1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/list_sort.h> 6 #include <linux/libnvdimm.h> 7 #include <linux/module.h> 8 #include <linux/mutex.h> 9 #include <linux/ndctl.h> 10 #include <linux/sysfs.h> 11 #include <linux/delay.h> 12 #include <linux/list.h> 13 #include <linux/acpi.h> 14 #include <linux/sort.h> 15 #include <linux/io.h> 16 #include <linux/nd.h> 17 #include <asm/cacheflush.h> 18 #include <acpi/nfit.h> 19 #include "intel.h" 20 #include "nfit.h" 21 22 /* 23 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 24 * irrelevant. 25 */ 26 #include <linux/io-64-nonatomic-hi-lo.h> 27 28 static bool force_enable_dimms; 29 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); 30 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); 31 32 static bool disable_vendor_specific; 33 module_param(disable_vendor_specific, bool, S_IRUGO); 34 MODULE_PARM_DESC(disable_vendor_specific, 35 "Limit commands to the publicly specified set"); 36 37 static unsigned long override_dsm_mask; 38 module_param(override_dsm_mask, ulong, S_IRUGO); 39 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); 40 41 static int default_dsm_family = -1; 42 module_param(default_dsm_family, int, S_IRUGO); 43 MODULE_PARM_DESC(default_dsm_family, 44 "Try this DSM type first when identifying NVDIMM family"); 45 46 static bool no_init_ars; 47 module_param(no_init_ars, bool, 0644); 48 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); 49 50 static bool force_labels; 51 module_param(force_labels, bool, 0444); 52 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods"); 53 54 LIST_HEAD(acpi_descs); 55 DEFINE_MUTEX(acpi_desc_lock); 56 57 static struct workqueue_struct *nfit_wq; 58 59 struct nfit_table_prev { 60 struct list_head spas; 61 struct list_head memdevs; 62 struct list_head dcrs; 63 struct list_head bdws; 64 struct list_head idts; 65 struct list_head flushes; 66 }; 67 68 static guid_t nfit_uuid[NFIT_UUID_MAX]; 69 70 const guid_t *to_nfit_uuid(enum nfit_uuids id) 71 { 72 return &nfit_uuid[id]; 73 } 74 EXPORT_SYMBOL(to_nfit_uuid); 75 76 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) 77 { 78 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 79 80 /* 81 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct 82 * acpi_device. 83 */ 84 if (!nd_desc->provider_name 85 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) 86 return NULL; 87 88 return to_acpi_device(acpi_desc->dev); 89 } 90 91 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) 92 { 93 struct nd_cmd_clear_error *clear_err; 94 struct nd_cmd_ars_status *ars_status; 95 u16 flags; 96 97 switch (cmd) { 98 case ND_CMD_ARS_CAP: 99 if ((status & 0xffff) == NFIT_ARS_CAP_NONE) 100 return -ENOTTY; 101 102 /* Command failed */ 103 if (status & 0xffff) 104 return -EIO; 105 106 /* No supported scan types for this range */ 107 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; 108 if ((status >> 16 & flags) == 0) 109 return -ENOTTY; 110 return 0; 111 case ND_CMD_ARS_START: 112 /* ARS is in progress */ 113 if ((status & 0xffff) == NFIT_ARS_START_BUSY) 114 return -EBUSY; 115 116 /* Command failed */ 117 if (status & 0xffff) 118 return -EIO; 119 return 0; 120 case ND_CMD_ARS_STATUS: 121 ars_status = buf; 122 /* Command failed */ 123 if (status & 0xffff) 124 return -EIO; 125 /* Check extended status (Upper two bytes) */ 126 if (status == NFIT_ARS_STATUS_DONE) 127 return 0; 128 129 /* ARS is in progress */ 130 if (status == NFIT_ARS_STATUS_BUSY) 131 return -EBUSY; 132 133 /* No ARS performed for the current boot */ 134 if (status == NFIT_ARS_STATUS_NONE) 135 return -EAGAIN; 136 137 /* 138 * ARS interrupted, either we overflowed or some other 139 * agent wants the scan to stop. If we didn't overflow 140 * then just continue with the returned results. 141 */ 142 if (status == NFIT_ARS_STATUS_INTR) { 143 if (ars_status->out_length >= 40 && (ars_status->flags 144 & NFIT_ARS_F_OVERFLOW)) 145 return -ENOSPC; 146 return 0; 147 } 148 149 /* Unknown status */ 150 if (status >> 16) 151 return -EIO; 152 return 0; 153 case ND_CMD_CLEAR_ERROR: 154 clear_err = buf; 155 if (status & 0xffff) 156 return -EIO; 157 if (!clear_err->cleared) 158 return -EIO; 159 if (clear_err->length > clear_err->cleared) 160 return clear_err->cleared; 161 return 0; 162 default: 163 break; 164 } 165 166 /* all other non-zero status results in an error */ 167 if (status) 168 return -EIO; 169 return 0; 170 } 171 172 #define ACPI_LABELS_LOCKED 3 173 174 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 175 u32 status) 176 { 177 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 178 179 switch (cmd) { 180 case ND_CMD_GET_CONFIG_SIZE: 181 /* 182 * In the _LSI, _LSR, _LSW case the locked status is 183 * communicated via the read/write commands 184 */ 185 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 186 break; 187 188 if (status >> 16 & ND_CONFIG_LOCKED) 189 return -EACCES; 190 break; 191 case ND_CMD_GET_CONFIG_DATA: 192 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 193 && status == ACPI_LABELS_LOCKED) 194 return -EACCES; 195 break; 196 case ND_CMD_SET_CONFIG_DATA: 197 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 198 && status == ACPI_LABELS_LOCKED) 199 return -EACCES; 200 break; 201 default: 202 break; 203 } 204 205 /* all other non-zero status results in an error */ 206 if (status) 207 return -EIO; 208 return 0; 209 } 210 211 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 212 u32 status) 213 { 214 if (!nvdimm) 215 return xlat_bus_status(buf, cmd, status); 216 return xlat_nvdimm_status(nvdimm, buf, cmd, status); 217 } 218 219 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ 220 static union acpi_object *pkg_to_buf(union acpi_object *pkg) 221 { 222 int i; 223 void *dst; 224 size_t size = 0; 225 union acpi_object *buf = NULL; 226 227 if (pkg->type != ACPI_TYPE_PACKAGE) { 228 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 229 pkg->type); 230 goto err; 231 } 232 233 for (i = 0; i < pkg->package.count; i++) { 234 union acpi_object *obj = &pkg->package.elements[i]; 235 236 if (obj->type == ACPI_TYPE_INTEGER) 237 size += 4; 238 else if (obj->type == ACPI_TYPE_BUFFER) 239 size += obj->buffer.length; 240 else { 241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 242 obj->type); 243 goto err; 244 } 245 } 246 247 buf = ACPI_ALLOCATE(sizeof(*buf) + size); 248 if (!buf) 249 goto err; 250 251 dst = buf + 1; 252 buf->type = ACPI_TYPE_BUFFER; 253 buf->buffer.length = size; 254 buf->buffer.pointer = dst; 255 for (i = 0; i < pkg->package.count; i++) { 256 union acpi_object *obj = &pkg->package.elements[i]; 257 258 if (obj->type == ACPI_TYPE_INTEGER) { 259 memcpy(dst, &obj->integer.value, 4); 260 dst += 4; 261 } else if (obj->type == ACPI_TYPE_BUFFER) { 262 memcpy(dst, obj->buffer.pointer, obj->buffer.length); 263 dst += obj->buffer.length; 264 } 265 } 266 err: 267 ACPI_FREE(pkg); 268 return buf; 269 } 270 271 static union acpi_object *int_to_buf(union acpi_object *integer) 272 { 273 union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4); 274 void *dst = NULL; 275 276 if (!buf) 277 goto err; 278 279 if (integer->type != ACPI_TYPE_INTEGER) { 280 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 281 integer->type); 282 goto err; 283 } 284 285 dst = buf + 1; 286 buf->type = ACPI_TYPE_BUFFER; 287 buf->buffer.length = 4; 288 buf->buffer.pointer = dst; 289 memcpy(dst, &integer->integer.value, 4); 290 err: 291 ACPI_FREE(integer); 292 return buf; 293 } 294 295 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, 296 u32 len, void *data) 297 { 298 acpi_status rc; 299 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 300 struct acpi_object_list input = { 301 .count = 3, 302 .pointer = (union acpi_object []) { 303 [0] = { 304 .integer.type = ACPI_TYPE_INTEGER, 305 .integer.value = offset, 306 }, 307 [1] = { 308 .integer.type = ACPI_TYPE_INTEGER, 309 .integer.value = len, 310 }, 311 [2] = { 312 .buffer.type = ACPI_TYPE_BUFFER, 313 .buffer.pointer = data, 314 .buffer.length = len, 315 }, 316 }, 317 }; 318 319 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); 320 if (ACPI_FAILURE(rc)) 321 return NULL; 322 return int_to_buf(buf.pointer); 323 } 324 325 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, 326 u32 len) 327 { 328 acpi_status rc; 329 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 330 struct acpi_object_list input = { 331 .count = 2, 332 .pointer = (union acpi_object []) { 333 [0] = { 334 .integer.type = ACPI_TYPE_INTEGER, 335 .integer.value = offset, 336 }, 337 [1] = { 338 .integer.type = ACPI_TYPE_INTEGER, 339 .integer.value = len, 340 }, 341 }, 342 }; 343 344 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); 345 if (ACPI_FAILURE(rc)) 346 return NULL; 347 return pkg_to_buf(buf.pointer); 348 } 349 350 static union acpi_object *acpi_label_info(acpi_handle handle) 351 { 352 acpi_status rc; 353 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 354 355 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); 356 if (ACPI_FAILURE(rc)) 357 return NULL; 358 return pkg_to_buf(buf.pointer); 359 } 360 361 static u8 nfit_dsm_revid(unsigned family, unsigned func) 362 { 363 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = { 364 [NVDIMM_FAMILY_INTEL] = { 365 [NVDIMM_INTEL_GET_MODES] = 2, 366 [NVDIMM_INTEL_GET_FWINFO] = 2, 367 [NVDIMM_INTEL_START_FWUPDATE] = 2, 368 [NVDIMM_INTEL_SEND_FWUPDATE] = 2, 369 [NVDIMM_INTEL_FINISH_FWUPDATE] = 2, 370 [NVDIMM_INTEL_QUERY_FWUPDATE] = 2, 371 [NVDIMM_INTEL_SET_THRESHOLD] = 2, 372 [NVDIMM_INTEL_INJECT_ERROR] = 2, 373 [NVDIMM_INTEL_GET_SECURITY_STATE] = 2, 374 [NVDIMM_INTEL_SET_PASSPHRASE] = 2, 375 [NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2, 376 [NVDIMM_INTEL_UNLOCK_UNIT] = 2, 377 [NVDIMM_INTEL_FREEZE_LOCK] = 2, 378 [NVDIMM_INTEL_SECURE_ERASE] = 2, 379 [NVDIMM_INTEL_OVERWRITE] = 2, 380 [NVDIMM_INTEL_QUERY_OVERWRITE] = 2, 381 [NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2, 382 [NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2, 383 }, 384 }; 385 u8 id; 386 387 if (family > NVDIMM_FAMILY_MAX) 388 return 0; 389 if (func > 31) 390 return 0; 391 id = revid_table[family][func]; 392 if (id == 0) 393 return 1; /* default */ 394 return id; 395 } 396 397 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) 398 { 399 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 400 401 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL 402 && func >= NVDIMM_INTEL_GET_SECURITY_STATE 403 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) 404 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); 405 return true; 406 } 407 408 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, 409 struct nd_cmd_pkg *call_pkg) 410 { 411 if (call_pkg) { 412 int i; 413 414 if (nfit_mem && nfit_mem->family != call_pkg->nd_family) 415 return -ENOTTY; 416 417 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) 418 if (call_pkg->nd_reserved2[i]) 419 return -EINVAL; 420 return call_pkg->nd_command; 421 } 422 423 /* In the !call_pkg case, bus commands == bus functions */ 424 if (!nfit_mem) 425 return cmd; 426 427 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ 428 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 429 return cmd; 430 431 /* 432 * Force function number validation to fail since 0 is never 433 * published as a valid function in dsm_mask. 434 */ 435 return 0; 436 } 437 438 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, 439 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) 440 { 441 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 442 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 443 union acpi_object in_obj, in_buf, *out_obj; 444 const struct nd_cmd_desc *desc = NULL; 445 struct device *dev = acpi_desc->dev; 446 struct nd_cmd_pkg *call_pkg = NULL; 447 const char *cmd_name, *dimm_name; 448 unsigned long cmd_mask, dsm_mask; 449 u32 offset, fw_status = 0; 450 acpi_handle handle; 451 const guid_t *guid; 452 int func, rc, i; 453 454 if (cmd_rc) 455 *cmd_rc = -EINVAL; 456 457 if (cmd == ND_CMD_CALL) 458 call_pkg = buf; 459 func = cmd_to_func(nfit_mem, cmd, call_pkg); 460 if (func < 0) 461 return func; 462 463 if (nvdimm) { 464 struct acpi_device *adev = nfit_mem->adev; 465 466 if (!adev) 467 return -ENOTTY; 468 469 dimm_name = nvdimm_name(nvdimm); 470 cmd_name = nvdimm_cmd_name(cmd); 471 cmd_mask = nvdimm_cmd_mask(nvdimm); 472 dsm_mask = nfit_mem->dsm_mask; 473 desc = nd_cmd_dimm_desc(cmd); 474 guid = to_nfit_uuid(nfit_mem->family); 475 handle = adev->handle; 476 } else { 477 struct acpi_device *adev = to_acpi_dev(acpi_desc); 478 479 cmd_name = nvdimm_bus_cmd_name(cmd); 480 cmd_mask = nd_desc->cmd_mask; 481 dsm_mask = nd_desc->bus_dsm_mask; 482 desc = nd_cmd_bus_desc(cmd); 483 guid = to_nfit_uuid(NFIT_DEV_BUS); 484 handle = adev->handle; 485 dimm_name = "bus"; 486 } 487 488 if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) 489 return -ENOTTY; 490 491 /* 492 * Check for a valid command. For ND_CMD_CALL, we also have to 493 * make sure that the DSM function is supported. 494 */ 495 if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask)) 496 return -ENOTTY; 497 else if (!test_bit(cmd, &cmd_mask)) 498 return -ENOTTY; 499 500 in_obj.type = ACPI_TYPE_PACKAGE; 501 in_obj.package.count = 1; 502 in_obj.package.elements = &in_buf; 503 in_buf.type = ACPI_TYPE_BUFFER; 504 in_buf.buffer.pointer = buf; 505 in_buf.buffer.length = 0; 506 507 /* libnvdimm has already validated the input envelope */ 508 for (i = 0; i < desc->in_num; i++) 509 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, 510 i, buf); 511 512 if (call_pkg) { 513 /* skip over package wrapper */ 514 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; 515 in_buf.buffer.length = call_pkg->nd_size_in; 516 } 517 518 dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n", 519 dimm_name, cmd, func, in_buf.buffer.length); 520 if (payload_dumpable(nvdimm, func)) 521 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, 522 in_buf.buffer.pointer, 523 min_t(u32, 256, in_buf.buffer.length), true); 524 525 /* call the BIOS, prefer the named methods over _DSM if available */ 526 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE 527 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 528 out_obj = acpi_label_info(handle); 529 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA 530 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 531 struct nd_cmd_get_config_data_hdr *p = buf; 532 533 out_obj = acpi_label_read(handle, p->in_offset, p->in_length); 534 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA 535 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { 536 struct nd_cmd_set_config_hdr *p = buf; 537 538 out_obj = acpi_label_write(handle, p->in_offset, p->in_length, 539 p->in_buf); 540 } else { 541 u8 revid; 542 543 if (nvdimm) 544 revid = nfit_dsm_revid(nfit_mem->family, func); 545 else 546 revid = 1; 547 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 548 } 549 550 if (!out_obj) { 551 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); 552 return -EINVAL; 553 } 554 555 if (out_obj->type != ACPI_TYPE_BUFFER) { 556 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", 557 dimm_name, cmd_name, out_obj->type); 558 rc = -EINVAL; 559 goto out; 560 } 561 562 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, 563 cmd_name, out_obj->buffer.length); 564 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, 565 out_obj->buffer.pointer, 566 min_t(u32, 128, out_obj->buffer.length), true); 567 568 if (call_pkg) { 569 call_pkg->nd_fw_size = out_obj->buffer.length; 570 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, 571 out_obj->buffer.pointer, 572 min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); 573 574 ACPI_FREE(out_obj); 575 /* 576 * Need to support FW function w/o known size in advance. 577 * Caller can determine required size based upon nd_fw_size. 578 * If we return an error (like elsewhere) then caller wouldn't 579 * be able to rely upon data returned to make calculation. 580 */ 581 if (cmd_rc) 582 *cmd_rc = 0; 583 return 0; 584 } 585 586 for (i = 0, offset = 0; i < desc->out_num; i++) { 587 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, 588 (u32 *) out_obj->buffer.pointer, 589 out_obj->buffer.length - offset); 590 591 if (offset + out_size > out_obj->buffer.length) { 592 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", 593 dimm_name, cmd_name, i); 594 break; 595 } 596 597 if (in_buf.buffer.length + offset + out_size > buf_len) { 598 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", 599 dimm_name, cmd_name, i); 600 rc = -ENXIO; 601 goto out; 602 } 603 memcpy(buf + in_buf.buffer.length + offset, 604 out_obj->buffer.pointer + offset, out_size); 605 offset += out_size; 606 } 607 608 /* 609 * Set fw_status for all the commands with a known format to be 610 * later interpreted by xlat_status(). 611 */ 612 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP 613 && cmd <= ND_CMD_CLEAR_ERROR) 614 || (nvdimm && cmd >= ND_CMD_SMART 615 && cmd <= ND_CMD_VENDOR))) 616 fw_status = *(u32 *) out_obj->buffer.pointer; 617 618 if (offset + in_buf.buffer.length < buf_len) { 619 if (i >= 1) { 620 /* 621 * status valid, return the number of bytes left 622 * unfilled in the output buffer 623 */ 624 rc = buf_len - offset - in_buf.buffer.length; 625 if (cmd_rc) 626 *cmd_rc = xlat_status(nvdimm, buf, cmd, 627 fw_status); 628 } else { 629 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", 630 __func__, dimm_name, cmd_name, buf_len, 631 offset); 632 rc = -ENXIO; 633 } 634 } else { 635 rc = 0; 636 if (cmd_rc) 637 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); 638 } 639 640 out: 641 ACPI_FREE(out_obj); 642 643 return rc; 644 } 645 EXPORT_SYMBOL_GPL(acpi_nfit_ctl); 646 647 static const char *spa_type_name(u16 type) 648 { 649 static const char *to_name[] = { 650 [NFIT_SPA_VOLATILE] = "volatile", 651 [NFIT_SPA_PM] = "pmem", 652 [NFIT_SPA_DCR] = "dimm-control-region", 653 [NFIT_SPA_BDW] = "block-data-window", 654 [NFIT_SPA_VDISK] = "volatile-disk", 655 [NFIT_SPA_VCD] = "volatile-cd", 656 [NFIT_SPA_PDISK] = "persistent-disk", 657 [NFIT_SPA_PCD] = "persistent-cd", 658 659 }; 660 661 if (type > NFIT_SPA_PCD) 662 return "unknown"; 663 664 return to_name[type]; 665 } 666 667 int nfit_spa_type(struct acpi_nfit_system_address *spa) 668 { 669 int i; 670 671 for (i = 0; i < NFIT_UUID_MAX; i++) 672 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) 673 return i; 674 return -1; 675 } 676 677 static bool add_spa(struct acpi_nfit_desc *acpi_desc, 678 struct nfit_table_prev *prev, 679 struct acpi_nfit_system_address *spa) 680 { 681 struct device *dev = acpi_desc->dev; 682 struct nfit_spa *nfit_spa; 683 684 if (spa->header.length != sizeof(*spa)) 685 return false; 686 687 list_for_each_entry(nfit_spa, &prev->spas, list) { 688 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { 689 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 690 return true; 691 } 692 } 693 694 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), 695 GFP_KERNEL); 696 if (!nfit_spa) 697 return false; 698 INIT_LIST_HEAD(&nfit_spa->list); 699 memcpy(nfit_spa->spa, spa, sizeof(*spa)); 700 list_add_tail(&nfit_spa->list, &acpi_desc->spas); 701 dev_dbg(dev, "spa index: %d type: %s\n", 702 spa->range_index, 703 spa_type_name(nfit_spa_type(spa))); 704 return true; 705 } 706 707 static bool add_memdev(struct acpi_nfit_desc *acpi_desc, 708 struct nfit_table_prev *prev, 709 struct acpi_nfit_memory_map *memdev) 710 { 711 struct device *dev = acpi_desc->dev; 712 struct nfit_memdev *nfit_memdev; 713 714 if (memdev->header.length != sizeof(*memdev)) 715 return false; 716 717 list_for_each_entry(nfit_memdev, &prev->memdevs, list) 718 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { 719 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); 720 return true; 721 } 722 723 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), 724 GFP_KERNEL); 725 if (!nfit_memdev) 726 return false; 727 INIT_LIST_HEAD(&nfit_memdev->list); 728 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); 729 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); 730 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", 731 memdev->device_handle, memdev->range_index, 732 memdev->region_index, memdev->flags); 733 return true; 734 } 735 736 int nfit_get_smbios_id(u32 device_handle, u16 *flags) 737 { 738 struct acpi_nfit_memory_map *memdev; 739 struct acpi_nfit_desc *acpi_desc; 740 struct nfit_mem *nfit_mem; 741 u16 physical_id; 742 743 mutex_lock(&acpi_desc_lock); 744 list_for_each_entry(acpi_desc, &acpi_descs, list) { 745 mutex_lock(&acpi_desc->init_mutex); 746 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 747 memdev = __to_nfit_memdev(nfit_mem); 748 if (memdev->device_handle == device_handle) { 749 *flags = memdev->flags; 750 physical_id = memdev->physical_id; 751 mutex_unlock(&acpi_desc->init_mutex); 752 mutex_unlock(&acpi_desc_lock); 753 return physical_id; 754 } 755 } 756 mutex_unlock(&acpi_desc->init_mutex); 757 } 758 mutex_unlock(&acpi_desc_lock); 759 760 return -ENODEV; 761 } 762 EXPORT_SYMBOL_GPL(nfit_get_smbios_id); 763 764 /* 765 * An implementation may provide a truncated control region if no block windows 766 * are defined. 767 */ 768 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) 769 { 770 if (dcr->header.length < offsetof(struct acpi_nfit_control_region, 771 window_size)) 772 return 0; 773 if (dcr->windows) 774 return sizeof(*dcr); 775 return offsetof(struct acpi_nfit_control_region, window_size); 776 } 777 778 static bool add_dcr(struct acpi_nfit_desc *acpi_desc, 779 struct nfit_table_prev *prev, 780 struct acpi_nfit_control_region *dcr) 781 { 782 struct device *dev = acpi_desc->dev; 783 struct nfit_dcr *nfit_dcr; 784 785 if (!sizeof_dcr(dcr)) 786 return false; 787 788 list_for_each_entry(nfit_dcr, &prev->dcrs, list) 789 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { 790 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); 791 return true; 792 } 793 794 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), 795 GFP_KERNEL); 796 if (!nfit_dcr) 797 return false; 798 INIT_LIST_HEAD(&nfit_dcr->list); 799 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); 800 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); 801 dev_dbg(dev, "dcr index: %d windows: %d\n", 802 dcr->region_index, dcr->windows); 803 return true; 804 } 805 806 static bool add_bdw(struct acpi_nfit_desc *acpi_desc, 807 struct nfit_table_prev *prev, 808 struct acpi_nfit_data_region *bdw) 809 { 810 struct device *dev = acpi_desc->dev; 811 struct nfit_bdw *nfit_bdw; 812 813 if (bdw->header.length != sizeof(*bdw)) 814 return false; 815 list_for_each_entry(nfit_bdw, &prev->bdws, list) 816 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { 817 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); 818 return true; 819 } 820 821 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), 822 GFP_KERNEL); 823 if (!nfit_bdw) 824 return false; 825 INIT_LIST_HEAD(&nfit_bdw->list); 826 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); 827 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); 828 dev_dbg(dev, "bdw dcr: %d windows: %d\n", 829 bdw->region_index, bdw->windows); 830 return true; 831 } 832 833 static size_t sizeof_idt(struct acpi_nfit_interleave *idt) 834 { 835 if (idt->header.length < sizeof(*idt)) 836 return 0; 837 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); 838 } 839 840 static bool add_idt(struct acpi_nfit_desc *acpi_desc, 841 struct nfit_table_prev *prev, 842 struct acpi_nfit_interleave *idt) 843 { 844 struct device *dev = acpi_desc->dev; 845 struct nfit_idt *nfit_idt; 846 847 if (!sizeof_idt(idt)) 848 return false; 849 850 list_for_each_entry(nfit_idt, &prev->idts, list) { 851 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) 852 continue; 853 854 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { 855 list_move_tail(&nfit_idt->list, &acpi_desc->idts); 856 return true; 857 } 858 } 859 860 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), 861 GFP_KERNEL); 862 if (!nfit_idt) 863 return false; 864 INIT_LIST_HEAD(&nfit_idt->list); 865 memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); 866 list_add_tail(&nfit_idt->list, &acpi_desc->idts); 867 dev_dbg(dev, "idt index: %d num_lines: %d\n", 868 idt->interleave_index, idt->line_count); 869 return true; 870 } 871 872 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) 873 { 874 if (flush->header.length < sizeof(*flush)) 875 return 0; 876 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); 877 } 878 879 static bool add_flush(struct acpi_nfit_desc *acpi_desc, 880 struct nfit_table_prev *prev, 881 struct acpi_nfit_flush_address *flush) 882 { 883 struct device *dev = acpi_desc->dev; 884 struct nfit_flush *nfit_flush; 885 886 if (!sizeof_flush(flush)) 887 return false; 888 889 list_for_each_entry(nfit_flush, &prev->flushes, list) { 890 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) 891 continue; 892 893 if (memcmp(nfit_flush->flush, flush, 894 sizeof_flush(flush)) == 0) { 895 list_move_tail(&nfit_flush->list, &acpi_desc->flushes); 896 return true; 897 } 898 } 899 900 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) 901 + sizeof_flush(flush), GFP_KERNEL); 902 if (!nfit_flush) 903 return false; 904 INIT_LIST_HEAD(&nfit_flush->list); 905 memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); 906 list_add_tail(&nfit_flush->list, &acpi_desc->flushes); 907 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", 908 flush->device_handle, flush->hint_count); 909 return true; 910 } 911 912 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, 913 struct acpi_nfit_capabilities *pcap) 914 { 915 struct device *dev = acpi_desc->dev; 916 u32 mask; 917 918 mask = (1 << (pcap->highest_capability + 1)) - 1; 919 acpi_desc->platform_cap = pcap->capabilities & mask; 920 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); 921 return true; 922 } 923 924 static void *add_table(struct acpi_nfit_desc *acpi_desc, 925 struct nfit_table_prev *prev, void *table, const void *end) 926 { 927 struct device *dev = acpi_desc->dev; 928 struct acpi_nfit_header *hdr; 929 void *err = ERR_PTR(-ENOMEM); 930 931 if (table >= end) 932 return NULL; 933 934 hdr = table; 935 if (!hdr->length) { 936 dev_warn(dev, "found a zero length table '%d' parsing nfit\n", 937 hdr->type); 938 return NULL; 939 } 940 941 switch (hdr->type) { 942 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: 943 if (!add_spa(acpi_desc, prev, table)) 944 return err; 945 break; 946 case ACPI_NFIT_TYPE_MEMORY_MAP: 947 if (!add_memdev(acpi_desc, prev, table)) 948 return err; 949 break; 950 case ACPI_NFIT_TYPE_CONTROL_REGION: 951 if (!add_dcr(acpi_desc, prev, table)) 952 return err; 953 break; 954 case ACPI_NFIT_TYPE_DATA_REGION: 955 if (!add_bdw(acpi_desc, prev, table)) 956 return err; 957 break; 958 case ACPI_NFIT_TYPE_INTERLEAVE: 959 if (!add_idt(acpi_desc, prev, table)) 960 return err; 961 break; 962 case ACPI_NFIT_TYPE_FLUSH_ADDRESS: 963 if (!add_flush(acpi_desc, prev, table)) 964 return err; 965 break; 966 case ACPI_NFIT_TYPE_SMBIOS: 967 dev_dbg(dev, "smbios\n"); 968 break; 969 case ACPI_NFIT_TYPE_CAPABILITIES: 970 if (!add_platform_cap(acpi_desc, table)) 971 return err; 972 break; 973 default: 974 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); 975 break; 976 } 977 978 return table + hdr->length; 979 } 980 981 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, 982 struct nfit_mem *nfit_mem) 983 { 984 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 985 u16 dcr = nfit_mem->dcr->region_index; 986 struct nfit_spa *nfit_spa; 987 988 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 989 u16 range_index = nfit_spa->spa->range_index; 990 int type = nfit_spa_type(nfit_spa->spa); 991 struct nfit_memdev *nfit_memdev; 992 993 if (type != NFIT_SPA_BDW) 994 continue; 995 996 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 997 if (nfit_memdev->memdev->range_index != range_index) 998 continue; 999 if (nfit_memdev->memdev->device_handle != device_handle) 1000 continue; 1001 if (nfit_memdev->memdev->region_index != dcr) 1002 continue; 1003 1004 nfit_mem->spa_bdw = nfit_spa->spa; 1005 return; 1006 } 1007 } 1008 1009 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", 1010 nfit_mem->spa_dcr->range_index); 1011 nfit_mem->bdw = NULL; 1012 } 1013 1014 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, 1015 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) 1016 { 1017 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; 1018 struct nfit_memdev *nfit_memdev; 1019 struct nfit_bdw *nfit_bdw; 1020 struct nfit_idt *nfit_idt; 1021 u16 idt_idx, range_index; 1022 1023 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { 1024 if (nfit_bdw->bdw->region_index != dcr) 1025 continue; 1026 nfit_mem->bdw = nfit_bdw->bdw; 1027 break; 1028 } 1029 1030 if (!nfit_mem->bdw) 1031 return; 1032 1033 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); 1034 1035 if (!nfit_mem->spa_bdw) 1036 return; 1037 1038 range_index = nfit_mem->spa_bdw->range_index; 1039 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1040 if (nfit_memdev->memdev->range_index != range_index || 1041 nfit_memdev->memdev->region_index != dcr) 1042 continue; 1043 nfit_mem->memdev_bdw = nfit_memdev->memdev; 1044 idt_idx = nfit_memdev->memdev->interleave_index; 1045 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1046 if (nfit_idt->idt->interleave_index != idt_idx) 1047 continue; 1048 nfit_mem->idt_bdw = nfit_idt->idt; 1049 break; 1050 } 1051 break; 1052 } 1053 } 1054 1055 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, 1056 struct acpi_nfit_system_address *spa) 1057 { 1058 struct nfit_mem *nfit_mem, *found; 1059 struct nfit_memdev *nfit_memdev; 1060 int type = spa ? nfit_spa_type(spa) : 0; 1061 1062 switch (type) { 1063 case NFIT_SPA_DCR: 1064 case NFIT_SPA_PM: 1065 break; 1066 default: 1067 if (spa) 1068 return 0; 1069 } 1070 1071 /* 1072 * This loop runs in two modes, when a dimm is mapped the loop 1073 * adds memdev associations to an existing dimm, or creates a 1074 * dimm. In the unmapped dimm case this loop sweeps for memdev 1075 * instances with an invalid / zero range_index and adds those 1076 * dimms without spa associations. 1077 */ 1078 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1079 struct nfit_flush *nfit_flush; 1080 struct nfit_dcr *nfit_dcr; 1081 u32 device_handle; 1082 u16 dcr; 1083 1084 if (spa && nfit_memdev->memdev->range_index != spa->range_index) 1085 continue; 1086 if (!spa && nfit_memdev->memdev->range_index) 1087 continue; 1088 found = NULL; 1089 dcr = nfit_memdev->memdev->region_index; 1090 device_handle = nfit_memdev->memdev->device_handle; 1091 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1092 if (__to_nfit_memdev(nfit_mem)->device_handle 1093 == device_handle) { 1094 found = nfit_mem; 1095 break; 1096 } 1097 1098 if (found) 1099 nfit_mem = found; 1100 else { 1101 nfit_mem = devm_kzalloc(acpi_desc->dev, 1102 sizeof(*nfit_mem), GFP_KERNEL); 1103 if (!nfit_mem) 1104 return -ENOMEM; 1105 INIT_LIST_HEAD(&nfit_mem->list); 1106 nfit_mem->acpi_desc = acpi_desc; 1107 list_add(&nfit_mem->list, &acpi_desc->dimms); 1108 } 1109 1110 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1111 if (nfit_dcr->dcr->region_index != dcr) 1112 continue; 1113 /* 1114 * Record the control region for the dimm. For 1115 * the ACPI 6.1 case, where there are separate 1116 * control regions for the pmem vs blk 1117 * interfaces, be sure to record the extended 1118 * blk details. 1119 */ 1120 if (!nfit_mem->dcr) 1121 nfit_mem->dcr = nfit_dcr->dcr; 1122 else if (nfit_mem->dcr->windows == 0 1123 && nfit_dcr->dcr->windows) 1124 nfit_mem->dcr = nfit_dcr->dcr; 1125 break; 1126 } 1127 1128 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { 1129 struct acpi_nfit_flush_address *flush; 1130 u16 i; 1131 1132 if (nfit_flush->flush->device_handle != device_handle) 1133 continue; 1134 nfit_mem->nfit_flush = nfit_flush; 1135 flush = nfit_flush->flush; 1136 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, 1137 flush->hint_count, 1138 sizeof(struct resource), 1139 GFP_KERNEL); 1140 if (!nfit_mem->flush_wpq) 1141 return -ENOMEM; 1142 for (i = 0; i < flush->hint_count; i++) { 1143 struct resource *res = &nfit_mem->flush_wpq[i]; 1144 1145 res->start = flush->hint_address[i]; 1146 res->end = res->start + 8 - 1; 1147 } 1148 break; 1149 } 1150 1151 if (dcr && !nfit_mem->dcr) { 1152 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", 1153 spa->range_index, dcr); 1154 return -ENODEV; 1155 } 1156 1157 if (type == NFIT_SPA_DCR) { 1158 struct nfit_idt *nfit_idt; 1159 u16 idt_idx; 1160 1161 /* multiple dimms may share a SPA when interleaved */ 1162 nfit_mem->spa_dcr = spa; 1163 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1164 idt_idx = nfit_memdev->memdev->interleave_index; 1165 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1166 if (nfit_idt->idt->interleave_index != idt_idx) 1167 continue; 1168 nfit_mem->idt_dcr = nfit_idt->idt; 1169 break; 1170 } 1171 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); 1172 } else if (type == NFIT_SPA_PM) { 1173 /* 1174 * A single dimm may belong to multiple SPA-PM 1175 * ranges, record at least one in addition to 1176 * any SPA-DCR range. 1177 */ 1178 nfit_mem->memdev_pmem = nfit_memdev->memdev; 1179 } else 1180 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1181 } 1182 1183 return 0; 1184 } 1185 1186 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) 1187 { 1188 struct nfit_mem *a = container_of(_a, typeof(*a), list); 1189 struct nfit_mem *b = container_of(_b, typeof(*b), list); 1190 u32 handleA, handleB; 1191 1192 handleA = __to_nfit_memdev(a)->device_handle; 1193 handleB = __to_nfit_memdev(b)->device_handle; 1194 if (handleA < handleB) 1195 return -1; 1196 else if (handleA > handleB) 1197 return 1; 1198 return 0; 1199 } 1200 1201 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) 1202 { 1203 struct nfit_spa *nfit_spa; 1204 int rc; 1205 1206 1207 /* 1208 * For each SPA-DCR or SPA-PMEM address range find its 1209 * corresponding MEMDEV(s). From each MEMDEV find the 1210 * corresponding DCR. Then, if we're operating on a SPA-DCR, 1211 * try to find a SPA-BDW and a corresponding BDW that references 1212 * the DCR. Throw it all into an nfit_mem object. Note, that 1213 * BDWs are optional. 1214 */ 1215 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1216 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); 1217 if (rc) 1218 return rc; 1219 } 1220 1221 /* 1222 * If a DIMM has failed to be mapped into SPA there will be no 1223 * SPA entries above. Find and register all the unmapped DIMMs 1224 * for reporting and recovery purposes. 1225 */ 1226 rc = __nfit_mem_init(acpi_desc, NULL); 1227 if (rc) 1228 return rc; 1229 1230 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); 1231 1232 return 0; 1233 } 1234 1235 static ssize_t bus_dsm_mask_show(struct device *dev, 1236 struct device_attribute *attr, char *buf) 1237 { 1238 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1239 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1240 1241 return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask); 1242 } 1243 static struct device_attribute dev_attr_bus_dsm_mask = 1244 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); 1245 1246 static ssize_t revision_show(struct device *dev, 1247 struct device_attribute *attr, char *buf) 1248 { 1249 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1250 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1251 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1252 1253 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); 1254 } 1255 static DEVICE_ATTR_RO(revision); 1256 1257 static ssize_t hw_error_scrub_show(struct device *dev, 1258 struct device_attribute *attr, char *buf) 1259 { 1260 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1261 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1262 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1263 1264 return sprintf(buf, "%d\n", acpi_desc->scrub_mode); 1265 } 1266 1267 /* 1268 * The 'hw_error_scrub' attribute can have the following values written to it: 1269 * '0': Switch to the default mode where an exception will only insert 1270 * the address of the memory error into the poison and badblocks lists. 1271 * '1': Enable a full scrub to happen if an exception for a memory error is 1272 * received. 1273 */ 1274 static ssize_t hw_error_scrub_store(struct device *dev, 1275 struct device_attribute *attr, const char *buf, size_t size) 1276 { 1277 struct nvdimm_bus_descriptor *nd_desc; 1278 ssize_t rc; 1279 long val; 1280 1281 rc = kstrtol(buf, 0, &val); 1282 if (rc) 1283 return rc; 1284 1285 nfit_device_lock(dev); 1286 nd_desc = dev_get_drvdata(dev); 1287 if (nd_desc) { 1288 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1289 1290 switch (val) { 1291 case HW_ERROR_SCRUB_ON: 1292 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; 1293 break; 1294 case HW_ERROR_SCRUB_OFF: 1295 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; 1296 break; 1297 default: 1298 rc = -EINVAL; 1299 break; 1300 } 1301 } 1302 nfit_device_unlock(dev); 1303 if (rc) 1304 return rc; 1305 return size; 1306 } 1307 static DEVICE_ATTR_RW(hw_error_scrub); 1308 1309 /* 1310 * This shows the number of full Address Range Scrubs that have been 1311 * completed since driver load time. Userspace can wait on this using 1312 * select/poll etc. A '+' at the end indicates an ARS is in progress 1313 */ 1314 static ssize_t scrub_show(struct device *dev, 1315 struct device_attribute *attr, char *buf) 1316 { 1317 struct nvdimm_bus_descriptor *nd_desc; 1318 struct acpi_nfit_desc *acpi_desc; 1319 ssize_t rc = -ENXIO; 1320 bool busy; 1321 1322 nfit_device_lock(dev); 1323 nd_desc = dev_get_drvdata(dev); 1324 if (!nd_desc) { 1325 nfit_device_unlock(dev); 1326 return rc; 1327 } 1328 acpi_desc = to_acpi_desc(nd_desc); 1329 1330 mutex_lock(&acpi_desc->init_mutex); 1331 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags) 1332 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 1333 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n"); 1334 /* Allow an admin to poll the busy state at a higher rate */ 1335 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL, 1336 &acpi_desc->scrub_flags)) { 1337 acpi_desc->scrub_tmo = 1; 1338 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ); 1339 } 1340 1341 mutex_unlock(&acpi_desc->init_mutex); 1342 nfit_device_unlock(dev); 1343 return rc; 1344 } 1345 1346 static ssize_t scrub_store(struct device *dev, 1347 struct device_attribute *attr, const char *buf, size_t size) 1348 { 1349 struct nvdimm_bus_descriptor *nd_desc; 1350 ssize_t rc; 1351 long val; 1352 1353 rc = kstrtol(buf, 0, &val); 1354 if (rc) 1355 return rc; 1356 if (val != 1) 1357 return -EINVAL; 1358 1359 nfit_device_lock(dev); 1360 nd_desc = dev_get_drvdata(dev); 1361 if (nd_desc) { 1362 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1363 1364 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 1365 } 1366 nfit_device_unlock(dev); 1367 if (rc) 1368 return rc; 1369 return size; 1370 } 1371 static DEVICE_ATTR_RW(scrub); 1372 1373 static bool ars_supported(struct nvdimm_bus *nvdimm_bus) 1374 { 1375 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1376 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START 1377 | 1 << ND_CMD_ARS_STATUS; 1378 1379 return (nd_desc->cmd_mask & mask) == mask; 1380 } 1381 1382 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) 1383 { 1384 struct device *dev = container_of(kobj, struct device, kobj); 1385 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1386 1387 if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus)) 1388 return 0; 1389 return a->mode; 1390 } 1391 1392 static struct attribute *acpi_nfit_attributes[] = { 1393 &dev_attr_revision.attr, 1394 &dev_attr_scrub.attr, 1395 &dev_attr_hw_error_scrub.attr, 1396 &dev_attr_bus_dsm_mask.attr, 1397 NULL, 1398 }; 1399 1400 static const struct attribute_group acpi_nfit_attribute_group = { 1401 .name = "nfit", 1402 .attrs = acpi_nfit_attributes, 1403 .is_visible = nfit_visible, 1404 }; 1405 1406 static const struct attribute_group *acpi_nfit_attribute_groups[] = { 1407 &acpi_nfit_attribute_group, 1408 NULL, 1409 }; 1410 1411 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) 1412 { 1413 struct nvdimm *nvdimm = to_nvdimm(dev); 1414 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1415 1416 return __to_nfit_memdev(nfit_mem); 1417 } 1418 1419 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) 1420 { 1421 struct nvdimm *nvdimm = to_nvdimm(dev); 1422 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1423 1424 return nfit_mem->dcr; 1425 } 1426 1427 static ssize_t handle_show(struct device *dev, 1428 struct device_attribute *attr, char *buf) 1429 { 1430 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1431 1432 return sprintf(buf, "%#x\n", memdev->device_handle); 1433 } 1434 static DEVICE_ATTR_RO(handle); 1435 1436 static ssize_t phys_id_show(struct device *dev, 1437 struct device_attribute *attr, char *buf) 1438 { 1439 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1440 1441 return sprintf(buf, "%#x\n", memdev->physical_id); 1442 } 1443 static DEVICE_ATTR_RO(phys_id); 1444 1445 static ssize_t vendor_show(struct device *dev, 1446 struct device_attribute *attr, char *buf) 1447 { 1448 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1449 1450 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); 1451 } 1452 static DEVICE_ATTR_RO(vendor); 1453 1454 static ssize_t rev_id_show(struct device *dev, 1455 struct device_attribute *attr, char *buf) 1456 { 1457 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1458 1459 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); 1460 } 1461 static DEVICE_ATTR_RO(rev_id); 1462 1463 static ssize_t device_show(struct device *dev, 1464 struct device_attribute *attr, char *buf) 1465 { 1466 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1467 1468 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); 1469 } 1470 static DEVICE_ATTR_RO(device); 1471 1472 static ssize_t subsystem_vendor_show(struct device *dev, 1473 struct device_attribute *attr, char *buf) 1474 { 1475 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1476 1477 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); 1478 } 1479 static DEVICE_ATTR_RO(subsystem_vendor); 1480 1481 static ssize_t subsystem_rev_id_show(struct device *dev, 1482 struct device_attribute *attr, char *buf) 1483 { 1484 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1485 1486 return sprintf(buf, "0x%04x\n", 1487 be16_to_cpu(dcr->subsystem_revision_id)); 1488 } 1489 static DEVICE_ATTR_RO(subsystem_rev_id); 1490 1491 static ssize_t subsystem_device_show(struct device *dev, 1492 struct device_attribute *attr, char *buf) 1493 { 1494 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1495 1496 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); 1497 } 1498 static DEVICE_ATTR_RO(subsystem_device); 1499 1500 static int num_nvdimm_formats(struct nvdimm *nvdimm) 1501 { 1502 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1503 int formats = 0; 1504 1505 if (nfit_mem->memdev_pmem) 1506 formats++; 1507 if (nfit_mem->memdev_bdw) 1508 formats++; 1509 return formats; 1510 } 1511 1512 static ssize_t format_show(struct device *dev, 1513 struct device_attribute *attr, char *buf) 1514 { 1515 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1516 1517 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); 1518 } 1519 static DEVICE_ATTR_RO(format); 1520 1521 static ssize_t format1_show(struct device *dev, 1522 struct device_attribute *attr, char *buf) 1523 { 1524 u32 handle; 1525 ssize_t rc = -ENXIO; 1526 struct nfit_mem *nfit_mem; 1527 struct nfit_memdev *nfit_memdev; 1528 struct acpi_nfit_desc *acpi_desc; 1529 struct nvdimm *nvdimm = to_nvdimm(dev); 1530 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1531 1532 nfit_mem = nvdimm_provider_data(nvdimm); 1533 acpi_desc = nfit_mem->acpi_desc; 1534 handle = to_nfit_memdev(dev)->device_handle; 1535 1536 /* assumes DIMMs have at most 2 published interface codes */ 1537 mutex_lock(&acpi_desc->init_mutex); 1538 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1539 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 1540 struct nfit_dcr *nfit_dcr; 1541 1542 if (memdev->device_handle != handle) 1543 continue; 1544 1545 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1546 if (nfit_dcr->dcr->region_index != memdev->region_index) 1547 continue; 1548 if (nfit_dcr->dcr->code == dcr->code) 1549 continue; 1550 rc = sprintf(buf, "0x%04x\n", 1551 le16_to_cpu(nfit_dcr->dcr->code)); 1552 break; 1553 } 1554 if (rc != ENXIO) 1555 break; 1556 } 1557 mutex_unlock(&acpi_desc->init_mutex); 1558 return rc; 1559 } 1560 static DEVICE_ATTR_RO(format1); 1561 1562 static ssize_t formats_show(struct device *dev, 1563 struct device_attribute *attr, char *buf) 1564 { 1565 struct nvdimm *nvdimm = to_nvdimm(dev); 1566 1567 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); 1568 } 1569 static DEVICE_ATTR_RO(formats); 1570 1571 static ssize_t serial_show(struct device *dev, 1572 struct device_attribute *attr, char *buf) 1573 { 1574 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1575 1576 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); 1577 } 1578 static DEVICE_ATTR_RO(serial); 1579 1580 static ssize_t family_show(struct device *dev, 1581 struct device_attribute *attr, char *buf) 1582 { 1583 struct nvdimm *nvdimm = to_nvdimm(dev); 1584 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1585 1586 if (nfit_mem->family < 0) 1587 return -ENXIO; 1588 return sprintf(buf, "%d\n", nfit_mem->family); 1589 } 1590 static DEVICE_ATTR_RO(family); 1591 1592 static ssize_t dsm_mask_show(struct device *dev, 1593 struct device_attribute *attr, char *buf) 1594 { 1595 struct nvdimm *nvdimm = to_nvdimm(dev); 1596 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1597 1598 if (nfit_mem->family < 0) 1599 return -ENXIO; 1600 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); 1601 } 1602 static DEVICE_ATTR_RO(dsm_mask); 1603 1604 static ssize_t flags_show(struct device *dev, 1605 struct device_attribute *attr, char *buf) 1606 { 1607 struct nvdimm *nvdimm = to_nvdimm(dev); 1608 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1609 u16 flags = __to_nfit_memdev(nfit_mem)->flags; 1610 1611 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) 1612 flags |= ACPI_NFIT_MEM_FLUSH_FAILED; 1613 1614 return sprintf(buf, "%s%s%s%s%s%s%s\n", 1615 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", 1616 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", 1617 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", 1618 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", 1619 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", 1620 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", 1621 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); 1622 } 1623 static DEVICE_ATTR_RO(flags); 1624 1625 static ssize_t id_show(struct device *dev, 1626 struct device_attribute *attr, char *buf) 1627 { 1628 struct nvdimm *nvdimm = to_nvdimm(dev); 1629 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1630 1631 return sprintf(buf, "%s\n", nfit_mem->id); 1632 } 1633 static DEVICE_ATTR_RO(id); 1634 1635 static ssize_t dirty_shutdown_show(struct device *dev, 1636 struct device_attribute *attr, char *buf) 1637 { 1638 struct nvdimm *nvdimm = to_nvdimm(dev); 1639 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1640 1641 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); 1642 } 1643 static DEVICE_ATTR_RO(dirty_shutdown); 1644 1645 static struct attribute *acpi_nfit_dimm_attributes[] = { 1646 &dev_attr_handle.attr, 1647 &dev_attr_phys_id.attr, 1648 &dev_attr_vendor.attr, 1649 &dev_attr_device.attr, 1650 &dev_attr_rev_id.attr, 1651 &dev_attr_subsystem_vendor.attr, 1652 &dev_attr_subsystem_device.attr, 1653 &dev_attr_subsystem_rev_id.attr, 1654 &dev_attr_format.attr, 1655 &dev_attr_formats.attr, 1656 &dev_attr_format1.attr, 1657 &dev_attr_serial.attr, 1658 &dev_attr_flags.attr, 1659 &dev_attr_id.attr, 1660 &dev_attr_family.attr, 1661 &dev_attr_dsm_mask.attr, 1662 &dev_attr_dirty_shutdown.attr, 1663 NULL, 1664 }; 1665 1666 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, 1667 struct attribute *a, int n) 1668 { 1669 struct device *dev = container_of(kobj, struct device, kobj); 1670 struct nvdimm *nvdimm = to_nvdimm(dev); 1671 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1672 1673 if (!to_nfit_dcr(dev)) { 1674 /* Without a dcr only the memdev attributes can be surfaced */ 1675 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr 1676 || a == &dev_attr_flags.attr 1677 || a == &dev_attr_family.attr 1678 || a == &dev_attr_dsm_mask.attr) 1679 return a->mode; 1680 return 0; 1681 } 1682 1683 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) 1684 return 0; 1685 1686 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) 1687 && a == &dev_attr_dirty_shutdown.attr) 1688 return 0; 1689 1690 return a->mode; 1691 } 1692 1693 static const struct attribute_group acpi_nfit_dimm_attribute_group = { 1694 .name = "nfit", 1695 .attrs = acpi_nfit_dimm_attributes, 1696 .is_visible = acpi_nfit_dimm_attr_visible, 1697 }; 1698 1699 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { 1700 &acpi_nfit_dimm_attribute_group, 1701 NULL, 1702 }; 1703 1704 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, 1705 u32 device_handle) 1706 { 1707 struct nfit_mem *nfit_mem; 1708 1709 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1710 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) 1711 return nfit_mem->nvdimm; 1712 1713 return NULL; 1714 } 1715 1716 void __acpi_nvdimm_notify(struct device *dev, u32 event) 1717 { 1718 struct nfit_mem *nfit_mem; 1719 struct acpi_nfit_desc *acpi_desc; 1720 1721 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), 1722 event); 1723 1724 if (event != NFIT_NOTIFY_DIMM_HEALTH) { 1725 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), 1726 event); 1727 return; 1728 } 1729 1730 acpi_desc = dev_get_drvdata(dev->parent); 1731 if (!acpi_desc) 1732 return; 1733 1734 /* 1735 * If we successfully retrieved acpi_desc, then we know nfit_mem data 1736 * is still valid. 1737 */ 1738 nfit_mem = dev_get_drvdata(dev); 1739 if (nfit_mem && nfit_mem->flags_attr) 1740 sysfs_notify_dirent(nfit_mem->flags_attr); 1741 } 1742 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); 1743 1744 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) 1745 { 1746 struct acpi_device *adev = data; 1747 struct device *dev = &adev->dev; 1748 1749 nfit_device_lock(dev->parent); 1750 __acpi_nvdimm_notify(dev, event); 1751 nfit_device_unlock(dev->parent); 1752 } 1753 1754 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) 1755 { 1756 acpi_handle handle; 1757 acpi_status status; 1758 1759 status = acpi_get_handle(adev->handle, method, &handle); 1760 1761 if (ACPI_SUCCESS(status)) 1762 return true; 1763 return false; 1764 } 1765 1766 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) 1767 { 1768 struct device *dev = &nfit_mem->adev->dev; 1769 struct nd_intel_smart smart = { 0 }; 1770 union acpi_object in_buf = { 1771 .buffer.type = ACPI_TYPE_BUFFER, 1772 .buffer.length = 0, 1773 }; 1774 union acpi_object in_obj = { 1775 .package.type = ACPI_TYPE_PACKAGE, 1776 .package.count = 1, 1777 .package.elements = &in_buf, 1778 }; 1779 const u8 func = ND_INTEL_SMART; 1780 const guid_t *guid = to_nfit_uuid(nfit_mem->family); 1781 u8 revid = nfit_dsm_revid(nfit_mem->family, func); 1782 struct acpi_device *adev = nfit_mem->adev; 1783 acpi_handle handle = adev->handle; 1784 union acpi_object *out_obj; 1785 1786 if ((nfit_mem->dsm_mask & (1 << func)) == 0) 1787 return; 1788 1789 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 1790 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER 1791 || out_obj->buffer.length < sizeof(smart)) { 1792 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n", 1793 dev_name(dev)); 1794 ACPI_FREE(out_obj); 1795 return; 1796 } 1797 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart)); 1798 ACPI_FREE(out_obj); 1799 1800 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { 1801 if (smart.shutdown_state) 1802 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); 1803 } 1804 1805 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { 1806 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); 1807 nfit_mem->dirty_shutdown = smart.shutdown_count; 1808 } 1809 } 1810 1811 static void populate_shutdown_status(struct nfit_mem *nfit_mem) 1812 { 1813 /* 1814 * For DIMMs that provide a dynamic facility to retrieve a 1815 * dirty-shutdown status and/or a dirty-shutdown count, cache 1816 * these values in nfit_mem. 1817 */ 1818 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 1819 nfit_intel_shutdown_status(nfit_mem); 1820 } 1821 1822 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, 1823 struct nfit_mem *nfit_mem, u32 device_handle) 1824 { 1825 struct acpi_device *adev, *adev_dimm; 1826 struct device *dev = acpi_desc->dev; 1827 unsigned long dsm_mask, label_mask; 1828 const guid_t *guid; 1829 int i; 1830 int family = -1; 1831 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 1832 1833 /* nfit test assumes 1:1 relationship between commands and dsms */ 1834 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; 1835 nfit_mem->family = NVDIMM_FAMILY_INTEL; 1836 1837 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) 1838 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", 1839 be16_to_cpu(dcr->vendor_id), 1840 dcr->manufacturing_location, 1841 be16_to_cpu(dcr->manufacturing_date), 1842 be32_to_cpu(dcr->serial_number)); 1843 else 1844 sprintf(nfit_mem->id, "%04x-%08x", 1845 be16_to_cpu(dcr->vendor_id), 1846 be32_to_cpu(dcr->serial_number)); 1847 1848 adev = to_acpi_dev(acpi_desc); 1849 if (!adev) { 1850 /* unit test case */ 1851 populate_shutdown_status(nfit_mem); 1852 return 0; 1853 } 1854 1855 adev_dimm = acpi_find_child_device(adev, device_handle, false); 1856 nfit_mem->adev = adev_dimm; 1857 if (!adev_dimm) { 1858 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", 1859 device_handle); 1860 return force_enable_dimms ? 0 : -ENODEV; 1861 } 1862 1863 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, 1864 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { 1865 dev_err(dev, "%s: notification registration failed\n", 1866 dev_name(&adev_dimm->dev)); 1867 return -ENXIO; 1868 } 1869 /* 1870 * Record nfit_mem for the notification path to track back to 1871 * the nfit sysfs attributes for this dimm device object. 1872 */ 1873 dev_set_drvdata(&adev_dimm->dev, nfit_mem); 1874 1875 /* 1876 * There are 4 "legacy" NVDIMM command sets 1877 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before 1878 * an EFI working group was established to constrain this 1879 * proliferation. The nfit driver probes for the supported command 1880 * set by GUID. Note, if you're a platform developer looking to add 1881 * a new command set to this probe, consider using an existing set, 1882 * or otherwise seek approval to publish the command set at 1883 * http://www.uefi.org/RFIC_LIST. 1884 * 1885 * Note, that checking for function0 (bit0) tells us if any commands 1886 * are reachable through this GUID. 1887 */ 1888 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) 1889 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) 1890 if (family < 0 || i == default_dsm_family) 1891 family = i; 1892 1893 /* limit the supported commands to those that are publicly documented */ 1894 nfit_mem->family = family; 1895 if (override_dsm_mask && !disable_vendor_specific) 1896 dsm_mask = override_dsm_mask; 1897 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 1898 dsm_mask = NVDIMM_INTEL_CMDMASK; 1899 if (disable_vendor_specific) 1900 dsm_mask &= ~(1 << ND_CMD_VENDOR); 1901 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { 1902 dsm_mask = 0x1c3c76; 1903 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { 1904 dsm_mask = 0x1fe; 1905 if (disable_vendor_specific) 1906 dsm_mask &= ~(1 << 8); 1907 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { 1908 dsm_mask = 0xffffffff; 1909 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) { 1910 dsm_mask = 0x1f; 1911 } else { 1912 dev_dbg(dev, "unknown dimm command family\n"); 1913 nfit_mem->family = -1; 1914 /* DSMs are optional, continue loading the driver... */ 1915 return 0; 1916 } 1917 1918 /* 1919 * Function 0 is the command interrogation function, don't 1920 * export it to potential userspace use, and enable it to be 1921 * used as an error value in acpi_nfit_ctl(). 1922 */ 1923 dsm_mask &= ~1UL; 1924 1925 guid = to_nfit_uuid(nfit_mem->family); 1926 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1927 if (acpi_check_dsm(adev_dimm->handle, guid, 1928 nfit_dsm_revid(nfit_mem->family, i), 1929 1ULL << i)) 1930 set_bit(i, &nfit_mem->dsm_mask); 1931 1932 /* 1933 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present 1934 * due to their better semantics handling locked capacity. 1935 */ 1936 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA 1937 | 1 << ND_CMD_SET_CONFIG_DATA; 1938 if (family == NVDIMM_FAMILY_INTEL 1939 && (dsm_mask & label_mask) == label_mask) 1940 /* skip _LS{I,R,W} enabling */; 1941 else { 1942 if (acpi_nvdimm_has_method(adev_dimm, "_LSI") 1943 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { 1944 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); 1945 set_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1946 } 1947 1948 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 1949 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { 1950 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); 1951 set_bit(NFIT_MEM_LSW, &nfit_mem->flags); 1952 } 1953 1954 /* 1955 * Quirk read-only label configurations to preserve 1956 * access to label-less namespaces by default. 1957 */ 1958 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 1959 && !force_labels) { 1960 dev_dbg(dev, "%s: No _LSW, disable labels\n", 1961 dev_name(&adev_dimm->dev)); 1962 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1963 } else 1964 dev_dbg(dev, "%s: Force enable labels\n", 1965 dev_name(&adev_dimm->dev)); 1966 } 1967 1968 populate_shutdown_status(nfit_mem); 1969 1970 return 0; 1971 } 1972 1973 static void shutdown_dimm_notify(void *data) 1974 { 1975 struct acpi_nfit_desc *acpi_desc = data; 1976 struct nfit_mem *nfit_mem; 1977 1978 mutex_lock(&acpi_desc->init_mutex); 1979 /* 1980 * Clear out the nfit_mem->flags_attr and shut down dimm event 1981 * notifications. 1982 */ 1983 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 1984 struct acpi_device *adev_dimm = nfit_mem->adev; 1985 1986 if (nfit_mem->flags_attr) { 1987 sysfs_put(nfit_mem->flags_attr); 1988 nfit_mem->flags_attr = NULL; 1989 } 1990 if (adev_dimm) { 1991 acpi_remove_notify_handler(adev_dimm->handle, 1992 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); 1993 dev_set_drvdata(&adev_dimm->dev, NULL); 1994 } 1995 } 1996 mutex_unlock(&acpi_desc->init_mutex); 1997 } 1998 1999 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) 2000 { 2001 switch (family) { 2002 case NVDIMM_FAMILY_INTEL: 2003 return intel_security_ops; 2004 default: 2005 return NULL; 2006 } 2007 } 2008 2009 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) 2010 { 2011 struct nfit_mem *nfit_mem; 2012 int dimm_count = 0, rc; 2013 struct nvdimm *nvdimm; 2014 2015 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2016 struct acpi_nfit_flush_address *flush; 2017 unsigned long flags = 0, cmd_mask; 2018 struct nfit_memdev *nfit_memdev; 2019 u32 device_handle; 2020 u16 mem_flags; 2021 2022 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 2023 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); 2024 if (nvdimm) { 2025 dimm_count++; 2026 continue; 2027 } 2028 2029 if (nfit_mem->bdw && nfit_mem->memdev_pmem) 2030 set_bit(NDD_ALIASING, &flags); 2031 2032 /* collate flags across all memdevs for this dimm */ 2033 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2034 struct acpi_nfit_memory_map *dimm_memdev; 2035 2036 dimm_memdev = __to_nfit_memdev(nfit_mem); 2037 if (dimm_memdev->device_handle 2038 != nfit_memdev->memdev->device_handle) 2039 continue; 2040 dimm_memdev->flags |= nfit_memdev->memdev->flags; 2041 } 2042 2043 mem_flags = __to_nfit_memdev(nfit_mem)->flags; 2044 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) 2045 set_bit(NDD_UNARMED, &flags); 2046 2047 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); 2048 if (rc) 2049 continue; 2050 2051 /* 2052 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL 2053 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the 2054 * userspace interface. 2055 */ 2056 cmd_mask = 1UL << ND_CMD_CALL; 2057 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 2058 /* 2059 * These commands have a 1:1 correspondence 2060 * between DSM payload and libnvdimm ioctl 2061 * payload format. 2062 */ 2063 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; 2064 } 2065 2066 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */ 2067 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) 2068 set_bit(NDD_NOBLK, &flags); 2069 2070 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 2071 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); 2072 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); 2073 } 2074 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) 2075 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); 2076 2077 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush 2078 : NULL; 2079 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, 2080 acpi_nfit_dimm_attribute_groups, 2081 flags, cmd_mask, flush ? flush->hint_count : 0, 2082 nfit_mem->flush_wpq, &nfit_mem->id[0], 2083 acpi_nfit_get_security_ops(nfit_mem->family)); 2084 if (!nvdimm) 2085 return -ENOMEM; 2086 2087 nfit_mem->nvdimm = nvdimm; 2088 dimm_count++; 2089 2090 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) 2091 continue; 2092 2093 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n", 2094 nvdimm_name(nvdimm), 2095 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", 2096 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", 2097 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", 2098 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", 2099 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); 2100 2101 } 2102 2103 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); 2104 if (rc) 2105 return rc; 2106 2107 /* 2108 * Now that dimms are successfully registered, and async registration 2109 * is flushed, attempt to enable event notification. 2110 */ 2111 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2112 struct kernfs_node *nfit_kernfs; 2113 2114 nvdimm = nfit_mem->nvdimm; 2115 if (!nvdimm) 2116 continue; 2117 2118 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); 2119 if (nfit_kernfs) 2120 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, 2121 "flags"); 2122 sysfs_put(nfit_kernfs); 2123 if (!nfit_mem->flags_attr) 2124 dev_warn(acpi_desc->dev, "%s: notifications disabled\n", 2125 nvdimm_name(nvdimm)); 2126 } 2127 2128 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, 2129 acpi_desc); 2130 } 2131 2132 /* 2133 * These constants are private because there are no kernel consumers of 2134 * these commands. 2135 */ 2136 enum nfit_aux_cmds { 2137 NFIT_CMD_TRANSLATE_SPA = 5, 2138 NFIT_CMD_ARS_INJECT_SET = 7, 2139 NFIT_CMD_ARS_INJECT_CLEAR = 8, 2140 NFIT_CMD_ARS_INJECT_GET = 9, 2141 }; 2142 2143 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) 2144 { 2145 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2146 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); 2147 struct acpi_device *adev; 2148 unsigned long dsm_mask; 2149 int i; 2150 2151 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; 2152 nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en; 2153 adev = to_acpi_dev(acpi_desc); 2154 if (!adev) 2155 return; 2156 2157 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) 2158 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2159 set_bit(i, &nd_desc->cmd_mask); 2160 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); 2161 2162 dsm_mask = 2163 (1 << ND_CMD_ARS_CAP) | 2164 (1 << ND_CMD_ARS_START) | 2165 (1 << ND_CMD_ARS_STATUS) | 2166 (1 << ND_CMD_CLEAR_ERROR) | 2167 (1 << NFIT_CMD_TRANSLATE_SPA) | 2168 (1 << NFIT_CMD_ARS_INJECT_SET) | 2169 (1 << NFIT_CMD_ARS_INJECT_CLEAR) | 2170 (1 << NFIT_CMD_ARS_INJECT_GET); 2171 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2172 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2173 set_bit(i, &nd_desc->bus_dsm_mask); 2174 } 2175 2176 static ssize_t range_index_show(struct device *dev, 2177 struct device_attribute *attr, char *buf) 2178 { 2179 struct nd_region *nd_region = to_nd_region(dev); 2180 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); 2181 2182 return sprintf(buf, "%d\n", nfit_spa->spa->range_index); 2183 } 2184 static DEVICE_ATTR_RO(range_index); 2185 2186 static struct attribute *acpi_nfit_region_attributes[] = { 2187 &dev_attr_range_index.attr, 2188 NULL, 2189 }; 2190 2191 static const struct attribute_group acpi_nfit_region_attribute_group = { 2192 .name = "nfit", 2193 .attrs = acpi_nfit_region_attributes, 2194 }; 2195 2196 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { 2197 &acpi_nfit_region_attribute_group, 2198 NULL, 2199 }; 2200 2201 /* enough info to uniquely specify an interleave set */ 2202 struct nfit_set_info { 2203 struct nfit_set_info_map { 2204 u64 region_offset; 2205 u32 serial_number; 2206 u32 pad; 2207 } mapping[0]; 2208 }; 2209 2210 struct nfit_set_info2 { 2211 struct nfit_set_info_map2 { 2212 u64 region_offset; 2213 u32 serial_number; 2214 u16 vendor_id; 2215 u16 manufacturing_date; 2216 u8 manufacturing_location; 2217 u8 reserved[31]; 2218 } mapping[0]; 2219 }; 2220 2221 static size_t sizeof_nfit_set_info(int num_mappings) 2222 { 2223 return sizeof(struct nfit_set_info) 2224 + num_mappings * sizeof(struct nfit_set_info_map); 2225 } 2226 2227 static size_t sizeof_nfit_set_info2(int num_mappings) 2228 { 2229 return sizeof(struct nfit_set_info2) 2230 + num_mappings * sizeof(struct nfit_set_info_map2); 2231 } 2232 2233 static int cmp_map_compat(const void *m0, const void *m1) 2234 { 2235 const struct nfit_set_info_map *map0 = m0; 2236 const struct nfit_set_info_map *map1 = m1; 2237 2238 return memcmp(&map0->region_offset, &map1->region_offset, 2239 sizeof(u64)); 2240 } 2241 2242 static int cmp_map(const void *m0, const void *m1) 2243 { 2244 const struct nfit_set_info_map *map0 = m0; 2245 const struct nfit_set_info_map *map1 = m1; 2246 2247 if (map0->region_offset < map1->region_offset) 2248 return -1; 2249 else if (map0->region_offset > map1->region_offset) 2250 return 1; 2251 return 0; 2252 } 2253 2254 static int cmp_map2(const void *m0, const void *m1) 2255 { 2256 const struct nfit_set_info_map2 *map0 = m0; 2257 const struct nfit_set_info_map2 *map1 = m1; 2258 2259 if (map0->region_offset < map1->region_offset) 2260 return -1; 2261 else if (map0->region_offset > map1->region_offset) 2262 return 1; 2263 return 0; 2264 } 2265 2266 /* Retrieve the nth entry referencing this spa */ 2267 static struct acpi_nfit_memory_map *memdev_from_spa( 2268 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) 2269 { 2270 struct nfit_memdev *nfit_memdev; 2271 2272 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) 2273 if (nfit_memdev->memdev->range_index == range_index) 2274 if (n-- == 0) 2275 return nfit_memdev->memdev; 2276 return NULL; 2277 } 2278 2279 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, 2280 struct nd_region_desc *ndr_desc, 2281 struct acpi_nfit_system_address *spa) 2282 { 2283 struct device *dev = acpi_desc->dev; 2284 struct nd_interleave_set *nd_set; 2285 u16 nr = ndr_desc->num_mappings; 2286 struct nfit_set_info2 *info2; 2287 struct nfit_set_info *info; 2288 int i; 2289 2290 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); 2291 if (!nd_set) 2292 return -ENOMEM; 2293 guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid); 2294 2295 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL); 2296 if (!info) 2297 return -ENOMEM; 2298 2299 info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL); 2300 if (!info2) 2301 return -ENOMEM; 2302 2303 for (i = 0; i < nr; i++) { 2304 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 2305 struct nfit_set_info_map *map = &info->mapping[i]; 2306 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 2307 struct nvdimm *nvdimm = mapping->nvdimm; 2308 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2309 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc, 2310 spa->range_index, i); 2311 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2312 2313 if (!memdev || !nfit_mem->dcr) { 2314 dev_err(dev, "%s: failed to find DCR\n", __func__); 2315 return -ENODEV; 2316 } 2317 2318 map->region_offset = memdev->region_offset; 2319 map->serial_number = dcr->serial_number; 2320 2321 map2->region_offset = memdev->region_offset; 2322 map2->serial_number = dcr->serial_number; 2323 map2->vendor_id = dcr->vendor_id; 2324 map2->manufacturing_date = dcr->manufacturing_date; 2325 map2->manufacturing_location = dcr->manufacturing_location; 2326 } 2327 2328 /* v1.1 namespaces */ 2329 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 2330 cmp_map, NULL); 2331 nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 2332 2333 /* v1.2 namespaces */ 2334 sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2), 2335 cmp_map2, NULL); 2336 nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0); 2337 2338 /* support v1.1 namespaces created with the wrong sort order */ 2339 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 2340 cmp_map_compat, NULL); 2341 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 2342 2343 /* record the result of the sort for the mapping position */ 2344 for (i = 0; i < nr; i++) { 2345 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 2346 int j; 2347 2348 for (j = 0; j < nr; j++) { 2349 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; 2350 struct nvdimm *nvdimm = mapping->nvdimm; 2351 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2352 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2353 2354 if (map2->serial_number == dcr->serial_number && 2355 map2->vendor_id == dcr->vendor_id && 2356 map2->manufacturing_date == dcr->manufacturing_date && 2357 map2->manufacturing_location 2358 == dcr->manufacturing_location) { 2359 mapping->position = i; 2360 break; 2361 } 2362 } 2363 } 2364 2365 ndr_desc->nd_set = nd_set; 2366 devm_kfree(dev, info); 2367 devm_kfree(dev, info2); 2368 2369 return 0; 2370 } 2371 2372 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) 2373 { 2374 struct acpi_nfit_interleave *idt = mmio->idt; 2375 u32 sub_line_offset, line_index, line_offset; 2376 u64 line_no, table_skip_count, table_offset; 2377 2378 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); 2379 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); 2380 line_offset = idt->line_offset[line_index] 2381 * mmio->line_size; 2382 table_offset = table_skip_count * mmio->table_size; 2383 2384 return mmio->base_offset + line_offset + table_offset + sub_line_offset; 2385 } 2386 2387 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) 2388 { 2389 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2390 u64 offset = nfit_blk->stat_offset + mmio->size * bw; 2391 const u32 STATUS_MASK = 0x80000037; 2392 2393 if (mmio->num_lines) 2394 offset = to_interleave_offset(offset, mmio); 2395 2396 return readl(mmio->addr.base + offset) & STATUS_MASK; 2397 } 2398 2399 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, 2400 resource_size_t dpa, unsigned int len, unsigned int write) 2401 { 2402 u64 cmd, offset; 2403 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2404 2405 enum { 2406 BCW_OFFSET_MASK = (1ULL << 48)-1, 2407 BCW_LEN_SHIFT = 48, 2408 BCW_LEN_MASK = (1ULL << 8) - 1, 2409 BCW_CMD_SHIFT = 56, 2410 }; 2411 2412 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; 2413 len = len >> L1_CACHE_SHIFT; 2414 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; 2415 cmd |= ((u64) write) << BCW_CMD_SHIFT; 2416 2417 offset = nfit_blk->cmd_offset + mmio->size * bw; 2418 if (mmio->num_lines) 2419 offset = to_interleave_offset(offset, mmio); 2420 2421 writeq(cmd, mmio->addr.base + offset); 2422 nvdimm_flush(nfit_blk->nd_region, NULL); 2423 2424 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) 2425 readq(mmio->addr.base + offset); 2426 } 2427 2428 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, 2429 resource_size_t dpa, void *iobuf, size_t len, int rw, 2430 unsigned int lane) 2431 { 2432 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2433 unsigned int copied = 0; 2434 u64 base_offset; 2435 int rc; 2436 2437 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES 2438 + lane * mmio->size; 2439 write_blk_ctl(nfit_blk, lane, dpa, len, rw); 2440 while (len) { 2441 unsigned int c; 2442 u64 offset; 2443 2444 if (mmio->num_lines) { 2445 u32 line_offset; 2446 2447 offset = to_interleave_offset(base_offset + copied, 2448 mmio); 2449 div_u64_rem(offset, mmio->line_size, &line_offset); 2450 c = min_t(size_t, len, mmio->line_size - line_offset); 2451 } else { 2452 offset = base_offset + nfit_blk->bdw_offset; 2453 c = len; 2454 } 2455 2456 if (rw) 2457 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); 2458 else { 2459 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) 2460 arch_invalidate_pmem((void __force *) 2461 mmio->addr.aperture + offset, c); 2462 2463 memcpy(iobuf + copied, mmio->addr.aperture + offset, c); 2464 } 2465 2466 copied += c; 2467 len -= c; 2468 } 2469 2470 if (rw) 2471 nvdimm_flush(nfit_blk->nd_region, NULL); 2472 2473 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; 2474 return rc; 2475 } 2476 2477 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, 2478 resource_size_t dpa, void *iobuf, u64 len, int rw) 2479 { 2480 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); 2481 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2482 struct nd_region *nd_region = nfit_blk->nd_region; 2483 unsigned int lane, copied = 0; 2484 int rc = 0; 2485 2486 lane = nd_region_acquire_lane(nd_region); 2487 while (len) { 2488 u64 c = min(len, mmio->size); 2489 2490 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, 2491 iobuf + copied, c, rw, lane); 2492 if (rc) 2493 break; 2494 2495 copied += c; 2496 len -= c; 2497 } 2498 nd_region_release_lane(nd_region, lane); 2499 2500 return rc; 2501 } 2502 2503 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, 2504 struct acpi_nfit_interleave *idt, u16 interleave_ways) 2505 { 2506 if (idt) { 2507 mmio->num_lines = idt->line_count; 2508 mmio->line_size = idt->line_size; 2509 if (interleave_ways == 0) 2510 return -ENXIO; 2511 mmio->table_size = mmio->num_lines * interleave_ways 2512 * mmio->line_size; 2513 } 2514 2515 return 0; 2516 } 2517 2518 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, 2519 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) 2520 { 2521 struct nd_cmd_dimm_flags flags; 2522 int rc; 2523 2524 memset(&flags, 0, sizeof(flags)); 2525 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, 2526 sizeof(flags), NULL); 2527 2528 if (rc >= 0 && flags.status == 0) 2529 nfit_blk->dimm_flags = flags.flags; 2530 else if (rc == -ENOTTY) { 2531 /* fall back to a conservative default */ 2532 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; 2533 rc = 0; 2534 } else 2535 rc = -ENXIO; 2536 2537 return rc; 2538 } 2539 2540 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, 2541 struct device *dev) 2542 { 2543 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 2544 struct nd_blk_region *ndbr = to_nd_blk_region(dev); 2545 struct nfit_blk_mmio *mmio; 2546 struct nfit_blk *nfit_blk; 2547 struct nfit_mem *nfit_mem; 2548 struct nvdimm *nvdimm; 2549 int rc; 2550 2551 nvdimm = nd_blk_region_to_dimm(ndbr); 2552 nfit_mem = nvdimm_provider_data(nvdimm); 2553 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { 2554 dev_dbg(dev, "missing%s%s%s\n", 2555 nfit_mem ? "" : " nfit_mem", 2556 (nfit_mem && nfit_mem->dcr) ? "" : " dcr", 2557 (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); 2558 return -ENXIO; 2559 } 2560 2561 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); 2562 if (!nfit_blk) 2563 return -ENOMEM; 2564 nd_blk_region_set_provider_data(ndbr, nfit_blk); 2565 nfit_blk->nd_region = to_nd_region(dev); 2566 2567 /* map block aperture memory */ 2568 nfit_blk->bdw_offset = nfit_mem->bdw->offset; 2569 mmio = &nfit_blk->mmio[BDW]; 2570 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, 2571 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); 2572 if (!mmio->addr.base) { 2573 dev_dbg(dev, "%s failed to map bdw\n", 2574 nvdimm_name(nvdimm)); 2575 return -ENOMEM; 2576 } 2577 mmio->size = nfit_mem->bdw->size; 2578 mmio->base_offset = nfit_mem->memdev_bdw->region_offset; 2579 mmio->idt = nfit_mem->idt_bdw; 2580 mmio->spa = nfit_mem->spa_bdw; 2581 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, 2582 nfit_mem->memdev_bdw->interleave_ways); 2583 if (rc) { 2584 dev_dbg(dev, "%s failed to init bdw interleave\n", 2585 nvdimm_name(nvdimm)); 2586 return rc; 2587 } 2588 2589 /* map block control memory */ 2590 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; 2591 nfit_blk->stat_offset = nfit_mem->dcr->status_offset; 2592 mmio = &nfit_blk->mmio[DCR]; 2593 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, 2594 nfit_mem->spa_dcr->length); 2595 if (!mmio->addr.base) { 2596 dev_dbg(dev, "%s failed to map dcr\n", 2597 nvdimm_name(nvdimm)); 2598 return -ENOMEM; 2599 } 2600 mmio->size = nfit_mem->dcr->window_size; 2601 mmio->base_offset = nfit_mem->memdev_dcr->region_offset; 2602 mmio->idt = nfit_mem->idt_dcr; 2603 mmio->spa = nfit_mem->spa_dcr; 2604 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, 2605 nfit_mem->memdev_dcr->interleave_ways); 2606 if (rc) { 2607 dev_dbg(dev, "%s failed to init dcr interleave\n", 2608 nvdimm_name(nvdimm)); 2609 return rc; 2610 } 2611 2612 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); 2613 if (rc < 0) { 2614 dev_dbg(dev, "%s failed get DIMM flags\n", 2615 nvdimm_name(nvdimm)); 2616 return rc; 2617 } 2618 2619 if (nvdimm_has_flush(nfit_blk->nd_region) < 0) 2620 dev_warn(dev, "unable to guarantee persistence of writes\n"); 2621 2622 if (mmio->line_size == 0) 2623 return 0; 2624 2625 if ((u32) nfit_blk->cmd_offset % mmio->line_size 2626 + 8 > mmio->line_size) { 2627 dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); 2628 return -ENXIO; 2629 } else if ((u32) nfit_blk->stat_offset % mmio->line_size 2630 + 8 > mmio->line_size) { 2631 dev_dbg(dev, "stat_offset crosses interleave boundary\n"); 2632 return -ENXIO; 2633 } 2634 2635 return 0; 2636 } 2637 2638 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, 2639 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) 2640 { 2641 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2642 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2643 int cmd_rc, rc; 2644 2645 cmd->address = spa->address; 2646 cmd->length = spa->length; 2647 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, 2648 sizeof(*cmd), &cmd_rc); 2649 if (rc < 0) 2650 return rc; 2651 return cmd_rc; 2652 } 2653 2654 static int ars_start(struct acpi_nfit_desc *acpi_desc, 2655 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) 2656 { 2657 int rc; 2658 int cmd_rc; 2659 struct nd_cmd_ars_start ars_start; 2660 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2661 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2662 2663 memset(&ars_start, 0, sizeof(ars_start)); 2664 ars_start.address = spa->address; 2665 ars_start.length = spa->length; 2666 if (req_type == ARS_REQ_SHORT) 2667 ars_start.flags = ND_ARS_RETURN_PREV_DATA; 2668 if (nfit_spa_type(spa) == NFIT_SPA_PM) 2669 ars_start.type = ND_ARS_PERSISTENT; 2670 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) 2671 ars_start.type = ND_ARS_VOLATILE; 2672 else 2673 return -ENOTTY; 2674 2675 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2676 sizeof(ars_start), &cmd_rc); 2677 2678 if (rc < 0) 2679 return rc; 2680 if (cmd_rc < 0) 2681 return cmd_rc; 2682 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 2683 return 0; 2684 } 2685 2686 static int ars_continue(struct acpi_nfit_desc *acpi_desc) 2687 { 2688 int rc, cmd_rc; 2689 struct nd_cmd_ars_start ars_start; 2690 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2691 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2692 2693 ars_start = (struct nd_cmd_ars_start) { 2694 .address = ars_status->restart_address, 2695 .length = ars_status->restart_length, 2696 .type = ars_status->type, 2697 }; 2698 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2699 sizeof(ars_start), &cmd_rc); 2700 if (rc < 0) 2701 return rc; 2702 return cmd_rc; 2703 } 2704 2705 static int ars_get_status(struct acpi_nfit_desc *acpi_desc) 2706 { 2707 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2708 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2709 int rc, cmd_rc; 2710 2711 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, 2712 acpi_desc->max_ars, &cmd_rc); 2713 if (rc < 0) 2714 return rc; 2715 return cmd_rc; 2716 } 2717 2718 static void ars_complete(struct acpi_nfit_desc *acpi_desc, 2719 struct nfit_spa *nfit_spa) 2720 { 2721 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2722 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2723 struct nd_region *nd_region = nfit_spa->nd_region; 2724 struct device *dev; 2725 2726 lockdep_assert_held(&acpi_desc->init_mutex); 2727 /* 2728 * Only advance the ARS state for ARS runs initiated by the 2729 * kernel, ignore ARS results from BIOS initiated runs for scrub 2730 * completion tracking. 2731 */ 2732 if (acpi_desc->scrub_spa != nfit_spa) 2733 return; 2734 2735 if ((ars_status->address >= spa->address && ars_status->address 2736 < spa->address + spa->length) 2737 || (ars_status->address < spa->address)) { 2738 /* 2739 * Assume that if a scrub starts at an offset from the 2740 * start of nfit_spa that we are in the continuation 2741 * case. 2742 * 2743 * Otherwise, if the scrub covers the spa range, mark 2744 * any pending request complete. 2745 */ 2746 if (ars_status->address + ars_status->length 2747 >= spa->address + spa->length) 2748 /* complete */; 2749 else 2750 return; 2751 } else 2752 return; 2753 2754 acpi_desc->scrub_spa = NULL; 2755 if (nd_region) { 2756 dev = nd_region_dev(nd_region); 2757 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); 2758 } else 2759 dev = acpi_desc->dev; 2760 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); 2761 } 2762 2763 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) 2764 { 2765 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; 2766 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2767 int rc; 2768 u32 i; 2769 2770 /* 2771 * First record starts at 44 byte offset from the start of the 2772 * payload. 2773 */ 2774 if (ars_status->out_length < 44) 2775 return 0; 2776 2777 /* 2778 * Ignore potentially stale results that are only refreshed 2779 * after a start-ARS event. 2780 */ 2781 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) { 2782 dev_dbg(acpi_desc->dev, "skip %d stale records\n", 2783 ars_status->num_records); 2784 return 0; 2785 } 2786 2787 for (i = 0; i < ars_status->num_records; i++) { 2788 /* only process full records */ 2789 if (ars_status->out_length 2790 < 44 + sizeof(struct nd_ars_record) * (i + 1)) 2791 break; 2792 rc = nvdimm_bus_add_badrange(nvdimm_bus, 2793 ars_status->records[i].err_address, 2794 ars_status->records[i].length); 2795 if (rc) 2796 return rc; 2797 } 2798 if (i < ars_status->num_records) 2799 dev_warn(acpi_desc->dev, "detected truncated ars results\n"); 2800 2801 return 0; 2802 } 2803 2804 static void acpi_nfit_remove_resource(void *data) 2805 { 2806 struct resource *res = data; 2807 2808 remove_resource(res); 2809 } 2810 2811 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, 2812 struct nd_region_desc *ndr_desc) 2813 { 2814 struct resource *res, *nd_res = ndr_desc->res; 2815 int is_pmem, ret; 2816 2817 /* No operation if the region is already registered as PMEM */ 2818 is_pmem = region_intersects(nd_res->start, resource_size(nd_res), 2819 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); 2820 if (is_pmem == REGION_INTERSECTS) 2821 return 0; 2822 2823 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); 2824 if (!res) 2825 return -ENOMEM; 2826 2827 res->name = "Persistent Memory"; 2828 res->start = nd_res->start; 2829 res->end = nd_res->end; 2830 res->flags = IORESOURCE_MEM; 2831 res->desc = IORES_DESC_PERSISTENT_MEMORY; 2832 2833 ret = insert_resource(&iomem_resource, res); 2834 if (ret) 2835 return ret; 2836 2837 ret = devm_add_action_or_reset(acpi_desc->dev, 2838 acpi_nfit_remove_resource, 2839 res); 2840 if (ret) 2841 return ret; 2842 2843 return 0; 2844 } 2845 2846 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, 2847 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, 2848 struct acpi_nfit_memory_map *memdev, 2849 struct nfit_spa *nfit_spa) 2850 { 2851 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, 2852 memdev->device_handle); 2853 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2854 struct nd_blk_region_desc *ndbr_desc; 2855 struct nfit_mem *nfit_mem; 2856 int rc; 2857 2858 if (!nvdimm) { 2859 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", 2860 spa->range_index, memdev->device_handle); 2861 return -ENODEV; 2862 } 2863 2864 mapping->nvdimm = nvdimm; 2865 switch (nfit_spa_type(spa)) { 2866 case NFIT_SPA_PM: 2867 case NFIT_SPA_VOLATILE: 2868 mapping->start = memdev->address; 2869 mapping->size = memdev->region_size; 2870 break; 2871 case NFIT_SPA_DCR: 2872 nfit_mem = nvdimm_provider_data(nvdimm); 2873 if (!nfit_mem || !nfit_mem->bdw) { 2874 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", 2875 spa->range_index, nvdimm_name(nvdimm)); 2876 break; 2877 } 2878 2879 mapping->size = nfit_mem->bdw->capacity; 2880 mapping->start = nfit_mem->bdw->start_address; 2881 ndr_desc->num_lanes = nfit_mem->bdw->windows; 2882 ndr_desc->mapping = mapping; 2883 ndr_desc->num_mappings = 1; 2884 ndbr_desc = to_blk_region_desc(ndr_desc); 2885 ndbr_desc->enable = acpi_nfit_blk_region_enable; 2886 ndbr_desc->do_io = acpi_desc->blk_do_io; 2887 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2888 if (rc) 2889 return rc; 2890 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, 2891 ndr_desc); 2892 if (!nfit_spa->nd_region) 2893 return -ENOMEM; 2894 break; 2895 } 2896 2897 return 0; 2898 } 2899 2900 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) 2901 { 2902 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2903 nfit_spa_type(spa) == NFIT_SPA_VCD || 2904 nfit_spa_type(spa) == NFIT_SPA_PDISK || 2905 nfit_spa_type(spa) == NFIT_SPA_PCD); 2906 } 2907 2908 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) 2909 { 2910 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2911 nfit_spa_type(spa) == NFIT_SPA_VCD || 2912 nfit_spa_type(spa) == NFIT_SPA_VOLATILE); 2913 } 2914 2915 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, 2916 struct nfit_spa *nfit_spa) 2917 { 2918 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; 2919 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2920 struct nd_blk_region_desc ndbr_desc; 2921 struct nd_region_desc *ndr_desc; 2922 struct nfit_memdev *nfit_memdev; 2923 struct nvdimm_bus *nvdimm_bus; 2924 struct resource res; 2925 int count = 0, rc; 2926 2927 if (nfit_spa->nd_region) 2928 return 0; 2929 2930 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { 2931 dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); 2932 return 0; 2933 } 2934 2935 memset(&res, 0, sizeof(res)); 2936 memset(&mappings, 0, sizeof(mappings)); 2937 memset(&ndbr_desc, 0, sizeof(ndbr_desc)); 2938 res.start = spa->address; 2939 res.end = res.start + spa->length - 1; 2940 ndr_desc = &ndbr_desc.ndr_desc; 2941 ndr_desc->res = &res; 2942 ndr_desc->provider_data = nfit_spa; 2943 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; 2944 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) { 2945 ndr_desc->numa_node = acpi_map_pxm_to_online_node( 2946 spa->proximity_domain); 2947 ndr_desc->target_node = acpi_map_pxm_to_node( 2948 spa->proximity_domain); 2949 } else { 2950 ndr_desc->numa_node = NUMA_NO_NODE; 2951 ndr_desc->target_node = NUMA_NO_NODE; 2952 } 2953 2954 /* 2955 * Persistence domain bits are hierarchical, if 2956 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then 2957 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. 2958 */ 2959 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) 2960 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); 2961 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) 2962 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); 2963 2964 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2965 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 2966 struct nd_mapping_desc *mapping; 2967 2968 if (memdev->range_index != spa->range_index) 2969 continue; 2970 if (count >= ND_MAX_MAPPINGS) { 2971 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", 2972 spa->range_index, ND_MAX_MAPPINGS); 2973 return -ENXIO; 2974 } 2975 mapping = &mappings[count++]; 2976 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, 2977 memdev, nfit_spa); 2978 if (rc) 2979 goto out; 2980 } 2981 2982 ndr_desc->mapping = mappings; 2983 ndr_desc->num_mappings = count; 2984 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2985 if (rc) 2986 goto out; 2987 2988 nvdimm_bus = acpi_desc->nvdimm_bus; 2989 if (nfit_spa_type(spa) == NFIT_SPA_PM) { 2990 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); 2991 if (rc) { 2992 dev_warn(acpi_desc->dev, 2993 "failed to insert pmem resource to iomem: %d\n", 2994 rc); 2995 goto out; 2996 } 2997 2998 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 2999 ndr_desc); 3000 if (!nfit_spa->nd_region) 3001 rc = -ENOMEM; 3002 } else if (nfit_spa_is_volatile(spa)) { 3003 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, 3004 ndr_desc); 3005 if (!nfit_spa->nd_region) 3006 rc = -ENOMEM; 3007 } else if (nfit_spa_is_virtual(spa)) { 3008 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3009 ndr_desc); 3010 if (!nfit_spa->nd_region) 3011 rc = -ENOMEM; 3012 } 3013 3014 out: 3015 if (rc) 3016 dev_err(acpi_desc->dev, "failed to register spa range %d\n", 3017 nfit_spa->spa->range_index); 3018 return rc; 3019 } 3020 3021 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) 3022 { 3023 struct device *dev = acpi_desc->dev; 3024 struct nd_cmd_ars_status *ars_status; 3025 3026 if (acpi_desc->ars_status) { 3027 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3028 return 0; 3029 } 3030 3031 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); 3032 if (!ars_status) 3033 return -ENOMEM; 3034 acpi_desc->ars_status = ars_status; 3035 return 0; 3036 } 3037 3038 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) 3039 { 3040 int rc; 3041 3042 if (ars_status_alloc(acpi_desc)) 3043 return -ENOMEM; 3044 3045 rc = ars_get_status(acpi_desc); 3046 3047 if (rc < 0 && rc != -ENOSPC) 3048 return rc; 3049 3050 if (ars_status_process_records(acpi_desc)) 3051 dev_err(acpi_desc->dev, "Failed to process ARS records\n"); 3052 3053 return rc; 3054 } 3055 3056 static int ars_register(struct acpi_nfit_desc *acpi_desc, 3057 struct nfit_spa *nfit_spa) 3058 { 3059 int rc; 3060 3061 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3062 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3063 3064 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3065 if (!no_init_ars) 3066 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); 3067 3068 switch (acpi_nfit_query_poison(acpi_desc)) { 3069 case 0: 3070 case -ENOSPC: 3071 case -EAGAIN: 3072 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); 3073 /* shouldn't happen, try again later */ 3074 if (rc == -EBUSY) 3075 break; 3076 if (rc) { 3077 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3078 break; 3079 } 3080 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3081 rc = acpi_nfit_query_poison(acpi_desc); 3082 if (rc) 3083 break; 3084 acpi_desc->scrub_spa = nfit_spa; 3085 ars_complete(acpi_desc, nfit_spa); 3086 /* 3087 * If ars_complete() says we didn't complete the 3088 * short scrub, we'll try again with a long 3089 * request. 3090 */ 3091 acpi_desc->scrub_spa = NULL; 3092 break; 3093 case -EBUSY: 3094 case -ENOMEM: 3095 /* 3096 * BIOS was using ARS, wait for it to complete (or 3097 * resources to become available) and then perform our 3098 * own scrubs. 3099 */ 3100 break; 3101 default: 3102 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3103 break; 3104 } 3105 3106 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3107 } 3108 3109 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) 3110 { 3111 struct nfit_spa *nfit_spa; 3112 3113 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3114 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3115 continue; 3116 ars_complete(acpi_desc, nfit_spa); 3117 } 3118 } 3119 3120 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, 3121 int query_rc) 3122 { 3123 unsigned int tmo = acpi_desc->scrub_tmo; 3124 struct device *dev = acpi_desc->dev; 3125 struct nfit_spa *nfit_spa; 3126 3127 lockdep_assert_held(&acpi_desc->init_mutex); 3128 3129 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) 3130 return 0; 3131 3132 if (query_rc == -EBUSY) { 3133 dev_dbg(dev, "ARS: ARS busy\n"); 3134 return min(30U * 60U, tmo * 2); 3135 } 3136 if (query_rc == -ENOSPC) { 3137 dev_dbg(dev, "ARS: ARS continue\n"); 3138 ars_continue(acpi_desc); 3139 return 1; 3140 } 3141 if (query_rc && query_rc != -EAGAIN) { 3142 unsigned long long addr, end; 3143 3144 addr = acpi_desc->ars_status->address; 3145 end = addr + acpi_desc->ars_status->length; 3146 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, 3147 query_rc); 3148 } 3149 3150 ars_complete_all(acpi_desc); 3151 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3152 enum nfit_ars_state req_type; 3153 int rc; 3154 3155 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3156 continue; 3157 3158 /* prefer short ARS requests first */ 3159 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) 3160 req_type = ARS_REQ_SHORT; 3161 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) 3162 req_type = ARS_REQ_LONG; 3163 else 3164 continue; 3165 rc = ars_start(acpi_desc, nfit_spa, req_type); 3166 3167 dev = nd_region_dev(nfit_spa->nd_region); 3168 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", 3169 nfit_spa->spa->range_index, 3170 req_type == ARS_REQ_SHORT ? "short" : "long", 3171 rc); 3172 /* 3173 * Hmm, we raced someone else starting ARS? Try again in 3174 * a bit. 3175 */ 3176 if (rc == -EBUSY) 3177 return 1; 3178 if (rc == 0) { 3179 dev_WARN_ONCE(dev, acpi_desc->scrub_spa, 3180 "scrub start while range %d active\n", 3181 acpi_desc->scrub_spa->spa->range_index); 3182 clear_bit(req_type, &nfit_spa->ars_state); 3183 acpi_desc->scrub_spa = nfit_spa; 3184 /* 3185 * Consider this spa last for future scrub 3186 * requests 3187 */ 3188 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 3189 return 1; 3190 } 3191 3192 dev_err(dev, "ARS: range %d ARS failed (%d)\n", 3193 nfit_spa->spa->range_index, rc); 3194 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3195 } 3196 return 0; 3197 } 3198 3199 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) 3200 { 3201 lockdep_assert_held(&acpi_desc->init_mutex); 3202 3203 set_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3204 /* note this should only be set from within the workqueue */ 3205 if (tmo) 3206 acpi_desc->scrub_tmo = tmo; 3207 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); 3208 } 3209 3210 static void sched_ars(struct acpi_nfit_desc *acpi_desc) 3211 { 3212 __sched_ars(acpi_desc, 0); 3213 } 3214 3215 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) 3216 { 3217 lockdep_assert_held(&acpi_desc->init_mutex); 3218 3219 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3220 acpi_desc->scrub_count++; 3221 if (acpi_desc->scrub_count_state) 3222 sysfs_notify_dirent(acpi_desc->scrub_count_state); 3223 } 3224 3225 static void acpi_nfit_scrub(struct work_struct *work) 3226 { 3227 struct acpi_nfit_desc *acpi_desc; 3228 unsigned int tmo; 3229 int query_rc; 3230 3231 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); 3232 mutex_lock(&acpi_desc->init_mutex); 3233 query_rc = acpi_nfit_query_poison(acpi_desc); 3234 tmo = __acpi_nfit_scrub(acpi_desc, query_rc); 3235 if (tmo) 3236 __sched_ars(acpi_desc, tmo); 3237 else 3238 notify_ars_done(acpi_desc); 3239 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3240 clear_bit(ARS_POLL, &acpi_desc->scrub_flags); 3241 mutex_unlock(&acpi_desc->init_mutex); 3242 } 3243 3244 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, 3245 struct nfit_spa *nfit_spa) 3246 { 3247 int type = nfit_spa_type(nfit_spa->spa); 3248 struct nd_cmd_ars_cap ars_cap; 3249 int rc; 3250 3251 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3252 memset(&ars_cap, 0, sizeof(ars_cap)); 3253 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); 3254 if (rc < 0) 3255 return; 3256 /* check that the supported scrub types match the spa type */ 3257 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) 3258 & ND_ARS_VOLATILE) == 0) 3259 return; 3260 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) 3261 & ND_ARS_PERSISTENT) == 0) 3262 return; 3263 3264 nfit_spa->max_ars = ars_cap.max_ars_out; 3265 nfit_spa->clear_err_unit = ars_cap.clear_err_unit; 3266 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); 3267 clear_bit(ARS_FAILED, &nfit_spa->ars_state); 3268 } 3269 3270 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) 3271 { 3272 struct nfit_spa *nfit_spa; 3273 int rc; 3274 3275 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 3276 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3277 switch (nfit_spa_type(nfit_spa->spa)) { 3278 case NFIT_SPA_VOLATILE: 3279 case NFIT_SPA_PM: 3280 acpi_nfit_init_ars(acpi_desc, nfit_spa); 3281 break; 3282 } 3283 } 3284 3285 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) 3286 switch (nfit_spa_type(nfit_spa->spa)) { 3287 case NFIT_SPA_VOLATILE: 3288 case NFIT_SPA_PM: 3289 /* register regions and kick off initial ARS run */ 3290 rc = ars_register(acpi_desc, nfit_spa); 3291 if (rc) 3292 return rc; 3293 break; 3294 case NFIT_SPA_BDW: 3295 /* nothing to register */ 3296 break; 3297 case NFIT_SPA_DCR: 3298 case NFIT_SPA_VDISK: 3299 case NFIT_SPA_VCD: 3300 case NFIT_SPA_PDISK: 3301 case NFIT_SPA_PCD: 3302 /* register known regions that don't support ARS */ 3303 rc = acpi_nfit_register_region(acpi_desc, nfit_spa); 3304 if (rc) 3305 return rc; 3306 break; 3307 default: 3308 /* don't register unknown regions */ 3309 break; 3310 } 3311 3312 sched_ars(acpi_desc); 3313 return 0; 3314 } 3315 3316 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, 3317 struct nfit_table_prev *prev) 3318 { 3319 struct device *dev = acpi_desc->dev; 3320 3321 if (!list_empty(&prev->spas) || 3322 !list_empty(&prev->memdevs) || 3323 !list_empty(&prev->dcrs) || 3324 !list_empty(&prev->bdws) || 3325 !list_empty(&prev->idts) || 3326 !list_empty(&prev->flushes)) { 3327 dev_err(dev, "new nfit deletes entries (unsupported)\n"); 3328 return -ENXIO; 3329 } 3330 return 0; 3331 } 3332 3333 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) 3334 { 3335 struct device *dev = acpi_desc->dev; 3336 struct kernfs_node *nfit; 3337 struct device *bus_dev; 3338 3339 if (!ars_supported(acpi_desc->nvdimm_bus)) 3340 return 0; 3341 3342 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3343 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); 3344 if (!nfit) { 3345 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); 3346 return -ENODEV; 3347 } 3348 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); 3349 sysfs_put(nfit); 3350 if (!acpi_desc->scrub_count_state) { 3351 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); 3352 return -ENODEV; 3353 } 3354 3355 return 0; 3356 } 3357 3358 static void acpi_nfit_unregister(void *data) 3359 { 3360 struct acpi_nfit_desc *acpi_desc = data; 3361 3362 nvdimm_bus_unregister(acpi_desc->nvdimm_bus); 3363 } 3364 3365 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) 3366 { 3367 struct device *dev = acpi_desc->dev; 3368 struct nfit_table_prev prev; 3369 const void *end; 3370 int rc; 3371 3372 if (!acpi_desc->nvdimm_bus) { 3373 acpi_nfit_init_dsms(acpi_desc); 3374 3375 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, 3376 &acpi_desc->nd_desc); 3377 if (!acpi_desc->nvdimm_bus) 3378 return -ENOMEM; 3379 3380 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, 3381 acpi_desc); 3382 if (rc) 3383 return rc; 3384 3385 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); 3386 if (rc) 3387 return rc; 3388 3389 /* register this acpi_desc for mce notifications */ 3390 mutex_lock(&acpi_desc_lock); 3391 list_add_tail(&acpi_desc->list, &acpi_descs); 3392 mutex_unlock(&acpi_desc_lock); 3393 } 3394 3395 mutex_lock(&acpi_desc->init_mutex); 3396 3397 INIT_LIST_HEAD(&prev.spas); 3398 INIT_LIST_HEAD(&prev.memdevs); 3399 INIT_LIST_HEAD(&prev.dcrs); 3400 INIT_LIST_HEAD(&prev.bdws); 3401 INIT_LIST_HEAD(&prev.idts); 3402 INIT_LIST_HEAD(&prev.flushes); 3403 3404 list_cut_position(&prev.spas, &acpi_desc->spas, 3405 acpi_desc->spas.prev); 3406 list_cut_position(&prev.memdevs, &acpi_desc->memdevs, 3407 acpi_desc->memdevs.prev); 3408 list_cut_position(&prev.dcrs, &acpi_desc->dcrs, 3409 acpi_desc->dcrs.prev); 3410 list_cut_position(&prev.bdws, &acpi_desc->bdws, 3411 acpi_desc->bdws.prev); 3412 list_cut_position(&prev.idts, &acpi_desc->idts, 3413 acpi_desc->idts.prev); 3414 list_cut_position(&prev.flushes, &acpi_desc->flushes, 3415 acpi_desc->flushes.prev); 3416 3417 end = data + sz; 3418 while (!IS_ERR_OR_NULL(data)) 3419 data = add_table(acpi_desc, &prev, data, end); 3420 3421 if (IS_ERR(data)) { 3422 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); 3423 rc = PTR_ERR(data); 3424 goto out_unlock; 3425 } 3426 3427 rc = acpi_nfit_check_deletions(acpi_desc, &prev); 3428 if (rc) 3429 goto out_unlock; 3430 3431 rc = nfit_mem_init(acpi_desc); 3432 if (rc) 3433 goto out_unlock; 3434 3435 rc = acpi_nfit_register_dimms(acpi_desc); 3436 if (rc) 3437 goto out_unlock; 3438 3439 rc = acpi_nfit_register_regions(acpi_desc); 3440 3441 out_unlock: 3442 mutex_unlock(&acpi_desc->init_mutex); 3443 return rc; 3444 } 3445 EXPORT_SYMBOL_GPL(acpi_nfit_init); 3446 3447 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) 3448 { 3449 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3450 struct device *dev = acpi_desc->dev; 3451 3452 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ 3453 nfit_device_lock(dev); 3454 nfit_device_unlock(dev); 3455 3456 /* Bounce the init_mutex to complete initial registration */ 3457 mutex_lock(&acpi_desc->init_mutex); 3458 mutex_unlock(&acpi_desc->init_mutex); 3459 3460 return 0; 3461 } 3462 3463 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3464 struct nvdimm *nvdimm, unsigned int cmd) 3465 { 3466 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3467 3468 if (nvdimm) 3469 return 0; 3470 if (cmd != ND_CMD_ARS_START) 3471 return 0; 3472 3473 /* 3474 * The kernel and userspace may race to initiate a scrub, but 3475 * the scrub thread is prepared to lose that initial race. It 3476 * just needs guarantees that any ARS it initiates are not 3477 * interrupted by any intervening start requests from userspace. 3478 */ 3479 if (work_busy(&acpi_desc->dwork.work)) 3480 return -EBUSY; 3481 3482 return 0; 3483 } 3484 3485 /* prevent security commands from being issued via ioctl */ 3486 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3487 struct nvdimm *nvdimm, unsigned int cmd, void *buf) 3488 { 3489 struct nd_cmd_pkg *call_pkg = buf; 3490 unsigned int func; 3491 3492 if (nvdimm && cmd == ND_CMD_CALL && 3493 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { 3494 func = call_pkg->nd_command; 3495 if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK) 3496 return -EOPNOTSUPP; 3497 } 3498 3499 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); 3500 } 3501 3502 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, 3503 enum nfit_ars_state req_type) 3504 { 3505 struct device *dev = acpi_desc->dev; 3506 int scheduled = 0, busy = 0; 3507 struct nfit_spa *nfit_spa; 3508 3509 mutex_lock(&acpi_desc->init_mutex); 3510 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) { 3511 mutex_unlock(&acpi_desc->init_mutex); 3512 return 0; 3513 } 3514 3515 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3516 int type = nfit_spa_type(nfit_spa->spa); 3517 3518 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) 3519 continue; 3520 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3521 continue; 3522 3523 if (test_and_set_bit(req_type, &nfit_spa->ars_state)) 3524 busy++; 3525 else 3526 scheduled++; 3527 } 3528 if (scheduled) { 3529 sched_ars(acpi_desc); 3530 dev_dbg(dev, "ars_scan triggered\n"); 3531 } 3532 mutex_unlock(&acpi_desc->init_mutex); 3533 3534 if (scheduled) 3535 return 0; 3536 if (busy) 3537 return -EBUSY; 3538 return -ENOTTY; 3539 } 3540 3541 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) 3542 { 3543 struct nvdimm_bus_descriptor *nd_desc; 3544 3545 dev_set_drvdata(dev, acpi_desc); 3546 acpi_desc->dev = dev; 3547 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; 3548 nd_desc = &acpi_desc->nd_desc; 3549 nd_desc->provider_name = "ACPI.NFIT"; 3550 nd_desc->module = THIS_MODULE; 3551 nd_desc->ndctl = acpi_nfit_ctl; 3552 nd_desc->flush_probe = acpi_nfit_flush_probe; 3553 nd_desc->clear_to_send = acpi_nfit_clear_to_send; 3554 nd_desc->attr_groups = acpi_nfit_attribute_groups; 3555 3556 INIT_LIST_HEAD(&acpi_desc->spas); 3557 INIT_LIST_HEAD(&acpi_desc->dcrs); 3558 INIT_LIST_HEAD(&acpi_desc->bdws); 3559 INIT_LIST_HEAD(&acpi_desc->idts); 3560 INIT_LIST_HEAD(&acpi_desc->flushes); 3561 INIT_LIST_HEAD(&acpi_desc->memdevs); 3562 INIT_LIST_HEAD(&acpi_desc->dimms); 3563 INIT_LIST_HEAD(&acpi_desc->list); 3564 mutex_init(&acpi_desc->init_mutex); 3565 acpi_desc->scrub_tmo = 1; 3566 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); 3567 } 3568 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); 3569 3570 static void acpi_nfit_put_table(void *table) 3571 { 3572 acpi_put_table(table); 3573 } 3574 3575 void acpi_nfit_shutdown(void *data) 3576 { 3577 struct acpi_nfit_desc *acpi_desc = data; 3578 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3579 3580 /* 3581 * Destruct under acpi_desc_lock so that nfit_handle_mce does not 3582 * race teardown 3583 */ 3584 mutex_lock(&acpi_desc_lock); 3585 list_del(&acpi_desc->list); 3586 mutex_unlock(&acpi_desc_lock); 3587 3588 mutex_lock(&acpi_desc->init_mutex); 3589 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 3590 cancel_delayed_work_sync(&acpi_desc->dwork); 3591 mutex_unlock(&acpi_desc->init_mutex); 3592 3593 /* 3594 * Bounce the nvdimm bus lock to make sure any in-flight 3595 * acpi_nfit_ars_rescan() submissions have had a chance to 3596 * either submit or see ->cancel set. 3597 */ 3598 nfit_device_lock(bus_dev); 3599 nfit_device_unlock(bus_dev); 3600 3601 flush_workqueue(nfit_wq); 3602 } 3603 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); 3604 3605 static int acpi_nfit_add(struct acpi_device *adev) 3606 { 3607 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3608 struct acpi_nfit_desc *acpi_desc; 3609 struct device *dev = &adev->dev; 3610 struct acpi_table_header *tbl; 3611 acpi_status status = AE_OK; 3612 acpi_size sz; 3613 int rc = 0; 3614 3615 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); 3616 if (ACPI_FAILURE(status)) { 3617 /* The NVDIMM root device allows OS to trigger enumeration of 3618 * NVDIMMs through NFIT at boot time and re-enumeration at 3619 * root level via the _FIT method during runtime. 3620 * This is ok to return 0 here, we could have an nvdimm 3621 * hotplugged later and evaluate _FIT method which returns 3622 * data in the format of a series of NFIT Structures. 3623 */ 3624 dev_dbg(dev, "failed to find NFIT at startup\n"); 3625 return 0; 3626 } 3627 3628 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); 3629 if (rc) 3630 return rc; 3631 sz = tbl->length; 3632 3633 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3634 if (!acpi_desc) 3635 return -ENOMEM; 3636 acpi_nfit_desc_init(acpi_desc, &adev->dev); 3637 3638 /* Save the acpi header for exporting the revision via sysfs */ 3639 acpi_desc->acpi_header = *tbl; 3640 3641 /* Evaluate _FIT and override with that if present */ 3642 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); 3643 if (ACPI_SUCCESS(status) && buf.length > 0) { 3644 union acpi_object *obj = buf.pointer; 3645 3646 if (obj->type == ACPI_TYPE_BUFFER) 3647 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3648 obj->buffer.length); 3649 else 3650 dev_dbg(dev, "invalid type %d, ignoring _FIT\n", 3651 (int) obj->type); 3652 kfree(buf.pointer); 3653 } else 3654 /* skip over the lead-in header table */ 3655 rc = acpi_nfit_init(acpi_desc, (void *) tbl 3656 + sizeof(struct acpi_table_nfit), 3657 sz - sizeof(struct acpi_table_nfit)); 3658 3659 if (rc) 3660 return rc; 3661 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); 3662 } 3663 3664 static int acpi_nfit_remove(struct acpi_device *adev) 3665 { 3666 /* see acpi_nfit_unregister */ 3667 return 0; 3668 } 3669 3670 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) 3671 { 3672 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3673 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3674 union acpi_object *obj; 3675 acpi_status status; 3676 int ret; 3677 3678 if (!dev->driver) { 3679 /* dev->driver may be null if we're being removed */ 3680 dev_dbg(dev, "no driver found for dev\n"); 3681 return; 3682 } 3683 3684 if (!acpi_desc) { 3685 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3686 if (!acpi_desc) 3687 return; 3688 acpi_nfit_desc_init(acpi_desc, dev); 3689 } else { 3690 /* 3691 * Finish previous registration before considering new 3692 * regions. 3693 */ 3694 flush_workqueue(nfit_wq); 3695 } 3696 3697 /* Evaluate _FIT */ 3698 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); 3699 if (ACPI_FAILURE(status)) { 3700 dev_err(dev, "failed to evaluate _FIT\n"); 3701 return; 3702 } 3703 3704 obj = buf.pointer; 3705 if (obj->type == ACPI_TYPE_BUFFER) { 3706 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3707 obj->buffer.length); 3708 if (ret) 3709 dev_err(dev, "failed to merge updated NFIT\n"); 3710 } else 3711 dev_err(dev, "Invalid _FIT\n"); 3712 kfree(buf.pointer); 3713 } 3714 3715 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) 3716 { 3717 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3718 3719 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) 3720 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 3721 else 3722 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); 3723 } 3724 3725 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) 3726 { 3727 dev_dbg(dev, "event: 0x%x\n", event); 3728 3729 switch (event) { 3730 case NFIT_NOTIFY_UPDATE: 3731 return acpi_nfit_update_notify(dev, handle); 3732 case NFIT_NOTIFY_UC_MEMORY_ERROR: 3733 return acpi_nfit_uc_error_notify(dev, handle); 3734 default: 3735 return; 3736 } 3737 } 3738 EXPORT_SYMBOL_GPL(__acpi_nfit_notify); 3739 3740 static void acpi_nfit_notify(struct acpi_device *adev, u32 event) 3741 { 3742 nfit_device_lock(&adev->dev); 3743 __acpi_nfit_notify(&adev->dev, adev->handle, event); 3744 nfit_device_unlock(&adev->dev); 3745 } 3746 3747 static const struct acpi_device_id acpi_nfit_ids[] = { 3748 { "ACPI0012", 0 }, 3749 { "", 0 }, 3750 }; 3751 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); 3752 3753 static struct acpi_driver acpi_nfit_driver = { 3754 .name = KBUILD_MODNAME, 3755 .ids = acpi_nfit_ids, 3756 .ops = { 3757 .add = acpi_nfit_add, 3758 .remove = acpi_nfit_remove, 3759 .notify = acpi_nfit_notify, 3760 }, 3761 }; 3762 3763 static __init int nfit_init(void) 3764 { 3765 int ret; 3766 3767 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); 3768 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); 3769 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); 3770 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); 3771 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); 3772 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); 3773 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); 3774 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); 3775 3776 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); 3777 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); 3778 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); 3779 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); 3780 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); 3781 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); 3782 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); 3783 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); 3784 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); 3785 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); 3786 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); 3787 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); 3788 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); 3789 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]); 3790 3791 nfit_wq = create_singlethread_workqueue("nfit"); 3792 if (!nfit_wq) 3793 return -ENOMEM; 3794 3795 nfit_mce_register(); 3796 ret = acpi_bus_register_driver(&acpi_nfit_driver); 3797 if (ret) { 3798 nfit_mce_unregister(); 3799 destroy_workqueue(nfit_wq); 3800 } 3801 3802 return ret; 3803 3804 } 3805 3806 static __exit void nfit_exit(void) 3807 { 3808 nfit_mce_unregister(); 3809 acpi_bus_unregister_driver(&acpi_nfit_driver); 3810 destroy_workqueue(nfit_wq); 3811 WARN_ON(!list_empty(&acpi_descs)); 3812 } 3813 3814 module_init(nfit_init); 3815 module_exit(nfit_exit); 3816 MODULE_LICENSE("GPL v2"); 3817 MODULE_AUTHOR("Intel Corporation"); 3818