 	if (tmo) {
2953 		queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
2954 		acpi_desc->scrub_tmo = tmo;
2955 	} else {
2956 		acpi_desc->scrub_count++;
2957 		if (acpi_desc->scrub_count_state)
2958 			sysfs_notify_dirent(acpi_desc->scrub_count_state);
2959 	}
2960 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2961 	mutex_unlock(&acpi_desc->init_mutex);
2962 }
2963 
2964 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
2965 		struct nfit_spa *nfit_spa)
2966 {
2967 	int type = nfit_spa_type(nfit_spa->spa);
2968 	struct nd_cmd_ars_cap ars_cap;
2969 	int rc;
2970 
2971 	memset(&ars_cap, 0, sizeof(ars_cap));
2972 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2973 	if (rc < 0)
2974 		return;
2975 	/* check that the supported scrub types match the spa type */
2976 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
2977 				& ND_ARS_VOLATILE) == 0)
2978 		return;
2979 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
2980 				& ND_ARS_PERSISTENT) == 0)
2981 		return;
2982 
2983 	nfit_spa->max_ars = ars_cap.max_ars_out;
2984 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2985 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
2986 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
2987 	set_bit(ARS_REQ, &nfit_spa->ars_state);
2988 }
2989 
2990 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2991 {
2992 	struct nfit_spa *nfit_spa;
2993 	int rc, query_rc;
2994 
2995 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2996 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2997 		switch (nfit_spa_type(nfit_spa->spa)) {
2998 		case NFIT_SPA_VOLATILE:
2999 		case NFIT_SPA_PM:
3000 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3001 			break;
3002 		}
3003 	}
3004 
3005 	/*
3006 	 * Reap any results that might be pending before starting new
3007 	 * short requests.
3008 	 */
3009 	query_rc = acpi_nfit_query_poison(acpi_desc);
3010 	if (query_rc == 0)
3011 		ars_complete_all(acpi_desc);
3012 
3013 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3014 		switch (nfit_spa_type(nfit_spa->spa)) {
3015 		case NFIT_SPA_VOLATILE:
3016 		case NFIT_SPA_PM:
3017 			/* register regions and kick off initial ARS run */
3018 			rc = ars_register(acpi_desc, nfit_spa, &query_rc);
3019 			if (rc)
3020 				return rc;
3021 			break;
3022 		case NFIT_SPA_BDW:
3023 			/* nothing to register */
3024 			break;
3025 		case NFIT_SPA_DCR:
3026 		case NFIT_SPA_VDISK:
3027 		case NFIT_SPA_VCD:
3028 		case NFIT_SPA_PDISK:
3029 		case NFIT_SPA_PCD:
3030 			/* register known regions that don't support ARS */
3031 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3032 			if (rc)
3033 				return rc;
3034 			break;
3035 		default:
3036 			/* don't register unknown regions */
3037 			break;
3038 		}
3039 
3040 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, 0);
3041 	return 0;
3042 }
3043 
3044 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3045 		struct nfit_table_prev *prev)
3046 {
3047 	struct device *dev = acpi_desc->dev;
3048 
3049 	if (!list_empty(&prev->spas) ||
3050 			!list_empty(&prev->memdevs) ||
3051 			!list_empty(&prev->dcrs) ||
3052 			!list_empty(&prev->bdws) ||
3053 			!list_empty(&prev->idts) ||
3054 			!list_empty(&prev->flushes)) {
3055 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3056 		return -ENXIO;
3057 	}
3058 	return 0;
3059 }
3060 
3061 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3062 {
3063 	struct device *dev = acpi_desc->dev;
3064 	struct kernfs_node *nfit;
3065 	struct device *bus_dev;
3066 
3067 	if (!ars_supported(acpi_desc->nvdimm_bus))
3068 		return 0;
3069 
3070 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3071 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3072 	if (!nfit) {
3073 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3074 		return -ENODEV;
3075 	}
3076 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3077 	sysfs_put(nfit);
3078 	if (!acpi_desc->scrub_count_state) {
3079 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3080 		return -ENODEV;
3081 	}
3082 
3083 	return 0;
3084 }
3085 
3086 static void acpi_nfit_unregister(void *data)
3087 {
3088 	struct acpi_nfit_desc *acpi_desc = data;
3089 
3090 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3091 }
3092 
3093 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3094 {
3095 	struct device *dev = acpi_desc->dev;
3096 	struct nfit_table_prev prev;
3097 	const void *end;
3098 	int rc;
3099 
3100 	if (!acpi_desc->nvdimm_bus) {
3101 		acpi_nfit_init_dsms(acpi_desc);
3102 
3103 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3104 				&acpi_desc->nd_desc);
3105 		if (!acpi_desc->nvdimm_bus)
3106 			return -ENOMEM;
3107 
3108 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3109 				acpi_desc);
3110 		if (rc)
3111 			return rc;
3112 
3113 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3114 		if (rc)
3115 			return rc;
3116 
3117 		/* register this acpi_desc for mce notifications */
3118 		mutex_lock(&acpi_desc_lock);
3119 		list_add_tail(&acpi_desc->list, &acpi_descs);
3120 		mutex_unlock(&acpi_desc_lock);
3121 	}
3122 
3123 	mutex_lock(&acpi_desc->init_mutex);
3124 
3125 	INIT_LIST_HEAD(&prev.spas);
3126 	INIT_LIST_HEAD(&prev.memdevs);
3127 	INIT_LIST_HEAD(&prev.dcrs);
3128 	INIT_LIST_HEAD(&prev.bdws);
3129 	INIT_LIST_HEAD(&prev.idts);
3130 	INIT_LIST_HEAD(&prev.flushes);
3131 
3132 	list_cut_position(&prev.spas, &acpi_desc->spas,
3133 				acpi_desc->spas.prev);
3134 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3135 				acpi_desc->memdevs.prev);
3136 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3137 				acpi_desc->dcrs.prev);
3138 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3139 				acpi_desc->bdws.prev);
3140 	list_cut_position(&prev.idts, &acpi_desc->idts,
3141 				acpi_desc->idts.prev);
3142 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3143 				acpi_desc->flushes.prev);
3144 
3145 	end = data + sz;
3146 	while (!IS_ERR_OR_NULL(data))
3147 		data = add_table(acpi_desc, &prev, data, end);
3148 
3149 	if (IS_ERR(data)) {
3150 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3151 		rc = PTR_ERR(data);
3152 		goto out_unlock;
3153 	}
3154 
3155 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3156 	if (rc)
3157 		goto out_unlock;
3158 
3159 	rc = nfit_mem_init(acpi_desc);
3160 	if (rc)
3161 		goto out_unlock;
3162 
3163 	rc = acpi_nfit_register_dimms(acpi_desc);
3164 	if (rc)
3165 		goto out_unlock;
3166 
3167 	rc = acpi_nfit_register_regions(acpi_desc);
3168 
3169  out_unlock:
3170 	mutex_unlock(&acpi_desc->init_mutex);
3171 	return rc;
3172 }
3173 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3174 
3175 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3176 {
3177 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3178 	struct device *dev = acpi_desc->dev;
3179 
3180 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3181 	device_lock(dev);
3182 	device_unlock(dev);
3183 
3184 	/* Bounce the init_mutex to complete initial registration */
3185 	mutex_lock(&acpi_desc->init_mutex);
3186 	mutex_unlock(&acpi_desc->init_mutex);
3187 
3188 	return 0;
3189 }
3190 
3191 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3192 		struct nvdimm *nvdimm, unsigned int cmd)
3193 {
3194 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3195 
3196 	if (nvdimm)
3197 		return 0;
3198 	if (cmd != ND_CMD_ARS_START)
3199 		return 0;
3200 
3201 	/*
3202 	 * The kernel and userspace may race to initiate a scrub, but
3203 	 * the scrub thread is prepared to lose that initial race.  It
3204 	 * just needs guarantees that any ars it initiates are not
3205 	 * interrupted by any intervening start reqeusts from userspace.
3206 	 */
3207 	if (work_busy(&acpi_desc->dwork.work))
3208 		return -EBUSY;
3209 
3210 	return 0;
3211 }
3212 
3213 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, unsigned long flags)
3214 {
3215 	struct device *dev = acpi_desc->dev;
3216 	int scheduled = 0, busy = 0;
3217 	struct nfit_spa *nfit_spa;
3218 
3219 	mutex_lock(&acpi_desc->init_mutex);
3220 	if (acpi_desc->cancel) {
3221 		mutex_unlock(&acpi_desc->init_mutex);
3222 		return 0;
3223 	}
3224 
3225 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3226 		int type = nfit_spa_type(nfit_spa->spa);
3227 
3228 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3229 			continue;
3230 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3231 			continue;
3232 
3233 		if (test_and_set_bit(ARS_REQ, &nfit_spa->ars_state))
3234 			busy++;
3235 		else {
3236 			if (test_bit(ARS_SHORT, &flags))
3237 				set_bit(ARS_SHORT, &nfit_spa->ars_state);
3238 			scheduled++;
3239 		}
3240 	}
3241 	if (scheduled) {
3242 		queue_delayed_work(nfit_wq, &acpi_desc->dwork, 0);
3243 		dev_dbg(dev, "ars_scan triggered\n");
3244 	}
3245 	mutex_unlock(&acpi_desc->init_mutex);
3246 
3247 	if (scheduled)
3248 		return 0;
3249 	if (busy)
3250 		return -EBUSY;
3251 	return -ENOTTY;
3252 }
3253 
3254 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3255 {
3256 	struct nvdimm_bus_descriptor *nd_desc;
3257 
3258 	dev_set_drvdata(dev, acpi_desc);
3259 	acpi_desc->dev = dev;
3260 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3261 	nd_desc = &acpi_desc->nd_desc;
3262 	nd_desc->provider_name = "ACPI.NFIT";
3263 	nd_desc->module = THIS_MODULE;
3264 	nd_desc->ndctl = acpi_nfit_ctl;
3265 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3266 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3267 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3268 
3269 	INIT_LIST_HEAD(&acpi_desc->spas);
3270 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3271 	INIT_LIST_HEAD(&acpi_desc->bdws);
3272 	INIT_LIST_HEAD(&acpi_desc->idts);
3273 	INIT_LIST_HEAD(&acpi_desc->flushes);
3274 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3275 	INIT_LIST_HEAD(&acpi_desc->dimms);
3276 	INIT_LIST_HEAD(&acpi_desc->list);
3277 	mutex_init(&acpi_desc->init_mutex);
3278 	acpi_desc->scrub_tmo = 1;
3279 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3280 }
3281 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3282 
3283 static void acpi_nfit_put_table(void *table)
3284 {
3285 	acpi_put_table(table);
3286 }
3287 
3288 void acpi_nfit_shutdown(void *data)
3289 {
3290 	struct acpi_nfit_desc *acpi_desc = data;
3291 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3292 
3293 	/*
3294 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3295 	 * race teardown
3296 	 */
3297 	mutex_lock(&acpi_desc_lock);
3298 	list_del(&acpi_desc->list);
3299 	mutex_unlock(&acpi_desc_lock);
3300 
3301 	mutex_lock(&acpi_desc->init_mutex);
3302 	acpi_desc->cancel = 1;
3303 	cancel_delayed_work_sync(&acpi_desc->dwork);
3304 	mutex_unlock(&acpi_desc->init_mutex);
3305 
3306 	/*
3307 	 * Bounce the nvdimm bus lock to make sure any in-flight
3308 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3309 	 * either submit or see ->cancel set.
3310 	 */
3311 	device_lock(bus_dev);
3312 	device_unlock(bus_dev);
3313 
3314 	flush_workqueue(nfit_wq);
3315 }
3316 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3317 
3318 static int acpi_nfit_add(struct acpi_device *adev)
3319 {
3320 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3321 	struct acpi_nfit_desc *acpi_desc;
3322 	struct device *dev = &adev->dev;
3323 	struct acpi_table_header *tbl;
3324 	acpi_status status = AE_OK;
3325 	acpi_size sz;
3326 	int rc = 0;
3327 
3328 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3329 	if (ACPI_FAILURE(status)) {
3330 		/* This is ok, we could have an nvdimm hotplugged later */
3331 		dev_dbg(dev, "failed to find NFIT at startup\n");
3332 		return 0;
3333 	}
3334 
3335 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3336 	if (rc)
3337 		return rc;
3338 	sz = tbl->length;
3339 
3340 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3341 	if (!acpi_desc)
3342 		return -ENOMEM;
3343 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3344 
3345 	/* Save the acpi header for exporting the revision via sysfs */
3346 	acpi_desc->acpi_header = *tbl;
3347 
3348 	/* Evaluate _FIT and override with that if present */
3349 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3350 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3351 		union acpi_object *obj = buf.pointer;
3352 
3353 		if (obj->type == ACPI_TYPE_BUFFER)
3354 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3355 					obj->buffer.length);
3356 		else
3357 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3358 				(int) obj->type);
3359 		kfree(buf.pointer);
3360 	} else
3361 		/* skip over the lead-in header table */
3362 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3363 				+ sizeof(struct acpi_table_nfit),
3364 				sz - sizeof(struct acpi_table_nfit));
3365 
3366 	if (rc)
3367 		return rc;
3368 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3369 }
3370 
3371 static int acpi_nfit_remove(struct acpi_device *adev)
3372 {
3373 	/* see acpi_nfit_unregister */
3374 	return 0;
3375 }
3376 
3377 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3378 {
3379 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3380 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3381 	union acpi_object *obj;
3382 	acpi_status status;
3383 	int ret;
3384 
3385 	if (!dev->driver) {
3386 		/* dev->driver may be null if we're being removed */
3387 		dev_dbg(dev, "no driver found for dev\n");
3388 		return;
3389 	}
3390 
3391 	if (!acpi_desc) {
3392 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3393 		if (!acpi_desc)
3394 			return;
3395 		acpi_nfit_desc_init(acpi_desc, dev);
3396 	} else {
3397 		/*
3398 		 * Finish previous registration before considering new
3399 		 * regions.
3400 		 */
3401 		flush_workqueue(nfit_wq);
3402 	}
3403 
3404 	/* Evaluate _FIT */
3405 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3406 	if (ACPI_FAILURE(status)) {
3407 		dev_err(dev, "failed to evaluate _FIT\n");
3408 		return;
3409 	}
3410 
3411 	obj = buf.pointer;
3412 	if (obj->type == ACPI_TYPE_BUFFER) {
3413 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3414 				obj->buffer.length);
3415 		if (ret)
3416 			dev_err(dev, "failed to merge updated NFIT\n");
3417 	} else
3418 		dev_err(dev, "Invalid _FIT\n");
3419 	kfree(buf.pointer);
3420 }
3421 
3422 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3423 {
3424 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3425 	unsigned long flags = (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) ?
3426 			0 : 1 << ARS_SHORT;
3427 
3428 	acpi_nfit_ars_rescan(acpi_desc, flags);
3429 }
3430 
3431 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3432 {
3433 	dev_dbg(dev, "event: 0x%x\n", event);
3434 
3435 	switch (event) {
3436 	case NFIT_NOTIFY_UPDATE:
3437 		return acpi_nfit_update_notify(dev, handle);
3438 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3439 		return acpi_nfit_uc_error_notify(dev, handle);
3440 	default:
3441 		return;
3442 	}
3443 }
3444 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3445 
3446 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3447 {
3448 	device_lock(&adev->dev);
3449 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3450 	device_unlock(&adev->dev);
3451 }
3452 
3453 static const struct acpi_device_id acpi_nfit_ids[] = {
3454 	{ "ACPI0012", 0 },
3455 	{ "", 0 },
3456 };
3457 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3458 
3459 static struct acpi_driver acpi_nfit_driver = {
3460 	.name = KBUILD_MODNAME,
3461 	.ids = acpi_nfit_ids,
3462 	.ops = {
3463 		.add = acpi_nfit_add,
3464 		.remove = acpi_nfit_remove,
3465 		.notify = acpi_nfit_notify,
3466 	},
3467 };
3468 
3469 static __init int nfit_init(void)
3470 {
3471 	int ret;
3472 
3473 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3474 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3475 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3476 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3477 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3478 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3479 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3480 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3481 
3482 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3483 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3484 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3485 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3486 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3487 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3488 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3489 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3490 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3491 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3492 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3493 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3494 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3495 
3496 	nfit_wq = create_singlethread_workqueue("nfit");
3497 	if (!nfit_wq)
3498 		return -ENOMEM;
3499 
3500 	nfit_mce_register();
3501 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3502 	if (ret) {
3503 		nfit_mce_unregister();
3504 		destroy_workqueue(nfit_wq);
3505 	}
3506 
3507 	return ret;
3508 
3509 }
3510 
3511 static __exit void nfit_exit(void)
3512 {
3513 	nfit_mce_unregister();
3514 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3515 	destroy_workqueue(nfit_wq);
3516 	WARN_ON(!list_empty(&acpi_descs));
3517 }
3518 
3519 module_init(nfit_init);
3520 module_exit(nfit_exit);
3521 MODULE_LICENSE("GPL v2");
3522 MODULE_AUTHOR("Intel Corporation");
3523