xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 5ff32883)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include <acpi/nfit.h>
27 #include "intel.h"
28 #include "nfit.h"
29 
30 /*
31  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
32  * irrelevant.
33  */
34 #include <linux/io-64-nonatomic-hi-lo.h>
35 
36 static bool force_enable_dimms;
37 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
38 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
39 
40 static bool disable_vendor_specific;
41 module_param(disable_vendor_specific, bool, S_IRUGO);
42 MODULE_PARM_DESC(disable_vendor_specific,
43 		"Limit commands to the publicly specified set");
44 
45 static unsigned long override_dsm_mask;
46 module_param(override_dsm_mask, ulong, S_IRUGO);
47 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
48 
49 static int default_dsm_family = -1;
50 module_param(default_dsm_family, int, S_IRUGO);
51 MODULE_PARM_DESC(default_dsm_family,
52 		"Try this DSM type first when identifying NVDIMM family");
53 
54 static bool no_init_ars;
55 module_param(no_init_ars, bool, 0644);
56 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
57 
58 LIST_HEAD(acpi_descs);
59 DEFINE_MUTEX(acpi_desc_lock);
60 
61 static struct workqueue_struct *nfit_wq;
62 
63 struct nfit_table_prev {
64 	struct list_head spas;
65 	struct list_head memdevs;
66 	struct list_head dcrs;
67 	struct list_head bdws;
68 	struct list_head idts;
69 	struct list_head flushes;
70 };
71 
72 static guid_t nfit_uuid[NFIT_UUID_MAX];
73 
74 const guid_t *to_nfit_uuid(enum nfit_uuids id)
75 {
76 	return &nfit_uuid[id];
77 }
78 EXPORT_SYMBOL(to_nfit_uuid);
79 
80 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
81 {
82 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
83 
84 	/*
85 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
86 	 * acpi_device.
87 	 */
88 	if (!nd_desc->provider_name
89 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
90 		return NULL;
91 
92 	return to_acpi_device(acpi_desc->dev);
93 }
94 
95 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
96 {
97 	struct nd_cmd_clear_error *clear_err;
98 	struct nd_cmd_ars_status *ars_status;
99 	u16 flags;
100 
101 	switch (cmd) {
102 	case ND_CMD_ARS_CAP:
103 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
104 			return -ENOTTY;
105 
106 		/* Command failed */
107 		if (status & 0xffff)
108 			return -EIO;
109 
110 		/* No supported scan types for this range */
111 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
112 		if ((status >> 16 & flags) == 0)
113 			return -ENOTTY;
114 		return 0;
115 	case ND_CMD_ARS_START:
116 		/* ARS is in progress */
117 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
118 			return -EBUSY;
119 
120 		/* Command failed */
121 		if (status & 0xffff)
122 			return -EIO;
123 		return 0;
124 	case ND_CMD_ARS_STATUS:
125 		ars_status = buf;
126 		/* Command failed */
127 		if (status & 0xffff)
128 			return -EIO;
129 		/* Check extended status (Upper two bytes) */
130 		if (status == NFIT_ARS_STATUS_DONE)
131 			return 0;
132 
133 		/* ARS is in progress */
134 		if (status == NFIT_ARS_STATUS_BUSY)
135 			return -EBUSY;
136 
137 		/* No ARS performed for the current boot */
138 		if (status == NFIT_ARS_STATUS_NONE)
139 			return -EAGAIN;
140 
141 		/*
142 		 * ARS interrupted, either we overflowed or some other
143 		 * agent wants the scan to stop.  If we didn't overflow
144 		 * then just continue with the returned results.
145 		 */
146 		if (status == NFIT_ARS_STATUS_INTR) {
147 			if (ars_status->out_length >= 40 && (ars_status->flags
148 						& NFIT_ARS_F_OVERFLOW))
149 				return -ENOSPC;
150 			return 0;
151 		}
152 
153 		/* Unknown status */
154 		if (status >> 16)
155 			return -EIO;
156 		return 0;
157 	case ND_CMD_CLEAR_ERROR:
158 		clear_err = buf;
159 		if (status & 0xffff)
160 			return -EIO;
161 		if (!clear_err->cleared)
162 			return -EIO;
163 		if (clear_err->length > clear_err->cleared)
164 			return clear_err->cleared;
165 		return 0;
166 	default:
167 		break;
168 	}
169 
170 	/* all other non-zero status results in an error */
171 	if (status)
172 		return -EIO;
173 	return 0;
174 }
175 
176 #define ACPI_LABELS_LOCKED 3
177 
178 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
179 		u32 status)
180 {
181 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
182 
183 	switch (cmd) {
184 	case ND_CMD_GET_CONFIG_SIZE:
185 		/*
186 		 * In the _LSI, _LSR, _LSW case the locked status is
187 		 * communicated via the read/write commands
188 		 */
189 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
190 			break;
191 
192 		if (status >> 16 & ND_CONFIG_LOCKED)
193 			return -EACCES;
194 		break;
195 	case ND_CMD_GET_CONFIG_DATA:
196 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
197 				&& status == ACPI_LABELS_LOCKED)
198 			return -EACCES;
199 		break;
200 	case ND_CMD_SET_CONFIG_DATA:
201 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
202 				&& status == ACPI_LABELS_LOCKED)
203 			return -EACCES;
204 		break;
205 	default:
206 		break;
207 	}
208 
209 	/* all other non-zero status results in an error */
210 	if (status)
211 		return -EIO;
212 	return 0;
213 }
214 
215 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
216 		u32 status)
217 {
218 	if (!nvdimm)
219 		return xlat_bus_status(buf, cmd, status);
220 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
221 }
222 
223 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
224 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
225 {
226 	int i;
227 	void *dst;
228 	size_t size = 0;
229 	union acpi_object *buf = NULL;
230 
231 	if (pkg->type != ACPI_TYPE_PACKAGE) {
232 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
233 				pkg->type);
234 		goto err;
235 	}
236 
237 	for (i = 0; i < pkg->package.count; i++) {
238 		union acpi_object *obj = &pkg->package.elements[i];
239 
240 		if (obj->type == ACPI_TYPE_INTEGER)
241 			size += 4;
242 		else if (obj->type == ACPI_TYPE_BUFFER)
243 			size += obj->buffer.length;
244 		else {
245 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
246 					obj->type);
247 			goto err;
248 		}
249 	}
250 
251 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
252 	if (!buf)
253 		goto err;
254 
255 	dst = buf + 1;
256 	buf->type = ACPI_TYPE_BUFFER;
257 	buf->buffer.length = size;
258 	buf->buffer.pointer = dst;
259 	for (i = 0; i < pkg->package.count; i++) {
260 		union acpi_object *obj = &pkg->package.elements[i];
261 
262 		if (obj->type == ACPI_TYPE_INTEGER) {
263 			memcpy(dst, &obj->integer.value, 4);
264 			dst += 4;
265 		} else if (obj->type == ACPI_TYPE_BUFFER) {
266 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
267 			dst += obj->buffer.length;
268 		}
269 	}
270 err:
271 	ACPI_FREE(pkg);
272 	return buf;
273 }
274 
275 static union acpi_object *int_to_buf(union acpi_object *integer)
276 {
277 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
278 	void *dst = NULL;
279 
280 	if (!buf)
281 		goto err;
282 
283 	if (integer->type != ACPI_TYPE_INTEGER) {
284 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
285 				integer->type);
286 		goto err;
287 	}
288 
289 	dst = buf + 1;
290 	buf->type = ACPI_TYPE_BUFFER;
291 	buf->buffer.length = 4;
292 	buf->buffer.pointer = dst;
293 	memcpy(dst, &integer->integer.value, 4);
294 err:
295 	ACPI_FREE(integer);
296 	return buf;
297 }
298 
299 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
300 		u32 len, void *data)
301 {
302 	acpi_status rc;
303 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
304 	struct acpi_object_list input = {
305 		.count = 3,
306 		.pointer = (union acpi_object []) {
307 			[0] = {
308 				.integer.type = ACPI_TYPE_INTEGER,
309 				.integer.value = offset,
310 			},
311 			[1] = {
312 				.integer.type = ACPI_TYPE_INTEGER,
313 				.integer.value = len,
314 			},
315 			[2] = {
316 				.buffer.type = ACPI_TYPE_BUFFER,
317 				.buffer.pointer = data,
318 				.buffer.length = len,
319 			},
320 		},
321 	};
322 
323 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
324 	if (ACPI_FAILURE(rc))
325 		return NULL;
326 	return int_to_buf(buf.pointer);
327 }
328 
329 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
330 		u32 len)
331 {
332 	acpi_status rc;
333 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
334 	struct acpi_object_list input = {
335 		.count = 2,
336 		.pointer = (union acpi_object []) {
337 			[0] = {
338 				.integer.type = ACPI_TYPE_INTEGER,
339 				.integer.value = offset,
340 			},
341 			[1] = {
342 				.integer.type = ACPI_TYPE_INTEGER,
343 				.integer.value = len,
344 			},
345 		},
346 	};
347 
348 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
349 	if (ACPI_FAILURE(rc))
350 		return NULL;
351 	return pkg_to_buf(buf.pointer);
352 }
353 
354 static union acpi_object *acpi_label_info(acpi_handle handle)
355 {
356 	acpi_status rc;
357 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
358 
359 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
360 	if (ACPI_FAILURE(rc))
361 		return NULL;
362 	return pkg_to_buf(buf.pointer);
363 }
364 
365 static u8 nfit_dsm_revid(unsigned family, unsigned func)
366 {
367 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
368 		[NVDIMM_FAMILY_INTEL] = {
369 			[NVDIMM_INTEL_GET_MODES] = 2,
370 			[NVDIMM_INTEL_GET_FWINFO] = 2,
371 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
372 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
373 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
374 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
375 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
376 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
377 			[NVDIMM_INTEL_GET_SECURITY_STATE] = 2,
378 			[NVDIMM_INTEL_SET_PASSPHRASE] = 2,
379 			[NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2,
380 			[NVDIMM_INTEL_UNLOCK_UNIT] = 2,
381 			[NVDIMM_INTEL_FREEZE_LOCK] = 2,
382 			[NVDIMM_INTEL_SECURE_ERASE] = 2,
383 			[NVDIMM_INTEL_OVERWRITE] = 2,
384 			[NVDIMM_INTEL_QUERY_OVERWRITE] = 2,
385 			[NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2,
386 			[NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2,
387 		},
388 	};
389 	u8 id;
390 
391 	if (family > NVDIMM_FAMILY_MAX)
392 		return 0;
393 	if (func > 31)
394 		return 0;
395 	id = revid_table[family][func];
396 	if (id == 0)
397 		return 1; /* default */
398 	return id;
399 }
400 
401 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
402 {
403 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
404 
405 	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
406 			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
407 			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
408 		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
409 	return true;
410 }
411 
412 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
413 		struct nd_cmd_pkg *call_pkg)
414 {
415 	if (call_pkg) {
416 		int i;
417 
418 		if (nfit_mem->family != call_pkg->nd_family)
419 			return -ENOTTY;
420 
421 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
422 			if (call_pkg->nd_reserved2[i])
423 				return -EINVAL;
424 		return call_pkg->nd_command;
425 	}
426 
427 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
428 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
429 		return cmd;
430 
431 	/*
432 	 * Force function number validation to fail since 0 is never
433 	 * published as a valid function in dsm_mask.
434 	 */
435 	return 0;
436 }
437 
438 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
439 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
440 {
441 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
442 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
443 	union acpi_object in_obj, in_buf, *out_obj;
444 	const struct nd_cmd_desc *desc = NULL;
445 	struct device *dev = acpi_desc->dev;
446 	struct nd_cmd_pkg *call_pkg = NULL;
447 	const char *cmd_name, *dimm_name;
448 	unsigned long cmd_mask, dsm_mask;
449 	u32 offset, fw_status = 0;
450 	acpi_handle handle;
451 	const guid_t *guid;
452 	int func, rc, i;
453 
454 	if (cmd_rc)
455 		*cmd_rc = -EINVAL;
456 
457 	if (nvdimm) {
458 		struct acpi_device *adev = nfit_mem->adev;
459 
460 		if (!adev)
461 			return -ENOTTY;
462 
463 		if (cmd == ND_CMD_CALL)
464 			call_pkg = buf;
465 		func = cmd_to_func(nfit_mem, cmd, call_pkg);
466 		if (func < 0)
467 			return func;
468 		dimm_name = nvdimm_name(nvdimm);
469 		cmd_name = nvdimm_cmd_name(cmd);
470 		cmd_mask = nvdimm_cmd_mask(nvdimm);
471 		dsm_mask = nfit_mem->dsm_mask;
472 		desc = nd_cmd_dimm_desc(cmd);
473 		guid = to_nfit_uuid(nfit_mem->family);
474 		handle = adev->handle;
475 	} else {
476 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
477 
478 		func = cmd;
479 		cmd_name = nvdimm_bus_cmd_name(cmd);
480 		cmd_mask = nd_desc->cmd_mask;
481 		dsm_mask = cmd_mask;
482 		if (cmd == ND_CMD_CALL)
483 			dsm_mask = nd_desc->bus_dsm_mask;
484 		desc = nd_cmd_bus_desc(cmd);
485 		guid = to_nfit_uuid(NFIT_DEV_BUS);
486 		handle = adev->handle;
487 		dimm_name = "bus";
488 	}
489 
490 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
491 		return -ENOTTY;
492 
493 	/*
494 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
495 	 * make sure that the DSM function is supported.
496 	 */
497 	if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask))
498 		return -ENOTTY;
499 	else if (!test_bit(cmd, &cmd_mask))
500 		return -ENOTTY;
501 
502 	in_obj.type = ACPI_TYPE_PACKAGE;
503 	in_obj.package.count = 1;
504 	in_obj.package.elements = &in_buf;
505 	in_buf.type = ACPI_TYPE_BUFFER;
506 	in_buf.buffer.pointer = buf;
507 	in_buf.buffer.length = 0;
508 
509 	/* libnvdimm has already validated the input envelope */
510 	for (i = 0; i < desc->in_num; i++)
511 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
512 				i, buf);
513 
514 	if (call_pkg) {
515 		/* skip over package wrapper */
516 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
517 		in_buf.buffer.length = call_pkg->nd_size_in;
518 	}
519 
520 	dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
521 		dimm_name, cmd, func, in_buf.buffer.length);
522 	if (payload_dumpable(nvdimm, func))
523 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
524 				in_buf.buffer.pointer,
525 				min_t(u32, 256, in_buf.buffer.length), true);
526 
527 	/* call the BIOS, prefer the named methods over _DSM if available */
528 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
529 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
530 		out_obj = acpi_label_info(handle);
531 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
532 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
533 		struct nd_cmd_get_config_data_hdr *p = buf;
534 
535 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
536 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
537 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
538 		struct nd_cmd_set_config_hdr *p = buf;
539 
540 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
541 				p->in_buf);
542 	} else {
543 		u8 revid;
544 
545 		if (nvdimm)
546 			revid = nfit_dsm_revid(nfit_mem->family, func);
547 		else
548 			revid = 1;
549 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
550 	}
551 
552 	if (!out_obj) {
553 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
554 		return -EINVAL;
555 	}
556 
557 	if (call_pkg) {
558 		call_pkg->nd_fw_size = out_obj->buffer.length;
559 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
560 			out_obj->buffer.pointer,
561 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
562 
563 		ACPI_FREE(out_obj);
564 		/*
565 		 * Need to support FW function w/o known size in advance.
566 		 * Caller can determine required size based upon nd_fw_size.
567 		 * If we return an error (like elsewhere) then caller wouldn't
568 		 * be able to rely upon data returned to make calculation.
569 		 */
570 		if (cmd_rc)
571 			*cmd_rc = 0;
572 		return 0;
573 	}
574 
575 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
576 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
577 				dimm_name, cmd_name, out_obj->type);
578 		rc = -EINVAL;
579 		goto out;
580 	}
581 
582 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
583 			cmd_name, out_obj->buffer.length);
584 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
585 			out_obj->buffer.pointer,
586 			min_t(u32, 128, out_obj->buffer.length), true);
587 
588 	for (i = 0, offset = 0; i < desc->out_num; i++) {
589 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
590 				(u32 *) out_obj->buffer.pointer,
591 				out_obj->buffer.length - offset);
592 
593 		if (offset + out_size > out_obj->buffer.length) {
594 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
595 					dimm_name, cmd_name, i);
596 			break;
597 		}
598 
599 		if (in_buf.buffer.length + offset + out_size > buf_len) {
600 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
601 					dimm_name, cmd_name, i);
602 			rc = -ENXIO;
603 			goto out;
604 		}
605 		memcpy(buf + in_buf.buffer.length + offset,
606 				out_obj->buffer.pointer + offset, out_size);
607 		offset += out_size;
608 	}
609 
610 	/*
611 	 * Set fw_status for all the commands with a known format to be
612 	 * later interpreted by xlat_status().
613 	 */
614 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
615 					&& cmd <= ND_CMD_CLEAR_ERROR)
616 				|| (nvdimm && cmd >= ND_CMD_SMART
617 					&& cmd <= ND_CMD_VENDOR)))
618 		fw_status = *(u32 *) out_obj->buffer.pointer;
619 
620 	if (offset + in_buf.buffer.length < buf_len) {
621 		if (i >= 1) {
622 			/*
623 			 * status valid, return the number of bytes left
624 			 * unfilled in the output buffer
625 			 */
626 			rc = buf_len - offset - in_buf.buffer.length;
627 			if (cmd_rc)
628 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
629 						fw_status);
630 		} else {
631 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
632 					__func__, dimm_name, cmd_name, buf_len,
633 					offset);
634 			rc = -ENXIO;
635 		}
636 	} else {
637 		rc = 0;
638 		if (cmd_rc)
639 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
640 	}
641 
642  out:
643 	ACPI_FREE(out_obj);
644 
645 	return rc;
646 }
647 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
648 
649 static const char *spa_type_name(u16 type)
650 {
651 	static const char *to_name[] = {
652 		[NFIT_SPA_VOLATILE] = "volatile",
653 		[NFIT_SPA_PM] = "pmem",
654 		[NFIT_SPA_DCR] = "dimm-control-region",
655 		[NFIT_SPA_BDW] = "block-data-window",
656 		[NFIT_SPA_VDISK] = "volatile-disk",
657 		[NFIT_SPA_VCD] = "volatile-cd",
658 		[NFIT_SPA_PDISK] = "persistent-disk",
659 		[NFIT_SPA_PCD] = "persistent-cd",
660 
661 	};
662 
663 	if (type > NFIT_SPA_PCD)
664 		return "unknown";
665 
666 	return to_name[type];
667 }
668 
669 int nfit_spa_type(struct acpi_nfit_system_address *spa)
670 {
671 	int i;
672 
673 	for (i = 0; i < NFIT_UUID_MAX; i++)
674 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
675 			return i;
676 	return -1;
677 }
678 
679 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
680 		struct nfit_table_prev *prev,
681 		struct acpi_nfit_system_address *spa)
682 {
683 	struct device *dev = acpi_desc->dev;
684 	struct nfit_spa *nfit_spa;
685 
686 	if (spa->header.length != sizeof(*spa))
687 		return false;
688 
689 	list_for_each_entry(nfit_spa, &prev->spas, list) {
690 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
691 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
692 			return true;
693 		}
694 	}
695 
696 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
697 			GFP_KERNEL);
698 	if (!nfit_spa)
699 		return false;
700 	INIT_LIST_HEAD(&nfit_spa->list);
701 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
702 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
703 	dev_dbg(dev, "spa index: %d type: %s\n",
704 			spa->range_index,
705 			spa_type_name(nfit_spa_type(spa)));
706 	return true;
707 }
708 
709 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
710 		struct nfit_table_prev *prev,
711 		struct acpi_nfit_memory_map *memdev)
712 {
713 	struct device *dev = acpi_desc->dev;
714 	struct nfit_memdev *nfit_memdev;
715 
716 	if (memdev->header.length != sizeof(*memdev))
717 		return false;
718 
719 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
720 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
721 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
722 			return true;
723 		}
724 
725 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
726 			GFP_KERNEL);
727 	if (!nfit_memdev)
728 		return false;
729 	INIT_LIST_HEAD(&nfit_memdev->list);
730 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
731 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
732 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
733 			memdev->device_handle, memdev->range_index,
734 			memdev->region_index, memdev->flags);
735 	return true;
736 }
737 
738 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
739 {
740 	struct acpi_nfit_memory_map *memdev;
741 	struct acpi_nfit_desc *acpi_desc;
742 	struct nfit_mem *nfit_mem;
743 	u16 physical_id;
744 
745 	mutex_lock(&acpi_desc_lock);
746 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
747 		mutex_lock(&acpi_desc->init_mutex);
748 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
749 			memdev = __to_nfit_memdev(nfit_mem);
750 			if (memdev->device_handle == device_handle) {
751 				*flags = memdev->flags;
752 				physical_id = memdev->physical_id;
753 				mutex_unlock(&acpi_desc->init_mutex);
754 				mutex_unlock(&acpi_desc_lock);
755 				return physical_id;
756 			}
757 		}
758 		mutex_unlock(&acpi_desc->init_mutex);
759 	}
760 	mutex_unlock(&acpi_desc_lock);
761 
762 	return -ENODEV;
763 }
764 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
765 
766 /*
767  * An implementation may provide a truncated control region if no block windows
768  * are defined.
769  */
770 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
771 {
772 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
773 				window_size))
774 		return 0;
775 	if (dcr->windows)
776 		return sizeof(*dcr);
777 	return offsetof(struct acpi_nfit_control_region, window_size);
778 }
779 
780 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
781 		struct nfit_table_prev *prev,
782 		struct acpi_nfit_control_region *dcr)
783 {
784 	struct device *dev = acpi_desc->dev;
785 	struct nfit_dcr *nfit_dcr;
786 
787 	if (!sizeof_dcr(dcr))
788 		return false;
789 
790 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
791 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
792 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
793 			return true;
794 		}
795 
796 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
797 			GFP_KERNEL);
798 	if (!nfit_dcr)
799 		return false;
800 	INIT_LIST_HEAD(&nfit_dcr->list);
801 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
802 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
803 	dev_dbg(dev, "dcr index: %d windows: %d\n",
804 			dcr->region_index, dcr->windows);
805 	return true;
806 }
807 
808 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
809 		struct nfit_table_prev *prev,
810 		struct acpi_nfit_data_region *bdw)
811 {
812 	struct device *dev = acpi_desc->dev;
813 	struct nfit_bdw *nfit_bdw;
814 
815 	if (bdw->header.length != sizeof(*bdw))
816 		return false;
817 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
818 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
819 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
820 			return true;
821 		}
822 
823 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
824 			GFP_KERNEL);
825 	if (!nfit_bdw)
826 		return false;
827 	INIT_LIST_HEAD(&nfit_bdw->list);
828 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
829 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
830 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
831 			bdw->region_index, bdw->windows);
832 	return true;
833 }
834 
835 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
836 {
837 	if (idt->header.length < sizeof(*idt))
838 		return 0;
839 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
840 }
841 
842 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
843 		struct nfit_table_prev *prev,
844 		struct acpi_nfit_interleave *idt)
845 {
846 	struct device *dev = acpi_desc->dev;
847 	struct nfit_idt *nfit_idt;
848 
849 	if (!sizeof_idt(idt))
850 		return false;
851 
852 	list_for_each_entry(nfit_idt, &prev->idts, list) {
853 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
854 			continue;
855 
856 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
857 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
858 			return true;
859 		}
860 	}
861 
862 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
863 			GFP_KERNEL);
864 	if (!nfit_idt)
865 		return false;
866 	INIT_LIST_HEAD(&nfit_idt->list);
867 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
868 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
869 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
870 			idt->interleave_index, idt->line_count);
871 	return true;
872 }
873 
874 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
875 {
876 	if (flush->header.length < sizeof(*flush))
877 		return 0;
878 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
879 }
880 
881 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
882 		struct nfit_table_prev *prev,
883 		struct acpi_nfit_flush_address *flush)
884 {
885 	struct device *dev = acpi_desc->dev;
886 	struct nfit_flush *nfit_flush;
887 
888 	if (!sizeof_flush(flush))
889 		return false;
890 
891 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
892 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
893 			continue;
894 
895 		if (memcmp(nfit_flush->flush, flush,
896 					sizeof_flush(flush)) == 0) {
897 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
898 			return true;
899 		}
900 	}
901 
902 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
903 			+ sizeof_flush(flush), GFP_KERNEL);
904 	if (!nfit_flush)
905 		return false;
906 	INIT_LIST_HEAD(&nfit_flush->list);
907 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
908 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
909 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
910 			flush->device_handle, flush->hint_count);
911 	return true;
912 }
913 
914 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
915 		struct acpi_nfit_capabilities *pcap)
916 {
917 	struct device *dev = acpi_desc->dev;
918 	u32 mask;
919 
920 	mask = (1 << (pcap->highest_capability + 1)) - 1;
921 	acpi_desc->platform_cap = pcap->capabilities & mask;
922 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
923 	return true;
924 }
925 
926 static void *add_table(struct acpi_nfit_desc *acpi_desc,
927 		struct nfit_table_prev *prev, void *table, const void *end)
928 {
929 	struct device *dev = acpi_desc->dev;
930 	struct acpi_nfit_header *hdr;
931 	void *err = ERR_PTR(-ENOMEM);
932 
933 	if (table >= end)
934 		return NULL;
935 
936 	hdr = table;
937 	if (!hdr->length) {
938 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
939 			hdr->type);
940 		return NULL;
941 	}
942 
943 	switch (hdr->type) {
944 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
945 		if (!add_spa(acpi_desc, prev, table))
946 			return err;
947 		break;
948 	case ACPI_NFIT_TYPE_MEMORY_MAP:
949 		if (!add_memdev(acpi_desc, prev, table))
950 			return err;
951 		break;
952 	case ACPI_NFIT_TYPE_CONTROL_REGION:
953 		if (!add_dcr(acpi_desc, prev, table))
954 			return err;
955 		break;
956 	case ACPI_NFIT_TYPE_DATA_REGION:
957 		if (!add_bdw(acpi_desc, prev, table))
958 			return err;
959 		break;
960 	case ACPI_NFIT_TYPE_INTERLEAVE:
961 		if (!add_idt(acpi_desc, prev, table))
962 			return err;
963 		break;
964 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
965 		if (!add_flush(acpi_desc, prev, table))
966 			return err;
967 		break;
968 	case ACPI_NFIT_TYPE_SMBIOS:
969 		dev_dbg(dev, "smbios\n");
970 		break;
971 	case ACPI_NFIT_TYPE_CAPABILITIES:
972 		if (!add_platform_cap(acpi_desc, table))
973 			return err;
974 		break;
975 	default:
976 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
977 		break;
978 	}
979 
980 	return table + hdr->length;
981 }
982 
983 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
984 		struct nfit_mem *nfit_mem)
985 {
986 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
987 	u16 dcr = nfit_mem->dcr->region_index;
988 	struct nfit_spa *nfit_spa;
989 
990 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
991 		u16 range_index = nfit_spa->spa->range_index;
992 		int type = nfit_spa_type(nfit_spa->spa);
993 		struct nfit_memdev *nfit_memdev;
994 
995 		if (type != NFIT_SPA_BDW)
996 			continue;
997 
998 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
999 			if (nfit_memdev->memdev->range_index != range_index)
1000 				continue;
1001 			if (nfit_memdev->memdev->device_handle != device_handle)
1002 				continue;
1003 			if (nfit_memdev->memdev->region_index != dcr)
1004 				continue;
1005 
1006 			nfit_mem->spa_bdw = nfit_spa->spa;
1007 			return;
1008 		}
1009 	}
1010 
1011 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1012 			nfit_mem->spa_dcr->range_index);
1013 	nfit_mem->bdw = NULL;
1014 }
1015 
1016 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1017 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1018 {
1019 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1020 	struct nfit_memdev *nfit_memdev;
1021 	struct nfit_bdw *nfit_bdw;
1022 	struct nfit_idt *nfit_idt;
1023 	u16 idt_idx, range_index;
1024 
1025 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1026 		if (nfit_bdw->bdw->region_index != dcr)
1027 			continue;
1028 		nfit_mem->bdw = nfit_bdw->bdw;
1029 		break;
1030 	}
1031 
1032 	if (!nfit_mem->bdw)
1033 		return;
1034 
1035 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1036 
1037 	if (!nfit_mem->spa_bdw)
1038 		return;
1039 
1040 	range_index = nfit_mem->spa_bdw->range_index;
1041 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1042 		if (nfit_memdev->memdev->range_index != range_index ||
1043 				nfit_memdev->memdev->region_index != dcr)
1044 			continue;
1045 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
1046 		idt_idx = nfit_memdev->memdev->interleave_index;
1047 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1048 			if (nfit_idt->idt->interleave_index != idt_idx)
1049 				continue;
1050 			nfit_mem->idt_bdw = nfit_idt->idt;
1051 			break;
1052 		}
1053 		break;
1054 	}
1055 }
1056 
1057 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1058 		struct acpi_nfit_system_address *spa)
1059 {
1060 	struct nfit_mem *nfit_mem, *found;
1061 	struct nfit_memdev *nfit_memdev;
1062 	int type = spa ? nfit_spa_type(spa) : 0;
1063 
1064 	switch (type) {
1065 	case NFIT_SPA_DCR:
1066 	case NFIT_SPA_PM:
1067 		break;
1068 	default:
1069 		if (spa)
1070 			return 0;
1071 	}
1072 
1073 	/*
1074 	 * This loop runs in two modes, when a dimm is mapped the loop
1075 	 * adds memdev associations to an existing dimm, or creates a
1076 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1077 	 * instances with an invalid / zero range_index and adds those
1078 	 * dimms without spa associations.
1079 	 */
1080 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1081 		struct nfit_flush *nfit_flush;
1082 		struct nfit_dcr *nfit_dcr;
1083 		u32 device_handle;
1084 		u16 dcr;
1085 
1086 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1087 			continue;
1088 		if (!spa && nfit_memdev->memdev->range_index)
1089 			continue;
1090 		found = NULL;
1091 		dcr = nfit_memdev->memdev->region_index;
1092 		device_handle = nfit_memdev->memdev->device_handle;
1093 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1094 			if (__to_nfit_memdev(nfit_mem)->device_handle
1095 					== device_handle) {
1096 				found = nfit_mem;
1097 				break;
1098 			}
1099 
1100 		if (found)
1101 			nfit_mem = found;
1102 		else {
1103 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1104 					sizeof(*nfit_mem), GFP_KERNEL);
1105 			if (!nfit_mem)
1106 				return -ENOMEM;
1107 			INIT_LIST_HEAD(&nfit_mem->list);
1108 			nfit_mem->acpi_desc = acpi_desc;
1109 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1110 		}
1111 
1112 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1113 			if (nfit_dcr->dcr->region_index != dcr)
1114 				continue;
1115 			/*
1116 			 * Record the control region for the dimm.  For
1117 			 * the ACPI 6.1 case, where there are separate
1118 			 * control regions for the pmem vs blk
1119 			 * interfaces, be sure to record the extended
1120 			 * blk details.
1121 			 */
1122 			if (!nfit_mem->dcr)
1123 				nfit_mem->dcr = nfit_dcr->dcr;
1124 			else if (nfit_mem->dcr->windows == 0
1125 					&& nfit_dcr->dcr->windows)
1126 				nfit_mem->dcr = nfit_dcr->dcr;
1127 			break;
1128 		}
1129 
1130 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1131 			struct acpi_nfit_flush_address *flush;
1132 			u16 i;
1133 
1134 			if (nfit_flush->flush->device_handle != device_handle)
1135 				continue;
1136 			nfit_mem->nfit_flush = nfit_flush;
1137 			flush = nfit_flush->flush;
1138 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1139 					flush->hint_count,
1140 					sizeof(struct resource),
1141 					GFP_KERNEL);
1142 			if (!nfit_mem->flush_wpq)
1143 				return -ENOMEM;
1144 			for (i = 0; i < flush->hint_count; i++) {
1145 				struct resource *res = &nfit_mem->flush_wpq[i];
1146 
1147 				res->start = flush->hint_address[i];
1148 				res->end = res->start + 8 - 1;
1149 			}
1150 			break;
1151 		}
1152 
1153 		if (dcr && !nfit_mem->dcr) {
1154 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1155 					spa->range_index, dcr);
1156 			return -ENODEV;
1157 		}
1158 
1159 		if (type == NFIT_SPA_DCR) {
1160 			struct nfit_idt *nfit_idt;
1161 			u16 idt_idx;
1162 
1163 			/* multiple dimms may share a SPA when interleaved */
1164 			nfit_mem->spa_dcr = spa;
1165 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1166 			idt_idx = nfit_memdev->memdev->interleave_index;
1167 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1168 				if (nfit_idt->idt->interleave_index != idt_idx)
1169 					continue;
1170 				nfit_mem->idt_dcr = nfit_idt->idt;
1171 				break;
1172 			}
1173 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1174 		} else if (type == NFIT_SPA_PM) {
1175 			/*
1176 			 * A single dimm may belong to multiple SPA-PM
1177 			 * ranges, record at least one in addition to
1178 			 * any SPA-DCR range.
1179 			 */
1180 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1181 		} else
1182 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1189 {
1190 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1191 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1192 	u32 handleA, handleB;
1193 
1194 	handleA = __to_nfit_memdev(a)->device_handle;
1195 	handleB = __to_nfit_memdev(b)->device_handle;
1196 	if (handleA < handleB)
1197 		return -1;
1198 	else if (handleA > handleB)
1199 		return 1;
1200 	return 0;
1201 }
1202 
1203 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1204 {
1205 	struct nfit_spa *nfit_spa;
1206 	int rc;
1207 
1208 
1209 	/*
1210 	 * For each SPA-DCR or SPA-PMEM address range find its
1211 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1212 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1213 	 * try to find a SPA-BDW and a corresponding BDW that references
1214 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1215 	 * BDWs are optional.
1216 	 */
1217 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1218 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1219 		if (rc)
1220 			return rc;
1221 	}
1222 
1223 	/*
1224 	 * If a DIMM has failed to be mapped into SPA there will be no
1225 	 * SPA entries above. Find and register all the unmapped DIMMs
1226 	 * for reporting and recovery purposes.
1227 	 */
1228 	rc = __nfit_mem_init(acpi_desc, NULL);
1229 	if (rc)
1230 		return rc;
1231 
1232 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1233 
1234 	return 0;
1235 }
1236 
1237 static ssize_t bus_dsm_mask_show(struct device *dev,
1238 		struct device_attribute *attr, char *buf)
1239 {
1240 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1241 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1242 
1243 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1244 }
1245 static struct device_attribute dev_attr_bus_dsm_mask =
1246 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1247 
1248 static ssize_t revision_show(struct device *dev,
1249 		struct device_attribute *attr, char *buf)
1250 {
1251 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1252 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1253 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1254 
1255 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1256 }
1257 static DEVICE_ATTR_RO(revision);
1258 
1259 static ssize_t hw_error_scrub_show(struct device *dev,
1260 		struct device_attribute *attr, char *buf)
1261 {
1262 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1263 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1264 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1265 
1266 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1267 }
1268 
1269 /*
1270  * The 'hw_error_scrub' attribute can have the following values written to it:
1271  * '0': Switch to the default mode where an exception will only insert
1272  *      the address of the memory error into the poison and badblocks lists.
1273  * '1': Enable a full scrub to happen if an exception for a memory error is
1274  *      received.
1275  */
1276 static ssize_t hw_error_scrub_store(struct device *dev,
1277 		struct device_attribute *attr, const char *buf, size_t size)
1278 {
1279 	struct nvdimm_bus_descriptor *nd_desc;
1280 	ssize_t rc;
1281 	long val;
1282 
1283 	rc = kstrtol(buf, 0, &val);
1284 	if (rc)
1285 		return rc;
1286 
1287 	device_lock(dev);
1288 	nd_desc = dev_get_drvdata(dev);
1289 	if (nd_desc) {
1290 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1291 
1292 		switch (val) {
1293 		case HW_ERROR_SCRUB_ON:
1294 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1295 			break;
1296 		case HW_ERROR_SCRUB_OFF:
1297 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1298 			break;
1299 		default:
1300 			rc = -EINVAL;
1301 			break;
1302 		}
1303 	}
1304 	device_unlock(dev);
1305 	if (rc)
1306 		return rc;
1307 	return size;
1308 }
1309 static DEVICE_ATTR_RW(hw_error_scrub);
1310 
1311 /*
1312  * This shows the number of full Address Range Scrubs that have been
1313  * completed since driver load time. Userspace can wait on this using
1314  * select/poll etc. A '+' at the end indicates an ARS is in progress
1315  */
1316 static ssize_t scrub_show(struct device *dev,
1317 		struct device_attribute *attr, char *buf)
1318 {
1319 	struct nvdimm_bus_descriptor *nd_desc;
1320 	ssize_t rc = -ENXIO;
1321 
1322 	device_lock(dev);
1323 	nd_desc = dev_get_drvdata(dev);
1324 	if (nd_desc) {
1325 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1326 
1327 		mutex_lock(&acpi_desc->init_mutex);
1328 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1329 				acpi_desc->scrub_busy
1330 				&& !acpi_desc->cancel ? "+\n" : "\n");
1331 		mutex_unlock(&acpi_desc->init_mutex);
1332 	}
1333 	device_unlock(dev);
1334 	return rc;
1335 }
1336 
1337 static ssize_t scrub_store(struct device *dev,
1338 		struct device_attribute *attr, const char *buf, size_t size)
1339 {
1340 	struct nvdimm_bus_descriptor *nd_desc;
1341 	ssize_t rc;
1342 	long val;
1343 
1344 	rc = kstrtol(buf, 0, &val);
1345 	if (rc)
1346 		return rc;
1347 	if (val != 1)
1348 		return -EINVAL;
1349 
1350 	device_lock(dev);
1351 	nd_desc = dev_get_drvdata(dev);
1352 	if (nd_desc) {
1353 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1354 
1355 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1356 	}
1357 	device_unlock(dev);
1358 	if (rc)
1359 		return rc;
1360 	return size;
1361 }
1362 static DEVICE_ATTR_RW(scrub);
1363 
1364 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1365 {
1366 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1367 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1368 		| 1 << ND_CMD_ARS_STATUS;
1369 
1370 	return (nd_desc->cmd_mask & mask) == mask;
1371 }
1372 
1373 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1374 {
1375 	struct device *dev = container_of(kobj, struct device, kobj);
1376 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1377 
1378 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1379 		return 0;
1380 	return a->mode;
1381 }
1382 
1383 static struct attribute *acpi_nfit_attributes[] = {
1384 	&dev_attr_revision.attr,
1385 	&dev_attr_scrub.attr,
1386 	&dev_attr_hw_error_scrub.attr,
1387 	&dev_attr_bus_dsm_mask.attr,
1388 	NULL,
1389 };
1390 
1391 static const struct attribute_group acpi_nfit_attribute_group = {
1392 	.name = "nfit",
1393 	.attrs = acpi_nfit_attributes,
1394 	.is_visible = nfit_visible,
1395 };
1396 
1397 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1398 	&nvdimm_bus_attribute_group,
1399 	&acpi_nfit_attribute_group,
1400 	NULL,
1401 };
1402 
1403 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1404 {
1405 	struct nvdimm *nvdimm = to_nvdimm(dev);
1406 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1407 
1408 	return __to_nfit_memdev(nfit_mem);
1409 }
1410 
1411 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1412 {
1413 	struct nvdimm *nvdimm = to_nvdimm(dev);
1414 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1415 
1416 	return nfit_mem->dcr;
1417 }
1418 
1419 static ssize_t handle_show(struct device *dev,
1420 		struct device_attribute *attr, char *buf)
1421 {
1422 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1423 
1424 	return sprintf(buf, "%#x\n", memdev->device_handle);
1425 }
1426 static DEVICE_ATTR_RO(handle);
1427 
1428 static ssize_t phys_id_show(struct device *dev,
1429 		struct device_attribute *attr, char *buf)
1430 {
1431 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1432 
1433 	return sprintf(buf, "%#x\n", memdev->physical_id);
1434 }
1435 static DEVICE_ATTR_RO(phys_id);
1436 
1437 static ssize_t vendor_show(struct device *dev,
1438 		struct device_attribute *attr, char *buf)
1439 {
1440 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1441 
1442 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1443 }
1444 static DEVICE_ATTR_RO(vendor);
1445 
1446 static ssize_t rev_id_show(struct device *dev,
1447 		struct device_attribute *attr, char *buf)
1448 {
1449 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1450 
1451 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1452 }
1453 static DEVICE_ATTR_RO(rev_id);
1454 
1455 static ssize_t device_show(struct device *dev,
1456 		struct device_attribute *attr, char *buf)
1457 {
1458 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1459 
1460 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1461 }
1462 static DEVICE_ATTR_RO(device);
1463 
1464 static ssize_t subsystem_vendor_show(struct device *dev,
1465 		struct device_attribute *attr, char *buf)
1466 {
1467 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1468 
1469 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1470 }
1471 static DEVICE_ATTR_RO(subsystem_vendor);
1472 
1473 static ssize_t subsystem_rev_id_show(struct device *dev,
1474 		struct device_attribute *attr, char *buf)
1475 {
1476 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1477 
1478 	return sprintf(buf, "0x%04x\n",
1479 			be16_to_cpu(dcr->subsystem_revision_id));
1480 }
1481 static DEVICE_ATTR_RO(subsystem_rev_id);
1482 
1483 static ssize_t subsystem_device_show(struct device *dev,
1484 		struct device_attribute *attr, char *buf)
1485 {
1486 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1487 
1488 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1489 }
1490 static DEVICE_ATTR_RO(subsystem_device);
1491 
1492 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1493 {
1494 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1495 	int formats = 0;
1496 
1497 	if (nfit_mem->memdev_pmem)
1498 		formats++;
1499 	if (nfit_mem->memdev_bdw)
1500 		formats++;
1501 	return formats;
1502 }
1503 
1504 static ssize_t format_show(struct device *dev,
1505 		struct device_attribute *attr, char *buf)
1506 {
1507 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1508 
1509 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1510 }
1511 static DEVICE_ATTR_RO(format);
1512 
1513 static ssize_t format1_show(struct device *dev,
1514 		struct device_attribute *attr, char *buf)
1515 {
1516 	u32 handle;
1517 	ssize_t rc = -ENXIO;
1518 	struct nfit_mem *nfit_mem;
1519 	struct nfit_memdev *nfit_memdev;
1520 	struct acpi_nfit_desc *acpi_desc;
1521 	struct nvdimm *nvdimm = to_nvdimm(dev);
1522 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1523 
1524 	nfit_mem = nvdimm_provider_data(nvdimm);
1525 	acpi_desc = nfit_mem->acpi_desc;
1526 	handle = to_nfit_memdev(dev)->device_handle;
1527 
1528 	/* assumes DIMMs have at most 2 published interface codes */
1529 	mutex_lock(&acpi_desc->init_mutex);
1530 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1531 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1532 		struct nfit_dcr *nfit_dcr;
1533 
1534 		if (memdev->device_handle != handle)
1535 			continue;
1536 
1537 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1538 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1539 				continue;
1540 			if (nfit_dcr->dcr->code == dcr->code)
1541 				continue;
1542 			rc = sprintf(buf, "0x%04x\n",
1543 					le16_to_cpu(nfit_dcr->dcr->code));
1544 			break;
1545 		}
1546 		if (rc != ENXIO)
1547 			break;
1548 	}
1549 	mutex_unlock(&acpi_desc->init_mutex);
1550 	return rc;
1551 }
1552 static DEVICE_ATTR_RO(format1);
1553 
1554 static ssize_t formats_show(struct device *dev,
1555 		struct device_attribute *attr, char *buf)
1556 {
1557 	struct nvdimm *nvdimm = to_nvdimm(dev);
1558 
1559 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1560 }
1561 static DEVICE_ATTR_RO(formats);
1562 
1563 static ssize_t serial_show(struct device *dev,
1564 		struct device_attribute *attr, char *buf)
1565 {
1566 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1567 
1568 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1569 }
1570 static DEVICE_ATTR_RO(serial);
1571 
1572 static ssize_t family_show(struct device *dev,
1573 		struct device_attribute *attr, char *buf)
1574 {
1575 	struct nvdimm *nvdimm = to_nvdimm(dev);
1576 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1577 
1578 	if (nfit_mem->family < 0)
1579 		return -ENXIO;
1580 	return sprintf(buf, "%d\n", nfit_mem->family);
1581 }
1582 static DEVICE_ATTR_RO(family);
1583 
1584 static ssize_t dsm_mask_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct nvdimm *nvdimm = to_nvdimm(dev);
1588 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1589 
1590 	if (nfit_mem->family < 0)
1591 		return -ENXIO;
1592 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1593 }
1594 static DEVICE_ATTR_RO(dsm_mask);
1595 
1596 static ssize_t flags_show(struct device *dev,
1597 		struct device_attribute *attr, char *buf)
1598 {
1599 	struct nvdimm *nvdimm = to_nvdimm(dev);
1600 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1601 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1602 
1603 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1604 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1605 
1606 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1607 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1608 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1609 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1610 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1611 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1612 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1613 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1614 }
1615 static DEVICE_ATTR_RO(flags);
1616 
1617 static ssize_t id_show(struct device *dev,
1618 		struct device_attribute *attr, char *buf)
1619 {
1620 	struct nvdimm *nvdimm = to_nvdimm(dev);
1621 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1622 
1623 	return sprintf(buf, "%s\n", nfit_mem->id);
1624 }
1625 static DEVICE_ATTR_RO(id);
1626 
1627 static ssize_t dirty_shutdown_show(struct device *dev,
1628 		struct device_attribute *attr, char *buf)
1629 {
1630 	struct nvdimm *nvdimm = to_nvdimm(dev);
1631 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1632 
1633 	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1634 }
1635 static DEVICE_ATTR_RO(dirty_shutdown);
1636 
1637 static struct attribute *acpi_nfit_dimm_attributes[] = {
1638 	&dev_attr_handle.attr,
1639 	&dev_attr_phys_id.attr,
1640 	&dev_attr_vendor.attr,
1641 	&dev_attr_device.attr,
1642 	&dev_attr_rev_id.attr,
1643 	&dev_attr_subsystem_vendor.attr,
1644 	&dev_attr_subsystem_device.attr,
1645 	&dev_attr_subsystem_rev_id.attr,
1646 	&dev_attr_format.attr,
1647 	&dev_attr_formats.attr,
1648 	&dev_attr_format1.attr,
1649 	&dev_attr_serial.attr,
1650 	&dev_attr_flags.attr,
1651 	&dev_attr_id.attr,
1652 	&dev_attr_family.attr,
1653 	&dev_attr_dsm_mask.attr,
1654 	&dev_attr_dirty_shutdown.attr,
1655 	NULL,
1656 };
1657 
1658 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1659 		struct attribute *a, int n)
1660 {
1661 	struct device *dev = container_of(kobj, struct device, kobj);
1662 	struct nvdimm *nvdimm = to_nvdimm(dev);
1663 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1664 
1665 	if (!to_nfit_dcr(dev)) {
1666 		/* Without a dcr only the memdev attributes can be surfaced */
1667 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1668 				|| a == &dev_attr_flags.attr
1669 				|| a == &dev_attr_family.attr
1670 				|| a == &dev_attr_dsm_mask.attr)
1671 			return a->mode;
1672 		return 0;
1673 	}
1674 
1675 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1676 		return 0;
1677 
1678 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1679 			&& a == &dev_attr_dirty_shutdown.attr)
1680 		return 0;
1681 
1682 	return a->mode;
1683 }
1684 
1685 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1686 	.name = "nfit",
1687 	.attrs = acpi_nfit_dimm_attributes,
1688 	.is_visible = acpi_nfit_dimm_attr_visible,
1689 };
1690 
1691 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1692 	&nvdimm_attribute_group,
1693 	&nd_device_attribute_group,
1694 	&acpi_nfit_dimm_attribute_group,
1695 	NULL,
1696 };
1697 
1698 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1699 		u32 device_handle)
1700 {
1701 	struct nfit_mem *nfit_mem;
1702 
1703 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1704 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1705 			return nfit_mem->nvdimm;
1706 
1707 	return NULL;
1708 }
1709 
1710 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1711 {
1712 	struct nfit_mem *nfit_mem;
1713 	struct acpi_nfit_desc *acpi_desc;
1714 
1715 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1716 			event);
1717 
1718 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1719 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1720 				event);
1721 		return;
1722 	}
1723 
1724 	acpi_desc = dev_get_drvdata(dev->parent);
1725 	if (!acpi_desc)
1726 		return;
1727 
1728 	/*
1729 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1730 	 * is still valid.
1731 	 */
1732 	nfit_mem = dev_get_drvdata(dev);
1733 	if (nfit_mem && nfit_mem->flags_attr)
1734 		sysfs_notify_dirent(nfit_mem->flags_attr);
1735 }
1736 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1737 
1738 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1739 {
1740 	struct acpi_device *adev = data;
1741 	struct device *dev = &adev->dev;
1742 
1743 	device_lock(dev->parent);
1744 	__acpi_nvdimm_notify(dev, event);
1745 	device_unlock(dev->parent);
1746 }
1747 
1748 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1749 {
1750 	acpi_handle handle;
1751 	acpi_status status;
1752 
1753 	status = acpi_get_handle(adev->handle, method, &handle);
1754 
1755 	if (ACPI_SUCCESS(status))
1756 		return true;
1757 	return false;
1758 }
1759 
1760 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1761 {
1762 	struct nd_intel_smart smart = { 0 };
1763 	union acpi_object in_buf = {
1764 		.type = ACPI_TYPE_BUFFER,
1765 		.buffer.pointer = (char *) &smart,
1766 		.buffer.length = sizeof(smart),
1767 	};
1768 	union acpi_object in_obj = {
1769 		.type = ACPI_TYPE_PACKAGE,
1770 		.package.count = 1,
1771 		.package.elements = &in_buf,
1772 	};
1773 	const u8 func = ND_INTEL_SMART;
1774 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1775 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1776 	struct acpi_device *adev = nfit_mem->adev;
1777 	acpi_handle handle = adev->handle;
1778 	union acpi_object *out_obj;
1779 
1780 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1781 		return;
1782 
1783 	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1784 	if (!out_obj)
1785 		return;
1786 
1787 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1788 		if (smart.shutdown_state)
1789 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1790 	}
1791 
1792 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1793 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1794 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1795 	}
1796 	ACPI_FREE(out_obj);
1797 }
1798 
1799 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1800 {
1801 	/*
1802 	 * For DIMMs that provide a dynamic facility to retrieve a
1803 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1804 	 * these values in nfit_mem.
1805 	 */
1806 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1807 		nfit_intel_shutdown_status(nfit_mem);
1808 }
1809 
1810 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1811 		struct nfit_mem *nfit_mem, u32 device_handle)
1812 {
1813 	struct acpi_device *adev, *adev_dimm;
1814 	struct device *dev = acpi_desc->dev;
1815 	unsigned long dsm_mask, label_mask;
1816 	const guid_t *guid;
1817 	int i;
1818 	int family = -1;
1819 	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1820 
1821 	/* nfit test assumes 1:1 relationship between commands and dsms */
1822 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1823 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1824 
1825 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1826 		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1827 				be16_to_cpu(dcr->vendor_id),
1828 				dcr->manufacturing_location,
1829 				be16_to_cpu(dcr->manufacturing_date),
1830 				be32_to_cpu(dcr->serial_number));
1831 	else
1832 		sprintf(nfit_mem->id, "%04x-%08x",
1833 				be16_to_cpu(dcr->vendor_id),
1834 				be32_to_cpu(dcr->serial_number));
1835 
1836 	adev = to_acpi_dev(acpi_desc);
1837 	if (!adev) {
1838 		/* unit test case */
1839 		populate_shutdown_status(nfit_mem);
1840 		return 0;
1841 	}
1842 
1843 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1844 	nfit_mem->adev = adev_dimm;
1845 	if (!adev_dimm) {
1846 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1847 				device_handle);
1848 		return force_enable_dimms ? 0 : -ENODEV;
1849 	}
1850 
1851 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1852 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1853 		dev_err(dev, "%s: notification registration failed\n",
1854 				dev_name(&adev_dimm->dev));
1855 		return -ENXIO;
1856 	}
1857 	/*
1858 	 * Record nfit_mem for the notification path to track back to
1859 	 * the nfit sysfs attributes for this dimm device object.
1860 	 */
1861 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1862 
1863 	/*
1864 	 * Until standardization materializes we need to consider 4
1865 	 * different command sets.  Note, that checking for function0 (bit0)
1866 	 * tells us if any commands are reachable through this GUID.
1867 	 */
1868 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1869 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1870 			if (family < 0 || i == default_dsm_family)
1871 				family = i;
1872 
1873 	/* limit the supported commands to those that are publicly documented */
1874 	nfit_mem->family = family;
1875 	if (override_dsm_mask && !disable_vendor_specific)
1876 		dsm_mask = override_dsm_mask;
1877 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1878 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1879 		if (disable_vendor_specific)
1880 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1881 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1882 		dsm_mask = 0x1c3c76;
1883 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1884 		dsm_mask = 0x1fe;
1885 		if (disable_vendor_specific)
1886 			dsm_mask &= ~(1 << 8);
1887 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1888 		dsm_mask = 0xffffffff;
1889 	} else {
1890 		dev_dbg(dev, "unknown dimm command family\n");
1891 		nfit_mem->family = -1;
1892 		/* DSMs are optional, continue loading the driver... */
1893 		return 0;
1894 	}
1895 
1896 	/*
1897 	 * Function 0 is the command interrogation function, don't
1898 	 * export it to potential userspace use, and enable it to be
1899 	 * used as an error value in acpi_nfit_ctl().
1900 	 */
1901 	dsm_mask &= ~1UL;
1902 
1903 	guid = to_nfit_uuid(nfit_mem->family);
1904 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1905 		if (acpi_check_dsm(adev_dimm->handle, guid,
1906 					nfit_dsm_revid(nfit_mem->family, i),
1907 					1ULL << i))
1908 			set_bit(i, &nfit_mem->dsm_mask);
1909 
1910 	/*
1911 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1912 	 * due to their better semantics handling locked capacity.
1913 	 */
1914 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1915 		| 1 << ND_CMD_SET_CONFIG_DATA;
1916 	if (family == NVDIMM_FAMILY_INTEL
1917 			&& (dsm_mask & label_mask) == label_mask)
1918 		return 0;
1919 
1920 	if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1921 			&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1922 		dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1923 		set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1924 	}
1925 
1926 	if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1927 			&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1928 		dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1929 		set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1930 	}
1931 
1932 	populate_shutdown_status(nfit_mem);
1933 
1934 	return 0;
1935 }
1936 
1937 static void shutdown_dimm_notify(void *data)
1938 {
1939 	struct acpi_nfit_desc *acpi_desc = data;
1940 	struct nfit_mem *nfit_mem;
1941 
1942 	mutex_lock(&acpi_desc->init_mutex);
1943 	/*
1944 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1945 	 * notifications.
1946 	 */
1947 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1948 		struct acpi_device *adev_dimm = nfit_mem->adev;
1949 
1950 		if (nfit_mem->flags_attr) {
1951 			sysfs_put(nfit_mem->flags_attr);
1952 			nfit_mem->flags_attr = NULL;
1953 		}
1954 		if (adev_dimm) {
1955 			acpi_remove_notify_handler(adev_dimm->handle,
1956 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1957 			dev_set_drvdata(&adev_dimm->dev, NULL);
1958 		}
1959 	}
1960 	mutex_unlock(&acpi_desc->init_mutex);
1961 }
1962 
1963 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1964 {
1965 	switch (family) {
1966 	case NVDIMM_FAMILY_INTEL:
1967 		return intel_security_ops;
1968 	default:
1969 		return NULL;
1970 	}
1971 }
1972 
1973 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1974 {
1975 	struct nfit_mem *nfit_mem;
1976 	int dimm_count = 0, rc;
1977 	struct nvdimm *nvdimm;
1978 
1979 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1980 		struct acpi_nfit_flush_address *flush;
1981 		unsigned long flags = 0, cmd_mask;
1982 		struct nfit_memdev *nfit_memdev;
1983 		u32 device_handle;
1984 		u16 mem_flags;
1985 
1986 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1987 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1988 		if (nvdimm) {
1989 			dimm_count++;
1990 			continue;
1991 		}
1992 
1993 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1994 			set_bit(NDD_ALIASING, &flags);
1995 
1996 		/* collate flags across all memdevs for this dimm */
1997 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1998 			struct acpi_nfit_memory_map *dimm_memdev;
1999 
2000 			dimm_memdev = __to_nfit_memdev(nfit_mem);
2001 			if (dimm_memdev->device_handle
2002 					!= nfit_memdev->memdev->device_handle)
2003 				continue;
2004 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2005 		}
2006 
2007 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2008 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2009 			set_bit(NDD_UNARMED, &flags);
2010 
2011 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2012 		if (rc)
2013 			continue;
2014 
2015 		/*
2016 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2017 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2018 		 * userspace interface.
2019 		 */
2020 		cmd_mask = 1UL << ND_CMD_CALL;
2021 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2022 			/*
2023 			 * These commands have a 1:1 correspondence
2024 			 * between DSM payload and libnvdimm ioctl
2025 			 * payload format.
2026 			 */
2027 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2028 		}
2029 
2030 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2031 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2032 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2033 		}
2034 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2035 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2036 
2037 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2038 			: NULL;
2039 		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2040 				acpi_nfit_dimm_attribute_groups,
2041 				flags, cmd_mask, flush ? flush->hint_count : 0,
2042 				nfit_mem->flush_wpq, &nfit_mem->id[0],
2043 				acpi_nfit_get_security_ops(nfit_mem->family));
2044 		if (!nvdimm)
2045 			return -ENOMEM;
2046 
2047 		nfit_mem->nvdimm = nvdimm;
2048 		dimm_count++;
2049 
2050 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2051 			continue;
2052 
2053 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
2054 				nvdimm_name(nvdimm),
2055 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2056 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2057 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2058 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2059 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2060 
2061 	}
2062 
2063 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2064 	if (rc)
2065 		return rc;
2066 
2067 	/*
2068 	 * Now that dimms are successfully registered, and async registration
2069 	 * is flushed, attempt to enable event notification.
2070 	 */
2071 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2072 		struct kernfs_node *nfit_kernfs;
2073 
2074 		nvdimm = nfit_mem->nvdimm;
2075 		if (!nvdimm)
2076 			continue;
2077 
2078 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2079 		if (nfit_kernfs)
2080 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2081 					"flags");
2082 		sysfs_put(nfit_kernfs);
2083 		if (!nfit_mem->flags_attr)
2084 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2085 					nvdimm_name(nvdimm));
2086 	}
2087 
2088 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2089 			acpi_desc);
2090 }
2091 
2092 /*
2093  * These constants are private because there are no kernel consumers of
2094  * these commands.
2095  */
2096 enum nfit_aux_cmds {
2097         NFIT_CMD_TRANSLATE_SPA = 5,
2098         NFIT_CMD_ARS_INJECT_SET = 7,
2099         NFIT_CMD_ARS_INJECT_CLEAR = 8,
2100         NFIT_CMD_ARS_INJECT_GET = 9,
2101 };
2102 
2103 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2104 {
2105 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2106 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2107 	struct acpi_device *adev;
2108 	unsigned long dsm_mask;
2109 	int i;
2110 
2111 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2112 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
2113 	adev = to_acpi_dev(acpi_desc);
2114 	if (!adev)
2115 		return;
2116 
2117 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2118 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2119 			set_bit(i, &nd_desc->cmd_mask);
2120 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2121 
2122 	dsm_mask =
2123 		(1 << ND_CMD_ARS_CAP) |
2124 		(1 << ND_CMD_ARS_START) |
2125 		(1 << ND_CMD_ARS_STATUS) |
2126 		(1 << ND_CMD_CLEAR_ERROR) |
2127 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2128 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2129 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2130 		(1 << NFIT_CMD_ARS_INJECT_GET);
2131 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2132 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2133 			set_bit(i, &nd_desc->bus_dsm_mask);
2134 }
2135 
2136 static ssize_t range_index_show(struct device *dev,
2137 		struct device_attribute *attr, char *buf)
2138 {
2139 	struct nd_region *nd_region = to_nd_region(dev);
2140 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2141 
2142 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2143 }
2144 static DEVICE_ATTR_RO(range_index);
2145 
2146 static struct attribute *acpi_nfit_region_attributes[] = {
2147 	&dev_attr_range_index.attr,
2148 	NULL,
2149 };
2150 
2151 static const struct attribute_group acpi_nfit_region_attribute_group = {
2152 	.name = "nfit",
2153 	.attrs = acpi_nfit_region_attributes,
2154 };
2155 
2156 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2157 	&nd_region_attribute_group,
2158 	&nd_mapping_attribute_group,
2159 	&nd_device_attribute_group,
2160 	&nd_numa_attribute_group,
2161 	&acpi_nfit_region_attribute_group,
2162 	NULL,
2163 };
2164 
2165 /* enough info to uniquely specify an interleave set */
2166 struct nfit_set_info {
2167 	struct nfit_set_info_map {
2168 		u64 region_offset;
2169 		u32 serial_number;
2170 		u32 pad;
2171 	} mapping[0];
2172 };
2173 
2174 struct nfit_set_info2 {
2175 	struct nfit_set_info_map2 {
2176 		u64 region_offset;
2177 		u32 serial_number;
2178 		u16 vendor_id;
2179 		u16 manufacturing_date;
2180 		u8  manufacturing_location;
2181 		u8  reserved[31];
2182 	} mapping[0];
2183 };
2184 
2185 static size_t sizeof_nfit_set_info(int num_mappings)
2186 {
2187 	return sizeof(struct nfit_set_info)
2188 		+ num_mappings * sizeof(struct nfit_set_info_map);
2189 }
2190 
2191 static size_t sizeof_nfit_set_info2(int num_mappings)
2192 {
2193 	return sizeof(struct nfit_set_info2)
2194 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2195 }
2196 
2197 static int cmp_map_compat(const void *m0, const void *m1)
2198 {
2199 	const struct nfit_set_info_map *map0 = m0;
2200 	const struct nfit_set_info_map *map1 = m1;
2201 
2202 	return memcmp(&map0->region_offset, &map1->region_offset,
2203 			sizeof(u64));
2204 }
2205 
2206 static int cmp_map(const void *m0, const void *m1)
2207 {
2208 	const struct nfit_set_info_map *map0 = m0;
2209 	const struct nfit_set_info_map *map1 = m1;
2210 
2211 	if (map0->region_offset < map1->region_offset)
2212 		return -1;
2213 	else if (map0->region_offset > map1->region_offset)
2214 		return 1;
2215 	return 0;
2216 }
2217 
2218 static int cmp_map2(const void *m0, const void *m1)
2219 {
2220 	const struct nfit_set_info_map2 *map0 = m0;
2221 	const struct nfit_set_info_map2 *map1 = m1;
2222 
2223 	if (map0->region_offset < map1->region_offset)
2224 		return -1;
2225 	else if (map0->region_offset > map1->region_offset)
2226 		return 1;
2227 	return 0;
2228 }
2229 
2230 /* Retrieve the nth entry referencing this spa */
2231 static struct acpi_nfit_memory_map *memdev_from_spa(
2232 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2233 {
2234 	struct nfit_memdev *nfit_memdev;
2235 
2236 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2237 		if (nfit_memdev->memdev->range_index == range_index)
2238 			if (n-- == 0)
2239 				return nfit_memdev->memdev;
2240 	return NULL;
2241 }
2242 
2243 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2244 		struct nd_region_desc *ndr_desc,
2245 		struct acpi_nfit_system_address *spa)
2246 {
2247 	struct device *dev = acpi_desc->dev;
2248 	struct nd_interleave_set *nd_set;
2249 	u16 nr = ndr_desc->num_mappings;
2250 	struct nfit_set_info2 *info2;
2251 	struct nfit_set_info *info;
2252 	int i;
2253 
2254 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2255 	if (!nd_set)
2256 		return -ENOMEM;
2257 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2258 
2259 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2260 	if (!info)
2261 		return -ENOMEM;
2262 
2263 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2264 	if (!info2)
2265 		return -ENOMEM;
2266 
2267 	for (i = 0; i < nr; i++) {
2268 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2269 		struct nfit_set_info_map *map = &info->mapping[i];
2270 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2271 		struct nvdimm *nvdimm = mapping->nvdimm;
2272 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2273 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2274 				spa->range_index, i);
2275 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2276 
2277 		if (!memdev || !nfit_mem->dcr) {
2278 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2279 			return -ENODEV;
2280 		}
2281 
2282 		map->region_offset = memdev->region_offset;
2283 		map->serial_number = dcr->serial_number;
2284 
2285 		map2->region_offset = memdev->region_offset;
2286 		map2->serial_number = dcr->serial_number;
2287 		map2->vendor_id = dcr->vendor_id;
2288 		map2->manufacturing_date = dcr->manufacturing_date;
2289 		map2->manufacturing_location = dcr->manufacturing_location;
2290 	}
2291 
2292 	/* v1.1 namespaces */
2293 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2294 			cmp_map, NULL);
2295 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2296 
2297 	/* v1.2 namespaces */
2298 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2299 			cmp_map2, NULL);
2300 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2301 
2302 	/* support v1.1 namespaces created with the wrong sort order */
2303 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2304 			cmp_map_compat, NULL);
2305 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2306 
2307 	/* record the result of the sort for the mapping position */
2308 	for (i = 0; i < nr; i++) {
2309 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2310 		int j;
2311 
2312 		for (j = 0; j < nr; j++) {
2313 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2314 			struct nvdimm *nvdimm = mapping->nvdimm;
2315 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2316 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2317 
2318 			if (map2->serial_number == dcr->serial_number &&
2319 			    map2->vendor_id == dcr->vendor_id &&
2320 			    map2->manufacturing_date == dcr->manufacturing_date &&
2321 			    map2->manufacturing_location
2322 				    == dcr->manufacturing_location) {
2323 				mapping->position = i;
2324 				break;
2325 			}
2326 		}
2327 	}
2328 
2329 	ndr_desc->nd_set = nd_set;
2330 	devm_kfree(dev, info);
2331 	devm_kfree(dev, info2);
2332 
2333 	return 0;
2334 }
2335 
2336 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2337 {
2338 	struct acpi_nfit_interleave *idt = mmio->idt;
2339 	u32 sub_line_offset, line_index, line_offset;
2340 	u64 line_no, table_skip_count, table_offset;
2341 
2342 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2343 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2344 	line_offset = idt->line_offset[line_index]
2345 		* mmio->line_size;
2346 	table_offset = table_skip_count * mmio->table_size;
2347 
2348 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2349 }
2350 
2351 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2352 {
2353 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2354 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2355 	const u32 STATUS_MASK = 0x80000037;
2356 
2357 	if (mmio->num_lines)
2358 		offset = to_interleave_offset(offset, mmio);
2359 
2360 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2361 }
2362 
2363 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2364 		resource_size_t dpa, unsigned int len, unsigned int write)
2365 {
2366 	u64 cmd, offset;
2367 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2368 
2369 	enum {
2370 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2371 		BCW_LEN_SHIFT = 48,
2372 		BCW_LEN_MASK = (1ULL << 8) - 1,
2373 		BCW_CMD_SHIFT = 56,
2374 	};
2375 
2376 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2377 	len = len >> L1_CACHE_SHIFT;
2378 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2379 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2380 
2381 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2382 	if (mmio->num_lines)
2383 		offset = to_interleave_offset(offset, mmio);
2384 
2385 	writeq(cmd, mmio->addr.base + offset);
2386 	nvdimm_flush(nfit_blk->nd_region);
2387 
2388 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2389 		readq(mmio->addr.base + offset);
2390 }
2391 
2392 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2393 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2394 		unsigned int lane)
2395 {
2396 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2397 	unsigned int copied = 0;
2398 	u64 base_offset;
2399 	int rc;
2400 
2401 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2402 		+ lane * mmio->size;
2403 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2404 	while (len) {
2405 		unsigned int c;
2406 		u64 offset;
2407 
2408 		if (mmio->num_lines) {
2409 			u32 line_offset;
2410 
2411 			offset = to_interleave_offset(base_offset + copied,
2412 					mmio);
2413 			div_u64_rem(offset, mmio->line_size, &line_offset);
2414 			c = min_t(size_t, len, mmio->line_size - line_offset);
2415 		} else {
2416 			offset = base_offset + nfit_blk->bdw_offset;
2417 			c = len;
2418 		}
2419 
2420 		if (rw)
2421 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2422 		else {
2423 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2424 				arch_invalidate_pmem((void __force *)
2425 					mmio->addr.aperture + offset, c);
2426 
2427 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2428 		}
2429 
2430 		copied += c;
2431 		len -= c;
2432 	}
2433 
2434 	if (rw)
2435 		nvdimm_flush(nfit_blk->nd_region);
2436 
2437 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2438 	return rc;
2439 }
2440 
2441 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2442 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2443 {
2444 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2445 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2446 	struct nd_region *nd_region = nfit_blk->nd_region;
2447 	unsigned int lane, copied = 0;
2448 	int rc = 0;
2449 
2450 	lane = nd_region_acquire_lane(nd_region);
2451 	while (len) {
2452 		u64 c = min(len, mmio->size);
2453 
2454 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2455 				iobuf + copied, c, rw, lane);
2456 		if (rc)
2457 			break;
2458 
2459 		copied += c;
2460 		len -= c;
2461 	}
2462 	nd_region_release_lane(nd_region, lane);
2463 
2464 	return rc;
2465 }
2466 
2467 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2468 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2469 {
2470 	if (idt) {
2471 		mmio->num_lines = idt->line_count;
2472 		mmio->line_size = idt->line_size;
2473 		if (interleave_ways == 0)
2474 			return -ENXIO;
2475 		mmio->table_size = mmio->num_lines * interleave_ways
2476 			* mmio->line_size;
2477 	}
2478 
2479 	return 0;
2480 }
2481 
2482 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2483 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2484 {
2485 	struct nd_cmd_dimm_flags flags;
2486 	int rc;
2487 
2488 	memset(&flags, 0, sizeof(flags));
2489 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2490 			sizeof(flags), NULL);
2491 
2492 	if (rc >= 0 && flags.status == 0)
2493 		nfit_blk->dimm_flags = flags.flags;
2494 	else if (rc == -ENOTTY) {
2495 		/* fall back to a conservative default */
2496 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2497 		rc = 0;
2498 	} else
2499 		rc = -ENXIO;
2500 
2501 	return rc;
2502 }
2503 
2504 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2505 		struct device *dev)
2506 {
2507 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2508 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2509 	struct nfit_blk_mmio *mmio;
2510 	struct nfit_blk *nfit_blk;
2511 	struct nfit_mem *nfit_mem;
2512 	struct nvdimm *nvdimm;
2513 	int rc;
2514 
2515 	nvdimm = nd_blk_region_to_dimm(ndbr);
2516 	nfit_mem = nvdimm_provider_data(nvdimm);
2517 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2518 		dev_dbg(dev, "missing%s%s%s\n",
2519 				nfit_mem ? "" : " nfit_mem",
2520 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2521 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2522 		return -ENXIO;
2523 	}
2524 
2525 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2526 	if (!nfit_blk)
2527 		return -ENOMEM;
2528 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2529 	nfit_blk->nd_region = to_nd_region(dev);
2530 
2531 	/* map block aperture memory */
2532 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2533 	mmio = &nfit_blk->mmio[BDW];
2534 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2535                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2536 	if (!mmio->addr.base) {
2537 		dev_dbg(dev, "%s failed to map bdw\n",
2538 				nvdimm_name(nvdimm));
2539 		return -ENOMEM;
2540 	}
2541 	mmio->size = nfit_mem->bdw->size;
2542 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2543 	mmio->idt = nfit_mem->idt_bdw;
2544 	mmio->spa = nfit_mem->spa_bdw;
2545 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2546 			nfit_mem->memdev_bdw->interleave_ways);
2547 	if (rc) {
2548 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2549 				nvdimm_name(nvdimm));
2550 		return rc;
2551 	}
2552 
2553 	/* map block control memory */
2554 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2555 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2556 	mmio = &nfit_blk->mmio[DCR];
2557 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2558 			nfit_mem->spa_dcr->length);
2559 	if (!mmio->addr.base) {
2560 		dev_dbg(dev, "%s failed to map dcr\n",
2561 				nvdimm_name(nvdimm));
2562 		return -ENOMEM;
2563 	}
2564 	mmio->size = nfit_mem->dcr->window_size;
2565 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2566 	mmio->idt = nfit_mem->idt_dcr;
2567 	mmio->spa = nfit_mem->spa_dcr;
2568 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2569 			nfit_mem->memdev_dcr->interleave_ways);
2570 	if (rc) {
2571 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2572 				nvdimm_name(nvdimm));
2573 		return rc;
2574 	}
2575 
2576 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2577 	if (rc < 0) {
2578 		dev_dbg(dev, "%s failed get DIMM flags\n",
2579 				nvdimm_name(nvdimm));
2580 		return rc;
2581 	}
2582 
2583 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2584 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2585 
2586 	if (mmio->line_size == 0)
2587 		return 0;
2588 
2589 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2590 			+ 8 > mmio->line_size) {
2591 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2592 		return -ENXIO;
2593 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2594 			+ 8 > mmio->line_size) {
2595 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2596 		return -ENXIO;
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2603 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2604 {
2605 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2606 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2607 	int cmd_rc, rc;
2608 
2609 	cmd->address = spa->address;
2610 	cmd->length = spa->length;
2611 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2612 			sizeof(*cmd), &cmd_rc);
2613 	if (rc < 0)
2614 		return rc;
2615 	return cmd_rc;
2616 }
2617 
2618 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2619 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2620 {
2621 	int rc;
2622 	int cmd_rc;
2623 	struct nd_cmd_ars_start ars_start;
2624 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2625 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2626 
2627 	memset(&ars_start, 0, sizeof(ars_start));
2628 	ars_start.address = spa->address;
2629 	ars_start.length = spa->length;
2630 	if (req_type == ARS_REQ_SHORT)
2631 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2632 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2633 		ars_start.type = ND_ARS_PERSISTENT;
2634 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2635 		ars_start.type = ND_ARS_VOLATILE;
2636 	else
2637 		return -ENOTTY;
2638 
2639 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2640 			sizeof(ars_start), &cmd_rc);
2641 
2642 	if (rc < 0)
2643 		return rc;
2644 	return cmd_rc;
2645 }
2646 
2647 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2648 {
2649 	int rc, cmd_rc;
2650 	struct nd_cmd_ars_start ars_start;
2651 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2652 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2653 
2654 	memset(&ars_start, 0, sizeof(ars_start));
2655 	ars_start.address = ars_status->restart_address;
2656 	ars_start.length = ars_status->restart_length;
2657 	ars_start.type = ars_status->type;
2658 	ars_start.flags = acpi_desc->ars_start_flags;
2659 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2660 			sizeof(ars_start), &cmd_rc);
2661 	if (rc < 0)
2662 		return rc;
2663 	return cmd_rc;
2664 }
2665 
2666 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2667 {
2668 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2669 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2670 	int rc, cmd_rc;
2671 
2672 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2673 			acpi_desc->max_ars, &cmd_rc);
2674 	if (rc < 0)
2675 		return rc;
2676 	return cmd_rc;
2677 }
2678 
2679 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2680 		struct nfit_spa *nfit_spa)
2681 {
2682 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2683 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2684 	struct nd_region *nd_region = nfit_spa->nd_region;
2685 	struct device *dev;
2686 
2687 	lockdep_assert_held(&acpi_desc->init_mutex);
2688 	/*
2689 	 * Only advance the ARS state for ARS runs initiated by the
2690 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2691 	 * completion tracking.
2692 	 */
2693 	if (acpi_desc->scrub_spa != nfit_spa)
2694 		return;
2695 
2696 	if ((ars_status->address >= spa->address && ars_status->address
2697 				< spa->address + spa->length)
2698 			|| (ars_status->address < spa->address)) {
2699 		/*
2700 		 * Assume that if a scrub starts at an offset from the
2701 		 * start of nfit_spa that we are in the continuation
2702 		 * case.
2703 		 *
2704 		 * Otherwise, if the scrub covers the spa range, mark
2705 		 * any pending request complete.
2706 		 */
2707 		if (ars_status->address + ars_status->length
2708 				>= spa->address + spa->length)
2709 				/* complete */;
2710 		else
2711 			return;
2712 	} else
2713 		return;
2714 
2715 	acpi_desc->scrub_spa = NULL;
2716 	if (nd_region) {
2717 		dev = nd_region_dev(nd_region);
2718 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2719 	} else
2720 		dev = acpi_desc->dev;
2721 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2722 }
2723 
2724 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2725 {
2726 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2727 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2728 	int rc;
2729 	u32 i;
2730 
2731 	/*
2732 	 * First record starts at 44 byte offset from the start of the
2733 	 * payload.
2734 	 */
2735 	if (ars_status->out_length < 44)
2736 		return 0;
2737 	for (i = 0; i < ars_status->num_records; i++) {
2738 		/* only process full records */
2739 		if (ars_status->out_length
2740 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2741 			break;
2742 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2743 				ars_status->records[i].err_address,
2744 				ars_status->records[i].length);
2745 		if (rc)
2746 			return rc;
2747 	}
2748 	if (i < ars_status->num_records)
2749 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2750 
2751 	return 0;
2752 }
2753 
2754 static void acpi_nfit_remove_resource(void *data)
2755 {
2756 	struct resource *res = data;
2757 
2758 	remove_resource(res);
2759 }
2760 
2761 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2762 		struct nd_region_desc *ndr_desc)
2763 {
2764 	struct resource *res, *nd_res = ndr_desc->res;
2765 	int is_pmem, ret;
2766 
2767 	/* No operation if the region is already registered as PMEM */
2768 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2769 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2770 	if (is_pmem == REGION_INTERSECTS)
2771 		return 0;
2772 
2773 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2774 	if (!res)
2775 		return -ENOMEM;
2776 
2777 	res->name = "Persistent Memory";
2778 	res->start = nd_res->start;
2779 	res->end = nd_res->end;
2780 	res->flags = IORESOURCE_MEM;
2781 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2782 
2783 	ret = insert_resource(&iomem_resource, res);
2784 	if (ret)
2785 		return ret;
2786 
2787 	ret = devm_add_action_or_reset(acpi_desc->dev,
2788 					acpi_nfit_remove_resource,
2789 					res);
2790 	if (ret)
2791 		return ret;
2792 
2793 	return 0;
2794 }
2795 
2796 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2797 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2798 		struct acpi_nfit_memory_map *memdev,
2799 		struct nfit_spa *nfit_spa)
2800 {
2801 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2802 			memdev->device_handle);
2803 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2804 	struct nd_blk_region_desc *ndbr_desc;
2805 	struct nfit_mem *nfit_mem;
2806 	int rc;
2807 
2808 	if (!nvdimm) {
2809 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2810 				spa->range_index, memdev->device_handle);
2811 		return -ENODEV;
2812 	}
2813 
2814 	mapping->nvdimm = nvdimm;
2815 	switch (nfit_spa_type(spa)) {
2816 	case NFIT_SPA_PM:
2817 	case NFIT_SPA_VOLATILE:
2818 		mapping->start = memdev->address;
2819 		mapping->size = memdev->region_size;
2820 		break;
2821 	case NFIT_SPA_DCR:
2822 		nfit_mem = nvdimm_provider_data(nvdimm);
2823 		if (!nfit_mem || !nfit_mem->bdw) {
2824 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2825 					spa->range_index, nvdimm_name(nvdimm));
2826 			break;
2827 		}
2828 
2829 		mapping->size = nfit_mem->bdw->capacity;
2830 		mapping->start = nfit_mem->bdw->start_address;
2831 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2832 		ndr_desc->mapping = mapping;
2833 		ndr_desc->num_mappings = 1;
2834 		ndbr_desc = to_blk_region_desc(ndr_desc);
2835 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2836 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2837 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2838 		if (rc)
2839 			return rc;
2840 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2841 				ndr_desc);
2842 		if (!nfit_spa->nd_region)
2843 			return -ENOMEM;
2844 		break;
2845 	}
2846 
2847 	return 0;
2848 }
2849 
2850 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2851 {
2852 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2853 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2854 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2855 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2856 }
2857 
2858 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2859 {
2860 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2861 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2862 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2863 }
2864 
2865 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2866 		struct nfit_spa *nfit_spa)
2867 {
2868 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2869 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2870 	struct nd_blk_region_desc ndbr_desc;
2871 	struct nd_region_desc *ndr_desc;
2872 	struct nfit_memdev *nfit_memdev;
2873 	struct nvdimm_bus *nvdimm_bus;
2874 	struct resource res;
2875 	int count = 0, rc;
2876 
2877 	if (nfit_spa->nd_region)
2878 		return 0;
2879 
2880 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2881 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2882 		return 0;
2883 	}
2884 
2885 	memset(&res, 0, sizeof(res));
2886 	memset(&mappings, 0, sizeof(mappings));
2887 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2888 	res.start = spa->address;
2889 	res.end = res.start + spa->length - 1;
2890 	ndr_desc = &ndbr_desc.ndr_desc;
2891 	ndr_desc->res = &res;
2892 	ndr_desc->provider_data = nfit_spa;
2893 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2894 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2895 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2896 						spa->proximity_domain);
2897 	else
2898 		ndr_desc->numa_node = NUMA_NO_NODE;
2899 
2900 	/*
2901 	 * Persistence domain bits are hierarchical, if
2902 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2903 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2904 	 */
2905 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2906 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2907 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2908 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2909 
2910 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2911 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2912 		struct nd_mapping_desc *mapping;
2913 
2914 		if (memdev->range_index != spa->range_index)
2915 			continue;
2916 		if (count >= ND_MAX_MAPPINGS) {
2917 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2918 					spa->range_index, ND_MAX_MAPPINGS);
2919 			return -ENXIO;
2920 		}
2921 		mapping = &mappings[count++];
2922 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2923 				memdev, nfit_spa);
2924 		if (rc)
2925 			goto out;
2926 	}
2927 
2928 	ndr_desc->mapping = mappings;
2929 	ndr_desc->num_mappings = count;
2930 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2931 	if (rc)
2932 		goto out;
2933 
2934 	nvdimm_bus = acpi_desc->nvdimm_bus;
2935 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2936 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2937 		if (rc) {
2938 			dev_warn(acpi_desc->dev,
2939 				"failed to insert pmem resource to iomem: %d\n",
2940 				rc);
2941 			goto out;
2942 		}
2943 
2944 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2945 				ndr_desc);
2946 		if (!nfit_spa->nd_region)
2947 			rc = -ENOMEM;
2948 	} else if (nfit_spa_is_volatile(spa)) {
2949 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2950 				ndr_desc);
2951 		if (!nfit_spa->nd_region)
2952 			rc = -ENOMEM;
2953 	} else if (nfit_spa_is_virtual(spa)) {
2954 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2955 				ndr_desc);
2956 		if (!nfit_spa->nd_region)
2957 			rc = -ENOMEM;
2958 	}
2959 
2960  out:
2961 	if (rc)
2962 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2963 				nfit_spa->spa->range_index);
2964 	return rc;
2965 }
2966 
2967 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2968 {
2969 	struct device *dev = acpi_desc->dev;
2970 	struct nd_cmd_ars_status *ars_status;
2971 
2972 	if (acpi_desc->ars_status) {
2973 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2974 		return 0;
2975 	}
2976 
2977 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2978 	if (!ars_status)
2979 		return -ENOMEM;
2980 	acpi_desc->ars_status = ars_status;
2981 	return 0;
2982 }
2983 
2984 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2985 {
2986 	int rc;
2987 
2988 	if (ars_status_alloc(acpi_desc))
2989 		return -ENOMEM;
2990 
2991 	rc = ars_get_status(acpi_desc);
2992 
2993 	if (rc < 0 && rc != -ENOSPC)
2994 		return rc;
2995 
2996 	if (ars_status_process_records(acpi_desc))
2997 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2998 
2999 	return rc;
3000 }
3001 
3002 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3003 		struct nfit_spa *nfit_spa)
3004 {
3005 	int rc;
3006 
3007 	if (no_init_ars || test_bit(ARS_FAILED, &nfit_spa->ars_state))
3008 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
3009 
3010 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3011 	set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3012 
3013 	switch (acpi_nfit_query_poison(acpi_desc)) {
3014 	case 0:
3015 	case -EAGAIN:
3016 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3017 		/* shouldn't happen, try again later */
3018 		if (rc == -EBUSY)
3019 			break;
3020 		if (rc) {
3021 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
3022 			break;
3023 		}
3024 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3025 		rc = acpi_nfit_query_poison(acpi_desc);
3026 		if (rc)
3027 			break;
3028 		acpi_desc->scrub_spa = nfit_spa;
3029 		ars_complete(acpi_desc, nfit_spa);
3030 		/*
3031 		 * If ars_complete() says we didn't complete the
3032 		 * short scrub, we'll try again with a long
3033 		 * request.
3034 		 */
3035 		acpi_desc->scrub_spa = NULL;
3036 		break;
3037 	case -EBUSY:
3038 	case -ENOMEM:
3039 	case -ENOSPC:
3040 		/*
3041 		 * BIOS was using ARS, wait for it to complete (or
3042 		 * resources to become available) and then perform our
3043 		 * own scrubs.
3044 		 */
3045 		break;
3046 	default:
3047 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3048 		break;
3049 	}
3050 
3051 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
3052 }
3053 
3054 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3055 {
3056 	struct nfit_spa *nfit_spa;
3057 
3058 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3059 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3060 			continue;
3061 		ars_complete(acpi_desc, nfit_spa);
3062 	}
3063 }
3064 
3065 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3066 		int query_rc)
3067 {
3068 	unsigned int tmo = acpi_desc->scrub_tmo;
3069 	struct device *dev = acpi_desc->dev;
3070 	struct nfit_spa *nfit_spa;
3071 
3072 	lockdep_assert_held(&acpi_desc->init_mutex);
3073 
3074 	if (acpi_desc->cancel)
3075 		return 0;
3076 
3077 	if (query_rc == -EBUSY) {
3078 		dev_dbg(dev, "ARS: ARS busy\n");
3079 		return min(30U * 60U, tmo * 2);
3080 	}
3081 	if (query_rc == -ENOSPC) {
3082 		dev_dbg(dev, "ARS: ARS continue\n");
3083 		ars_continue(acpi_desc);
3084 		return 1;
3085 	}
3086 	if (query_rc && query_rc != -EAGAIN) {
3087 		unsigned long long addr, end;
3088 
3089 		addr = acpi_desc->ars_status->address;
3090 		end = addr + acpi_desc->ars_status->length;
3091 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3092 				query_rc);
3093 	}
3094 
3095 	ars_complete_all(acpi_desc);
3096 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3097 		enum nfit_ars_state req_type;
3098 		int rc;
3099 
3100 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3101 			continue;
3102 
3103 		/* prefer short ARS requests first */
3104 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3105 			req_type = ARS_REQ_SHORT;
3106 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3107 			req_type = ARS_REQ_LONG;
3108 		else
3109 			continue;
3110 		rc = ars_start(acpi_desc, nfit_spa, req_type);
3111 
3112 		dev = nd_region_dev(nfit_spa->nd_region);
3113 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3114 				nfit_spa->spa->range_index,
3115 				req_type == ARS_REQ_SHORT ? "short" : "long",
3116 				rc);
3117 		/*
3118 		 * Hmm, we raced someone else starting ARS? Try again in
3119 		 * a bit.
3120 		 */
3121 		if (rc == -EBUSY)
3122 			return 1;
3123 		if (rc == 0) {
3124 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3125 					"scrub start while range %d active\n",
3126 					acpi_desc->scrub_spa->spa->range_index);
3127 			clear_bit(req_type, &nfit_spa->ars_state);
3128 			acpi_desc->scrub_spa = nfit_spa;
3129 			/*
3130 			 * Consider this spa last for future scrub
3131 			 * requests
3132 			 */
3133 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3134 			return 1;
3135 		}
3136 
3137 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3138 				nfit_spa->spa->range_index, rc);
3139 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3140 	}
3141 	return 0;
3142 }
3143 
3144 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3145 {
3146 	lockdep_assert_held(&acpi_desc->init_mutex);
3147 
3148 	acpi_desc->scrub_busy = 1;
3149 	/* note this should only be set from within the workqueue */
3150 	if (tmo)
3151 		acpi_desc->scrub_tmo = tmo;
3152 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3153 }
3154 
3155 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3156 {
3157 	__sched_ars(acpi_desc, 0);
3158 }
3159 
3160 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3161 {
3162 	lockdep_assert_held(&acpi_desc->init_mutex);
3163 
3164 	acpi_desc->scrub_busy = 0;
3165 	acpi_desc->scrub_count++;
3166 	if (acpi_desc->scrub_count_state)
3167 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3168 }
3169 
3170 static void acpi_nfit_scrub(struct work_struct *work)
3171 {
3172 	struct acpi_nfit_desc *acpi_desc;
3173 	unsigned int tmo;
3174 	int query_rc;
3175 
3176 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3177 	mutex_lock(&acpi_desc->init_mutex);
3178 	query_rc = acpi_nfit_query_poison(acpi_desc);
3179 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3180 	if (tmo)
3181 		__sched_ars(acpi_desc, tmo);
3182 	else
3183 		notify_ars_done(acpi_desc);
3184 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3185 	mutex_unlock(&acpi_desc->init_mutex);
3186 }
3187 
3188 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3189 		struct nfit_spa *nfit_spa)
3190 {
3191 	int type = nfit_spa_type(nfit_spa->spa);
3192 	struct nd_cmd_ars_cap ars_cap;
3193 	int rc;
3194 
3195 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
3196 	memset(&ars_cap, 0, sizeof(ars_cap));
3197 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3198 	if (rc < 0)
3199 		return;
3200 	/* check that the supported scrub types match the spa type */
3201 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3202 				& ND_ARS_VOLATILE) == 0)
3203 		return;
3204 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3205 				& ND_ARS_PERSISTENT) == 0)
3206 		return;
3207 
3208 	nfit_spa->max_ars = ars_cap.max_ars_out;
3209 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3210 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3211 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3212 }
3213 
3214 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3215 {
3216 	struct nfit_spa *nfit_spa;
3217 	int rc;
3218 
3219 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3220 		switch (nfit_spa_type(nfit_spa->spa)) {
3221 		case NFIT_SPA_VOLATILE:
3222 		case NFIT_SPA_PM:
3223 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3224 			break;
3225 		}
3226 	}
3227 
3228 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3229 		switch (nfit_spa_type(nfit_spa->spa)) {
3230 		case NFIT_SPA_VOLATILE:
3231 		case NFIT_SPA_PM:
3232 			/* register regions and kick off initial ARS run */
3233 			rc = ars_register(acpi_desc, nfit_spa);
3234 			if (rc)
3235 				return rc;
3236 			break;
3237 		case NFIT_SPA_BDW:
3238 			/* nothing to register */
3239 			break;
3240 		case NFIT_SPA_DCR:
3241 		case NFIT_SPA_VDISK:
3242 		case NFIT_SPA_VCD:
3243 		case NFIT_SPA_PDISK:
3244 		case NFIT_SPA_PCD:
3245 			/* register known regions that don't support ARS */
3246 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3247 			if (rc)
3248 				return rc;
3249 			break;
3250 		default:
3251 			/* don't register unknown regions */
3252 			break;
3253 		}
3254 
3255 	sched_ars(acpi_desc);
3256 	return 0;
3257 }
3258 
3259 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3260 		struct nfit_table_prev *prev)
3261 {
3262 	struct device *dev = acpi_desc->dev;
3263 
3264 	if (!list_empty(&prev->spas) ||
3265 			!list_empty(&prev->memdevs) ||
3266 			!list_empty(&prev->dcrs) ||
3267 			!list_empty(&prev->bdws) ||
3268 			!list_empty(&prev->idts) ||
3269 			!list_empty(&prev->flushes)) {
3270 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3271 		return -ENXIO;
3272 	}
3273 	return 0;
3274 }
3275 
3276 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3277 {
3278 	struct device *dev = acpi_desc->dev;
3279 	struct kernfs_node *nfit;
3280 	struct device *bus_dev;
3281 
3282 	if (!ars_supported(acpi_desc->nvdimm_bus))
3283 		return 0;
3284 
3285 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3286 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3287 	if (!nfit) {
3288 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3289 		return -ENODEV;
3290 	}
3291 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3292 	sysfs_put(nfit);
3293 	if (!acpi_desc->scrub_count_state) {
3294 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3295 		return -ENODEV;
3296 	}
3297 
3298 	return 0;
3299 }
3300 
3301 static void acpi_nfit_unregister(void *data)
3302 {
3303 	struct acpi_nfit_desc *acpi_desc = data;
3304 
3305 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3306 }
3307 
3308 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3309 {
3310 	struct device *dev = acpi_desc->dev;
3311 	struct nfit_table_prev prev;
3312 	const void *end;
3313 	int rc;
3314 
3315 	if (!acpi_desc->nvdimm_bus) {
3316 		acpi_nfit_init_dsms(acpi_desc);
3317 
3318 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3319 				&acpi_desc->nd_desc);
3320 		if (!acpi_desc->nvdimm_bus)
3321 			return -ENOMEM;
3322 
3323 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3324 				acpi_desc);
3325 		if (rc)
3326 			return rc;
3327 
3328 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3329 		if (rc)
3330 			return rc;
3331 
3332 		/* register this acpi_desc for mce notifications */
3333 		mutex_lock(&acpi_desc_lock);
3334 		list_add_tail(&acpi_desc->list, &acpi_descs);
3335 		mutex_unlock(&acpi_desc_lock);
3336 	}
3337 
3338 	mutex_lock(&acpi_desc->init_mutex);
3339 
3340 	INIT_LIST_HEAD(&prev.spas);
3341 	INIT_LIST_HEAD(&prev.memdevs);
3342 	INIT_LIST_HEAD(&prev.dcrs);
3343 	INIT_LIST_HEAD(&prev.bdws);
3344 	INIT_LIST_HEAD(&prev.idts);
3345 	INIT_LIST_HEAD(&prev.flushes);
3346 
3347 	list_cut_position(&prev.spas, &acpi_desc->spas,
3348 				acpi_desc->spas.prev);
3349 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3350 				acpi_desc->memdevs.prev);
3351 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3352 				acpi_desc->dcrs.prev);
3353 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3354 				acpi_desc->bdws.prev);
3355 	list_cut_position(&prev.idts, &acpi_desc->idts,
3356 				acpi_desc->idts.prev);
3357 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3358 				acpi_desc->flushes.prev);
3359 
3360 	end = data + sz;
3361 	while (!IS_ERR_OR_NULL(data))
3362 		data = add_table(acpi_desc, &prev, data, end);
3363 
3364 	if (IS_ERR(data)) {
3365 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3366 		rc = PTR_ERR(data);
3367 		goto out_unlock;
3368 	}
3369 
3370 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3371 	if (rc)
3372 		goto out_unlock;
3373 
3374 	rc = nfit_mem_init(acpi_desc);
3375 	if (rc)
3376 		goto out_unlock;
3377 
3378 	rc = acpi_nfit_register_dimms(acpi_desc);
3379 	if (rc)
3380 		goto out_unlock;
3381 
3382 	rc = acpi_nfit_register_regions(acpi_desc);
3383 
3384  out_unlock:
3385 	mutex_unlock(&acpi_desc->init_mutex);
3386 	return rc;
3387 }
3388 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3389 
3390 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3391 {
3392 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3393 	struct device *dev = acpi_desc->dev;
3394 
3395 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3396 	device_lock(dev);
3397 	device_unlock(dev);
3398 
3399 	/* Bounce the init_mutex to complete initial registration */
3400 	mutex_lock(&acpi_desc->init_mutex);
3401 	mutex_unlock(&acpi_desc->init_mutex);
3402 
3403 	return 0;
3404 }
3405 
3406 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3407 		struct nvdimm *nvdimm, unsigned int cmd)
3408 {
3409 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3410 
3411 	if (nvdimm)
3412 		return 0;
3413 	if (cmd != ND_CMD_ARS_START)
3414 		return 0;
3415 
3416 	/*
3417 	 * The kernel and userspace may race to initiate a scrub, but
3418 	 * the scrub thread is prepared to lose that initial race.  It
3419 	 * just needs guarantees that any ARS it initiates are not
3420 	 * interrupted by any intervening start requests from userspace.
3421 	 */
3422 	if (work_busy(&acpi_desc->dwork.work))
3423 		return -EBUSY;
3424 
3425 	return 0;
3426 }
3427 
3428 /* prevent security commands from being issued via ioctl */
3429 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3430 		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3431 {
3432 	struct nd_cmd_pkg *call_pkg = buf;
3433 	unsigned int func;
3434 
3435 	if (nvdimm && cmd == ND_CMD_CALL &&
3436 			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3437 		func = call_pkg->nd_command;
3438 		if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK)
3439 			return -EOPNOTSUPP;
3440 	}
3441 
3442 	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3443 }
3444 
3445 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3446 		enum nfit_ars_state req_type)
3447 {
3448 	struct device *dev = acpi_desc->dev;
3449 	int scheduled = 0, busy = 0;
3450 	struct nfit_spa *nfit_spa;
3451 
3452 	mutex_lock(&acpi_desc->init_mutex);
3453 	if (acpi_desc->cancel) {
3454 		mutex_unlock(&acpi_desc->init_mutex);
3455 		return 0;
3456 	}
3457 
3458 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3459 		int type = nfit_spa_type(nfit_spa->spa);
3460 
3461 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3462 			continue;
3463 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3464 			continue;
3465 
3466 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3467 			busy++;
3468 		else
3469 			scheduled++;
3470 	}
3471 	if (scheduled) {
3472 		sched_ars(acpi_desc);
3473 		dev_dbg(dev, "ars_scan triggered\n");
3474 	}
3475 	mutex_unlock(&acpi_desc->init_mutex);
3476 
3477 	if (scheduled)
3478 		return 0;
3479 	if (busy)
3480 		return -EBUSY;
3481 	return -ENOTTY;
3482 }
3483 
3484 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3485 {
3486 	struct nvdimm_bus_descriptor *nd_desc;
3487 
3488 	dev_set_drvdata(dev, acpi_desc);
3489 	acpi_desc->dev = dev;
3490 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3491 	nd_desc = &acpi_desc->nd_desc;
3492 	nd_desc->provider_name = "ACPI.NFIT";
3493 	nd_desc->module = THIS_MODULE;
3494 	nd_desc->ndctl = acpi_nfit_ctl;
3495 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3496 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3497 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3498 
3499 	INIT_LIST_HEAD(&acpi_desc->spas);
3500 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3501 	INIT_LIST_HEAD(&acpi_desc->bdws);
3502 	INIT_LIST_HEAD(&acpi_desc->idts);
3503 	INIT_LIST_HEAD(&acpi_desc->flushes);
3504 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3505 	INIT_LIST_HEAD(&acpi_desc->dimms);
3506 	INIT_LIST_HEAD(&acpi_desc->list);
3507 	mutex_init(&acpi_desc->init_mutex);
3508 	acpi_desc->scrub_tmo = 1;
3509 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3510 }
3511 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3512 
3513 static void acpi_nfit_put_table(void *table)
3514 {
3515 	acpi_put_table(table);
3516 }
3517 
3518 void acpi_nfit_shutdown(void *data)
3519 {
3520 	struct acpi_nfit_desc *acpi_desc = data;
3521 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3522 
3523 	/*
3524 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3525 	 * race teardown
3526 	 */
3527 	mutex_lock(&acpi_desc_lock);
3528 	list_del(&acpi_desc->list);
3529 	mutex_unlock(&acpi_desc_lock);
3530 
3531 	mutex_lock(&acpi_desc->init_mutex);
3532 	acpi_desc->cancel = 1;
3533 	cancel_delayed_work_sync(&acpi_desc->dwork);
3534 	mutex_unlock(&acpi_desc->init_mutex);
3535 
3536 	/*
3537 	 * Bounce the nvdimm bus lock to make sure any in-flight
3538 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3539 	 * either submit or see ->cancel set.
3540 	 */
3541 	device_lock(bus_dev);
3542 	device_unlock(bus_dev);
3543 
3544 	flush_workqueue(nfit_wq);
3545 }
3546 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3547 
3548 static int acpi_nfit_add(struct acpi_device *adev)
3549 {
3550 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3551 	struct acpi_nfit_desc *acpi_desc;
3552 	struct device *dev = &adev->dev;
3553 	struct acpi_table_header *tbl;
3554 	acpi_status status = AE_OK;
3555 	acpi_size sz;
3556 	int rc = 0;
3557 
3558 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3559 	if (ACPI_FAILURE(status)) {
3560 		/* The NVDIMM root device allows OS to trigger enumeration of
3561 		 * NVDIMMs through NFIT at boot time and re-enumeration at
3562 		 * root level via the _FIT method during runtime.
3563 		 * This is ok to return 0 here, we could have an nvdimm
3564 		 * hotplugged later and evaluate _FIT method which returns
3565 		 * data in the format of a series of NFIT Structures.
3566 		 */
3567 		dev_dbg(dev, "failed to find NFIT at startup\n");
3568 		return 0;
3569 	}
3570 
3571 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3572 	if (rc)
3573 		return rc;
3574 	sz = tbl->length;
3575 
3576 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3577 	if (!acpi_desc)
3578 		return -ENOMEM;
3579 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3580 
3581 	/* Save the acpi header for exporting the revision via sysfs */
3582 	acpi_desc->acpi_header = *tbl;
3583 
3584 	/* Evaluate _FIT and override with that if present */
3585 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3586 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3587 		union acpi_object *obj = buf.pointer;
3588 
3589 		if (obj->type == ACPI_TYPE_BUFFER)
3590 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3591 					obj->buffer.length);
3592 		else
3593 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3594 				(int) obj->type);
3595 		kfree(buf.pointer);
3596 	} else
3597 		/* skip over the lead-in header table */
3598 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3599 				+ sizeof(struct acpi_table_nfit),
3600 				sz - sizeof(struct acpi_table_nfit));
3601 
3602 	if (rc)
3603 		return rc;
3604 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3605 }
3606 
3607 static int acpi_nfit_remove(struct acpi_device *adev)
3608 {
3609 	/* see acpi_nfit_unregister */
3610 	return 0;
3611 }
3612 
3613 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3614 {
3615 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3616 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3617 	union acpi_object *obj;
3618 	acpi_status status;
3619 	int ret;
3620 
3621 	if (!dev->driver) {
3622 		/* dev->driver may be null if we're being removed */
3623 		dev_dbg(dev, "no driver found for dev\n");
3624 		return;
3625 	}
3626 
3627 	if (!acpi_desc) {
3628 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3629 		if (!acpi_desc)
3630 			return;
3631 		acpi_nfit_desc_init(acpi_desc, dev);
3632 	} else {
3633 		/*
3634 		 * Finish previous registration before considering new
3635 		 * regions.
3636 		 */
3637 		flush_workqueue(nfit_wq);
3638 	}
3639 
3640 	/* Evaluate _FIT */
3641 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3642 	if (ACPI_FAILURE(status)) {
3643 		dev_err(dev, "failed to evaluate _FIT\n");
3644 		return;
3645 	}
3646 
3647 	obj = buf.pointer;
3648 	if (obj->type == ACPI_TYPE_BUFFER) {
3649 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3650 				obj->buffer.length);
3651 		if (ret)
3652 			dev_err(dev, "failed to merge updated NFIT\n");
3653 	} else
3654 		dev_err(dev, "Invalid _FIT\n");
3655 	kfree(buf.pointer);
3656 }
3657 
3658 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3659 {
3660 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3661 
3662 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3663 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3664 	else
3665 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3666 }
3667 
3668 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3669 {
3670 	dev_dbg(dev, "event: 0x%x\n", event);
3671 
3672 	switch (event) {
3673 	case NFIT_NOTIFY_UPDATE:
3674 		return acpi_nfit_update_notify(dev, handle);
3675 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3676 		return acpi_nfit_uc_error_notify(dev, handle);
3677 	default:
3678 		return;
3679 	}
3680 }
3681 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3682 
3683 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3684 {
3685 	device_lock(&adev->dev);
3686 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3687 	device_unlock(&adev->dev);
3688 }
3689 
3690 static const struct acpi_device_id acpi_nfit_ids[] = {
3691 	{ "ACPI0012", 0 },
3692 	{ "", 0 },
3693 };
3694 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3695 
3696 static struct acpi_driver acpi_nfit_driver = {
3697 	.name = KBUILD_MODNAME,
3698 	.ids = acpi_nfit_ids,
3699 	.ops = {
3700 		.add = acpi_nfit_add,
3701 		.remove = acpi_nfit_remove,
3702 		.notify = acpi_nfit_notify,
3703 	},
3704 };
3705 
3706 static __init int nfit_init(void)
3707 {
3708 	int ret;
3709 
3710 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3711 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3712 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3713 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3714 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3715 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3716 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3717 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3718 
3719 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3720 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3721 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3722 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3723 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3724 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3725 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3726 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3727 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3728 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3729 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3730 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3731 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3732 
3733 	nfit_wq = create_singlethread_workqueue("nfit");
3734 	if (!nfit_wq)
3735 		return -ENOMEM;
3736 
3737 	nfit_mce_register();
3738 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3739 	if (ret) {
3740 		nfit_mce_unregister();
3741 		destroy_workqueue(nfit_wq);
3742 	}
3743 
3744 	return ret;
3745 
3746 }
3747 
3748 static __exit void nfit_exit(void)
3749 {
3750 	nfit_mce_unregister();
3751 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3752 	destroy_workqueue(nfit_wq);
3753 	WARN_ON(!list_empty(&acpi_descs));
3754 }
3755 
3756 module_init(nfit_init);
3757 module_exit(nfit_exit);
3758 MODULE_LICENSE("GPL v2");
3759 MODULE_AUTHOR("Intel Corporation");
3760