xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 6d99a79c)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include <acpi/nfit.h>
27 #include "nfit.h"
28 #include "intel.h"
29 
30 /*
31  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
32  * irrelevant.
33  */
34 #include <linux/io-64-nonatomic-hi-lo.h>
35 
36 static bool force_enable_dimms;
37 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
38 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
39 
40 static bool disable_vendor_specific;
41 module_param(disable_vendor_specific, bool, S_IRUGO);
42 MODULE_PARM_DESC(disable_vendor_specific,
43 		"Limit commands to the publicly specified set");
44 
45 static unsigned long override_dsm_mask;
46 module_param(override_dsm_mask, ulong, S_IRUGO);
47 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
48 
49 static int default_dsm_family = -1;
50 module_param(default_dsm_family, int, S_IRUGO);
51 MODULE_PARM_DESC(default_dsm_family,
52 		"Try this DSM type first when identifying NVDIMM family");
53 
54 static bool no_init_ars;
55 module_param(no_init_ars, bool, 0644);
56 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
57 
58 LIST_HEAD(acpi_descs);
59 DEFINE_MUTEX(acpi_desc_lock);
60 
61 static struct workqueue_struct *nfit_wq;
62 
63 struct nfit_table_prev {
64 	struct list_head spas;
65 	struct list_head memdevs;
66 	struct list_head dcrs;
67 	struct list_head bdws;
68 	struct list_head idts;
69 	struct list_head flushes;
70 };
71 
72 static guid_t nfit_uuid[NFIT_UUID_MAX];
73 
74 const guid_t *to_nfit_uuid(enum nfit_uuids id)
75 {
76 	return &nfit_uuid[id];
77 }
78 EXPORT_SYMBOL(to_nfit_uuid);
79 
80 static struct acpi_nfit_desc *to_acpi_nfit_desc(
81 		struct nvdimm_bus_descriptor *nd_desc)
82 {
83 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
84 }
85 
86 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
87 {
88 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
89 
90 	/*
91 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
92 	 * acpi_device.
93 	 */
94 	if (!nd_desc->provider_name
95 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
96 		return NULL;
97 
98 	return to_acpi_device(acpi_desc->dev);
99 }
100 
101 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
102 {
103 	struct nd_cmd_clear_error *clear_err;
104 	struct nd_cmd_ars_status *ars_status;
105 	u16 flags;
106 
107 	switch (cmd) {
108 	case ND_CMD_ARS_CAP:
109 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
110 			return -ENOTTY;
111 
112 		/* Command failed */
113 		if (status & 0xffff)
114 			return -EIO;
115 
116 		/* No supported scan types for this range */
117 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
118 		if ((status >> 16 & flags) == 0)
119 			return -ENOTTY;
120 		return 0;
121 	case ND_CMD_ARS_START:
122 		/* ARS is in progress */
123 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
124 			return -EBUSY;
125 
126 		/* Command failed */
127 		if (status & 0xffff)
128 			return -EIO;
129 		return 0;
130 	case ND_CMD_ARS_STATUS:
131 		ars_status = buf;
132 		/* Command failed */
133 		if (status & 0xffff)
134 			return -EIO;
135 		/* Check extended status (Upper two bytes) */
136 		if (status == NFIT_ARS_STATUS_DONE)
137 			return 0;
138 
139 		/* ARS is in progress */
140 		if (status == NFIT_ARS_STATUS_BUSY)
141 			return -EBUSY;
142 
143 		/* No ARS performed for the current boot */
144 		if (status == NFIT_ARS_STATUS_NONE)
145 			return -EAGAIN;
146 
147 		/*
148 		 * ARS interrupted, either we overflowed or some other
149 		 * agent wants the scan to stop.  If we didn't overflow
150 		 * then just continue with the returned results.
151 		 */
152 		if (status == NFIT_ARS_STATUS_INTR) {
153 			if (ars_status->out_length >= 40 && (ars_status->flags
154 						& NFIT_ARS_F_OVERFLOW))
155 				return -ENOSPC;
156 			return 0;
157 		}
158 
159 		/* Unknown status */
160 		if (status >> 16)
161 			return -EIO;
162 		return 0;
163 	case ND_CMD_CLEAR_ERROR:
164 		clear_err = buf;
165 		if (status & 0xffff)
166 			return -EIO;
167 		if (!clear_err->cleared)
168 			return -EIO;
169 		if (clear_err->length > clear_err->cleared)
170 			return clear_err->cleared;
171 		return 0;
172 	default:
173 		break;
174 	}
175 
176 	/* all other non-zero status results in an error */
177 	if (status)
178 		return -EIO;
179 	return 0;
180 }
181 
182 #define ACPI_LABELS_LOCKED 3
183 
184 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
185 		u32 status)
186 {
187 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
188 
189 	switch (cmd) {
190 	case ND_CMD_GET_CONFIG_SIZE:
191 		/*
192 		 * In the _LSI, _LSR, _LSW case the locked status is
193 		 * communicated via the read/write commands
194 		 */
195 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
196 			break;
197 
198 		if (status >> 16 & ND_CONFIG_LOCKED)
199 			return -EACCES;
200 		break;
201 	case ND_CMD_GET_CONFIG_DATA:
202 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
203 				&& status == ACPI_LABELS_LOCKED)
204 			return -EACCES;
205 		break;
206 	case ND_CMD_SET_CONFIG_DATA:
207 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
208 				&& status == ACPI_LABELS_LOCKED)
209 			return -EACCES;
210 		break;
211 	default:
212 		break;
213 	}
214 
215 	/* all other non-zero status results in an error */
216 	if (status)
217 		return -EIO;
218 	return 0;
219 }
220 
221 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
222 		u32 status)
223 {
224 	if (!nvdimm)
225 		return xlat_bus_status(buf, cmd, status);
226 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
227 }
228 
229 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
230 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
231 {
232 	int i;
233 	void *dst;
234 	size_t size = 0;
235 	union acpi_object *buf = NULL;
236 
237 	if (pkg->type != ACPI_TYPE_PACKAGE) {
238 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
239 				pkg->type);
240 		goto err;
241 	}
242 
243 	for (i = 0; i < pkg->package.count; i++) {
244 		union acpi_object *obj = &pkg->package.elements[i];
245 
246 		if (obj->type == ACPI_TYPE_INTEGER)
247 			size += 4;
248 		else if (obj->type == ACPI_TYPE_BUFFER)
249 			size += obj->buffer.length;
250 		else {
251 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
252 					obj->type);
253 			goto err;
254 		}
255 	}
256 
257 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
258 	if (!buf)
259 		goto err;
260 
261 	dst = buf + 1;
262 	buf->type = ACPI_TYPE_BUFFER;
263 	buf->buffer.length = size;
264 	buf->buffer.pointer = dst;
265 	for (i = 0; i < pkg->package.count; i++) {
266 		union acpi_object *obj = &pkg->package.elements[i];
267 
268 		if (obj->type == ACPI_TYPE_INTEGER) {
269 			memcpy(dst, &obj->integer.value, 4);
270 			dst += 4;
271 		} else if (obj->type == ACPI_TYPE_BUFFER) {
272 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
273 			dst += obj->buffer.length;
274 		}
275 	}
276 err:
277 	ACPI_FREE(pkg);
278 	return buf;
279 }
280 
281 static union acpi_object *int_to_buf(union acpi_object *integer)
282 {
283 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
284 	void *dst = NULL;
285 
286 	if (!buf)
287 		goto err;
288 
289 	if (integer->type != ACPI_TYPE_INTEGER) {
290 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
291 				integer->type);
292 		goto err;
293 	}
294 
295 	dst = buf + 1;
296 	buf->type = ACPI_TYPE_BUFFER;
297 	buf->buffer.length = 4;
298 	buf->buffer.pointer = dst;
299 	memcpy(dst, &integer->integer.value, 4);
300 err:
301 	ACPI_FREE(integer);
302 	return buf;
303 }
304 
305 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
306 		u32 len, void *data)
307 {
308 	acpi_status rc;
309 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
310 	struct acpi_object_list input = {
311 		.count = 3,
312 		.pointer = (union acpi_object []) {
313 			[0] = {
314 				.integer.type = ACPI_TYPE_INTEGER,
315 				.integer.value = offset,
316 			},
317 			[1] = {
318 				.integer.type = ACPI_TYPE_INTEGER,
319 				.integer.value = len,
320 			},
321 			[2] = {
322 				.buffer.type = ACPI_TYPE_BUFFER,
323 				.buffer.pointer = data,
324 				.buffer.length = len,
325 			},
326 		},
327 	};
328 
329 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
330 	if (ACPI_FAILURE(rc))
331 		return NULL;
332 	return int_to_buf(buf.pointer);
333 }
334 
335 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
336 		u32 len)
337 {
338 	acpi_status rc;
339 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
340 	struct acpi_object_list input = {
341 		.count = 2,
342 		.pointer = (union acpi_object []) {
343 			[0] = {
344 				.integer.type = ACPI_TYPE_INTEGER,
345 				.integer.value = offset,
346 			},
347 			[1] = {
348 				.integer.type = ACPI_TYPE_INTEGER,
349 				.integer.value = len,
350 			},
351 		},
352 	};
353 
354 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
355 	if (ACPI_FAILURE(rc))
356 		return NULL;
357 	return pkg_to_buf(buf.pointer);
358 }
359 
360 static union acpi_object *acpi_label_info(acpi_handle handle)
361 {
362 	acpi_status rc;
363 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
364 
365 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
366 	if (ACPI_FAILURE(rc))
367 		return NULL;
368 	return pkg_to_buf(buf.pointer);
369 }
370 
371 static u8 nfit_dsm_revid(unsigned family, unsigned func)
372 {
373 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
374 		[NVDIMM_FAMILY_INTEL] = {
375 			[NVDIMM_INTEL_GET_MODES] = 2,
376 			[NVDIMM_INTEL_GET_FWINFO] = 2,
377 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
378 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
379 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
380 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
381 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
382 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
383 		},
384 	};
385 	u8 id;
386 
387 	if (family > NVDIMM_FAMILY_MAX)
388 		return 0;
389 	if (func > 31)
390 		return 0;
391 	id = revid_table[family][func];
392 	if (id == 0)
393 		return 1; /* default */
394 	return id;
395 }
396 
397 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
398 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
399 {
400 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
401 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
402 	union acpi_object in_obj, in_buf, *out_obj;
403 	const struct nd_cmd_desc *desc = NULL;
404 	struct device *dev = acpi_desc->dev;
405 	struct nd_cmd_pkg *call_pkg = NULL;
406 	const char *cmd_name, *dimm_name;
407 	unsigned long cmd_mask, dsm_mask;
408 	u32 offset, fw_status = 0;
409 	acpi_handle handle;
410 	unsigned int func;
411 	const guid_t *guid;
412 	int rc, i;
413 
414 	if (cmd_rc)
415 		*cmd_rc = -EINVAL;
416 	func = cmd;
417 	if (cmd == ND_CMD_CALL) {
418 		call_pkg = buf;
419 		func = call_pkg->nd_command;
420 
421 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
422 			if (call_pkg->nd_reserved2[i])
423 				return -EINVAL;
424 	}
425 
426 	if (nvdimm) {
427 		struct acpi_device *adev = nfit_mem->adev;
428 
429 		if (!adev)
430 			return -ENOTTY;
431 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
432 			return -ENOTTY;
433 
434 		dimm_name = nvdimm_name(nvdimm);
435 		cmd_name = nvdimm_cmd_name(cmd);
436 		cmd_mask = nvdimm_cmd_mask(nvdimm);
437 		dsm_mask = nfit_mem->dsm_mask;
438 		desc = nd_cmd_dimm_desc(cmd);
439 		guid = to_nfit_uuid(nfit_mem->family);
440 		handle = adev->handle;
441 	} else {
442 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
443 
444 		cmd_name = nvdimm_bus_cmd_name(cmd);
445 		cmd_mask = nd_desc->cmd_mask;
446 		dsm_mask = cmd_mask;
447 		if (cmd == ND_CMD_CALL)
448 			dsm_mask = nd_desc->bus_dsm_mask;
449 		desc = nd_cmd_bus_desc(cmd);
450 		guid = to_nfit_uuid(NFIT_DEV_BUS);
451 		handle = adev->handle;
452 		dimm_name = "bus";
453 	}
454 
455 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
456 		return -ENOTTY;
457 
458 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
459 		return -ENOTTY;
460 
461 	in_obj.type = ACPI_TYPE_PACKAGE;
462 	in_obj.package.count = 1;
463 	in_obj.package.elements = &in_buf;
464 	in_buf.type = ACPI_TYPE_BUFFER;
465 	in_buf.buffer.pointer = buf;
466 	in_buf.buffer.length = 0;
467 
468 	/* libnvdimm has already validated the input envelope */
469 	for (i = 0; i < desc->in_num; i++)
470 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
471 				i, buf);
472 
473 	if (call_pkg) {
474 		/* skip over package wrapper */
475 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
476 		in_buf.buffer.length = call_pkg->nd_size_in;
477 	}
478 
479 	dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
480 		dimm_name, cmd, func, in_buf.buffer.length);
481 	print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
482 			in_buf.buffer.pointer,
483 			min_t(u32, 256, in_buf.buffer.length), true);
484 
485 	/* call the BIOS, prefer the named methods over _DSM if available */
486 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
487 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
488 		out_obj = acpi_label_info(handle);
489 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
490 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
491 		struct nd_cmd_get_config_data_hdr *p = buf;
492 
493 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
494 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
495 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
496 		struct nd_cmd_set_config_hdr *p = buf;
497 
498 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
499 				p->in_buf);
500 	} else {
501 		u8 revid;
502 
503 		if (nvdimm)
504 			revid = nfit_dsm_revid(nfit_mem->family, func);
505 		else
506 			revid = 1;
507 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
508 	}
509 
510 	if (!out_obj) {
511 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
512 		return -EINVAL;
513 	}
514 
515 	if (call_pkg) {
516 		call_pkg->nd_fw_size = out_obj->buffer.length;
517 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
518 			out_obj->buffer.pointer,
519 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
520 
521 		ACPI_FREE(out_obj);
522 		/*
523 		 * Need to support FW function w/o known size in advance.
524 		 * Caller can determine required size based upon nd_fw_size.
525 		 * If we return an error (like elsewhere) then caller wouldn't
526 		 * be able to rely upon data returned to make calculation.
527 		 */
528 		if (cmd_rc)
529 			*cmd_rc = 0;
530 		return 0;
531 	}
532 
533 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
534 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
535 				dimm_name, cmd_name, out_obj->type);
536 		rc = -EINVAL;
537 		goto out;
538 	}
539 
540 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
541 			cmd_name, out_obj->buffer.length);
542 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
543 			out_obj->buffer.pointer,
544 			min_t(u32, 128, out_obj->buffer.length), true);
545 
546 	for (i = 0, offset = 0; i < desc->out_num; i++) {
547 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
548 				(u32 *) out_obj->buffer.pointer,
549 				out_obj->buffer.length - offset);
550 
551 		if (offset + out_size > out_obj->buffer.length) {
552 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
553 					dimm_name, cmd_name, i);
554 			break;
555 		}
556 
557 		if (in_buf.buffer.length + offset + out_size > buf_len) {
558 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
559 					dimm_name, cmd_name, i);
560 			rc = -ENXIO;
561 			goto out;
562 		}
563 		memcpy(buf + in_buf.buffer.length + offset,
564 				out_obj->buffer.pointer + offset, out_size);
565 		offset += out_size;
566 	}
567 
568 	/*
569 	 * Set fw_status for all the commands with a known format to be
570 	 * later interpreted by xlat_status().
571 	 */
572 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
573 					&& cmd <= ND_CMD_CLEAR_ERROR)
574 				|| (nvdimm && cmd >= ND_CMD_SMART
575 					&& cmd <= ND_CMD_VENDOR)))
576 		fw_status = *(u32 *) out_obj->buffer.pointer;
577 
578 	if (offset + in_buf.buffer.length < buf_len) {
579 		if (i >= 1) {
580 			/*
581 			 * status valid, return the number of bytes left
582 			 * unfilled in the output buffer
583 			 */
584 			rc = buf_len - offset - in_buf.buffer.length;
585 			if (cmd_rc)
586 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
587 						fw_status);
588 		} else {
589 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
590 					__func__, dimm_name, cmd_name, buf_len,
591 					offset);
592 			rc = -ENXIO;
593 		}
594 	} else {
595 		rc = 0;
596 		if (cmd_rc)
597 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
598 	}
599 
600  out:
601 	ACPI_FREE(out_obj);
602 
603 	return rc;
604 }
605 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
606 
607 static const char *spa_type_name(u16 type)
608 {
609 	static const char *to_name[] = {
610 		[NFIT_SPA_VOLATILE] = "volatile",
611 		[NFIT_SPA_PM] = "pmem",
612 		[NFIT_SPA_DCR] = "dimm-control-region",
613 		[NFIT_SPA_BDW] = "block-data-window",
614 		[NFIT_SPA_VDISK] = "volatile-disk",
615 		[NFIT_SPA_VCD] = "volatile-cd",
616 		[NFIT_SPA_PDISK] = "persistent-disk",
617 		[NFIT_SPA_PCD] = "persistent-cd",
618 
619 	};
620 
621 	if (type > NFIT_SPA_PCD)
622 		return "unknown";
623 
624 	return to_name[type];
625 }
626 
627 int nfit_spa_type(struct acpi_nfit_system_address *spa)
628 {
629 	int i;
630 
631 	for (i = 0; i < NFIT_UUID_MAX; i++)
632 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
633 			return i;
634 	return -1;
635 }
636 
637 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
638 		struct nfit_table_prev *prev,
639 		struct acpi_nfit_system_address *spa)
640 {
641 	struct device *dev = acpi_desc->dev;
642 	struct nfit_spa *nfit_spa;
643 
644 	if (spa->header.length != sizeof(*spa))
645 		return false;
646 
647 	list_for_each_entry(nfit_spa, &prev->spas, list) {
648 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
649 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
650 			return true;
651 		}
652 	}
653 
654 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
655 			GFP_KERNEL);
656 	if (!nfit_spa)
657 		return false;
658 	INIT_LIST_HEAD(&nfit_spa->list);
659 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
660 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
661 	dev_dbg(dev, "spa index: %d type: %s\n",
662 			spa->range_index,
663 			spa_type_name(nfit_spa_type(spa)));
664 	return true;
665 }
666 
667 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
668 		struct nfit_table_prev *prev,
669 		struct acpi_nfit_memory_map *memdev)
670 {
671 	struct device *dev = acpi_desc->dev;
672 	struct nfit_memdev *nfit_memdev;
673 
674 	if (memdev->header.length != sizeof(*memdev))
675 		return false;
676 
677 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
678 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
679 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
680 			return true;
681 		}
682 
683 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
684 			GFP_KERNEL);
685 	if (!nfit_memdev)
686 		return false;
687 	INIT_LIST_HEAD(&nfit_memdev->list);
688 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
689 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
690 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
691 			memdev->device_handle, memdev->range_index,
692 			memdev->region_index, memdev->flags);
693 	return true;
694 }
695 
696 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
697 {
698 	struct acpi_nfit_memory_map *memdev;
699 	struct acpi_nfit_desc *acpi_desc;
700 	struct nfit_mem *nfit_mem;
701 
702 	mutex_lock(&acpi_desc_lock);
703 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
704 		mutex_lock(&acpi_desc->init_mutex);
705 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
706 			memdev = __to_nfit_memdev(nfit_mem);
707 			if (memdev->device_handle == device_handle) {
708 				mutex_unlock(&acpi_desc->init_mutex);
709 				mutex_unlock(&acpi_desc_lock);
710 				*flags = memdev->flags;
711 				return memdev->physical_id;
712 			}
713 		}
714 		mutex_unlock(&acpi_desc->init_mutex);
715 	}
716 	mutex_unlock(&acpi_desc_lock);
717 
718 	return -ENODEV;
719 }
720 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
721 
722 /*
723  * An implementation may provide a truncated control region if no block windows
724  * are defined.
725  */
726 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
727 {
728 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
729 				window_size))
730 		return 0;
731 	if (dcr->windows)
732 		return sizeof(*dcr);
733 	return offsetof(struct acpi_nfit_control_region, window_size);
734 }
735 
736 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
737 		struct nfit_table_prev *prev,
738 		struct acpi_nfit_control_region *dcr)
739 {
740 	struct device *dev = acpi_desc->dev;
741 	struct nfit_dcr *nfit_dcr;
742 
743 	if (!sizeof_dcr(dcr))
744 		return false;
745 
746 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
747 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
748 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
749 			return true;
750 		}
751 
752 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
753 			GFP_KERNEL);
754 	if (!nfit_dcr)
755 		return false;
756 	INIT_LIST_HEAD(&nfit_dcr->list);
757 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
758 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
759 	dev_dbg(dev, "dcr index: %d windows: %d\n",
760 			dcr->region_index, dcr->windows);
761 	return true;
762 }
763 
764 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
765 		struct nfit_table_prev *prev,
766 		struct acpi_nfit_data_region *bdw)
767 {
768 	struct device *dev = acpi_desc->dev;
769 	struct nfit_bdw *nfit_bdw;
770 
771 	if (bdw->header.length != sizeof(*bdw))
772 		return false;
773 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
774 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
775 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
776 			return true;
777 		}
778 
779 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
780 			GFP_KERNEL);
781 	if (!nfit_bdw)
782 		return false;
783 	INIT_LIST_HEAD(&nfit_bdw->list);
784 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
785 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
786 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
787 			bdw->region_index, bdw->windows);
788 	return true;
789 }
790 
791 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
792 {
793 	if (idt->header.length < sizeof(*idt))
794 		return 0;
795 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
796 }
797 
798 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
799 		struct nfit_table_prev *prev,
800 		struct acpi_nfit_interleave *idt)
801 {
802 	struct device *dev = acpi_desc->dev;
803 	struct nfit_idt *nfit_idt;
804 
805 	if (!sizeof_idt(idt))
806 		return false;
807 
808 	list_for_each_entry(nfit_idt, &prev->idts, list) {
809 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
810 			continue;
811 
812 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
813 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
814 			return true;
815 		}
816 	}
817 
818 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
819 			GFP_KERNEL);
820 	if (!nfit_idt)
821 		return false;
822 	INIT_LIST_HEAD(&nfit_idt->list);
823 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
824 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
825 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
826 			idt->interleave_index, idt->line_count);
827 	return true;
828 }
829 
830 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
831 {
832 	if (flush->header.length < sizeof(*flush))
833 		return 0;
834 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
835 }
836 
837 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
838 		struct nfit_table_prev *prev,
839 		struct acpi_nfit_flush_address *flush)
840 {
841 	struct device *dev = acpi_desc->dev;
842 	struct nfit_flush *nfit_flush;
843 
844 	if (!sizeof_flush(flush))
845 		return false;
846 
847 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
848 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
849 			continue;
850 
851 		if (memcmp(nfit_flush->flush, flush,
852 					sizeof_flush(flush)) == 0) {
853 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
854 			return true;
855 		}
856 	}
857 
858 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
859 			+ sizeof_flush(flush), GFP_KERNEL);
860 	if (!nfit_flush)
861 		return false;
862 	INIT_LIST_HEAD(&nfit_flush->list);
863 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
864 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
865 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
866 			flush->device_handle, flush->hint_count);
867 	return true;
868 }
869 
870 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
871 		struct acpi_nfit_capabilities *pcap)
872 {
873 	struct device *dev = acpi_desc->dev;
874 	u32 mask;
875 
876 	mask = (1 << (pcap->highest_capability + 1)) - 1;
877 	acpi_desc->platform_cap = pcap->capabilities & mask;
878 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
879 	return true;
880 }
881 
882 static void *add_table(struct acpi_nfit_desc *acpi_desc,
883 		struct nfit_table_prev *prev, void *table, const void *end)
884 {
885 	struct device *dev = acpi_desc->dev;
886 	struct acpi_nfit_header *hdr;
887 	void *err = ERR_PTR(-ENOMEM);
888 
889 	if (table >= end)
890 		return NULL;
891 
892 	hdr = table;
893 	if (!hdr->length) {
894 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
895 			hdr->type);
896 		return NULL;
897 	}
898 
899 	switch (hdr->type) {
900 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
901 		if (!add_spa(acpi_desc, prev, table))
902 			return err;
903 		break;
904 	case ACPI_NFIT_TYPE_MEMORY_MAP:
905 		if (!add_memdev(acpi_desc, prev, table))
906 			return err;
907 		break;
908 	case ACPI_NFIT_TYPE_CONTROL_REGION:
909 		if (!add_dcr(acpi_desc, prev, table))
910 			return err;
911 		break;
912 	case ACPI_NFIT_TYPE_DATA_REGION:
913 		if (!add_bdw(acpi_desc, prev, table))
914 			return err;
915 		break;
916 	case ACPI_NFIT_TYPE_INTERLEAVE:
917 		if (!add_idt(acpi_desc, prev, table))
918 			return err;
919 		break;
920 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
921 		if (!add_flush(acpi_desc, prev, table))
922 			return err;
923 		break;
924 	case ACPI_NFIT_TYPE_SMBIOS:
925 		dev_dbg(dev, "smbios\n");
926 		break;
927 	case ACPI_NFIT_TYPE_CAPABILITIES:
928 		if (!add_platform_cap(acpi_desc, table))
929 			return err;
930 		break;
931 	default:
932 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
933 		break;
934 	}
935 
936 	return table + hdr->length;
937 }
938 
939 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
940 		struct nfit_mem *nfit_mem)
941 {
942 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
943 	u16 dcr = nfit_mem->dcr->region_index;
944 	struct nfit_spa *nfit_spa;
945 
946 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
947 		u16 range_index = nfit_spa->spa->range_index;
948 		int type = nfit_spa_type(nfit_spa->spa);
949 		struct nfit_memdev *nfit_memdev;
950 
951 		if (type != NFIT_SPA_BDW)
952 			continue;
953 
954 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
955 			if (nfit_memdev->memdev->range_index != range_index)
956 				continue;
957 			if (nfit_memdev->memdev->device_handle != device_handle)
958 				continue;
959 			if (nfit_memdev->memdev->region_index != dcr)
960 				continue;
961 
962 			nfit_mem->spa_bdw = nfit_spa->spa;
963 			return;
964 		}
965 	}
966 
967 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
968 			nfit_mem->spa_dcr->range_index);
969 	nfit_mem->bdw = NULL;
970 }
971 
972 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
973 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
974 {
975 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
976 	struct nfit_memdev *nfit_memdev;
977 	struct nfit_bdw *nfit_bdw;
978 	struct nfit_idt *nfit_idt;
979 	u16 idt_idx, range_index;
980 
981 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
982 		if (nfit_bdw->bdw->region_index != dcr)
983 			continue;
984 		nfit_mem->bdw = nfit_bdw->bdw;
985 		break;
986 	}
987 
988 	if (!nfit_mem->bdw)
989 		return;
990 
991 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
992 
993 	if (!nfit_mem->spa_bdw)
994 		return;
995 
996 	range_index = nfit_mem->spa_bdw->range_index;
997 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
998 		if (nfit_memdev->memdev->range_index != range_index ||
999 				nfit_memdev->memdev->region_index != dcr)
1000 			continue;
1001 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
1002 		idt_idx = nfit_memdev->memdev->interleave_index;
1003 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1004 			if (nfit_idt->idt->interleave_index != idt_idx)
1005 				continue;
1006 			nfit_mem->idt_bdw = nfit_idt->idt;
1007 			break;
1008 		}
1009 		break;
1010 	}
1011 }
1012 
1013 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1014 		struct acpi_nfit_system_address *spa)
1015 {
1016 	struct nfit_mem *nfit_mem, *found;
1017 	struct nfit_memdev *nfit_memdev;
1018 	int type = spa ? nfit_spa_type(spa) : 0;
1019 
1020 	switch (type) {
1021 	case NFIT_SPA_DCR:
1022 	case NFIT_SPA_PM:
1023 		break;
1024 	default:
1025 		if (spa)
1026 			return 0;
1027 	}
1028 
1029 	/*
1030 	 * This loop runs in two modes, when a dimm is mapped the loop
1031 	 * adds memdev associations to an existing dimm, or creates a
1032 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1033 	 * instances with an invalid / zero range_index and adds those
1034 	 * dimms without spa associations.
1035 	 */
1036 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1037 		struct nfit_flush *nfit_flush;
1038 		struct nfit_dcr *nfit_dcr;
1039 		u32 device_handle;
1040 		u16 dcr;
1041 
1042 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1043 			continue;
1044 		if (!spa && nfit_memdev->memdev->range_index)
1045 			continue;
1046 		found = NULL;
1047 		dcr = nfit_memdev->memdev->region_index;
1048 		device_handle = nfit_memdev->memdev->device_handle;
1049 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1050 			if (__to_nfit_memdev(nfit_mem)->device_handle
1051 					== device_handle) {
1052 				found = nfit_mem;
1053 				break;
1054 			}
1055 
1056 		if (found)
1057 			nfit_mem = found;
1058 		else {
1059 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1060 					sizeof(*nfit_mem), GFP_KERNEL);
1061 			if (!nfit_mem)
1062 				return -ENOMEM;
1063 			INIT_LIST_HEAD(&nfit_mem->list);
1064 			nfit_mem->acpi_desc = acpi_desc;
1065 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1066 		}
1067 
1068 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1069 			if (nfit_dcr->dcr->region_index != dcr)
1070 				continue;
1071 			/*
1072 			 * Record the control region for the dimm.  For
1073 			 * the ACPI 6.1 case, where there are separate
1074 			 * control regions for the pmem vs blk
1075 			 * interfaces, be sure to record the extended
1076 			 * blk details.
1077 			 */
1078 			if (!nfit_mem->dcr)
1079 				nfit_mem->dcr = nfit_dcr->dcr;
1080 			else if (nfit_mem->dcr->windows == 0
1081 					&& nfit_dcr->dcr->windows)
1082 				nfit_mem->dcr = nfit_dcr->dcr;
1083 			break;
1084 		}
1085 
1086 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1087 			struct acpi_nfit_flush_address *flush;
1088 			u16 i;
1089 
1090 			if (nfit_flush->flush->device_handle != device_handle)
1091 				continue;
1092 			nfit_mem->nfit_flush = nfit_flush;
1093 			flush = nfit_flush->flush;
1094 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1095 					flush->hint_count,
1096 					sizeof(struct resource),
1097 					GFP_KERNEL);
1098 			if (!nfit_mem->flush_wpq)
1099 				return -ENOMEM;
1100 			for (i = 0; i < flush->hint_count; i++) {
1101 				struct resource *res = &nfit_mem->flush_wpq[i];
1102 
1103 				res->start = flush->hint_address[i];
1104 				res->end = res->start + 8 - 1;
1105 			}
1106 			break;
1107 		}
1108 
1109 		if (dcr && !nfit_mem->dcr) {
1110 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1111 					spa->range_index, dcr);
1112 			return -ENODEV;
1113 		}
1114 
1115 		if (type == NFIT_SPA_DCR) {
1116 			struct nfit_idt *nfit_idt;
1117 			u16 idt_idx;
1118 
1119 			/* multiple dimms may share a SPA when interleaved */
1120 			nfit_mem->spa_dcr = spa;
1121 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1122 			idt_idx = nfit_memdev->memdev->interleave_index;
1123 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1124 				if (nfit_idt->idt->interleave_index != idt_idx)
1125 					continue;
1126 				nfit_mem->idt_dcr = nfit_idt->idt;
1127 				break;
1128 			}
1129 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1130 		} else if (type == NFIT_SPA_PM) {
1131 			/*
1132 			 * A single dimm may belong to multiple SPA-PM
1133 			 * ranges, record at least one in addition to
1134 			 * any SPA-DCR range.
1135 			 */
1136 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1137 		} else
1138 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1145 {
1146 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1147 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1148 	u32 handleA, handleB;
1149 
1150 	handleA = __to_nfit_memdev(a)->device_handle;
1151 	handleB = __to_nfit_memdev(b)->device_handle;
1152 	if (handleA < handleB)
1153 		return -1;
1154 	else if (handleA > handleB)
1155 		return 1;
1156 	return 0;
1157 }
1158 
1159 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1160 {
1161 	struct nfit_spa *nfit_spa;
1162 	int rc;
1163 
1164 
1165 	/*
1166 	 * For each SPA-DCR or SPA-PMEM address range find its
1167 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1168 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1169 	 * try to find a SPA-BDW and a corresponding BDW that references
1170 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1171 	 * BDWs are optional.
1172 	 */
1173 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1174 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1175 		if (rc)
1176 			return rc;
1177 	}
1178 
1179 	/*
1180 	 * If a DIMM has failed to be mapped into SPA there will be no
1181 	 * SPA entries above. Find and register all the unmapped DIMMs
1182 	 * for reporting and recovery purposes.
1183 	 */
1184 	rc = __nfit_mem_init(acpi_desc, NULL);
1185 	if (rc)
1186 		return rc;
1187 
1188 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1189 
1190 	return 0;
1191 }
1192 
1193 static ssize_t bus_dsm_mask_show(struct device *dev,
1194 		struct device_attribute *attr, char *buf)
1195 {
1196 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1197 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1198 
1199 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1200 }
1201 static struct device_attribute dev_attr_bus_dsm_mask =
1202 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1203 
1204 static ssize_t revision_show(struct device *dev,
1205 		struct device_attribute *attr, char *buf)
1206 {
1207 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1208 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1209 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1210 
1211 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1212 }
1213 static DEVICE_ATTR_RO(revision);
1214 
1215 static ssize_t hw_error_scrub_show(struct device *dev,
1216 		struct device_attribute *attr, char *buf)
1217 {
1218 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1219 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1220 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1221 
1222 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1223 }
1224 
1225 /*
1226  * The 'hw_error_scrub' attribute can have the following values written to it:
1227  * '0': Switch to the default mode where an exception will only insert
1228  *      the address of the memory error into the poison and badblocks lists.
1229  * '1': Enable a full scrub to happen if an exception for a memory error is
1230  *      received.
1231  */
1232 static ssize_t hw_error_scrub_store(struct device *dev,
1233 		struct device_attribute *attr, const char *buf, size_t size)
1234 {
1235 	struct nvdimm_bus_descriptor *nd_desc;
1236 	ssize_t rc;
1237 	long val;
1238 
1239 	rc = kstrtol(buf, 0, &val);
1240 	if (rc)
1241 		return rc;
1242 
1243 	device_lock(dev);
1244 	nd_desc = dev_get_drvdata(dev);
1245 	if (nd_desc) {
1246 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1247 
1248 		switch (val) {
1249 		case HW_ERROR_SCRUB_ON:
1250 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1251 			break;
1252 		case HW_ERROR_SCRUB_OFF:
1253 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1254 			break;
1255 		default:
1256 			rc = -EINVAL;
1257 			break;
1258 		}
1259 	}
1260 	device_unlock(dev);
1261 	if (rc)
1262 		return rc;
1263 	return size;
1264 }
1265 static DEVICE_ATTR_RW(hw_error_scrub);
1266 
1267 /*
1268  * This shows the number of full Address Range Scrubs that have been
1269  * completed since driver load time. Userspace can wait on this using
1270  * select/poll etc. A '+' at the end indicates an ARS is in progress
1271  */
1272 static ssize_t scrub_show(struct device *dev,
1273 		struct device_attribute *attr, char *buf)
1274 {
1275 	struct nvdimm_bus_descriptor *nd_desc;
1276 	ssize_t rc = -ENXIO;
1277 
1278 	device_lock(dev);
1279 	nd_desc = dev_get_drvdata(dev);
1280 	if (nd_desc) {
1281 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1282 
1283 		mutex_lock(&acpi_desc->init_mutex);
1284 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1285 				acpi_desc->scrub_busy
1286 				&& !acpi_desc->cancel ? "+\n" : "\n");
1287 		mutex_unlock(&acpi_desc->init_mutex);
1288 	}
1289 	device_unlock(dev);
1290 	return rc;
1291 }
1292 
1293 static ssize_t scrub_store(struct device *dev,
1294 		struct device_attribute *attr, const char *buf, size_t size)
1295 {
1296 	struct nvdimm_bus_descriptor *nd_desc;
1297 	ssize_t rc;
1298 	long val;
1299 
1300 	rc = kstrtol(buf, 0, &val);
1301 	if (rc)
1302 		return rc;
1303 	if (val != 1)
1304 		return -EINVAL;
1305 
1306 	device_lock(dev);
1307 	nd_desc = dev_get_drvdata(dev);
1308 	if (nd_desc) {
1309 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1310 
1311 		rc = acpi_nfit_ars_rescan(acpi_desc, 0);
1312 	}
1313 	device_unlock(dev);
1314 	if (rc)
1315 		return rc;
1316 	return size;
1317 }
1318 static DEVICE_ATTR_RW(scrub);
1319 
1320 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1321 {
1322 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1323 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1324 		| 1 << ND_CMD_ARS_STATUS;
1325 
1326 	return (nd_desc->cmd_mask & mask) == mask;
1327 }
1328 
1329 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1330 {
1331 	struct device *dev = container_of(kobj, struct device, kobj);
1332 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1333 
1334 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1335 		return 0;
1336 	return a->mode;
1337 }
1338 
1339 static struct attribute *acpi_nfit_attributes[] = {
1340 	&dev_attr_revision.attr,
1341 	&dev_attr_scrub.attr,
1342 	&dev_attr_hw_error_scrub.attr,
1343 	&dev_attr_bus_dsm_mask.attr,
1344 	NULL,
1345 };
1346 
1347 static const struct attribute_group acpi_nfit_attribute_group = {
1348 	.name = "nfit",
1349 	.attrs = acpi_nfit_attributes,
1350 	.is_visible = nfit_visible,
1351 };
1352 
1353 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1354 	&nvdimm_bus_attribute_group,
1355 	&acpi_nfit_attribute_group,
1356 	NULL,
1357 };
1358 
1359 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1360 {
1361 	struct nvdimm *nvdimm = to_nvdimm(dev);
1362 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1363 
1364 	return __to_nfit_memdev(nfit_mem);
1365 }
1366 
1367 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1368 {
1369 	struct nvdimm *nvdimm = to_nvdimm(dev);
1370 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1371 
1372 	return nfit_mem->dcr;
1373 }
1374 
1375 static ssize_t handle_show(struct device *dev,
1376 		struct device_attribute *attr, char *buf)
1377 {
1378 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1379 
1380 	return sprintf(buf, "%#x\n", memdev->device_handle);
1381 }
1382 static DEVICE_ATTR_RO(handle);
1383 
1384 static ssize_t phys_id_show(struct device *dev,
1385 		struct device_attribute *attr, char *buf)
1386 {
1387 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1388 
1389 	return sprintf(buf, "%#x\n", memdev->physical_id);
1390 }
1391 static DEVICE_ATTR_RO(phys_id);
1392 
1393 static ssize_t vendor_show(struct device *dev,
1394 		struct device_attribute *attr, char *buf)
1395 {
1396 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1397 
1398 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1399 }
1400 static DEVICE_ATTR_RO(vendor);
1401 
1402 static ssize_t rev_id_show(struct device *dev,
1403 		struct device_attribute *attr, char *buf)
1404 {
1405 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1406 
1407 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1408 }
1409 static DEVICE_ATTR_RO(rev_id);
1410 
1411 static ssize_t device_show(struct device *dev,
1412 		struct device_attribute *attr, char *buf)
1413 {
1414 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1415 
1416 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1417 }
1418 static DEVICE_ATTR_RO(device);
1419 
1420 static ssize_t subsystem_vendor_show(struct device *dev,
1421 		struct device_attribute *attr, char *buf)
1422 {
1423 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1424 
1425 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1426 }
1427 static DEVICE_ATTR_RO(subsystem_vendor);
1428 
1429 static ssize_t subsystem_rev_id_show(struct device *dev,
1430 		struct device_attribute *attr, char *buf)
1431 {
1432 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1433 
1434 	return sprintf(buf, "0x%04x\n",
1435 			be16_to_cpu(dcr->subsystem_revision_id));
1436 }
1437 static DEVICE_ATTR_RO(subsystem_rev_id);
1438 
1439 static ssize_t subsystem_device_show(struct device *dev,
1440 		struct device_attribute *attr, char *buf)
1441 {
1442 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1443 
1444 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1445 }
1446 static DEVICE_ATTR_RO(subsystem_device);
1447 
1448 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1449 {
1450 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1451 	int formats = 0;
1452 
1453 	if (nfit_mem->memdev_pmem)
1454 		formats++;
1455 	if (nfit_mem->memdev_bdw)
1456 		formats++;
1457 	return formats;
1458 }
1459 
1460 static ssize_t format_show(struct device *dev,
1461 		struct device_attribute *attr, char *buf)
1462 {
1463 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1464 
1465 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1466 }
1467 static DEVICE_ATTR_RO(format);
1468 
1469 static ssize_t format1_show(struct device *dev,
1470 		struct device_attribute *attr, char *buf)
1471 {
1472 	u32 handle;
1473 	ssize_t rc = -ENXIO;
1474 	struct nfit_mem *nfit_mem;
1475 	struct nfit_memdev *nfit_memdev;
1476 	struct acpi_nfit_desc *acpi_desc;
1477 	struct nvdimm *nvdimm = to_nvdimm(dev);
1478 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1479 
1480 	nfit_mem = nvdimm_provider_data(nvdimm);
1481 	acpi_desc = nfit_mem->acpi_desc;
1482 	handle = to_nfit_memdev(dev)->device_handle;
1483 
1484 	/* assumes DIMMs have at most 2 published interface codes */
1485 	mutex_lock(&acpi_desc->init_mutex);
1486 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1487 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1488 		struct nfit_dcr *nfit_dcr;
1489 
1490 		if (memdev->device_handle != handle)
1491 			continue;
1492 
1493 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1494 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1495 				continue;
1496 			if (nfit_dcr->dcr->code == dcr->code)
1497 				continue;
1498 			rc = sprintf(buf, "0x%04x\n",
1499 					le16_to_cpu(nfit_dcr->dcr->code));
1500 			break;
1501 		}
1502 		if (rc != ENXIO)
1503 			break;
1504 	}
1505 	mutex_unlock(&acpi_desc->init_mutex);
1506 	return rc;
1507 }
1508 static DEVICE_ATTR_RO(format1);
1509 
1510 static ssize_t formats_show(struct device *dev,
1511 		struct device_attribute *attr, char *buf)
1512 {
1513 	struct nvdimm *nvdimm = to_nvdimm(dev);
1514 
1515 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1516 }
1517 static DEVICE_ATTR_RO(formats);
1518 
1519 static ssize_t serial_show(struct device *dev,
1520 		struct device_attribute *attr, char *buf)
1521 {
1522 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1523 
1524 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1525 }
1526 static DEVICE_ATTR_RO(serial);
1527 
1528 static ssize_t family_show(struct device *dev,
1529 		struct device_attribute *attr, char *buf)
1530 {
1531 	struct nvdimm *nvdimm = to_nvdimm(dev);
1532 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1533 
1534 	if (nfit_mem->family < 0)
1535 		return -ENXIO;
1536 	return sprintf(buf, "%d\n", nfit_mem->family);
1537 }
1538 static DEVICE_ATTR_RO(family);
1539 
1540 static ssize_t dsm_mask_show(struct device *dev,
1541 		struct device_attribute *attr, char *buf)
1542 {
1543 	struct nvdimm *nvdimm = to_nvdimm(dev);
1544 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1545 
1546 	if (nfit_mem->family < 0)
1547 		return -ENXIO;
1548 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1549 }
1550 static DEVICE_ATTR_RO(dsm_mask);
1551 
1552 static ssize_t flags_show(struct device *dev,
1553 		struct device_attribute *attr, char *buf)
1554 {
1555 	struct nvdimm *nvdimm = to_nvdimm(dev);
1556 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1557 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1558 
1559 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1560 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1561 
1562 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1563 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1564 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1565 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1566 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1567 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1568 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1569 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1570 }
1571 static DEVICE_ATTR_RO(flags);
1572 
1573 static ssize_t id_show(struct device *dev,
1574 		struct device_attribute *attr, char *buf)
1575 {
1576 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1577 
1578 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1579 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1580 				be16_to_cpu(dcr->vendor_id),
1581 				dcr->manufacturing_location,
1582 				be16_to_cpu(dcr->manufacturing_date),
1583 				be32_to_cpu(dcr->serial_number));
1584 	else
1585 		return sprintf(buf, "%04x-%08x\n",
1586 				be16_to_cpu(dcr->vendor_id),
1587 				be32_to_cpu(dcr->serial_number));
1588 }
1589 static DEVICE_ATTR_RO(id);
1590 
1591 static ssize_t dirty_shutdown_show(struct device *dev,
1592 		struct device_attribute *attr, char *buf)
1593 {
1594 	struct nvdimm *nvdimm = to_nvdimm(dev);
1595 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1596 
1597 	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1598 }
1599 static DEVICE_ATTR_RO(dirty_shutdown);
1600 
1601 static struct attribute *acpi_nfit_dimm_attributes[] = {
1602 	&dev_attr_handle.attr,
1603 	&dev_attr_phys_id.attr,
1604 	&dev_attr_vendor.attr,
1605 	&dev_attr_device.attr,
1606 	&dev_attr_rev_id.attr,
1607 	&dev_attr_subsystem_vendor.attr,
1608 	&dev_attr_subsystem_device.attr,
1609 	&dev_attr_subsystem_rev_id.attr,
1610 	&dev_attr_format.attr,
1611 	&dev_attr_formats.attr,
1612 	&dev_attr_format1.attr,
1613 	&dev_attr_serial.attr,
1614 	&dev_attr_flags.attr,
1615 	&dev_attr_id.attr,
1616 	&dev_attr_family.attr,
1617 	&dev_attr_dsm_mask.attr,
1618 	&dev_attr_dirty_shutdown.attr,
1619 	NULL,
1620 };
1621 
1622 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1623 		struct attribute *a, int n)
1624 {
1625 	struct device *dev = container_of(kobj, struct device, kobj);
1626 	struct nvdimm *nvdimm = to_nvdimm(dev);
1627 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1628 
1629 	if (!to_nfit_dcr(dev)) {
1630 		/* Without a dcr only the memdev attributes can be surfaced */
1631 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1632 				|| a == &dev_attr_flags.attr
1633 				|| a == &dev_attr_family.attr
1634 				|| a == &dev_attr_dsm_mask.attr)
1635 			return a->mode;
1636 		return 0;
1637 	}
1638 
1639 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1640 		return 0;
1641 
1642 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1643 			&& a == &dev_attr_dirty_shutdown.attr)
1644 		return 0;
1645 
1646 	return a->mode;
1647 }
1648 
1649 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1650 	.name = "nfit",
1651 	.attrs = acpi_nfit_dimm_attributes,
1652 	.is_visible = acpi_nfit_dimm_attr_visible,
1653 };
1654 
1655 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1656 	&nvdimm_attribute_group,
1657 	&nd_device_attribute_group,
1658 	&acpi_nfit_dimm_attribute_group,
1659 	NULL,
1660 };
1661 
1662 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1663 		u32 device_handle)
1664 {
1665 	struct nfit_mem *nfit_mem;
1666 
1667 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1668 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1669 			return nfit_mem->nvdimm;
1670 
1671 	return NULL;
1672 }
1673 
1674 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1675 {
1676 	struct nfit_mem *nfit_mem;
1677 	struct acpi_nfit_desc *acpi_desc;
1678 
1679 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1680 			event);
1681 
1682 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1683 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1684 				event);
1685 		return;
1686 	}
1687 
1688 	acpi_desc = dev_get_drvdata(dev->parent);
1689 	if (!acpi_desc)
1690 		return;
1691 
1692 	/*
1693 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1694 	 * is still valid.
1695 	 */
1696 	nfit_mem = dev_get_drvdata(dev);
1697 	if (nfit_mem && nfit_mem->flags_attr)
1698 		sysfs_notify_dirent(nfit_mem->flags_attr);
1699 }
1700 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1701 
1702 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1703 {
1704 	struct acpi_device *adev = data;
1705 	struct device *dev = &adev->dev;
1706 
1707 	device_lock(dev->parent);
1708 	__acpi_nvdimm_notify(dev, event);
1709 	device_unlock(dev->parent);
1710 }
1711 
1712 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1713 {
1714 	acpi_handle handle;
1715 	acpi_status status;
1716 
1717 	status = acpi_get_handle(adev->handle, method, &handle);
1718 
1719 	if (ACPI_SUCCESS(status))
1720 		return true;
1721 	return false;
1722 }
1723 
1724 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1725 {
1726 	struct nd_intel_smart smart = { 0 };
1727 	union acpi_object in_buf = {
1728 		.type = ACPI_TYPE_BUFFER,
1729 		.buffer.pointer = (char *) &smart,
1730 		.buffer.length = sizeof(smart),
1731 	};
1732 	union acpi_object in_obj = {
1733 		.type = ACPI_TYPE_PACKAGE,
1734 		.package.count = 1,
1735 		.package.elements = &in_buf,
1736 	};
1737 	const u8 func = ND_INTEL_SMART;
1738 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1739 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1740 	struct acpi_device *adev = nfit_mem->adev;
1741 	acpi_handle handle = adev->handle;
1742 	union acpi_object *out_obj;
1743 
1744 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1745 		return;
1746 
1747 	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1748 	if (!out_obj)
1749 		return;
1750 
1751 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1752 		if (smart.shutdown_state)
1753 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1754 	}
1755 
1756 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1757 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1758 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1759 	}
1760 	ACPI_FREE(out_obj);
1761 }
1762 
1763 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1764 {
1765 	/*
1766 	 * For DIMMs that provide a dynamic facility to retrieve a
1767 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1768 	 * these values in nfit_mem.
1769 	 */
1770 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1771 		nfit_intel_shutdown_status(nfit_mem);
1772 }
1773 
1774 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1775 		struct nfit_mem *nfit_mem, u32 device_handle)
1776 {
1777 	struct acpi_device *adev, *adev_dimm;
1778 	struct device *dev = acpi_desc->dev;
1779 	unsigned long dsm_mask, label_mask;
1780 	const guid_t *guid;
1781 	int i;
1782 	int family = -1;
1783 
1784 	/* nfit test assumes 1:1 relationship between commands and dsms */
1785 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1786 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1787 	adev = to_acpi_dev(acpi_desc);
1788 	if (!adev) {
1789 		/* unit test case */
1790 		populate_shutdown_status(nfit_mem);
1791 		return 0;
1792 	}
1793 
1794 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1795 	nfit_mem->adev = adev_dimm;
1796 	if (!adev_dimm) {
1797 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1798 				device_handle);
1799 		return force_enable_dimms ? 0 : -ENODEV;
1800 	}
1801 
1802 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1803 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1804 		dev_err(dev, "%s: notification registration failed\n",
1805 				dev_name(&adev_dimm->dev));
1806 		return -ENXIO;
1807 	}
1808 	/*
1809 	 * Record nfit_mem for the notification path to track back to
1810 	 * the nfit sysfs attributes for this dimm device object.
1811 	 */
1812 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1813 
1814 	/*
1815 	 * Until standardization materializes we need to consider 4
1816 	 * different command sets.  Note, that checking for function0 (bit0)
1817 	 * tells us if any commands are reachable through this GUID.
1818 	 */
1819 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1820 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1821 			if (family < 0 || i == default_dsm_family)
1822 				family = i;
1823 
1824 	/* limit the supported commands to those that are publicly documented */
1825 	nfit_mem->family = family;
1826 	if (override_dsm_mask && !disable_vendor_specific)
1827 		dsm_mask = override_dsm_mask;
1828 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1829 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1830 		if (disable_vendor_specific)
1831 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1832 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1833 		dsm_mask = 0x1c3c76;
1834 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1835 		dsm_mask = 0x1fe;
1836 		if (disable_vendor_specific)
1837 			dsm_mask &= ~(1 << 8);
1838 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1839 		dsm_mask = 0xffffffff;
1840 	} else {
1841 		dev_dbg(dev, "unknown dimm command family\n");
1842 		nfit_mem->family = -1;
1843 		/* DSMs are optional, continue loading the driver... */
1844 		return 0;
1845 	}
1846 
1847 	guid = to_nfit_uuid(nfit_mem->family);
1848 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1849 		if (acpi_check_dsm(adev_dimm->handle, guid,
1850 					nfit_dsm_revid(nfit_mem->family, i),
1851 					1ULL << i))
1852 			set_bit(i, &nfit_mem->dsm_mask);
1853 
1854 	/*
1855 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1856 	 * due to their better semantics handling locked capacity.
1857 	 */
1858 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1859 		| 1 << ND_CMD_SET_CONFIG_DATA;
1860 	if (family == NVDIMM_FAMILY_INTEL
1861 			&& (dsm_mask & label_mask) == label_mask)
1862 		return 0;
1863 
1864 	if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1865 			&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1866 		dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1867 		set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1868 	}
1869 
1870 	if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1871 			&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1872 		dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1873 		set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1874 	}
1875 
1876 	populate_shutdown_status(nfit_mem);
1877 
1878 	return 0;
1879 }
1880 
1881 static void shutdown_dimm_notify(void *data)
1882 {
1883 	struct acpi_nfit_desc *acpi_desc = data;
1884 	struct nfit_mem *nfit_mem;
1885 
1886 	mutex_lock(&acpi_desc->init_mutex);
1887 	/*
1888 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1889 	 * notifications.
1890 	 */
1891 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1892 		struct acpi_device *adev_dimm = nfit_mem->adev;
1893 
1894 		if (nfit_mem->flags_attr) {
1895 			sysfs_put(nfit_mem->flags_attr);
1896 			nfit_mem->flags_attr = NULL;
1897 		}
1898 		if (adev_dimm) {
1899 			acpi_remove_notify_handler(adev_dimm->handle,
1900 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1901 			dev_set_drvdata(&adev_dimm->dev, NULL);
1902 		}
1903 	}
1904 	mutex_unlock(&acpi_desc->init_mutex);
1905 }
1906 
1907 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1908 {
1909 	struct nfit_mem *nfit_mem;
1910 	int dimm_count = 0, rc;
1911 	struct nvdimm *nvdimm;
1912 
1913 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1914 		struct acpi_nfit_flush_address *flush;
1915 		unsigned long flags = 0, cmd_mask;
1916 		struct nfit_memdev *nfit_memdev;
1917 		u32 device_handle;
1918 		u16 mem_flags;
1919 
1920 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1921 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1922 		if (nvdimm) {
1923 			dimm_count++;
1924 			continue;
1925 		}
1926 
1927 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1928 			set_bit(NDD_ALIASING, &flags);
1929 
1930 		/* collate flags across all memdevs for this dimm */
1931 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1932 			struct acpi_nfit_memory_map *dimm_memdev;
1933 
1934 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1935 			if (dimm_memdev->device_handle
1936 					!= nfit_memdev->memdev->device_handle)
1937 				continue;
1938 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1939 		}
1940 
1941 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1942 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1943 			set_bit(NDD_UNARMED, &flags);
1944 
1945 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1946 		if (rc)
1947 			continue;
1948 
1949 		/*
1950 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1951 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1952 		 * userspace interface.
1953 		 */
1954 		cmd_mask = 1UL << ND_CMD_CALL;
1955 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1956 			/*
1957 			 * These commands have a 1:1 correspondence
1958 			 * between DSM payload and libnvdimm ioctl
1959 			 * payload format.
1960 			 */
1961 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
1962 		}
1963 
1964 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
1965 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
1966 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
1967 		}
1968 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
1969 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
1970 
1971 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1972 			: NULL;
1973 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1974 				acpi_nfit_dimm_attribute_groups,
1975 				flags, cmd_mask, flush ? flush->hint_count : 0,
1976 				nfit_mem->flush_wpq);
1977 		if (!nvdimm)
1978 			return -ENOMEM;
1979 
1980 		nfit_mem->nvdimm = nvdimm;
1981 		dimm_count++;
1982 
1983 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1984 			continue;
1985 
1986 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
1987 				nvdimm_name(nvdimm),
1988 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1989 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1990 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1991 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
1992 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
1993 
1994 	}
1995 
1996 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1997 	if (rc)
1998 		return rc;
1999 
2000 	/*
2001 	 * Now that dimms are successfully registered, and async registration
2002 	 * is flushed, attempt to enable event notification.
2003 	 */
2004 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2005 		struct kernfs_node *nfit_kernfs;
2006 
2007 		nvdimm = nfit_mem->nvdimm;
2008 		if (!nvdimm)
2009 			continue;
2010 
2011 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2012 		if (nfit_kernfs)
2013 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2014 					"flags");
2015 		sysfs_put(nfit_kernfs);
2016 		if (!nfit_mem->flags_attr)
2017 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2018 					nvdimm_name(nvdimm));
2019 	}
2020 
2021 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2022 			acpi_desc);
2023 }
2024 
2025 /*
2026  * These constants are private because there are no kernel consumers of
2027  * these commands.
2028  */
2029 enum nfit_aux_cmds {
2030         NFIT_CMD_TRANSLATE_SPA = 5,
2031         NFIT_CMD_ARS_INJECT_SET = 7,
2032         NFIT_CMD_ARS_INJECT_CLEAR = 8,
2033         NFIT_CMD_ARS_INJECT_GET = 9,
2034 };
2035 
2036 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2037 {
2038 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2039 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2040 	struct acpi_device *adev;
2041 	unsigned long dsm_mask;
2042 	int i;
2043 
2044 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2045 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
2046 	adev = to_acpi_dev(acpi_desc);
2047 	if (!adev)
2048 		return;
2049 
2050 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2051 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2052 			set_bit(i, &nd_desc->cmd_mask);
2053 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2054 
2055 	dsm_mask =
2056 		(1 << ND_CMD_ARS_CAP) |
2057 		(1 << ND_CMD_ARS_START) |
2058 		(1 << ND_CMD_ARS_STATUS) |
2059 		(1 << ND_CMD_CLEAR_ERROR) |
2060 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2061 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2062 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2063 		(1 << NFIT_CMD_ARS_INJECT_GET);
2064 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2065 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2066 			set_bit(i, &nd_desc->bus_dsm_mask);
2067 }
2068 
2069 static ssize_t range_index_show(struct device *dev,
2070 		struct device_attribute *attr, char *buf)
2071 {
2072 	struct nd_region *nd_region = to_nd_region(dev);
2073 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2074 
2075 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2076 }
2077 static DEVICE_ATTR_RO(range_index);
2078 
2079 static struct attribute *acpi_nfit_region_attributes[] = {
2080 	&dev_attr_range_index.attr,
2081 	NULL,
2082 };
2083 
2084 static const struct attribute_group acpi_nfit_region_attribute_group = {
2085 	.name = "nfit",
2086 	.attrs = acpi_nfit_region_attributes,
2087 };
2088 
2089 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2090 	&nd_region_attribute_group,
2091 	&nd_mapping_attribute_group,
2092 	&nd_device_attribute_group,
2093 	&nd_numa_attribute_group,
2094 	&acpi_nfit_region_attribute_group,
2095 	NULL,
2096 };
2097 
2098 /* enough info to uniquely specify an interleave set */
2099 struct nfit_set_info {
2100 	struct nfit_set_info_map {
2101 		u64 region_offset;
2102 		u32 serial_number;
2103 		u32 pad;
2104 	} mapping[0];
2105 };
2106 
2107 struct nfit_set_info2 {
2108 	struct nfit_set_info_map2 {
2109 		u64 region_offset;
2110 		u32 serial_number;
2111 		u16 vendor_id;
2112 		u16 manufacturing_date;
2113 		u8  manufacturing_location;
2114 		u8  reserved[31];
2115 	} mapping[0];
2116 };
2117 
2118 static size_t sizeof_nfit_set_info(int num_mappings)
2119 {
2120 	return sizeof(struct nfit_set_info)
2121 		+ num_mappings * sizeof(struct nfit_set_info_map);
2122 }
2123 
2124 static size_t sizeof_nfit_set_info2(int num_mappings)
2125 {
2126 	return sizeof(struct nfit_set_info2)
2127 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2128 }
2129 
2130 static int cmp_map_compat(const void *m0, const void *m1)
2131 {
2132 	const struct nfit_set_info_map *map0 = m0;
2133 	const struct nfit_set_info_map *map1 = m1;
2134 
2135 	return memcmp(&map0->region_offset, &map1->region_offset,
2136 			sizeof(u64));
2137 }
2138 
2139 static int cmp_map(const void *m0, const void *m1)
2140 {
2141 	const struct nfit_set_info_map *map0 = m0;
2142 	const struct nfit_set_info_map *map1 = m1;
2143 
2144 	if (map0->region_offset < map1->region_offset)
2145 		return -1;
2146 	else if (map0->region_offset > map1->region_offset)
2147 		return 1;
2148 	return 0;
2149 }
2150 
2151 static int cmp_map2(const void *m0, const void *m1)
2152 {
2153 	const struct nfit_set_info_map2 *map0 = m0;
2154 	const struct nfit_set_info_map2 *map1 = m1;
2155 
2156 	if (map0->region_offset < map1->region_offset)
2157 		return -1;
2158 	else if (map0->region_offset > map1->region_offset)
2159 		return 1;
2160 	return 0;
2161 }
2162 
2163 /* Retrieve the nth entry referencing this spa */
2164 static struct acpi_nfit_memory_map *memdev_from_spa(
2165 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2166 {
2167 	struct nfit_memdev *nfit_memdev;
2168 
2169 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2170 		if (nfit_memdev->memdev->range_index == range_index)
2171 			if (n-- == 0)
2172 				return nfit_memdev->memdev;
2173 	return NULL;
2174 }
2175 
2176 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2177 		struct nd_region_desc *ndr_desc,
2178 		struct acpi_nfit_system_address *spa)
2179 {
2180 	struct device *dev = acpi_desc->dev;
2181 	struct nd_interleave_set *nd_set;
2182 	u16 nr = ndr_desc->num_mappings;
2183 	struct nfit_set_info2 *info2;
2184 	struct nfit_set_info *info;
2185 	int i;
2186 
2187 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2188 	if (!nd_set)
2189 		return -ENOMEM;
2190 	ndr_desc->nd_set = nd_set;
2191 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2192 
2193 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2194 	if (!info)
2195 		return -ENOMEM;
2196 
2197 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2198 	if (!info2)
2199 		return -ENOMEM;
2200 
2201 	for (i = 0; i < nr; i++) {
2202 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2203 		struct nfit_set_info_map *map = &info->mapping[i];
2204 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2205 		struct nvdimm *nvdimm = mapping->nvdimm;
2206 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2207 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2208 				spa->range_index, i);
2209 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2210 
2211 		if (!memdev || !nfit_mem->dcr) {
2212 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2213 			return -ENODEV;
2214 		}
2215 
2216 		map->region_offset = memdev->region_offset;
2217 		map->serial_number = dcr->serial_number;
2218 
2219 		map2->region_offset = memdev->region_offset;
2220 		map2->serial_number = dcr->serial_number;
2221 		map2->vendor_id = dcr->vendor_id;
2222 		map2->manufacturing_date = dcr->manufacturing_date;
2223 		map2->manufacturing_location = dcr->manufacturing_location;
2224 	}
2225 
2226 	/* v1.1 namespaces */
2227 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2228 			cmp_map, NULL);
2229 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2230 
2231 	/* v1.2 namespaces */
2232 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2233 			cmp_map2, NULL);
2234 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2235 
2236 	/* support v1.1 namespaces created with the wrong sort order */
2237 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2238 			cmp_map_compat, NULL);
2239 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2240 
2241 	/* record the result of the sort for the mapping position */
2242 	for (i = 0; i < nr; i++) {
2243 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2244 		int j;
2245 
2246 		for (j = 0; j < nr; j++) {
2247 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2248 			struct nvdimm *nvdimm = mapping->nvdimm;
2249 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2250 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2251 
2252 			if (map2->serial_number == dcr->serial_number &&
2253 			    map2->vendor_id == dcr->vendor_id &&
2254 			    map2->manufacturing_date == dcr->manufacturing_date &&
2255 			    map2->manufacturing_location
2256 				    == dcr->manufacturing_location) {
2257 				mapping->position = i;
2258 				break;
2259 			}
2260 		}
2261 	}
2262 
2263 	ndr_desc->nd_set = nd_set;
2264 	devm_kfree(dev, info);
2265 	devm_kfree(dev, info2);
2266 
2267 	return 0;
2268 }
2269 
2270 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2271 {
2272 	struct acpi_nfit_interleave *idt = mmio->idt;
2273 	u32 sub_line_offset, line_index, line_offset;
2274 	u64 line_no, table_skip_count, table_offset;
2275 
2276 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2277 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2278 	line_offset = idt->line_offset[line_index]
2279 		* mmio->line_size;
2280 	table_offset = table_skip_count * mmio->table_size;
2281 
2282 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2283 }
2284 
2285 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2286 {
2287 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2288 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2289 	const u32 STATUS_MASK = 0x80000037;
2290 
2291 	if (mmio->num_lines)
2292 		offset = to_interleave_offset(offset, mmio);
2293 
2294 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2295 }
2296 
2297 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2298 		resource_size_t dpa, unsigned int len, unsigned int write)
2299 {
2300 	u64 cmd, offset;
2301 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2302 
2303 	enum {
2304 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2305 		BCW_LEN_SHIFT = 48,
2306 		BCW_LEN_MASK = (1ULL << 8) - 1,
2307 		BCW_CMD_SHIFT = 56,
2308 	};
2309 
2310 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2311 	len = len >> L1_CACHE_SHIFT;
2312 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2313 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2314 
2315 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2316 	if (mmio->num_lines)
2317 		offset = to_interleave_offset(offset, mmio);
2318 
2319 	writeq(cmd, mmio->addr.base + offset);
2320 	nvdimm_flush(nfit_blk->nd_region);
2321 
2322 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2323 		readq(mmio->addr.base + offset);
2324 }
2325 
2326 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2327 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2328 		unsigned int lane)
2329 {
2330 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2331 	unsigned int copied = 0;
2332 	u64 base_offset;
2333 	int rc;
2334 
2335 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2336 		+ lane * mmio->size;
2337 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2338 	while (len) {
2339 		unsigned int c;
2340 		u64 offset;
2341 
2342 		if (mmio->num_lines) {
2343 			u32 line_offset;
2344 
2345 			offset = to_interleave_offset(base_offset + copied,
2346 					mmio);
2347 			div_u64_rem(offset, mmio->line_size, &line_offset);
2348 			c = min_t(size_t, len, mmio->line_size - line_offset);
2349 		} else {
2350 			offset = base_offset + nfit_blk->bdw_offset;
2351 			c = len;
2352 		}
2353 
2354 		if (rw)
2355 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2356 		else {
2357 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2358 				arch_invalidate_pmem((void __force *)
2359 					mmio->addr.aperture + offset, c);
2360 
2361 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2362 		}
2363 
2364 		copied += c;
2365 		len -= c;
2366 	}
2367 
2368 	if (rw)
2369 		nvdimm_flush(nfit_blk->nd_region);
2370 
2371 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2372 	return rc;
2373 }
2374 
2375 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2376 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2377 {
2378 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2379 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2380 	struct nd_region *nd_region = nfit_blk->nd_region;
2381 	unsigned int lane, copied = 0;
2382 	int rc = 0;
2383 
2384 	lane = nd_region_acquire_lane(nd_region);
2385 	while (len) {
2386 		u64 c = min(len, mmio->size);
2387 
2388 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2389 				iobuf + copied, c, rw, lane);
2390 		if (rc)
2391 			break;
2392 
2393 		copied += c;
2394 		len -= c;
2395 	}
2396 	nd_region_release_lane(nd_region, lane);
2397 
2398 	return rc;
2399 }
2400 
2401 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2402 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2403 {
2404 	if (idt) {
2405 		mmio->num_lines = idt->line_count;
2406 		mmio->line_size = idt->line_size;
2407 		if (interleave_ways == 0)
2408 			return -ENXIO;
2409 		mmio->table_size = mmio->num_lines * interleave_ways
2410 			* mmio->line_size;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2417 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2418 {
2419 	struct nd_cmd_dimm_flags flags;
2420 	int rc;
2421 
2422 	memset(&flags, 0, sizeof(flags));
2423 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2424 			sizeof(flags), NULL);
2425 
2426 	if (rc >= 0 && flags.status == 0)
2427 		nfit_blk->dimm_flags = flags.flags;
2428 	else if (rc == -ENOTTY) {
2429 		/* fall back to a conservative default */
2430 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2431 		rc = 0;
2432 	} else
2433 		rc = -ENXIO;
2434 
2435 	return rc;
2436 }
2437 
2438 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2439 		struct device *dev)
2440 {
2441 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2442 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2443 	struct nfit_blk_mmio *mmio;
2444 	struct nfit_blk *nfit_blk;
2445 	struct nfit_mem *nfit_mem;
2446 	struct nvdimm *nvdimm;
2447 	int rc;
2448 
2449 	nvdimm = nd_blk_region_to_dimm(ndbr);
2450 	nfit_mem = nvdimm_provider_data(nvdimm);
2451 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2452 		dev_dbg(dev, "missing%s%s%s\n",
2453 				nfit_mem ? "" : " nfit_mem",
2454 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2455 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2456 		return -ENXIO;
2457 	}
2458 
2459 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2460 	if (!nfit_blk)
2461 		return -ENOMEM;
2462 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2463 	nfit_blk->nd_region = to_nd_region(dev);
2464 
2465 	/* map block aperture memory */
2466 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2467 	mmio = &nfit_blk->mmio[BDW];
2468 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2469                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2470 	if (!mmio->addr.base) {
2471 		dev_dbg(dev, "%s failed to map bdw\n",
2472 				nvdimm_name(nvdimm));
2473 		return -ENOMEM;
2474 	}
2475 	mmio->size = nfit_mem->bdw->size;
2476 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2477 	mmio->idt = nfit_mem->idt_bdw;
2478 	mmio->spa = nfit_mem->spa_bdw;
2479 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2480 			nfit_mem->memdev_bdw->interleave_ways);
2481 	if (rc) {
2482 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2483 				nvdimm_name(nvdimm));
2484 		return rc;
2485 	}
2486 
2487 	/* map block control memory */
2488 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2489 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2490 	mmio = &nfit_blk->mmio[DCR];
2491 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2492 			nfit_mem->spa_dcr->length);
2493 	if (!mmio->addr.base) {
2494 		dev_dbg(dev, "%s failed to map dcr\n",
2495 				nvdimm_name(nvdimm));
2496 		return -ENOMEM;
2497 	}
2498 	mmio->size = nfit_mem->dcr->window_size;
2499 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2500 	mmio->idt = nfit_mem->idt_dcr;
2501 	mmio->spa = nfit_mem->spa_dcr;
2502 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2503 			nfit_mem->memdev_dcr->interleave_ways);
2504 	if (rc) {
2505 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2506 				nvdimm_name(nvdimm));
2507 		return rc;
2508 	}
2509 
2510 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2511 	if (rc < 0) {
2512 		dev_dbg(dev, "%s failed get DIMM flags\n",
2513 				nvdimm_name(nvdimm));
2514 		return rc;
2515 	}
2516 
2517 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2518 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2519 
2520 	if (mmio->line_size == 0)
2521 		return 0;
2522 
2523 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2524 			+ 8 > mmio->line_size) {
2525 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2526 		return -ENXIO;
2527 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2528 			+ 8 > mmio->line_size) {
2529 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2530 		return -ENXIO;
2531 	}
2532 
2533 	return 0;
2534 }
2535 
2536 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2537 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2538 {
2539 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2540 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2541 	int cmd_rc, rc;
2542 
2543 	cmd->address = spa->address;
2544 	cmd->length = spa->length;
2545 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2546 			sizeof(*cmd), &cmd_rc);
2547 	if (rc < 0)
2548 		return rc;
2549 	return cmd_rc;
2550 }
2551 
2552 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2553 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2554 {
2555 	int rc;
2556 	int cmd_rc;
2557 	struct nd_cmd_ars_start ars_start;
2558 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2559 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2560 
2561 	memset(&ars_start, 0, sizeof(ars_start));
2562 	ars_start.address = spa->address;
2563 	ars_start.length = spa->length;
2564 	if (req_type == ARS_REQ_SHORT)
2565 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2566 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2567 		ars_start.type = ND_ARS_PERSISTENT;
2568 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2569 		ars_start.type = ND_ARS_VOLATILE;
2570 	else
2571 		return -ENOTTY;
2572 
2573 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2574 			sizeof(ars_start), &cmd_rc);
2575 
2576 	if (rc < 0)
2577 		return rc;
2578 	return cmd_rc;
2579 }
2580 
2581 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2582 {
2583 	int rc, cmd_rc;
2584 	struct nd_cmd_ars_start ars_start;
2585 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2586 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2587 
2588 	memset(&ars_start, 0, sizeof(ars_start));
2589 	ars_start.address = ars_status->restart_address;
2590 	ars_start.length = ars_status->restart_length;
2591 	ars_start.type = ars_status->type;
2592 	ars_start.flags = acpi_desc->ars_start_flags;
2593 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2594 			sizeof(ars_start), &cmd_rc);
2595 	if (rc < 0)
2596 		return rc;
2597 	return cmd_rc;
2598 }
2599 
2600 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2601 {
2602 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2603 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2604 	int rc, cmd_rc;
2605 
2606 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2607 			acpi_desc->max_ars, &cmd_rc);
2608 	if (rc < 0)
2609 		return rc;
2610 	return cmd_rc;
2611 }
2612 
2613 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2614 		struct nfit_spa *nfit_spa)
2615 {
2616 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2617 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2618 	struct nd_region *nd_region = nfit_spa->nd_region;
2619 	struct device *dev;
2620 
2621 	lockdep_assert_held(&acpi_desc->init_mutex);
2622 	/*
2623 	 * Only advance the ARS state for ARS runs initiated by the
2624 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2625 	 * completion tracking.
2626 	 */
2627 	if (acpi_desc->scrub_spa != nfit_spa)
2628 		return;
2629 
2630 	if ((ars_status->address >= spa->address && ars_status->address
2631 				< spa->address + spa->length)
2632 			|| (ars_status->address < spa->address)) {
2633 		/*
2634 		 * Assume that if a scrub starts at an offset from the
2635 		 * start of nfit_spa that we are in the continuation
2636 		 * case.
2637 		 *
2638 		 * Otherwise, if the scrub covers the spa range, mark
2639 		 * any pending request complete.
2640 		 */
2641 		if (ars_status->address + ars_status->length
2642 				>= spa->address + spa->length)
2643 				/* complete */;
2644 		else
2645 			return;
2646 	} else
2647 		return;
2648 
2649 	acpi_desc->scrub_spa = NULL;
2650 	if (nd_region) {
2651 		dev = nd_region_dev(nd_region);
2652 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2653 	} else
2654 		dev = acpi_desc->dev;
2655 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2656 }
2657 
2658 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2659 {
2660 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2661 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2662 	int rc;
2663 	u32 i;
2664 
2665 	/*
2666 	 * First record starts at 44 byte offset from the start of the
2667 	 * payload.
2668 	 */
2669 	if (ars_status->out_length < 44)
2670 		return 0;
2671 	for (i = 0; i < ars_status->num_records; i++) {
2672 		/* only process full records */
2673 		if (ars_status->out_length
2674 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2675 			break;
2676 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2677 				ars_status->records[i].err_address,
2678 				ars_status->records[i].length);
2679 		if (rc)
2680 			return rc;
2681 	}
2682 	if (i < ars_status->num_records)
2683 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2684 
2685 	return 0;
2686 }
2687 
2688 static void acpi_nfit_remove_resource(void *data)
2689 {
2690 	struct resource *res = data;
2691 
2692 	remove_resource(res);
2693 }
2694 
2695 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2696 		struct nd_region_desc *ndr_desc)
2697 {
2698 	struct resource *res, *nd_res = ndr_desc->res;
2699 	int is_pmem, ret;
2700 
2701 	/* No operation if the region is already registered as PMEM */
2702 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2703 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2704 	if (is_pmem == REGION_INTERSECTS)
2705 		return 0;
2706 
2707 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2708 	if (!res)
2709 		return -ENOMEM;
2710 
2711 	res->name = "Persistent Memory";
2712 	res->start = nd_res->start;
2713 	res->end = nd_res->end;
2714 	res->flags = IORESOURCE_MEM;
2715 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2716 
2717 	ret = insert_resource(&iomem_resource, res);
2718 	if (ret)
2719 		return ret;
2720 
2721 	ret = devm_add_action_or_reset(acpi_desc->dev,
2722 					acpi_nfit_remove_resource,
2723 					res);
2724 	if (ret)
2725 		return ret;
2726 
2727 	return 0;
2728 }
2729 
2730 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2731 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2732 		struct acpi_nfit_memory_map *memdev,
2733 		struct nfit_spa *nfit_spa)
2734 {
2735 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2736 			memdev->device_handle);
2737 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2738 	struct nd_blk_region_desc *ndbr_desc;
2739 	struct nfit_mem *nfit_mem;
2740 	int rc;
2741 
2742 	if (!nvdimm) {
2743 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2744 				spa->range_index, memdev->device_handle);
2745 		return -ENODEV;
2746 	}
2747 
2748 	mapping->nvdimm = nvdimm;
2749 	switch (nfit_spa_type(spa)) {
2750 	case NFIT_SPA_PM:
2751 	case NFIT_SPA_VOLATILE:
2752 		mapping->start = memdev->address;
2753 		mapping->size = memdev->region_size;
2754 		break;
2755 	case NFIT_SPA_DCR:
2756 		nfit_mem = nvdimm_provider_data(nvdimm);
2757 		if (!nfit_mem || !nfit_mem->bdw) {
2758 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2759 					spa->range_index, nvdimm_name(nvdimm));
2760 			break;
2761 		}
2762 
2763 		mapping->size = nfit_mem->bdw->capacity;
2764 		mapping->start = nfit_mem->bdw->start_address;
2765 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2766 		ndr_desc->mapping = mapping;
2767 		ndr_desc->num_mappings = 1;
2768 		ndbr_desc = to_blk_region_desc(ndr_desc);
2769 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2770 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2771 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2772 		if (rc)
2773 			return rc;
2774 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2775 				ndr_desc);
2776 		if (!nfit_spa->nd_region)
2777 			return -ENOMEM;
2778 		break;
2779 	}
2780 
2781 	return 0;
2782 }
2783 
2784 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2785 {
2786 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2787 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2788 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2789 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2790 }
2791 
2792 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2793 {
2794 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2795 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2796 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2797 }
2798 
2799 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2800 		struct nfit_spa *nfit_spa)
2801 {
2802 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2803 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2804 	struct nd_blk_region_desc ndbr_desc;
2805 	struct nd_region_desc *ndr_desc;
2806 	struct nfit_memdev *nfit_memdev;
2807 	struct nvdimm_bus *nvdimm_bus;
2808 	struct resource res;
2809 	int count = 0, rc;
2810 
2811 	if (nfit_spa->nd_region)
2812 		return 0;
2813 
2814 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2815 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2816 		return 0;
2817 	}
2818 
2819 	memset(&res, 0, sizeof(res));
2820 	memset(&mappings, 0, sizeof(mappings));
2821 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2822 	res.start = spa->address;
2823 	res.end = res.start + spa->length - 1;
2824 	ndr_desc = &ndbr_desc.ndr_desc;
2825 	ndr_desc->res = &res;
2826 	ndr_desc->provider_data = nfit_spa;
2827 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2828 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2829 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2830 						spa->proximity_domain);
2831 	else
2832 		ndr_desc->numa_node = NUMA_NO_NODE;
2833 
2834 	/*
2835 	 * Persistence domain bits are hierarchical, if
2836 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2837 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2838 	 */
2839 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2840 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2841 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2842 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2843 
2844 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2845 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2846 		struct nd_mapping_desc *mapping;
2847 
2848 		if (memdev->range_index != spa->range_index)
2849 			continue;
2850 		if (count >= ND_MAX_MAPPINGS) {
2851 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2852 					spa->range_index, ND_MAX_MAPPINGS);
2853 			return -ENXIO;
2854 		}
2855 		mapping = &mappings[count++];
2856 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2857 				memdev, nfit_spa);
2858 		if (rc)
2859 			goto out;
2860 	}
2861 
2862 	ndr_desc->mapping = mappings;
2863 	ndr_desc->num_mappings = count;
2864 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2865 	if (rc)
2866 		goto out;
2867 
2868 	nvdimm_bus = acpi_desc->nvdimm_bus;
2869 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2870 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2871 		if (rc) {
2872 			dev_warn(acpi_desc->dev,
2873 				"failed to insert pmem resource to iomem: %d\n",
2874 				rc);
2875 			goto out;
2876 		}
2877 
2878 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2879 				ndr_desc);
2880 		if (!nfit_spa->nd_region)
2881 			rc = -ENOMEM;
2882 	} else if (nfit_spa_is_volatile(spa)) {
2883 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2884 				ndr_desc);
2885 		if (!nfit_spa->nd_region)
2886 			rc = -ENOMEM;
2887 	} else if (nfit_spa_is_virtual(spa)) {
2888 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2889 				ndr_desc);
2890 		if (!nfit_spa->nd_region)
2891 			rc = -ENOMEM;
2892 	}
2893 
2894  out:
2895 	if (rc)
2896 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2897 				nfit_spa->spa->range_index);
2898 	return rc;
2899 }
2900 
2901 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2902 {
2903 	struct device *dev = acpi_desc->dev;
2904 	struct nd_cmd_ars_status *ars_status;
2905 
2906 	if (acpi_desc->ars_status) {
2907 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2908 		return 0;
2909 	}
2910 
2911 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2912 	if (!ars_status)
2913 		return -ENOMEM;
2914 	acpi_desc->ars_status = ars_status;
2915 	return 0;
2916 }
2917 
2918 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2919 {
2920 	int rc;
2921 
2922 	if (ars_status_alloc(acpi_desc))
2923 		return -ENOMEM;
2924 
2925 	rc = ars_get_status(acpi_desc);
2926 
2927 	if (rc < 0 && rc != -ENOSPC)
2928 		return rc;
2929 
2930 	if (ars_status_process_records(acpi_desc))
2931 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2932 
2933 	return rc;
2934 }
2935 
2936 static int ars_register(struct acpi_nfit_desc *acpi_desc,
2937 		struct nfit_spa *nfit_spa)
2938 {
2939 	int rc;
2940 
2941 	if (no_init_ars || test_bit(ARS_FAILED, &nfit_spa->ars_state))
2942 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2943 
2944 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2945 	set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2946 
2947 	switch (acpi_nfit_query_poison(acpi_desc)) {
2948 	case 0:
2949 	case -EAGAIN:
2950 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2951 		/* shouldn't happen, try again later */
2952 		if (rc == -EBUSY)
2953 			break;
2954 		if (rc) {
2955 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2956 			break;
2957 		}
2958 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2959 		rc = acpi_nfit_query_poison(acpi_desc);
2960 		if (rc)
2961 			break;
2962 		acpi_desc->scrub_spa = nfit_spa;
2963 		ars_complete(acpi_desc, nfit_spa);
2964 		/*
2965 		 * If ars_complete() says we didn't complete the
2966 		 * short scrub, we'll try again with a long
2967 		 * request.
2968 		 */
2969 		acpi_desc->scrub_spa = NULL;
2970 		break;
2971 	case -EBUSY:
2972 	case -ENOMEM:
2973 	case -ENOSPC:
2974 		/*
2975 		 * BIOS was using ARS, wait for it to complete (or
2976 		 * resources to become available) and then perform our
2977 		 * own scrubs.
2978 		 */
2979 		break;
2980 	default:
2981 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2982 		break;
2983 	}
2984 
2985 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2986 }
2987 
2988 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2989 {
2990 	struct nfit_spa *nfit_spa;
2991 
2992 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2993 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2994 			continue;
2995 		ars_complete(acpi_desc, nfit_spa);
2996 	}
2997 }
2998 
2999 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3000 		int query_rc)
3001 {
3002 	unsigned int tmo = acpi_desc->scrub_tmo;
3003 	struct device *dev = acpi_desc->dev;
3004 	struct nfit_spa *nfit_spa;
3005 
3006 	lockdep_assert_held(&acpi_desc->init_mutex);
3007 
3008 	if (acpi_desc->cancel)
3009 		return 0;
3010 
3011 	if (query_rc == -EBUSY) {
3012 		dev_dbg(dev, "ARS: ARS busy\n");
3013 		return min(30U * 60U, tmo * 2);
3014 	}
3015 	if (query_rc == -ENOSPC) {
3016 		dev_dbg(dev, "ARS: ARS continue\n");
3017 		ars_continue(acpi_desc);
3018 		return 1;
3019 	}
3020 	if (query_rc && query_rc != -EAGAIN) {
3021 		unsigned long long addr, end;
3022 
3023 		addr = acpi_desc->ars_status->address;
3024 		end = addr + acpi_desc->ars_status->length;
3025 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3026 				query_rc);
3027 	}
3028 
3029 	ars_complete_all(acpi_desc);
3030 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3031 		enum nfit_ars_state req_type;
3032 		int rc;
3033 
3034 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3035 			continue;
3036 
3037 		/* prefer short ARS requests first */
3038 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3039 			req_type = ARS_REQ_SHORT;
3040 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3041 			req_type = ARS_REQ_LONG;
3042 		else
3043 			continue;
3044 		rc = ars_start(acpi_desc, nfit_spa, req_type);
3045 
3046 		dev = nd_region_dev(nfit_spa->nd_region);
3047 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3048 				nfit_spa->spa->range_index,
3049 				req_type == ARS_REQ_SHORT ? "short" : "long",
3050 				rc);
3051 		/*
3052 		 * Hmm, we raced someone else starting ARS? Try again in
3053 		 * a bit.
3054 		 */
3055 		if (rc == -EBUSY)
3056 			return 1;
3057 		if (rc == 0) {
3058 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3059 					"scrub start while range %d active\n",
3060 					acpi_desc->scrub_spa->spa->range_index);
3061 			clear_bit(req_type, &nfit_spa->ars_state);
3062 			acpi_desc->scrub_spa = nfit_spa;
3063 			/*
3064 			 * Consider this spa last for future scrub
3065 			 * requests
3066 			 */
3067 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3068 			return 1;
3069 		}
3070 
3071 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3072 				nfit_spa->spa->range_index, rc);
3073 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3074 	}
3075 	return 0;
3076 }
3077 
3078 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3079 {
3080 	lockdep_assert_held(&acpi_desc->init_mutex);
3081 
3082 	acpi_desc->scrub_busy = 1;
3083 	/* note this should only be set from within the workqueue */
3084 	if (tmo)
3085 		acpi_desc->scrub_tmo = tmo;
3086 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3087 }
3088 
3089 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3090 {
3091 	__sched_ars(acpi_desc, 0);
3092 }
3093 
3094 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3095 {
3096 	lockdep_assert_held(&acpi_desc->init_mutex);
3097 
3098 	acpi_desc->scrub_busy = 0;
3099 	acpi_desc->scrub_count++;
3100 	if (acpi_desc->scrub_count_state)
3101 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3102 }
3103 
3104 static void acpi_nfit_scrub(struct work_struct *work)
3105 {
3106 	struct acpi_nfit_desc *acpi_desc;
3107 	unsigned int tmo;
3108 	int query_rc;
3109 
3110 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3111 	mutex_lock(&acpi_desc->init_mutex);
3112 	query_rc = acpi_nfit_query_poison(acpi_desc);
3113 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3114 	if (tmo)
3115 		__sched_ars(acpi_desc, tmo);
3116 	else
3117 		notify_ars_done(acpi_desc);
3118 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3119 	mutex_unlock(&acpi_desc->init_mutex);
3120 }
3121 
3122 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3123 		struct nfit_spa *nfit_spa)
3124 {
3125 	int type = nfit_spa_type(nfit_spa->spa);
3126 	struct nd_cmd_ars_cap ars_cap;
3127 	int rc;
3128 
3129 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
3130 	memset(&ars_cap, 0, sizeof(ars_cap));
3131 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3132 	if (rc < 0)
3133 		return;
3134 	/* check that the supported scrub types match the spa type */
3135 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3136 				& ND_ARS_VOLATILE) == 0)
3137 		return;
3138 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3139 				& ND_ARS_PERSISTENT) == 0)
3140 		return;
3141 
3142 	nfit_spa->max_ars = ars_cap.max_ars_out;
3143 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3144 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3145 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3146 }
3147 
3148 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3149 {
3150 	struct nfit_spa *nfit_spa;
3151 	int rc;
3152 
3153 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3154 		switch (nfit_spa_type(nfit_spa->spa)) {
3155 		case NFIT_SPA_VOLATILE:
3156 		case NFIT_SPA_PM:
3157 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3158 			break;
3159 		}
3160 	}
3161 
3162 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3163 		switch (nfit_spa_type(nfit_spa->spa)) {
3164 		case NFIT_SPA_VOLATILE:
3165 		case NFIT_SPA_PM:
3166 			/* register regions and kick off initial ARS run */
3167 			rc = ars_register(acpi_desc, nfit_spa);
3168 			if (rc)
3169 				return rc;
3170 			break;
3171 		case NFIT_SPA_BDW:
3172 			/* nothing to register */
3173 			break;
3174 		case NFIT_SPA_DCR:
3175 		case NFIT_SPA_VDISK:
3176 		case NFIT_SPA_VCD:
3177 		case NFIT_SPA_PDISK:
3178 		case NFIT_SPA_PCD:
3179 			/* register known regions that don't support ARS */
3180 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3181 			if (rc)
3182 				return rc;
3183 			break;
3184 		default:
3185 			/* don't register unknown regions */
3186 			break;
3187 		}
3188 
3189 	sched_ars(acpi_desc);
3190 	return 0;
3191 }
3192 
3193 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3194 		struct nfit_table_prev *prev)
3195 {
3196 	struct device *dev = acpi_desc->dev;
3197 
3198 	if (!list_empty(&prev->spas) ||
3199 			!list_empty(&prev->memdevs) ||
3200 			!list_empty(&prev->dcrs) ||
3201 			!list_empty(&prev->bdws) ||
3202 			!list_empty(&prev->idts) ||
3203 			!list_empty(&prev->flushes)) {
3204 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3205 		return -ENXIO;
3206 	}
3207 	return 0;
3208 }
3209 
3210 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3211 {
3212 	struct device *dev = acpi_desc->dev;
3213 	struct kernfs_node *nfit;
3214 	struct device *bus_dev;
3215 
3216 	if (!ars_supported(acpi_desc->nvdimm_bus))
3217 		return 0;
3218 
3219 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3220 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3221 	if (!nfit) {
3222 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3223 		return -ENODEV;
3224 	}
3225 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3226 	sysfs_put(nfit);
3227 	if (!acpi_desc->scrub_count_state) {
3228 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3229 		return -ENODEV;
3230 	}
3231 
3232 	return 0;
3233 }
3234 
3235 static void acpi_nfit_unregister(void *data)
3236 {
3237 	struct acpi_nfit_desc *acpi_desc = data;
3238 
3239 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3240 }
3241 
3242 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3243 {
3244 	struct device *dev = acpi_desc->dev;
3245 	struct nfit_table_prev prev;
3246 	const void *end;
3247 	int rc;
3248 
3249 	if (!acpi_desc->nvdimm_bus) {
3250 		acpi_nfit_init_dsms(acpi_desc);
3251 
3252 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3253 				&acpi_desc->nd_desc);
3254 		if (!acpi_desc->nvdimm_bus)
3255 			return -ENOMEM;
3256 
3257 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3258 				acpi_desc);
3259 		if (rc)
3260 			return rc;
3261 
3262 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3263 		if (rc)
3264 			return rc;
3265 
3266 		/* register this acpi_desc for mce notifications */
3267 		mutex_lock(&acpi_desc_lock);
3268 		list_add_tail(&acpi_desc->list, &acpi_descs);
3269 		mutex_unlock(&acpi_desc_lock);
3270 	}
3271 
3272 	mutex_lock(&acpi_desc->init_mutex);
3273 
3274 	INIT_LIST_HEAD(&prev.spas);
3275 	INIT_LIST_HEAD(&prev.memdevs);
3276 	INIT_LIST_HEAD(&prev.dcrs);
3277 	INIT_LIST_HEAD(&prev.bdws);
3278 	INIT_LIST_HEAD(&prev.idts);
3279 	INIT_LIST_HEAD(&prev.flushes);
3280 
3281 	list_cut_position(&prev.spas, &acpi_desc->spas,
3282 				acpi_desc->spas.prev);
3283 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3284 				acpi_desc->memdevs.prev);
3285 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3286 				acpi_desc->dcrs.prev);
3287 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3288 				acpi_desc->bdws.prev);
3289 	list_cut_position(&prev.idts, &acpi_desc->idts,
3290 				acpi_desc->idts.prev);
3291 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3292 				acpi_desc->flushes.prev);
3293 
3294 	end = data + sz;
3295 	while (!IS_ERR_OR_NULL(data))
3296 		data = add_table(acpi_desc, &prev, data, end);
3297 
3298 	if (IS_ERR(data)) {
3299 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3300 		rc = PTR_ERR(data);
3301 		goto out_unlock;
3302 	}
3303 
3304 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3305 	if (rc)
3306 		goto out_unlock;
3307 
3308 	rc = nfit_mem_init(acpi_desc);
3309 	if (rc)
3310 		goto out_unlock;
3311 
3312 	rc = acpi_nfit_register_dimms(acpi_desc);
3313 	if (rc)
3314 		goto out_unlock;
3315 
3316 	rc = acpi_nfit_register_regions(acpi_desc);
3317 
3318  out_unlock:
3319 	mutex_unlock(&acpi_desc->init_mutex);
3320 	return rc;
3321 }
3322 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3323 
3324 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3325 {
3326 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3327 	struct device *dev = acpi_desc->dev;
3328 
3329 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3330 	device_lock(dev);
3331 	device_unlock(dev);
3332 
3333 	/* Bounce the init_mutex to complete initial registration */
3334 	mutex_lock(&acpi_desc->init_mutex);
3335 	mutex_unlock(&acpi_desc->init_mutex);
3336 
3337 	return 0;
3338 }
3339 
3340 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3341 		struct nvdimm *nvdimm, unsigned int cmd)
3342 {
3343 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3344 
3345 	if (nvdimm)
3346 		return 0;
3347 	if (cmd != ND_CMD_ARS_START)
3348 		return 0;
3349 
3350 	/*
3351 	 * The kernel and userspace may race to initiate a scrub, but
3352 	 * the scrub thread is prepared to lose that initial race.  It
3353 	 * just needs guarantees that any ARS it initiates are not
3354 	 * interrupted by any intervening start requests from userspace.
3355 	 */
3356 	if (work_busy(&acpi_desc->dwork.work))
3357 		return -EBUSY;
3358 
3359 	return 0;
3360 }
3361 
3362 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3363 		enum nfit_ars_state req_type)
3364 {
3365 	struct device *dev = acpi_desc->dev;
3366 	int scheduled = 0, busy = 0;
3367 	struct nfit_spa *nfit_spa;
3368 
3369 	mutex_lock(&acpi_desc->init_mutex);
3370 	if (acpi_desc->cancel) {
3371 		mutex_unlock(&acpi_desc->init_mutex);
3372 		return 0;
3373 	}
3374 
3375 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3376 		int type = nfit_spa_type(nfit_spa->spa);
3377 
3378 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3379 			continue;
3380 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3381 			continue;
3382 
3383 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3384 			busy++;
3385 		else
3386 			scheduled++;
3387 	}
3388 	if (scheduled) {
3389 		sched_ars(acpi_desc);
3390 		dev_dbg(dev, "ars_scan triggered\n");
3391 	}
3392 	mutex_unlock(&acpi_desc->init_mutex);
3393 
3394 	if (scheduled)
3395 		return 0;
3396 	if (busy)
3397 		return -EBUSY;
3398 	return -ENOTTY;
3399 }
3400 
3401 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3402 {
3403 	struct nvdimm_bus_descriptor *nd_desc;
3404 
3405 	dev_set_drvdata(dev, acpi_desc);
3406 	acpi_desc->dev = dev;
3407 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3408 	nd_desc = &acpi_desc->nd_desc;
3409 	nd_desc->provider_name = "ACPI.NFIT";
3410 	nd_desc->module = THIS_MODULE;
3411 	nd_desc->ndctl = acpi_nfit_ctl;
3412 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3413 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3414 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3415 
3416 	INIT_LIST_HEAD(&acpi_desc->spas);
3417 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3418 	INIT_LIST_HEAD(&acpi_desc->bdws);
3419 	INIT_LIST_HEAD(&acpi_desc->idts);
3420 	INIT_LIST_HEAD(&acpi_desc->flushes);
3421 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3422 	INIT_LIST_HEAD(&acpi_desc->dimms);
3423 	INIT_LIST_HEAD(&acpi_desc->list);
3424 	mutex_init(&acpi_desc->init_mutex);
3425 	acpi_desc->scrub_tmo = 1;
3426 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3427 }
3428 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3429 
3430 static void acpi_nfit_put_table(void *table)
3431 {
3432 	acpi_put_table(table);
3433 }
3434 
3435 void acpi_nfit_shutdown(void *data)
3436 {
3437 	struct acpi_nfit_desc *acpi_desc = data;
3438 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3439 
3440 	/*
3441 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3442 	 * race teardown
3443 	 */
3444 	mutex_lock(&acpi_desc_lock);
3445 	list_del(&acpi_desc->list);
3446 	mutex_unlock(&acpi_desc_lock);
3447 
3448 	mutex_lock(&acpi_desc->init_mutex);
3449 	acpi_desc->cancel = 1;
3450 	cancel_delayed_work_sync(&acpi_desc->dwork);
3451 	mutex_unlock(&acpi_desc->init_mutex);
3452 
3453 	/*
3454 	 * Bounce the nvdimm bus lock to make sure any in-flight
3455 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3456 	 * either submit or see ->cancel set.
3457 	 */
3458 	device_lock(bus_dev);
3459 	device_unlock(bus_dev);
3460 
3461 	flush_workqueue(nfit_wq);
3462 }
3463 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3464 
3465 static int acpi_nfit_add(struct acpi_device *adev)
3466 {
3467 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3468 	struct acpi_nfit_desc *acpi_desc;
3469 	struct device *dev = &adev->dev;
3470 	struct acpi_table_header *tbl;
3471 	acpi_status status = AE_OK;
3472 	acpi_size sz;
3473 	int rc = 0;
3474 
3475 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3476 	if (ACPI_FAILURE(status)) {
3477 		/* This is ok, we could have an nvdimm hotplugged later */
3478 		dev_dbg(dev, "failed to find NFIT at startup\n");
3479 		return 0;
3480 	}
3481 
3482 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3483 	if (rc)
3484 		return rc;
3485 	sz = tbl->length;
3486 
3487 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3488 	if (!acpi_desc)
3489 		return -ENOMEM;
3490 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3491 
3492 	/* Save the acpi header for exporting the revision via sysfs */
3493 	acpi_desc->acpi_header = *tbl;
3494 
3495 	/* Evaluate _FIT and override with that if present */
3496 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3497 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3498 		union acpi_object *obj = buf.pointer;
3499 
3500 		if (obj->type == ACPI_TYPE_BUFFER)
3501 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3502 					obj->buffer.length);
3503 		else
3504 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3505 				(int) obj->type);
3506 		kfree(buf.pointer);
3507 	} else
3508 		/* skip over the lead-in header table */
3509 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3510 				+ sizeof(struct acpi_table_nfit),
3511 				sz - sizeof(struct acpi_table_nfit));
3512 
3513 	if (rc)
3514 		return rc;
3515 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3516 }
3517 
3518 static int acpi_nfit_remove(struct acpi_device *adev)
3519 {
3520 	/* see acpi_nfit_unregister */
3521 	return 0;
3522 }
3523 
3524 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3525 {
3526 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3527 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3528 	union acpi_object *obj;
3529 	acpi_status status;
3530 	int ret;
3531 
3532 	if (!dev->driver) {
3533 		/* dev->driver may be null if we're being removed */
3534 		dev_dbg(dev, "no driver found for dev\n");
3535 		return;
3536 	}
3537 
3538 	if (!acpi_desc) {
3539 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3540 		if (!acpi_desc)
3541 			return;
3542 		acpi_nfit_desc_init(acpi_desc, dev);
3543 	} else {
3544 		/*
3545 		 * Finish previous registration before considering new
3546 		 * regions.
3547 		 */
3548 		flush_workqueue(nfit_wq);
3549 	}
3550 
3551 	/* Evaluate _FIT */
3552 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3553 	if (ACPI_FAILURE(status)) {
3554 		dev_err(dev, "failed to evaluate _FIT\n");
3555 		return;
3556 	}
3557 
3558 	obj = buf.pointer;
3559 	if (obj->type == ACPI_TYPE_BUFFER) {
3560 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3561 				obj->buffer.length);
3562 		if (ret)
3563 			dev_err(dev, "failed to merge updated NFIT\n");
3564 	} else
3565 		dev_err(dev, "Invalid _FIT\n");
3566 	kfree(buf.pointer);
3567 }
3568 
3569 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3570 {
3571 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3572 
3573 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3574 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3575 	else
3576 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3577 }
3578 
3579 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3580 {
3581 	dev_dbg(dev, "event: 0x%x\n", event);
3582 
3583 	switch (event) {
3584 	case NFIT_NOTIFY_UPDATE:
3585 		return acpi_nfit_update_notify(dev, handle);
3586 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3587 		return acpi_nfit_uc_error_notify(dev, handle);
3588 	default:
3589 		return;
3590 	}
3591 }
3592 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3593 
3594 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3595 {
3596 	device_lock(&adev->dev);
3597 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3598 	device_unlock(&adev->dev);
3599 }
3600 
3601 static const struct acpi_device_id acpi_nfit_ids[] = {
3602 	{ "ACPI0012", 0 },
3603 	{ "", 0 },
3604 };
3605 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3606 
3607 static struct acpi_driver acpi_nfit_driver = {
3608 	.name = KBUILD_MODNAME,
3609 	.ids = acpi_nfit_ids,
3610 	.ops = {
3611 		.add = acpi_nfit_add,
3612 		.remove = acpi_nfit_remove,
3613 		.notify = acpi_nfit_notify,
3614 	},
3615 };
3616 
3617 static __init int nfit_init(void)
3618 {
3619 	int ret;
3620 
3621 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3622 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3623 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3624 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3625 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3626 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3627 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3628 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3629 
3630 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3631 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3632 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3633 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3634 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3635 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3636 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3637 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3638 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3639 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3640 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3641 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3642 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3643 
3644 	nfit_wq = create_singlethread_workqueue("nfit");
3645 	if (!nfit_wq)
3646 		return -ENOMEM;
3647 
3648 	nfit_mce_register();
3649 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3650 	if (ret) {
3651 		nfit_mce_unregister();
3652 		destroy_workqueue(nfit_wq);
3653 	}
3654 
3655 	return ret;
3656 
3657 }
3658 
3659 static __exit void nfit_exit(void)
3660 {
3661 	nfit_mce_unregister();
3662 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3663 	destroy_workqueue(nfit_wq);
3664 	WARN_ON(!list_empty(&acpi_descs));
3665 }
3666 
3667 module_init(nfit_init);
3668 module_exit(nfit_exit);
3669 MODULE_LICENSE("GPL v2");
3670 MODULE_AUTHOR("Intel Corporation");
3671