xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include "nfit.h"
27 
28 /*
29  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
30  * irrelevant.
31  */
32 #include <linux/io-64-nonatomic-hi-lo.h>
33 
34 static bool force_enable_dimms;
35 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
36 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
37 
38 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
39 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
40 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
41 
42 /* after three payloads of overflow, it's dead jim */
43 static unsigned int scrub_overflow_abort = 3;
44 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
45 MODULE_PARM_DESC(scrub_overflow_abort,
46 		"Number of times we overflow ARS results before abort");
47 
48 static bool disable_vendor_specific;
49 module_param(disable_vendor_specific, bool, S_IRUGO);
50 MODULE_PARM_DESC(disable_vendor_specific,
51 		"Limit commands to the publicly specified set");
52 
53 static unsigned long override_dsm_mask;
54 module_param(override_dsm_mask, ulong, S_IRUGO);
55 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
56 
57 static int default_dsm_family = -1;
58 module_param(default_dsm_family, int, S_IRUGO);
59 MODULE_PARM_DESC(default_dsm_family,
60 		"Try this DSM type first when identifying NVDIMM family");
61 
62 LIST_HEAD(acpi_descs);
63 DEFINE_MUTEX(acpi_desc_lock);
64 
65 static struct workqueue_struct *nfit_wq;
66 
67 struct nfit_table_prev {
68 	struct list_head spas;
69 	struct list_head memdevs;
70 	struct list_head dcrs;
71 	struct list_head bdws;
72 	struct list_head idts;
73 	struct list_head flushes;
74 };
75 
76 static guid_t nfit_uuid[NFIT_UUID_MAX];
77 
78 const guid_t *to_nfit_uuid(enum nfit_uuids id)
79 {
80 	return &nfit_uuid[id];
81 }
82 EXPORT_SYMBOL(to_nfit_uuid);
83 
84 static struct acpi_nfit_desc *to_acpi_nfit_desc(
85 		struct nvdimm_bus_descriptor *nd_desc)
86 {
87 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
88 }
89 
90 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
91 {
92 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
93 
94 	/*
95 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
96 	 * acpi_device.
97 	 */
98 	if (!nd_desc->provider_name
99 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
100 		return NULL;
101 
102 	return to_acpi_device(acpi_desc->dev);
103 }
104 
105 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
106 {
107 	struct nd_cmd_clear_error *clear_err;
108 	struct nd_cmd_ars_status *ars_status;
109 	u16 flags;
110 
111 	switch (cmd) {
112 	case ND_CMD_ARS_CAP:
113 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
114 			return -ENOTTY;
115 
116 		/* Command failed */
117 		if (status & 0xffff)
118 			return -EIO;
119 
120 		/* No supported scan types for this range */
121 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
122 		if ((status >> 16 & flags) == 0)
123 			return -ENOTTY;
124 		return 0;
125 	case ND_CMD_ARS_START:
126 		/* ARS is in progress */
127 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
128 			return -EBUSY;
129 
130 		/* Command failed */
131 		if (status & 0xffff)
132 			return -EIO;
133 		return 0;
134 	case ND_CMD_ARS_STATUS:
135 		ars_status = buf;
136 		/* Command failed */
137 		if (status & 0xffff)
138 			return -EIO;
139 		/* Check extended status (Upper two bytes) */
140 		if (status == NFIT_ARS_STATUS_DONE)
141 			return 0;
142 
143 		/* ARS is in progress */
144 		if (status == NFIT_ARS_STATUS_BUSY)
145 			return -EBUSY;
146 
147 		/* No ARS performed for the current boot */
148 		if (status == NFIT_ARS_STATUS_NONE)
149 			return -EAGAIN;
150 
151 		/*
152 		 * ARS interrupted, either we overflowed or some other
153 		 * agent wants the scan to stop.  If we didn't overflow
154 		 * then just continue with the returned results.
155 		 */
156 		if (status == NFIT_ARS_STATUS_INTR) {
157 			if (ars_status->out_length >= 40 && (ars_status->flags
158 						& NFIT_ARS_F_OVERFLOW))
159 				return -ENOSPC;
160 			return 0;
161 		}
162 
163 		/* Unknown status */
164 		if (status >> 16)
165 			return -EIO;
166 		return 0;
167 	case ND_CMD_CLEAR_ERROR:
168 		clear_err = buf;
169 		if (status & 0xffff)
170 			return -EIO;
171 		if (!clear_err->cleared)
172 			return -EIO;
173 		if (clear_err->length > clear_err->cleared)
174 			return clear_err->cleared;
175 		return 0;
176 	default:
177 		break;
178 	}
179 
180 	/* all other non-zero status results in an error */
181 	if (status)
182 		return -EIO;
183 	return 0;
184 }
185 
186 static int xlat_nvdimm_status(void *buf, unsigned int cmd, u32 status)
187 {
188 	switch (cmd) {
189 	case ND_CMD_GET_CONFIG_SIZE:
190 		if (status >> 16 & ND_CONFIG_LOCKED)
191 			return -EACCES;
192 		break;
193 	default:
194 		break;
195 	}
196 
197 	/* all other non-zero status results in an error */
198 	if (status)
199 		return -EIO;
200 	return 0;
201 }
202 
203 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
204 		u32 status)
205 {
206 	if (!nvdimm)
207 		return xlat_bus_status(buf, cmd, status);
208 	return xlat_nvdimm_status(buf, cmd, status);
209 }
210 
211 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
212 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
213 {
214 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
215 	union acpi_object in_obj, in_buf, *out_obj;
216 	const struct nd_cmd_desc *desc = NULL;
217 	struct device *dev = acpi_desc->dev;
218 	struct nd_cmd_pkg *call_pkg = NULL;
219 	const char *cmd_name, *dimm_name;
220 	unsigned long cmd_mask, dsm_mask;
221 	u32 offset, fw_status = 0;
222 	acpi_handle handle;
223 	unsigned int func;
224 	const guid_t *guid;
225 	int rc, i;
226 
227 	func = cmd;
228 	if (cmd == ND_CMD_CALL) {
229 		call_pkg = buf;
230 		func = call_pkg->nd_command;
231 	}
232 
233 	if (nvdimm) {
234 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
235 		struct acpi_device *adev = nfit_mem->adev;
236 
237 		if (!adev)
238 			return -ENOTTY;
239 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
240 			return -ENOTTY;
241 
242 		dimm_name = nvdimm_name(nvdimm);
243 		cmd_name = nvdimm_cmd_name(cmd);
244 		cmd_mask = nvdimm_cmd_mask(nvdimm);
245 		dsm_mask = nfit_mem->dsm_mask;
246 		desc = nd_cmd_dimm_desc(cmd);
247 		guid = to_nfit_uuid(nfit_mem->family);
248 		handle = adev->handle;
249 	} else {
250 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
251 
252 		cmd_name = nvdimm_bus_cmd_name(cmd);
253 		cmd_mask = nd_desc->cmd_mask;
254 		dsm_mask = cmd_mask;
255 		if (cmd == ND_CMD_CALL)
256 			dsm_mask = nd_desc->bus_dsm_mask;
257 		desc = nd_cmd_bus_desc(cmd);
258 		guid = to_nfit_uuid(NFIT_DEV_BUS);
259 		handle = adev->handle;
260 		dimm_name = "bus";
261 	}
262 
263 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
264 		return -ENOTTY;
265 
266 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
267 		return -ENOTTY;
268 
269 	in_obj.type = ACPI_TYPE_PACKAGE;
270 	in_obj.package.count = 1;
271 	in_obj.package.elements = &in_buf;
272 	in_buf.type = ACPI_TYPE_BUFFER;
273 	in_buf.buffer.pointer = buf;
274 	in_buf.buffer.length = 0;
275 
276 	/* libnvdimm has already validated the input envelope */
277 	for (i = 0; i < desc->in_num; i++)
278 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
279 				i, buf);
280 
281 	if (call_pkg) {
282 		/* skip over package wrapper */
283 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
284 		in_buf.buffer.length = call_pkg->nd_size_in;
285 	}
286 
287 	dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n",
288 			__func__, dimm_name, cmd, func, in_buf.buffer.length);
289 	print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
290 			in_buf.buffer.pointer,
291 			min_t(u32, 256, in_buf.buffer.length), true);
292 
293 	out_obj = acpi_evaluate_dsm(handle, guid, 1, func, &in_obj);
294 	if (!out_obj) {
295 		dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
296 				cmd_name);
297 		return -EINVAL;
298 	}
299 
300 	if (call_pkg) {
301 		call_pkg->nd_fw_size = out_obj->buffer.length;
302 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
303 			out_obj->buffer.pointer,
304 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
305 
306 		ACPI_FREE(out_obj);
307 		/*
308 		 * Need to support FW function w/o known size in advance.
309 		 * Caller can determine required size based upon nd_fw_size.
310 		 * If we return an error (like elsewhere) then caller wouldn't
311 		 * be able to rely upon data returned to make calculation.
312 		 */
313 		return 0;
314 	}
315 
316 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
317 		dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n",
318 				__func__, dimm_name, cmd_name, out_obj->type);
319 		rc = -EINVAL;
320 		goto out;
321 	}
322 
323 	dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__, dimm_name,
324 			cmd_name, out_obj->buffer.length);
325 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
326 			out_obj->buffer.pointer,
327 			min_t(u32, 128, out_obj->buffer.length), true);
328 
329 	for (i = 0, offset = 0; i < desc->out_num; i++) {
330 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
331 				(u32 *) out_obj->buffer.pointer,
332 				out_obj->buffer.length - offset);
333 
334 		if (offset + out_size > out_obj->buffer.length) {
335 			dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
336 					__func__, dimm_name, cmd_name, i);
337 			break;
338 		}
339 
340 		if (in_buf.buffer.length + offset + out_size > buf_len) {
341 			dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
342 					__func__, dimm_name, cmd_name, i);
343 			rc = -ENXIO;
344 			goto out;
345 		}
346 		memcpy(buf + in_buf.buffer.length + offset,
347 				out_obj->buffer.pointer + offset, out_size);
348 		offset += out_size;
349 	}
350 
351 	/*
352 	 * Set fw_status for all the commands with a known format to be
353 	 * later interpreted by xlat_status().
354 	 */
355 	if (i >= 1 && ((cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR)
356 			|| (cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR)))
357 		fw_status = *(u32 *) out_obj->buffer.pointer;
358 
359 	if (offset + in_buf.buffer.length < buf_len) {
360 		if (i >= 1) {
361 			/*
362 			 * status valid, return the number of bytes left
363 			 * unfilled in the output buffer
364 			 */
365 			rc = buf_len - offset - in_buf.buffer.length;
366 			if (cmd_rc)
367 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
368 						fw_status);
369 		} else {
370 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
371 					__func__, dimm_name, cmd_name, buf_len,
372 					offset);
373 			rc = -ENXIO;
374 		}
375 	} else {
376 		rc = 0;
377 		if (cmd_rc)
378 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
379 	}
380 
381  out:
382 	ACPI_FREE(out_obj);
383 
384 	return rc;
385 }
386 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
387 
388 static const char *spa_type_name(u16 type)
389 {
390 	static const char *to_name[] = {
391 		[NFIT_SPA_VOLATILE] = "volatile",
392 		[NFIT_SPA_PM] = "pmem",
393 		[NFIT_SPA_DCR] = "dimm-control-region",
394 		[NFIT_SPA_BDW] = "block-data-window",
395 		[NFIT_SPA_VDISK] = "volatile-disk",
396 		[NFIT_SPA_VCD] = "volatile-cd",
397 		[NFIT_SPA_PDISK] = "persistent-disk",
398 		[NFIT_SPA_PCD] = "persistent-cd",
399 
400 	};
401 
402 	if (type > NFIT_SPA_PCD)
403 		return "unknown";
404 
405 	return to_name[type];
406 }
407 
408 int nfit_spa_type(struct acpi_nfit_system_address *spa)
409 {
410 	int i;
411 
412 	for (i = 0; i < NFIT_UUID_MAX; i++)
413 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
414 			return i;
415 	return -1;
416 }
417 
418 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
419 		struct nfit_table_prev *prev,
420 		struct acpi_nfit_system_address *spa)
421 {
422 	struct device *dev = acpi_desc->dev;
423 	struct nfit_spa *nfit_spa;
424 
425 	if (spa->header.length != sizeof(*spa))
426 		return false;
427 
428 	list_for_each_entry(nfit_spa, &prev->spas, list) {
429 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
430 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
431 			return true;
432 		}
433 	}
434 
435 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
436 			GFP_KERNEL);
437 	if (!nfit_spa)
438 		return false;
439 	INIT_LIST_HEAD(&nfit_spa->list);
440 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
441 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
442 	dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
443 			spa->range_index,
444 			spa_type_name(nfit_spa_type(spa)));
445 	return true;
446 }
447 
448 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
449 		struct nfit_table_prev *prev,
450 		struct acpi_nfit_memory_map *memdev)
451 {
452 	struct device *dev = acpi_desc->dev;
453 	struct nfit_memdev *nfit_memdev;
454 
455 	if (memdev->header.length != sizeof(*memdev))
456 		return false;
457 
458 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
459 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
460 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
461 			return true;
462 		}
463 
464 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
465 			GFP_KERNEL);
466 	if (!nfit_memdev)
467 		return false;
468 	INIT_LIST_HEAD(&nfit_memdev->list);
469 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
470 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
471 	dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
472 			__func__, memdev->device_handle, memdev->range_index,
473 			memdev->region_index, memdev->flags);
474 	return true;
475 }
476 
477 /*
478  * An implementation may provide a truncated control region if no block windows
479  * are defined.
480  */
481 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
482 {
483 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
484 				window_size))
485 		return 0;
486 	if (dcr->windows)
487 		return sizeof(*dcr);
488 	return offsetof(struct acpi_nfit_control_region, window_size);
489 }
490 
491 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
492 		struct nfit_table_prev *prev,
493 		struct acpi_nfit_control_region *dcr)
494 {
495 	struct device *dev = acpi_desc->dev;
496 	struct nfit_dcr *nfit_dcr;
497 
498 	if (!sizeof_dcr(dcr))
499 		return false;
500 
501 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
502 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
503 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
504 			return true;
505 		}
506 
507 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
508 			GFP_KERNEL);
509 	if (!nfit_dcr)
510 		return false;
511 	INIT_LIST_HEAD(&nfit_dcr->list);
512 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
513 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
514 	dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
515 			dcr->region_index, dcr->windows);
516 	return true;
517 }
518 
519 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
520 		struct nfit_table_prev *prev,
521 		struct acpi_nfit_data_region *bdw)
522 {
523 	struct device *dev = acpi_desc->dev;
524 	struct nfit_bdw *nfit_bdw;
525 
526 	if (bdw->header.length != sizeof(*bdw))
527 		return false;
528 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
529 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
530 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
531 			return true;
532 		}
533 
534 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
535 			GFP_KERNEL);
536 	if (!nfit_bdw)
537 		return false;
538 	INIT_LIST_HEAD(&nfit_bdw->list);
539 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
540 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
541 	dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
542 			bdw->region_index, bdw->windows);
543 	return true;
544 }
545 
546 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
547 {
548 	if (idt->header.length < sizeof(*idt))
549 		return 0;
550 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
551 }
552 
553 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
554 		struct nfit_table_prev *prev,
555 		struct acpi_nfit_interleave *idt)
556 {
557 	struct device *dev = acpi_desc->dev;
558 	struct nfit_idt *nfit_idt;
559 
560 	if (!sizeof_idt(idt))
561 		return false;
562 
563 	list_for_each_entry(nfit_idt, &prev->idts, list) {
564 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
565 			continue;
566 
567 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
568 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
569 			return true;
570 		}
571 	}
572 
573 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
574 			GFP_KERNEL);
575 	if (!nfit_idt)
576 		return false;
577 	INIT_LIST_HEAD(&nfit_idt->list);
578 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
579 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
580 	dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
581 			idt->interleave_index, idt->line_count);
582 	return true;
583 }
584 
585 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
586 {
587 	if (flush->header.length < sizeof(*flush))
588 		return 0;
589 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
590 }
591 
592 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
593 		struct nfit_table_prev *prev,
594 		struct acpi_nfit_flush_address *flush)
595 {
596 	struct device *dev = acpi_desc->dev;
597 	struct nfit_flush *nfit_flush;
598 
599 	if (!sizeof_flush(flush))
600 		return false;
601 
602 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
603 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
604 			continue;
605 
606 		if (memcmp(nfit_flush->flush, flush,
607 					sizeof_flush(flush)) == 0) {
608 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
609 			return true;
610 		}
611 	}
612 
613 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
614 			+ sizeof_flush(flush), GFP_KERNEL);
615 	if (!nfit_flush)
616 		return false;
617 	INIT_LIST_HEAD(&nfit_flush->list);
618 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
619 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
620 	dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
621 			flush->device_handle, flush->hint_count);
622 	return true;
623 }
624 
625 static void *add_table(struct acpi_nfit_desc *acpi_desc,
626 		struct nfit_table_prev *prev, void *table, const void *end)
627 {
628 	struct device *dev = acpi_desc->dev;
629 	struct acpi_nfit_header *hdr;
630 	void *err = ERR_PTR(-ENOMEM);
631 
632 	if (table >= end)
633 		return NULL;
634 
635 	hdr = table;
636 	if (!hdr->length) {
637 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
638 			hdr->type);
639 		return NULL;
640 	}
641 
642 	switch (hdr->type) {
643 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
644 		if (!add_spa(acpi_desc, prev, table))
645 			return err;
646 		break;
647 	case ACPI_NFIT_TYPE_MEMORY_MAP:
648 		if (!add_memdev(acpi_desc, prev, table))
649 			return err;
650 		break;
651 	case ACPI_NFIT_TYPE_CONTROL_REGION:
652 		if (!add_dcr(acpi_desc, prev, table))
653 			return err;
654 		break;
655 	case ACPI_NFIT_TYPE_DATA_REGION:
656 		if (!add_bdw(acpi_desc, prev, table))
657 			return err;
658 		break;
659 	case ACPI_NFIT_TYPE_INTERLEAVE:
660 		if (!add_idt(acpi_desc, prev, table))
661 			return err;
662 		break;
663 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
664 		if (!add_flush(acpi_desc, prev, table))
665 			return err;
666 		break;
667 	case ACPI_NFIT_TYPE_SMBIOS:
668 		dev_dbg(dev, "%s: smbios\n", __func__);
669 		break;
670 	default:
671 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
672 		break;
673 	}
674 
675 	return table + hdr->length;
676 }
677 
678 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
679 		struct nfit_mem *nfit_mem)
680 {
681 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
682 	u16 dcr = nfit_mem->dcr->region_index;
683 	struct nfit_spa *nfit_spa;
684 
685 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
686 		u16 range_index = nfit_spa->spa->range_index;
687 		int type = nfit_spa_type(nfit_spa->spa);
688 		struct nfit_memdev *nfit_memdev;
689 
690 		if (type != NFIT_SPA_BDW)
691 			continue;
692 
693 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
694 			if (nfit_memdev->memdev->range_index != range_index)
695 				continue;
696 			if (nfit_memdev->memdev->device_handle != device_handle)
697 				continue;
698 			if (nfit_memdev->memdev->region_index != dcr)
699 				continue;
700 
701 			nfit_mem->spa_bdw = nfit_spa->spa;
702 			return;
703 		}
704 	}
705 
706 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
707 			nfit_mem->spa_dcr->range_index);
708 	nfit_mem->bdw = NULL;
709 }
710 
711 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
712 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
713 {
714 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
715 	struct nfit_memdev *nfit_memdev;
716 	struct nfit_bdw *nfit_bdw;
717 	struct nfit_idt *nfit_idt;
718 	u16 idt_idx, range_index;
719 
720 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
721 		if (nfit_bdw->bdw->region_index != dcr)
722 			continue;
723 		nfit_mem->bdw = nfit_bdw->bdw;
724 		break;
725 	}
726 
727 	if (!nfit_mem->bdw)
728 		return;
729 
730 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
731 
732 	if (!nfit_mem->spa_bdw)
733 		return;
734 
735 	range_index = nfit_mem->spa_bdw->range_index;
736 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
737 		if (nfit_memdev->memdev->range_index != range_index ||
738 				nfit_memdev->memdev->region_index != dcr)
739 			continue;
740 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
741 		idt_idx = nfit_memdev->memdev->interleave_index;
742 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
743 			if (nfit_idt->idt->interleave_index != idt_idx)
744 				continue;
745 			nfit_mem->idt_bdw = nfit_idt->idt;
746 			break;
747 		}
748 		break;
749 	}
750 }
751 
752 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
753 		struct acpi_nfit_system_address *spa)
754 {
755 	struct nfit_mem *nfit_mem, *found;
756 	struct nfit_memdev *nfit_memdev;
757 	int type = spa ? nfit_spa_type(spa) : 0;
758 
759 	switch (type) {
760 	case NFIT_SPA_DCR:
761 	case NFIT_SPA_PM:
762 		break;
763 	default:
764 		if (spa)
765 			return 0;
766 	}
767 
768 	/*
769 	 * This loop runs in two modes, when a dimm is mapped the loop
770 	 * adds memdev associations to an existing dimm, or creates a
771 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
772 	 * instances with an invalid / zero range_index and adds those
773 	 * dimms without spa associations.
774 	 */
775 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
776 		struct nfit_flush *nfit_flush;
777 		struct nfit_dcr *nfit_dcr;
778 		u32 device_handle;
779 		u16 dcr;
780 
781 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
782 			continue;
783 		if (!spa && nfit_memdev->memdev->range_index)
784 			continue;
785 		found = NULL;
786 		dcr = nfit_memdev->memdev->region_index;
787 		device_handle = nfit_memdev->memdev->device_handle;
788 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
789 			if (__to_nfit_memdev(nfit_mem)->device_handle
790 					== device_handle) {
791 				found = nfit_mem;
792 				break;
793 			}
794 
795 		if (found)
796 			nfit_mem = found;
797 		else {
798 			nfit_mem = devm_kzalloc(acpi_desc->dev,
799 					sizeof(*nfit_mem), GFP_KERNEL);
800 			if (!nfit_mem)
801 				return -ENOMEM;
802 			INIT_LIST_HEAD(&nfit_mem->list);
803 			nfit_mem->acpi_desc = acpi_desc;
804 			list_add(&nfit_mem->list, &acpi_desc->dimms);
805 		}
806 
807 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
808 			if (nfit_dcr->dcr->region_index != dcr)
809 				continue;
810 			/*
811 			 * Record the control region for the dimm.  For
812 			 * the ACPI 6.1 case, where there are separate
813 			 * control regions for the pmem vs blk
814 			 * interfaces, be sure to record the extended
815 			 * blk details.
816 			 */
817 			if (!nfit_mem->dcr)
818 				nfit_mem->dcr = nfit_dcr->dcr;
819 			else if (nfit_mem->dcr->windows == 0
820 					&& nfit_dcr->dcr->windows)
821 				nfit_mem->dcr = nfit_dcr->dcr;
822 			break;
823 		}
824 
825 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
826 			struct acpi_nfit_flush_address *flush;
827 			u16 i;
828 
829 			if (nfit_flush->flush->device_handle != device_handle)
830 				continue;
831 			nfit_mem->nfit_flush = nfit_flush;
832 			flush = nfit_flush->flush;
833 			nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
834 					flush->hint_count
835 					* sizeof(struct resource), GFP_KERNEL);
836 			if (!nfit_mem->flush_wpq)
837 				return -ENOMEM;
838 			for (i = 0; i < flush->hint_count; i++) {
839 				struct resource *res = &nfit_mem->flush_wpq[i];
840 
841 				res->start = flush->hint_address[i];
842 				res->end = res->start + 8 - 1;
843 			}
844 			break;
845 		}
846 
847 		if (dcr && !nfit_mem->dcr) {
848 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
849 					spa->range_index, dcr);
850 			return -ENODEV;
851 		}
852 
853 		if (type == NFIT_SPA_DCR) {
854 			struct nfit_idt *nfit_idt;
855 			u16 idt_idx;
856 
857 			/* multiple dimms may share a SPA when interleaved */
858 			nfit_mem->spa_dcr = spa;
859 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
860 			idt_idx = nfit_memdev->memdev->interleave_index;
861 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
862 				if (nfit_idt->idt->interleave_index != idt_idx)
863 					continue;
864 				nfit_mem->idt_dcr = nfit_idt->idt;
865 				break;
866 			}
867 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
868 		} else if (type == NFIT_SPA_PM) {
869 			/*
870 			 * A single dimm may belong to multiple SPA-PM
871 			 * ranges, record at least one in addition to
872 			 * any SPA-DCR range.
873 			 */
874 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
875 		} else
876 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
877 	}
878 
879 	return 0;
880 }
881 
882 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
883 {
884 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
885 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
886 	u32 handleA, handleB;
887 
888 	handleA = __to_nfit_memdev(a)->device_handle;
889 	handleB = __to_nfit_memdev(b)->device_handle;
890 	if (handleA < handleB)
891 		return -1;
892 	else if (handleA > handleB)
893 		return 1;
894 	return 0;
895 }
896 
897 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
898 {
899 	struct nfit_spa *nfit_spa;
900 	int rc;
901 
902 
903 	/*
904 	 * For each SPA-DCR or SPA-PMEM address range find its
905 	 * corresponding MEMDEV(s).  From each MEMDEV find the
906 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
907 	 * try to find a SPA-BDW and a corresponding BDW that references
908 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
909 	 * BDWs are optional.
910 	 */
911 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
912 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
913 		if (rc)
914 			return rc;
915 	}
916 
917 	/*
918 	 * If a DIMM has failed to be mapped into SPA there will be no
919 	 * SPA entries above. Find and register all the unmapped DIMMs
920 	 * for reporting and recovery purposes.
921 	 */
922 	rc = __nfit_mem_init(acpi_desc, NULL);
923 	if (rc)
924 		return rc;
925 
926 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
927 
928 	return 0;
929 }
930 
931 static ssize_t bus_dsm_mask_show(struct device *dev,
932 		struct device_attribute *attr, char *buf)
933 {
934 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
935 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
936 
937 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
938 }
939 static struct device_attribute dev_attr_bus_dsm_mask =
940 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
941 
942 static ssize_t revision_show(struct device *dev,
943 		struct device_attribute *attr, char *buf)
944 {
945 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
946 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
947 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
948 
949 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
950 }
951 static DEVICE_ATTR_RO(revision);
952 
953 static ssize_t hw_error_scrub_show(struct device *dev,
954 		struct device_attribute *attr, char *buf)
955 {
956 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
957 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
958 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
959 
960 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
961 }
962 
963 /*
964  * The 'hw_error_scrub' attribute can have the following values written to it:
965  * '0': Switch to the default mode where an exception will only insert
966  *      the address of the memory error into the poison and badblocks lists.
967  * '1': Enable a full scrub to happen if an exception for a memory error is
968  *      received.
969  */
970 static ssize_t hw_error_scrub_store(struct device *dev,
971 		struct device_attribute *attr, const char *buf, size_t size)
972 {
973 	struct nvdimm_bus_descriptor *nd_desc;
974 	ssize_t rc;
975 	long val;
976 
977 	rc = kstrtol(buf, 0, &val);
978 	if (rc)
979 		return rc;
980 
981 	device_lock(dev);
982 	nd_desc = dev_get_drvdata(dev);
983 	if (nd_desc) {
984 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
985 
986 		switch (val) {
987 		case HW_ERROR_SCRUB_ON:
988 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
989 			break;
990 		case HW_ERROR_SCRUB_OFF:
991 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
992 			break;
993 		default:
994 			rc = -EINVAL;
995 			break;
996 		}
997 	}
998 	device_unlock(dev);
999 	if (rc)
1000 		return rc;
1001 	return size;
1002 }
1003 static DEVICE_ATTR_RW(hw_error_scrub);
1004 
1005 /*
1006  * This shows the number of full Address Range Scrubs that have been
1007  * completed since driver load time. Userspace can wait on this using
1008  * select/poll etc. A '+' at the end indicates an ARS is in progress
1009  */
1010 static ssize_t scrub_show(struct device *dev,
1011 		struct device_attribute *attr, char *buf)
1012 {
1013 	struct nvdimm_bus_descriptor *nd_desc;
1014 	ssize_t rc = -ENXIO;
1015 
1016 	device_lock(dev);
1017 	nd_desc = dev_get_drvdata(dev);
1018 	if (nd_desc) {
1019 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1020 
1021 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1022 				(work_busy(&acpi_desc->work)) ? "+\n" : "\n");
1023 	}
1024 	device_unlock(dev);
1025 	return rc;
1026 }
1027 
1028 static ssize_t scrub_store(struct device *dev,
1029 		struct device_attribute *attr, const char *buf, size_t size)
1030 {
1031 	struct nvdimm_bus_descriptor *nd_desc;
1032 	ssize_t rc;
1033 	long val;
1034 
1035 	rc = kstrtol(buf, 0, &val);
1036 	if (rc)
1037 		return rc;
1038 	if (val != 1)
1039 		return -EINVAL;
1040 
1041 	device_lock(dev);
1042 	nd_desc = dev_get_drvdata(dev);
1043 	if (nd_desc) {
1044 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1045 
1046 		rc = acpi_nfit_ars_rescan(acpi_desc, 0);
1047 	}
1048 	device_unlock(dev);
1049 	if (rc)
1050 		return rc;
1051 	return size;
1052 }
1053 static DEVICE_ATTR_RW(scrub);
1054 
1055 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1056 {
1057 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1058 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1059 		| 1 << ND_CMD_ARS_STATUS;
1060 
1061 	return (nd_desc->cmd_mask & mask) == mask;
1062 }
1063 
1064 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1065 {
1066 	struct device *dev = container_of(kobj, struct device, kobj);
1067 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1068 
1069 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1070 		return 0;
1071 	return a->mode;
1072 }
1073 
1074 static struct attribute *acpi_nfit_attributes[] = {
1075 	&dev_attr_revision.attr,
1076 	&dev_attr_scrub.attr,
1077 	&dev_attr_hw_error_scrub.attr,
1078 	&dev_attr_bus_dsm_mask.attr,
1079 	NULL,
1080 };
1081 
1082 static const struct attribute_group acpi_nfit_attribute_group = {
1083 	.name = "nfit",
1084 	.attrs = acpi_nfit_attributes,
1085 	.is_visible = nfit_visible,
1086 };
1087 
1088 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1089 	&nvdimm_bus_attribute_group,
1090 	&acpi_nfit_attribute_group,
1091 	NULL,
1092 };
1093 
1094 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1095 {
1096 	struct nvdimm *nvdimm = to_nvdimm(dev);
1097 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1098 
1099 	return __to_nfit_memdev(nfit_mem);
1100 }
1101 
1102 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1103 {
1104 	struct nvdimm *nvdimm = to_nvdimm(dev);
1105 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1106 
1107 	return nfit_mem->dcr;
1108 }
1109 
1110 static ssize_t handle_show(struct device *dev,
1111 		struct device_attribute *attr, char *buf)
1112 {
1113 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1114 
1115 	return sprintf(buf, "%#x\n", memdev->device_handle);
1116 }
1117 static DEVICE_ATTR_RO(handle);
1118 
1119 static ssize_t phys_id_show(struct device *dev,
1120 		struct device_attribute *attr, char *buf)
1121 {
1122 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1123 
1124 	return sprintf(buf, "%#x\n", memdev->physical_id);
1125 }
1126 static DEVICE_ATTR_RO(phys_id);
1127 
1128 static ssize_t vendor_show(struct device *dev,
1129 		struct device_attribute *attr, char *buf)
1130 {
1131 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1132 
1133 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1134 }
1135 static DEVICE_ATTR_RO(vendor);
1136 
1137 static ssize_t rev_id_show(struct device *dev,
1138 		struct device_attribute *attr, char *buf)
1139 {
1140 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1141 
1142 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1143 }
1144 static DEVICE_ATTR_RO(rev_id);
1145 
1146 static ssize_t device_show(struct device *dev,
1147 		struct device_attribute *attr, char *buf)
1148 {
1149 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1150 
1151 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1152 }
1153 static DEVICE_ATTR_RO(device);
1154 
1155 static ssize_t subsystem_vendor_show(struct device *dev,
1156 		struct device_attribute *attr, char *buf)
1157 {
1158 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1159 
1160 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1161 }
1162 static DEVICE_ATTR_RO(subsystem_vendor);
1163 
1164 static ssize_t subsystem_rev_id_show(struct device *dev,
1165 		struct device_attribute *attr, char *buf)
1166 {
1167 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1168 
1169 	return sprintf(buf, "0x%04x\n",
1170 			be16_to_cpu(dcr->subsystem_revision_id));
1171 }
1172 static DEVICE_ATTR_RO(subsystem_rev_id);
1173 
1174 static ssize_t subsystem_device_show(struct device *dev,
1175 		struct device_attribute *attr, char *buf)
1176 {
1177 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1178 
1179 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1180 }
1181 static DEVICE_ATTR_RO(subsystem_device);
1182 
1183 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1184 {
1185 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1186 	int formats = 0;
1187 
1188 	if (nfit_mem->memdev_pmem)
1189 		formats++;
1190 	if (nfit_mem->memdev_bdw)
1191 		formats++;
1192 	return formats;
1193 }
1194 
1195 static ssize_t format_show(struct device *dev,
1196 		struct device_attribute *attr, char *buf)
1197 {
1198 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1199 
1200 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1201 }
1202 static DEVICE_ATTR_RO(format);
1203 
1204 static ssize_t format1_show(struct device *dev,
1205 		struct device_attribute *attr, char *buf)
1206 {
1207 	u32 handle;
1208 	ssize_t rc = -ENXIO;
1209 	struct nfit_mem *nfit_mem;
1210 	struct nfit_memdev *nfit_memdev;
1211 	struct acpi_nfit_desc *acpi_desc;
1212 	struct nvdimm *nvdimm = to_nvdimm(dev);
1213 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1214 
1215 	nfit_mem = nvdimm_provider_data(nvdimm);
1216 	acpi_desc = nfit_mem->acpi_desc;
1217 	handle = to_nfit_memdev(dev)->device_handle;
1218 
1219 	/* assumes DIMMs have at most 2 published interface codes */
1220 	mutex_lock(&acpi_desc->init_mutex);
1221 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1222 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1223 		struct nfit_dcr *nfit_dcr;
1224 
1225 		if (memdev->device_handle != handle)
1226 			continue;
1227 
1228 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1229 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1230 				continue;
1231 			if (nfit_dcr->dcr->code == dcr->code)
1232 				continue;
1233 			rc = sprintf(buf, "0x%04x\n",
1234 					le16_to_cpu(nfit_dcr->dcr->code));
1235 			break;
1236 		}
1237 		if (rc != ENXIO)
1238 			break;
1239 	}
1240 	mutex_unlock(&acpi_desc->init_mutex);
1241 	return rc;
1242 }
1243 static DEVICE_ATTR_RO(format1);
1244 
1245 static ssize_t formats_show(struct device *dev,
1246 		struct device_attribute *attr, char *buf)
1247 {
1248 	struct nvdimm *nvdimm = to_nvdimm(dev);
1249 
1250 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1251 }
1252 static DEVICE_ATTR_RO(formats);
1253 
1254 static ssize_t serial_show(struct device *dev,
1255 		struct device_attribute *attr, char *buf)
1256 {
1257 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1258 
1259 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1260 }
1261 static DEVICE_ATTR_RO(serial);
1262 
1263 static ssize_t family_show(struct device *dev,
1264 		struct device_attribute *attr, char *buf)
1265 {
1266 	struct nvdimm *nvdimm = to_nvdimm(dev);
1267 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1268 
1269 	if (nfit_mem->family < 0)
1270 		return -ENXIO;
1271 	return sprintf(buf, "%d\n", nfit_mem->family);
1272 }
1273 static DEVICE_ATTR_RO(family);
1274 
1275 static ssize_t dsm_mask_show(struct device *dev,
1276 		struct device_attribute *attr, char *buf)
1277 {
1278 	struct nvdimm *nvdimm = to_nvdimm(dev);
1279 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1280 
1281 	if (nfit_mem->family < 0)
1282 		return -ENXIO;
1283 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1284 }
1285 static DEVICE_ATTR_RO(dsm_mask);
1286 
1287 static ssize_t flags_show(struct device *dev,
1288 		struct device_attribute *attr, char *buf)
1289 {
1290 	u16 flags = to_nfit_memdev(dev)->flags;
1291 
1292 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1293 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1294 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1295 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1296 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1297 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1298 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1299 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1300 }
1301 static DEVICE_ATTR_RO(flags);
1302 
1303 static ssize_t id_show(struct device *dev,
1304 		struct device_attribute *attr, char *buf)
1305 {
1306 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1307 
1308 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1309 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1310 				be16_to_cpu(dcr->vendor_id),
1311 				dcr->manufacturing_location,
1312 				be16_to_cpu(dcr->manufacturing_date),
1313 				be32_to_cpu(dcr->serial_number));
1314 	else
1315 		return sprintf(buf, "%04x-%08x\n",
1316 				be16_to_cpu(dcr->vendor_id),
1317 				be32_to_cpu(dcr->serial_number));
1318 }
1319 static DEVICE_ATTR_RO(id);
1320 
1321 static struct attribute *acpi_nfit_dimm_attributes[] = {
1322 	&dev_attr_handle.attr,
1323 	&dev_attr_phys_id.attr,
1324 	&dev_attr_vendor.attr,
1325 	&dev_attr_device.attr,
1326 	&dev_attr_rev_id.attr,
1327 	&dev_attr_subsystem_vendor.attr,
1328 	&dev_attr_subsystem_device.attr,
1329 	&dev_attr_subsystem_rev_id.attr,
1330 	&dev_attr_format.attr,
1331 	&dev_attr_formats.attr,
1332 	&dev_attr_format1.attr,
1333 	&dev_attr_serial.attr,
1334 	&dev_attr_flags.attr,
1335 	&dev_attr_id.attr,
1336 	&dev_attr_family.attr,
1337 	&dev_attr_dsm_mask.attr,
1338 	NULL,
1339 };
1340 
1341 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1342 		struct attribute *a, int n)
1343 {
1344 	struct device *dev = container_of(kobj, struct device, kobj);
1345 	struct nvdimm *nvdimm = to_nvdimm(dev);
1346 
1347 	if (!to_nfit_dcr(dev)) {
1348 		/* Without a dcr only the memdev attributes can be surfaced */
1349 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1350 				|| a == &dev_attr_flags.attr
1351 				|| a == &dev_attr_family.attr
1352 				|| a == &dev_attr_dsm_mask.attr)
1353 			return a->mode;
1354 		return 0;
1355 	}
1356 
1357 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1358 		return 0;
1359 	return a->mode;
1360 }
1361 
1362 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1363 	.name = "nfit",
1364 	.attrs = acpi_nfit_dimm_attributes,
1365 	.is_visible = acpi_nfit_dimm_attr_visible,
1366 };
1367 
1368 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1369 	&nvdimm_attribute_group,
1370 	&nd_device_attribute_group,
1371 	&acpi_nfit_dimm_attribute_group,
1372 	NULL,
1373 };
1374 
1375 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1376 		u32 device_handle)
1377 {
1378 	struct nfit_mem *nfit_mem;
1379 
1380 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1381 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1382 			return nfit_mem->nvdimm;
1383 
1384 	return NULL;
1385 }
1386 
1387 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1388 {
1389 	struct nfit_mem *nfit_mem;
1390 	struct acpi_nfit_desc *acpi_desc;
1391 
1392 	dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__,
1393 			event);
1394 
1395 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1396 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1397 				event);
1398 		return;
1399 	}
1400 
1401 	acpi_desc = dev_get_drvdata(dev->parent);
1402 	if (!acpi_desc)
1403 		return;
1404 
1405 	/*
1406 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1407 	 * is still valid.
1408 	 */
1409 	nfit_mem = dev_get_drvdata(dev);
1410 	if (nfit_mem && nfit_mem->flags_attr)
1411 		sysfs_notify_dirent(nfit_mem->flags_attr);
1412 }
1413 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1414 
1415 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1416 {
1417 	struct acpi_device *adev = data;
1418 	struct device *dev = &adev->dev;
1419 
1420 	device_lock(dev->parent);
1421 	__acpi_nvdimm_notify(dev, event);
1422 	device_unlock(dev->parent);
1423 }
1424 
1425 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1426 		struct nfit_mem *nfit_mem, u32 device_handle)
1427 {
1428 	struct acpi_device *adev, *adev_dimm;
1429 	struct device *dev = acpi_desc->dev;
1430 	unsigned long dsm_mask;
1431 	const guid_t *guid;
1432 	int i;
1433 	int family = -1;
1434 
1435 	/* nfit test assumes 1:1 relationship between commands and dsms */
1436 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1437 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1438 	adev = to_acpi_dev(acpi_desc);
1439 	if (!adev)
1440 		return 0;
1441 
1442 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1443 	nfit_mem->adev = adev_dimm;
1444 	if (!adev_dimm) {
1445 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1446 				device_handle);
1447 		return force_enable_dimms ? 0 : -ENODEV;
1448 	}
1449 
1450 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1451 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1452 		dev_err(dev, "%s: notification registration failed\n",
1453 				dev_name(&adev_dimm->dev));
1454 		return -ENXIO;
1455 	}
1456 
1457 	/*
1458 	 * Until standardization materializes we need to consider 4
1459 	 * different command sets.  Note, that checking for function0 (bit0)
1460 	 * tells us if any commands are reachable through this GUID.
1461 	 */
1462 	for (i = NVDIMM_FAMILY_INTEL; i <= NVDIMM_FAMILY_MSFT; i++)
1463 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1464 			if (family < 0 || i == default_dsm_family)
1465 				family = i;
1466 
1467 	/* limit the supported commands to those that are publicly documented */
1468 	nfit_mem->family = family;
1469 	if (override_dsm_mask && !disable_vendor_specific)
1470 		dsm_mask = override_dsm_mask;
1471 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1472 		dsm_mask = 0x3fe;
1473 		if (disable_vendor_specific)
1474 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1475 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1476 		dsm_mask = 0x1c3c76;
1477 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1478 		dsm_mask = 0x1fe;
1479 		if (disable_vendor_specific)
1480 			dsm_mask &= ~(1 << 8);
1481 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1482 		dsm_mask = 0xffffffff;
1483 	} else {
1484 		dev_dbg(dev, "unknown dimm command family\n");
1485 		nfit_mem->family = -1;
1486 		/* DSMs are optional, continue loading the driver... */
1487 		return 0;
1488 	}
1489 
1490 	guid = to_nfit_uuid(nfit_mem->family);
1491 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1492 		if (acpi_check_dsm(adev_dimm->handle, guid, 1, 1ULL << i))
1493 			set_bit(i, &nfit_mem->dsm_mask);
1494 
1495 	return 0;
1496 }
1497 
1498 static void shutdown_dimm_notify(void *data)
1499 {
1500 	struct acpi_nfit_desc *acpi_desc = data;
1501 	struct nfit_mem *nfit_mem;
1502 
1503 	mutex_lock(&acpi_desc->init_mutex);
1504 	/*
1505 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1506 	 * notifications.
1507 	 */
1508 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1509 		struct acpi_device *adev_dimm = nfit_mem->adev;
1510 
1511 		if (nfit_mem->flags_attr) {
1512 			sysfs_put(nfit_mem->flags_attr);
1513 			nfit_mem->flags_attr = NULL;
1514 		}
1515 		if (adev_dimm)
1516 			acpi_remove_notify_handler(adev_dimm->handle,
1517 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1518 	}
1519 	mutex_unlock(&acpi_desc->init_mutex);
1520 }
1521 
1522 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1523 {
1524 	struct nfit_mem *nfit_mem;
1525 	int dimm_count = 0, rc;
1526 	struct nvdimm *nvdimm;
1527 
1528 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1529 		struct acpi_nfit_flush_address *flush;
1530 		unsigned long flags = 0, cmd_mask;
1531 		struct nfit_memdev *nfit_memdev;
1532 		u32 device_handle;
1533 		u16 mem_flags;
1534 
1535 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1536 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1537 		if (nvdimm) {
1538 			dimm_count++;
1539 			continue;
1540 		}
1541 
1542 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1543 			set_bit(NDD_ALIASING, &flags);
1544 
1545 		/* collate flags across all memdevs for this dimm */
1546 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1547 			struct acpi_nfit_memory_map *dimm_memdev;
1548 
1549 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1550 			if (dimm_memdev->device_handle
1551 					!= nfit_memdev->memdev->device_handle)
1552 				continue;
1553 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1554 		}
1555 
1556 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1557 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1558 			set_bit(NDD_UNARMED, &flags);
1559 
1560 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1561 		if (rc)
1562 			continue;
1563 
1564 		/*
1565 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1566 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1567 		 * userspace interface.
1568 		 */
1569 		cmd_mask = 1UL << ND_CMD_CALL;
1570 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1571 			cmd_mask |= nfit_mem->dsm_mask;
1572 
1573 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1574 			: NULL;
1575 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1576 				acpi_nfit_dimm_attribute_groups,
1577 				flags, cmd_mask, flush ? flush->hint_count : 0,
1578 				nfit_mem->flush_wpq);
1579 		if (!nvdimm)
1580 			return -ENOMEM;
1581 
1582 		nfit_mem->nvdimm = nvdimm;
1583 		dimm_count++;
1584 
1585 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1586 			continue;
1587 
1588 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
1589 				nvdimm_name(nvdimm),
1590 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1591 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1592 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1593 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
1594 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
1595 
1596 	}
1597 
1598 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1599 	if (rc)
1600 		return rc;
1601 
1602 	/*
1603 	 * Now that dimms are successfully registered, and async registration
1604 	 * is flushed, attempt to enable event notification.
1605 	 */
1606 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1607 		struct kernfs_node *nfit_kernfs;
1608 
1609 		nvdimm = nfit_mem->nvdimm;
1610 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1611 		if (nfit_kernfs)
1612 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1613 					"flags");
1614 		sysfs_put(nfit_kernfs);
1615 		if (!nfit_mem->flags_attr)
1616 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1617 					nvdimm_name(nvdimm));
1618 	}
1619 
1620 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1621 			acpi_desc);
1622 }
1623 
1624 /*
1625  * These constants are private because there are no kernel consumers of
1626  * these commands.
1627  */
1628 enum nfit_aux_cmds {
1629         NFIT_CMD_TRANSLATE_SPA = 5,
1630         NFIT_CMD_ARS_INJECT_SET = 7,
1631         NFIT_CMD_ARS_INJECT_CLEAR = 8,
1632         NFIT_CMD_ARS_INJECT_GET = 9,
1633 };
1634 
1635 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1636 {
1637 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1638 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
1639 	struct acpi_device *adev;
1640 	unsigned long dsm_mask;
1641 	int i;
1642 
1643 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1644 	adev = to_acpi_dev(acpi_desc);
1645 	if (!adev)
1646 		return;
1647 
1648 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1649 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1650 			set_bit(i, &nd_desc->cmd_mask);
1651 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
1652 
1653 	dsm_mask =
1654 		(1 << ND_CMD_ARS_CAP) |
1655 		(1 << ND_CMD_ARS_START) |
1656 		(1 << ND_CMD_ARS_STATUS) |
1657 		(1 << ND_CMD_CLEAR_ERROR) |
1658 		(1 << NFIT_CMD_TRANSLATE_SPA) |
1659 		(1 << NFIT_CMD_ARS_INJECT_SET) |
1660 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
1661 		(1 << NFIT_CMD_ARS_INJECT_GET);
1662 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1663 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1664 			set_bit(i, &nd_desc->bus_dsm_mask);
1665 }
1666 
1667 static ssize_t range_index_show(struct device *dev,
1668 		struct device_attribute *attr, char *buf)
1669 {
1670 	struct nd_region *nd_region = to_nd_region(dev);
1671 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1672 
1673 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1674 }
1675 static DEVICE_ATTR_RO(range_index);
1676 
1677 static struct attribute *acpi_nfit_region_attributes[] = {
1678 	&dev_attr_range_index.attr,
1679 	NULL,
1680 };
1681 
1682 static const struct attribute_group acpi_nfit_region_attribute_group = {
1683 	.name = "nfit",
1684 	.attrs = acpi_nfit_region_attributes,
1685 };
1686 
1687 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1688 	&nd_region_attribute_group,
1689 	&nd_mapping_attribute_group,
1690 	&nd_device_attribute_group,
1691 	&nd_numa_attribute_group,
1692 	&acpi_nfit_region_attribute_group,
1693 	NULL,
1694 };
1695 
1696 /* enough info to uniquely specify an interleave set */
1697 struct nfit_set_info {
1698 	struct nfit_set_info_map {
1699 		u64 region_offset;
1700 		u32 serial_number;
1701 		u32 pad;
1702 	} mapping[0];
1703 };
1704 
1705 struct nfit_set_info2 {
1706 	struct nfit_set_info_map2 {
1707 		u64 region_offset;
1708 		u32 serial_number;
1709 		u16 vendor_id;
1710 		u16 manufacturing_date;
1711 		u8  manufacturing_location;
1712 		u8  reserved[31];
1713 	} mapping[0];
1714 };
1715 
1716 static size_t sizeof_nfit_set_info(int num_mappings)
1717 {
1718 	return sizeof(struct nfit_set_info)
1719 		+ num_mappings * sizeof(struct nfit_set_info_map);
1720 }
1721 
1722 static size_t sizeof_nfit_set_info2(int num_mappings)
1723 {
1724 	return sizeof(struct nfit_set_info2)
1725 		+ num_mappings * sizeof(struct nfit_set_info_map2);
1726 }
1727 
1728 static int cmp_map_compat(const void *m0, const void *m1)
1729 {
1730 	const struct nfit_set_info_map *map0 = m0;
1731 	const struct nfit_set_info_map *map1 = m1;
1732 
1733 	return memcmp(&map0->region_offset, &map1->region_offset,
1734 			sizeof(u64));
1735 }
1736 
1737 static int cmp_map(const void *m0, const void *m1)
1738 {
1739 	const struct nfit_set_info_map *map0 = m0;
1740 	const struct nfit_set_info_map *map1 = m1;
1741 
1742 	if (map0->region_offset < map1->region_offset)
1743 		return -1;
1744 	else if (map0->region_offset > map1->region_offset)
1745 		return 1;
1746 	return 0;
1747 }
1748 
1749 static int cmp_map2(const void *m0, const void *m1)
1750 {
1751 	const struct nfit_set_info_map2 *map0 = m0;
1752 	const struct nfit_set_info_map2 *map1 = m1;
1753 
1754 	if (map0->region_offset < map1->region_offset)
1755 		return -1;
1756 	else if (map0->region_offset > map1->region_offset)
1757 		return 1;
1758 	return 0;
1759 }
1760 
1761 /* Retrieve the nth entry referencing this spa */
1762 static struct acpi_nfit_memory_map *memdev_from_spa(
1763 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
1764 {
1765 	struct nfit_memdev *nfit_memdev;
1766 
1767 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
1768 		if (nfit_memdev->memdev->range_index == range_index)
1769 			if (n-- == 0)
1770 				return nfit_memdev->memdev;
1771 	return NULL;
1772 }
1773 
1774 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
1775 		struct nd_region_desc *ndr_desc,
1776 		struct acpi_nfit_system_address *spa)
1777 {
1778 	struct device *dev = acpi_desc->dev;
1779 	struct nd_interleave_set *nd_set;
1780 	u16 nr = ndr_desc->num_mappings;
1781 	struct nfit_set_info2 *info2;
1782 	struct nfit_set_info *info;
1783 	int i;
1784 
1785 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
1786 	if (!nd_set)
1787 		return -ENOMEM;
1788 	ndr_desc->nd_set = nd_set;
1789 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
1790 
1791 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
1792 	if (!info)
1793 		return -ENOMEM;
1794 
1795 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
1796 	if (!info2)
1797 		return -ENOMEM;
1798 
1799 	for (i = 0; i < nr; i++) {
1800 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1801 		struct nfit_set_info_map *map = &info->mapping[i];
1802 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
1803 		struct nvdimm *nvdimm = mapping->nvdimm;
1804 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1805 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
1806 				spa->range_index, i);
1807 
1808 		if (!memdev || !nfit_mem->dcr) {
1809 			dev_err(dev, "%s: failed to find DCR\n", __func__);
1810 			return -ENODEV;
1811 		}
1812 
1813 		map->region_offset = memdev->region_offset;
1814 		map->serial_number = nfit_mem->dcr->serial_number;
1815 
1816 		map2->region_offset = memdev->region_offset;
1817 		map2->serial_number = nfit_mem->dcr->serial_number;
1818 		map2->vendor_id = nfit_mem->dcr->vendor_id;
1819 		map2->manufacturing_date = nfit_mem->dcr->manufacturing_date;
1820 		map2->manufacturing_location = nfit_mem->dcr->manufacturing_location;
1821 	}
1822 
1823 	/* v1.1 namespaces */
1824 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1825 			cmp_map, NULL);
1826 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1827 
1828 	/* v1.2 namespaces */
1829 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
1830 			cmp_map2, NULL);
1831 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
1832 
1833 	/* support v1.1 namespaces created with the wrong sort order */
1834 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1835 			cmp_map_compat, NULL);
1836 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1837 
1838 	ndr_desc->nd_set = nd_set;
1839 	devm_kfree(dev, info);
1840 	devm_kfree(dev, info2);
1841 
1842 	return 0;
1843 }
1844 
1845 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
1846 {
1847 	struct acpi_nfit_interleave *idt = mmio->idt;
1848 	u32 sub_line_offset, line_index, line_offset;
1849 	u64 line_no, table_skip_count, table_offset;
1850 
1851 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
1852 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
1853 	line_offset = idt->line_offset[line_index]
1854 		* mmio->line_size;
1855 	table_offset = table_skip_count * mmio->table_size;
1856 
1857 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
1858 }
1859 
1860 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
1861 {
1862 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1863 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
1864 	const u32 STATUS_MASK = 0x80000037;
1865 
1866 	if (mmio->num_lines)
1867 		offset = to_interleave_offset(offset, mmio);
1868 
1869 	return readl(mmio->addr.base + offset) & STATUS_MASK;
1870 }
1871 
1872 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
1873 		resource_size_t dpa, unsigned int len, unsigned int write)
1874 {
1875 	u64 cmd, offset;
1876 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1877 
1878 	enum {
1879 		BCW_OFFSET_MASK = (1ULL << 48)-1,
1880 		BCW_LEN_SHIFT = 48,
1881 		BCW_LEN_MASK = (1ULL << 8) - 1,
1882 		BCW_CMD_SHIFT = 56,
1883 	};
1884 
1885 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
1886 	len = len >> L1_CACHE_SHIFT;
1887 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
1888 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
1889 
1890 	offset = nfit_blk->cmd_offset + mmio->size * bw;
1891 	if (mmio->num_lines)
1892 		offset = to_interleave_offset(offset, mmio);
1893 
1894 	writeq(cmd, mmio->addr.base + offset);
1895 	nvdimm_flush(nfit_blk->nd_region);
1896 
1897 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
1898 		readq(mmio->addr.base + offset);
1899 }
1900 
1901 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
1902 		resource_size_t dpa, void *iobuf, size_t len, int rw,
1903 		unsigned int lane)
1904 {
1905 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1906 	unsigned int copied = 0;
1907 	u64 base_offset;
1908 	int rc;
1909 
1910 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
1911 		+ lane * mmio->size;
1912 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
1913 	while (len) {
1914 		unsigned int c;
1915 		u64 offset;
1916 
1917 		if (mmio->num_lines) {
1918 			u32 line_offset;
1919 
1920 			offset = to_interleave_offset(base_offset + copied,
1921 					mmio);
1922 			div_u64_rem(offset, mmio->line_size, &line_offset);
1923 			c = min_t(size_t, len, mmio->line_size - line_offset);
1924 		} else {
1925 			offset = base_offset + nfit_blk->bdw_offset;
1926 			c = len;
1927 		}
1928 
1929 		if (rw)
1930 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
1931 		else {
1932 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
1933 				mmio_flush_range((void __force *)
1934 					mmio->addr.aperture + offset, c);
1935 
1936 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
1937 		}
1938 
1939 		copied += c;
1940 		len -= c;
1941 	}
1942 
1943 	if (rw)
1944 		nvdimm_flush(nfit_blk->nd_region);
1945 
1946 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
1947 	return rc;
1948 }
1949 
1950 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
1951 		resource_size_t dpa, void *iobuf, u64 len, int rw)
1952 {
1953 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
1954 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1955 	struct nd_region *nd_region = nfit_blk->nd_region;
1956 	unsigned int lane, copied = 0;
1957 	int rc = 0;
1958 
1959 	lane = nd_region_acquire_lane(nd_region);
1960 	while (len) {
1961 		u64 c = min(len, mmio->size);
1962 
1963 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
1964 				iobuf + copied, c, rw, lane);
1965 		if (rc)
1966 			break;
1967 
1968 		copied += c;
1969 		len -= c;
1970 	}
1971 	nd_region_release_lane(nd_region, lane);
1972 
1973 	return rc;
1974 }
1975 
1976 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
1977 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
1978 {
1979 	if (idt) {
1980 		mmio->num_lines = idt->line_count;
1981 		mmio->line_size = idt->line_size;
1982 		if (interleave_ways == 0)
1983 			return -ENXIO;
1984 		mmio->table_size = mmio->num_lines * interleave_ways
1985 			* mmio->line_size;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
1992 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
1993 {
1994 	struct nd_cmd_dimm_flags flags;
1995 	int rc;
1996 
1997 	memset(&flags, 0, sizeof(flags));
1998 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
1999 			sizeof(flags), NULL);
2000 
2001 	if (rc >= 0 && flags.status == 0)
2002 		nfit_blk->dimm_flags = flags.flags;
2003 	else if (rc == -ENOTTY) {
2004 		/* fall back to a conservative default */
2005 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2006 		rc = 0;
2007 	} else
2008 		rc = -ENXIO;
2009 
2010 	return rc;
2011 }
2012 
2013 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2014 		struct device *dev)
2015 {
2016 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2017 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2018 	struct nfit_blk_mmio *mmio;
2019 	struct nfit_blk *nfit_blk;
2020 	struct nfit_mem *nfit_mem;
2021 	struct nvdimm *nvdimm;
2022 	int rc;
2023 
2024 	nvdimm = nd_blk_region_to_dimm(ndbr);
2025 	nfit_mem = nvdimm_provider_data(nvdimm);
2026 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2027 		dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
2028 				nfit_mem ? "" : " nfit_mem",
2029 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2030 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2031 		return -ENXIO;
2032 	}
2033 
2034 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2035 	if (!nfit_blk)
2036 		return -ENOMEM;
2037 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2038 	nfit_blk->nd_region = to_nd_region(dev);
2039 
2040 	/* map block aperture memory */
2041 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2042 	mmio = &nfit_blk->mmio[BDW];
2043 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2044                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2045 	if (!mmio->addr.base) {
2046 		dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
2047 				nvdimm_name(nvdimm));
2048 		return -ENOMEM;
2049 	}
2050 	mmio->size = nfit_mem->bdw->size;
2051 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2052 	mmio->idt = nfit_mem->idt_bdw;
2053 	mmio->spa = nfit_mem->spa_bdw;
2054 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2055 			nfit_mem->memdev_bdw->interleave_ways);
2056 	if (rc) {
2057 		dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
2058 				__func__, nvdimm_name(nvdimm));
2059 		return rc;
2060 	}
2061 
2062 	/* map block control memory */
2063 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2064 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2065 	mmio = &nfit_blk->mmio[DCR];
2066 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2067 			nfit_mem->spa_dcr->length);
2068 	if (!mmio->addr.base) {
2069 		dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
2070 				nvdimm_name(nvdimm));
2071 		return -ENOMEM;
2072 	}
2073 	mmio->size = nfit_mem->dcr->window_size;
2074 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2075 	mmio->idt = nfit_mem->idt_dcr;
2076 	mmio->spa = nfit_mem->spa_dcr;
2077 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2078 			nfit_mem->memdev_dcr->interleave_ways);
2079 	if (rc) {
2080 		dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
2081 				__func__, nvdimm_name(nvdimm));
2082 		return rc;
2083 	}
2084 
2085 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2086 	if (rc < 0) {
2087 		dev_dbg(dev, "%s: %s failed get DIMM flags\n",
2088 				__func__, nvdimm_name(nvdimm));
2089 		return rc;
2090 	}
2091 
2092 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2093 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2094 
2095 	if (mmio->line_size == 0)
2096 		return 0;
2097 
2098 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2099 			+ 8 > mmio->line_size) {
2100 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2101 		return -ENXIO;
2102 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2103 			+ 8 > mmio->line_size) {
2104 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2105 		return -ENXIO;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2112 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2113 {
2114 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2115 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2116 	int cmd_rc, rc;
2117 
2118 	cmd->address = spa->address;
2119 	cmd->length = spa->length;
2120 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2121 			sizeof(*cmd), &cmd_rc);
2122 	if (rc < 0)
2123 		return rc;
2124 	return cmd_rc;
2125 }
2126 
2127 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
2128 {
2129 	int rc;
2130 	int cmd_rc;
2131 	struct nd_cmd_ars_start ars_start;
2132 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2133 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2134 
2135 	memset(&ars_start, 0, sizeof(ars_start));
2136 	ars_start.address = spa->address;
2137 	ars_start.length = spa->length;
2138 	ars_start.flags = acpi_desc->ars_start_flags;
2139 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2140 		ars_start.type = ND_ARS_PERSISTENT;
2141 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2142 		ars_start.type = ND_ARS_VOLATILE;
2143 	else
2144 		return -ENOTTY;
2145 
2146 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2147 			sizeof(ars_start), &cmd_rc);
2148 
2149 	if (rc < 0)
2150 		return rc;
2151 	return cmd_rc;
2152 }
2153 
2154 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2155 {
2156 	int rc, cmd_rc;
2157 	struct nd_cmd_ars_start ars_start;
2158 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2159 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2160 
2161 	memset(&ars_start, 0, sizeof(ars_start));
2162 	ars_start.address = ars_status->restart_address;
2163 	ars_start.length = ars_status->restart_length;
2164 	ars_start.type = ars_status->type;
2165 	ars_start.flags = acpi_desc->ars_start_flags;
2166 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2167 			sizeof(ars_start), &cmd_rc);
2168 	if (rc < 0)
2169 		return rc;
2170 	return cmd_rc;
2171 }
2172 
2173 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2174 {
2175 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2176 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2177 	int rc, cmd_rc;
2178 
2179 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2180 			acpi_desc->ars_status_size, &cmd_rc);
2181 	if (rc < 0)
2182 		return rc;
2183 	return cmd_rc;
2184 }
2185 
2186 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc,
2187 		struct nd_cmd_ars_status *ars_status)
2188 {
2189 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2190 	int rc;
2191 	u32 i;
2192 
2193 	/*
2194 	 * First record starts at 44 byte offset from the start of the
2195 	 * payload.
2196 	 */
2197 	if (ars_status->out_length < 44)
2198 		return 0;
2199 	for (i = 0; i < ars_status->num_records; i++) {
2200 		/* only process full records */
2201 		if (ars_status->out_length
2202 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2203 			break;
2204 		rc = nvdimm_bus_add_poison(nvdimm_bus,
2205 				ars_status->records[i].err_address,
2206 				ars_status->records[i].length);
2207 		if (rc)
2208 			return rc;
2209 	}
2210 	if (i < ars_status->num_records)
2211 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2212 
2213 	return 0;
2214 }
2215 
2216 static void acpi_nfit_remove_resource(void *data)
2217 {
2218 	struct resource *res = data;
2219 
2220 	remove_resource(res);
2221 }
2222 
2223 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2224 		struct nd_region_desc *ndr_desc)
2225 {
2226 	struct resource *res, *nd_res = ndr_desc->res;
2227 	int is_pmem, ret;
2228 
2229 	/* No operation if the region is already registered as PMEM */
2230 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2231 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2232 	if (is_pmem == REGION_INTERSECTS)
2233 		return 0;
2234 
2235 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2236 	if (!res)
2237 		return -ENOMEM;
2238 
2239 	res->name = "Persistent Memory";
2240 	res->start = nd_res->start;
2241 	res->end = nd_res->end;
2242 	res->flags = IORESOURCE_MEM;
2243 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2244 
2245 	ret = insert_resource(&iomem_resource, res);
2246 	if (ret)
2247 		return ret;
2248 
2249 	ret = devm_add_action_or_reset(acpi_desc->dev,
2250 					acpi_nfit_remove_resource,
2251 					res);
2252 	if (ret)
2253 		return ret;
2254 
2255 	return 0;
2256 }
2257 
2258 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2259 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2260 		struct acpi_nfit_memory_map *memdev,
2261 		struct nfit_spa *nfit_spa)
2262 {
2263 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2264 			memdev->device_handle);
2265 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2266 	struct nd_blk_region_desc *ndbr_desc;
2267 	struct nfit_mem *nfit_mem;
2268 	int blk_valid = 0, rc;
2269 
2270 	if (!nvdimm) {
2271 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2272 				spa->range_index, memdev->device_handle);
2273 		return -ENODEV;
2274 	}
2275 
2276 	mapping->nvdimm = nvdimm;
2277 	switch (nfit_spa_type(spa)) {
2278 	case NFIT_SPA_PM:
2279 	case NFIT_SPA_VOLATILE:
2280 		mapping->start = memdev->address;
2281 		mapping->size = memdev->region_size;
2282 		break;
2283 	case NFIT_SPA_DCR:
2284 		nfit_mem = nvdimm_provider_data(nvdimm);
2285 		if (!nfit_mem || !nfit_mem->bdw) {
2286 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2287 					spa->range_index, nvdimm_name(nvdimm));
2288 		} else {
2289 			mapping->size = nfit_mem->bdw->capacity;
2290 			mapping->start = nfit_mem->bdw->start_address;
2291 			ndr_desc->num_lanes = nfit_mem->bdw->windows;
2292 			blk_valid = 1;
2293 		}
2294 
2295 		ndr_desc->mapping = mapping;
2296 		ndr_desc->num_mappings = blk_valid;
2297 		ndbr_desc = to_blk_region_desc(ndr_desc);
2298 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2299 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2300 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2301 		if (rc)
2302 			return rc;
2303 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2304 				ndr_desc);
2305 		if (!nfit_spa->nd_region)
2306 			return -ENOMEM;
2307 		break;
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2314 {
2315 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2316 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2317 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2318 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2319 }
2320 
2321 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2322 {
2323 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2324 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2325 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2326 }
2327 
2328 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2329 		struct nfit_spa *nfit_spa)
2330 {
2331 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2332 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2333 	struct nd_blk_region_desc ndbr_desc;
2334 	struct nd_region_desc *ndr_desc;
2335 	struct nfit_memdev *nfit_memdev;
2336 	struct nvdimm_bus *nvdimm_bus;
2337 	struct resource res;
2338 	int count = 0, rc;
2339 
2340 	if (nfit_spa->nd_region)
2341 		return 0;
2342 
2343 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2344 		dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
2345 				__func__);
2346 		return 0;
2347 	}
2348 
2349 	memset(&res, 0, sizeof(res));
2350 	memset(&mappings, 0, sizeof(mappings));
2351 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2352 	res.start = spa->address;
2353 	res.end = res.start + spa->length - 1;
2354 	ndr_desc = &ndbr_desc.ndr_desc;
2355 	ndr_desc->res = &res;
2356 	ndr_desc->provider_data = nfit_spa;
2357 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2358 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2359 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2360 						spa->proximity_domain);
2361 	else
2362 		ndr_desc->numa_node = NUMA_NO_NODE;
2363 
2364 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2365 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2366 		struct nd_mapping_desc *mapping;
2367 
2368 		if (memdev->range_index != spa->range_index)
2369 			continue;
2370 		if (count >= ND_MAX_MAPPINGS) {
2371 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2372 					spa->range_index, ND_MAX_MAPPINGS);
2373 			return -ENXIO;
2374 		}
2375 		mapping = &mappings[count++];
2376 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2377 				memdev, nfit_spa);
2378 		if (rc)
2379 			goto out;
2380 	}
2381 
2382 	ndr_desc->mapping = mappings;
2383 	ndr_desc->num_mappings = count;
2384 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2385 	if (rc)
2386 		goto out;
2387 
2388 	nvdimm_bus = acpi_desc->nvdimm_bus;
2389 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2390 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2391 		if (rc) {
2392 			dev_warn(acpi_desc->dev,
2393 				"failed to insert pmem resource to iomem: %d\n",
2394 				rc);
2395 			goto out;
2396 		}
2397 
2398 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2399 				ndr_desc);
2400 		if (!nfit_spa->nd_region)
2401 			rc = -ENOMEM;
2402 	} else if (nfit_spa_is_volatile(spa)) {
2403 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2404 				ndr_desc);
2405 		if (!nfit_spa->nd_region)
2406 			rc = -ENOMEM;
2407 	} else if (nfit_spa_is_virtual(spa)) {
2408 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2409 				ndr_desc);
2410 		if (!nfit_spa->nd_region)
2411 			rc = -ENOMEM;
2412 	}
2413 
2414  out:
2415 	if (rc)
2416 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2417 				nfit_spa->spa->range_index);
2418 	return rc;
2419 }
2420 
2421 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2422 		u32 max_ars)
2423 {
2424 	struct device *dev = acpi_desc->dev;
2425 	struct nd_cmd_ars_status *ars_status;
2426 
2427 	if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2428 		memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2429 		return 0;
2430 	}
2431 
2432 	if (acpi_desc->ars_status)
2433 		devm_kfree(dev, acpi_desc->ars_status);
2434 	acpi_desc->ars_status = NULL;
2435 	ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2436 	if (!ars_status)
2437 		return -ENOMEM;
2438 	acpi_desc->ars_status = ars_status;
2439 	acpi_desc->ars_status_size = max_ars;
2440 	return 0;
2441 }
2442 
2443 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2444 		struct nfit_spa *nfit_spa)
2445 {
2446 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2447 	int rc;
2448 
2449 	if (!nfit_spa->max_ars) {
2450 		struct nd_cmd_ars_cap ars_cap;
2451 
2452 		memset(&ars_cap, 0, sizeof(ars_cap));
2453 		rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2454 		if (rc < 0)
2455 			return rc;
2456 		nfit_spa->max_ars = ars_cap.max_ars_out;
2457 		nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2458 		/* check that the supported scrub types match the spa type */
2459 		if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2460 				((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2461 			return -ENOTTY;
2462 		else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2463 				((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2464 			return -ENOTTY;
2465 	}
2466 
2467 	if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2468 		return -ENOMEM;
2469 
2470 	rc = ars_get_status(acpi_desc);
2471 	if (rc < 0 && rc != -ENOSPC)
2472 		return rc;
2473 
2474 	if (ars_status_process_records(acpi_desc, acpi_desc->ars_status))
2475 		return -ENOMEM;
2476 
2477 	return 0;
2478 }
2479 
2480 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2481 		struct nfit_spa *nfit_spa)
2482 {
2483 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2484 	unsigned int overflow_retry = scrub_overflow_abort;
2485 	u64 init_ars_start = 0, init_ars_len = 0;
2486 	struct device *dev = acpi_desc->dev;
2487 	unsigned int tmo = scrub_timeout;
2488 	int rc;
2489 
2490 	if (!nfit_spa->ars_required || !nfit_spa->nd_region)
2491 		return;
2492 
2493 	rc = ars_start(acpi_desc, nfit_spa);
2494 	/*
2495 	 * If we timed out the initial scan we'll still be busy here,
2496 	 * and will wait another timeout before giving up permanently.
2497 	 */
2498 	if (rc < 0 && rc != -EBUSY)
2499 		return;
2500 
2501 	do {
2502 		u64 ars_start, ars_len;
2503 
2504 		if (acpi_desc->cancel)
2505 			break;
2506 		rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2507 		if (rc == -ENOTTY)
2508 			break;
2509 		if (rc == -EBUSY && !tmo) {
2510 			dev_warn(dev, "range %d ars timeout, aborting\n",
2511 					spa->range_index);
2512 			break;
2513 		}
2514 
2515 		if (rc == -EBUSY) {
2516 			/*
2517 			 * Note, entries may be appended to the list
2518 			 * while the lock is dropped, but the workqueue
2519 			 * being active prevents entries being deleted /
2520 			 * freed.
2521 			 */
2522 			mutex_unlock(&acpi_desc->init_mutex);
2523 			ssleep(1);
2524 			tmo--;
2525 			mutex_lock(&acpi_desc->init_mutex);
2526 			continue;
2527 		}
2528 
2529 		/* we got some results, but there are more pending... */
2530 		if (rc == -ENOSPC && overflow_retry--) {
2531 			if (!init_ars_len) {
2532 				init_ars_len = acpi_desc->ars_status->length;
2533 				init_ars_start = acpi_desc->ars_status->address;
2534 			}
2535 			rc = ars_continue(acpi_desc);
2536 		}
2537 
2538 		if (rc < 0) {
2539 			dev_warn(dev, "range %d ars continuation failed\n",
2540 					spa->range_index);
2541 			break;
2542 		}
2543 
2544 		if (init_ars_len) {
2545 			ars_start = init_ars_start;
2546 			ars_len = init_ars_len;
2547 		} else {
2548 			ars_start = acpi_desc->ars_status->address;
2549 			ars_len = acpi_desc->ars_status->length;
2550 		}
2551 		dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2552 				spa->range_index, ars_start, ars_len);
2553 		/* notify the region about new poison entries */
2554 		nvdimm_region_notify(nfit_spa->nd_region,
2555 				NVDIMM_REVALIDATE_POISON);
2556 		break;
2557 	} while (1);
2558 }
2559 
2560 static void acpi_nfit_scrub(struct work_struct *work)
2561 {
2562 	struct device *dev;
2563 	u64 init_scrub_length = 0;
2564 	struct nfit_spa *nfit_spa;
2565 	u64 init_scrub_address = 0;
2566 	bool init_ars_done = false;
2567 	struct acpi_nfit_desc *acpi_desc;
2568 	unsigned int tmo = scrub_timeout;
2569 	unsigned int overflow_retry = scrub_overflow_abort;
2570 
2571 	acpi_desc = container_of(work, typeof(*acpi_desc), work);
2572 	dev = acpi_desc->dev;
2573 
2574 	/*
2575 	 * We scrub in 2 phases.  The first phase waits for any platform
2576 	 * firmware initiated scrubs to complete and then we go search for the
2577 	 * affected spa regions to mark them scanned.  In the second phase we
2578 	 * initiate a directed scrub for every range that was not scrubbed in
2579 	 * phase 1. If we're called for a 'rescan', we harmlessly pass through
2580 	 * the first phase, but really only care about running phase 2, where
2581 	 * regions can be notified of new poison.
2582 	 */
2583 
2584 	/* process platform firmware initiated scrubs */
2585  retry:
2586 	mutex_lock(&acpi_desc->init_mutex);
2587 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2588 		struct nd_cmd_ars_status *ars_status;
2589 		struct acpi_nfit_system_address *spa;
2590 		u64 ars_start, ars_len;
2591 		int rc;
2592 
2593 		if (acpi_desc->cancel)
2594 			break;
2595 
2596 		if (nfit_spa->nd_region)
2597 			continue;
2598 
2599 		if (init_ars_done) {
2600 			/*
2601 			 * No need to re-query, we're now just
2602 			 * reconciling all the ranges covered by the
2603 			 * initial scrub
2604 			 */
2605 			rc = 0;
2606 		} else
2607 			rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2608 
2609 		if (rc == -ENOTTY) {
2610 			/* no ars capability, just register spa and move on */
2611 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2612 			continue;
2613 		}
2614 
2615 		if (rc == -EBUSY && !tmo) {
2616 			/* fallthrough to directed scrub in phase 2 */
2617 			dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2618 			break;
2619 		} else if (rc == -EBUSY) {
2620 			mutex_unlock(&acpi_desc->init_mutex);
2621 			ssleep(1);
2622 			tmo--;
2623 			goto retry;
2624 		}
2625 
2626 		/* we got some results, but there are more pending... */
2627 		if (rc == -ENOSPC && overflow_retry--) {
2628 			ars_status = acpi_desc->ars_status;
2629 			/*
2630 			 * Record the original scrub range, so that we
2631 			 * can recall all the ranges impacted by the
2632 			 * initial scrub.
2633 			 */
2634 			if (!init_scrub_length) {
2635 				init_scrub_length = ars_status->length;
2636 				init_scrub_address = ars_status->address;
2637 			}
2638 			rc = ars_continue(acpi_desc);
2639 			if (rc == 0) {
2640 				mutex_unlock(&acpi_desc->init_mutex);
2641 				goto retry;
2642 			}
2643 		}
2644 
2645 		if (rc < 0) {
2646 			/*
2647 			 * Initial scrub failed, we'll give it one more
2648 			 * try below...
2649 			 */
2650 			break;
2651 		}
2652 
2653 		/* We got some final results, record completed ranges */
2654 		ars_status = acpi_desc->ars_status;
2655 		if (init_scrub_length) {
2656 			ars_start = init_scrub_address;
2657 			ars_len = ars_start + init_scrub_length;
2658 		} else {
2659 			ars_start = ars_status->address;
2660 			ars_len = ars_status->length;
2661 		}
2662 		spa = nfit_spa->spa;
2663 
2664 		if (!init_ars_done) {
2665 			init_ars_done = true;
2666 			dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2667 					ars_start, ars_len);
2668 		}
2669 		if (ars_start <= spa->address && ars_start + ars_len
2670 				>= spa->address + spa->length)
2671 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2672 	}
2673 
2674 	/*
2675 	 * For all the ranges not covered by an initial scrub we still
2676 	 * want to see if there are errors, but it's ok to discover them
2677 	 * asynchronously.
2678 	 */
2679 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2680 		/*
2681 		 * Flag all the ranges that still need scrubbing, but
2682 		 * register them now to make data available.
2683 		 */
2684 		if (!nfit_spa->nd_region) {
2685 			nfit_spa->ars_required = 1;
2686 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2687 		}
2688 	}
2689 	acpi_desc->init_complete = 1;
2690 
2691 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2692 		acpi_nfit_async_scrub(acpi_desc, nfit_spa);
2693 	acpi_desc->scrub_count++;
2694 	acpi_desc->ars_start_flags = 0;
2695 	if (acpi_desc->scrub_count_state)
2696 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2697 	mutex_unlock(&acpi_desc->init_mutex);
2698 }
2699 
2700 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2701 {
2702 	struct nfit_spa *nfit_spa;
2703 	int rc;
2704 
2705 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2706 		if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) {
2707 			/* BLK regions don't need to wait for ars results */
2708 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
2709 			if (rc)
2710 				return rc;
2711 		}
2712 
2713 	acpi_desc->ars_start_flags = 0;
2714 	if (!acpi_desc->cancel)
2715 		queue_work(nfit_wq, &acpi_desc->work);
2716 	return 0;
2717 }
2718 
2719 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
2720 		struct nfit_table_prev *prev)
2721 {
2722 	struct device *dev = acpi_desc->dev;
2723 
2724 	if (!list_empty(&prev->spas) ||
2725 			!list_empty(&prev->memdevs) ||
2726 			!list_empty(&prev->dcrs) ||
2727 			!list_empty(&prev->bdws) ||
2728 			!list_empty(&prev->idts) ||
2729 			!list_empty(&prev->flushes)) {
2730 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
2731 		return -ENXIO;
2732 	}
2733 	return 0;
2734 }
2735 
2736 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
2737 {
2738 	struct device *dev = acpi_desc->dev;
2739 	struct kernfs_node *nfit;
2740 	struct device *bus_dev;
2741 
2742 	if (!ars_supported(acpi_desc->nvdimm_bus))
2743 		return 0;
2744 
2745 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2746 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
2747 	if (!nfit) {
2748 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
2749 		return -ENODEV;
2750 	}
2751 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
2752 	sysfs_put(nfit);
2753 	if (!acpi_desc->scrub_count_state) {
2754 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
2755 		return -ENODEV;
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 static void acpi_nfit_unregister(void *data)
2762 {
2763 	struct acpi_nfit_desc *acpi_desc = data;
2764 
2765 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
2766 }
2767 
2768 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
2769 {
2770 	struct device *dev = acpi_desc->dev;
2771 	struct nfit_table_prev prev;
2772 	const void *end;
2773 	int rc;
2774 
2775 	if (!acpi_desc->nvdimm_bus) {
2776 		acpi_nfit_init_dsms(acpi_desc);
2777 
2778 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
2779 				&acpi_desc->nd_desc);
2780 		if (!acpi_desc->nvdimm_bus)
2781 			return -ENOMEM;
2782 
2783 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
2784 				acpi_desc);
2785 		if (rc)
2786 			return rc;
2787 
2788 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
2789 		if (rc)
2790 			return rc;
2791 
2792 		/* register this acpi_desc for mce notifications */
2793 		mutex_lock(&acpi_desc_lock);
2794 		list_add_tail(&acpi_desc->list, &acpi_descs);
2795 		mutex_unlock(&acpi_desc_lock);
2796 	}
2797 
2798 	mutex_lock(&acpi_desc->init_mutex);
2799 
2800 	INIT_LIST_HEAD(&prev.spas);
2801 	INIT_LIST_HEAD(&prev.memdevs);
2802 	INIT_LIST_HEAD(&prev.dcrs);
2803 	INIT_LIST_HEAD(&prev.bdws);
2804 	INIT_LIST_HEAD(&prev.idts);
2805 	INIT_LIST_HEAD(&prev.flushes);
2806 
2807 	list_cut_position(&prev.spas, &acpi_desc->spas,
2808 				acpi_desc->spas.prev);
2809 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
2810 				acpi_desc->memdevs.prev);
2811 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
2812 				acpi_desc->dcrs.prev);
2813 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
2814 				acpi_desc->bdws.prev);
2815 	list_cut_position(&prev.idts, &acpi_desc->idts,
2816 				acpi_desc->idts.prev);
2817 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
2818 				acpi_desc->flushes.prev);
2819 
2820 	end = data + sz;
2821 	while (!IS_ERR_OR_NULL(data))
2822 		data = add_table(acpi_desc, &prev, data, end);
2823 
2824 	if (IS_ERR(data)) {
2825 		dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
2826 				PTR_ERR(data));
2827 		rc = PTR_ERR(data);
2828 		goto out_unlock;
2829 	}
2830 
2831 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
2832 	if (rc)
2833 		goto out_unlock;
2834 
2835 	rc = nfit_mem_init(acpi_desc);
2836 	if (rc)
2837 		goto out_unlock;
2838 
2839 	rc = acpi_nfit_register_dimms(acpi_desc);
2840 	if (rc)
2841 		goto out_unlock;
2842 
2843 	rc = acpi_nfit_register_regions(acpi_desc);
2844 
2845  out_unlock:
2846 	mutex_unlock(&acpi_desc->init_mutex);
2847 	return rc;
2848 }
2849 EXPORT_SYMBOL_GPL(acpi_nfit_init);
2850 
2851 struct acpi_nfit_flush_work {
2852 	struct work_struct work;
2853 	struct completion cmp;
2854 };
2855 
2856 static void flush_probe(struct work_struct *work)
2857 {
2858 	struct acpi_nfit_flush_work *flush;
2859 
2860 	flush = container_of(work, typeof(*flush), work);
2861 	complete(&flush->cmp);
2862 }
2863 
2864 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
2865 {
2866 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2867 	struct device *dev = acpi_desc->dev;
2868 	struct acpi_nfit_flush_work flush;
2869 	int rc;
2870 
2871 	/* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
2872 	device_lock(dev);
2873 	device_unlock(dev);
2874 
2875 	/* bounce the init_mutex to make init_complete valid */
2876 	mutex_lock(&acpi_desc->init_mutex);
2877 	if (acpi_desc->cancel || acpi_desc->init_complete) {
2878 		mutex_unlock(&acpi_desc->init_mutex);
2879 		return 0;
2880 	}
2881 
2882 	/*
2883 	 * Scrub work could take 10s of seconds, userspace may give up so we
2884 	 * need to be interruptible while waiting.
2885 	 */
2886 	INIT_WORK_ONSTACK(&flush.work, flush_probe);
2887 	COMPLETION_INITIALIZER_ONSTACK(flush.cmp);
2888 	queue_work(nfit_wq, &flush.work);
2889 	mutex_unlock(&acpi_desc->init_mutex);
2890 
2891 	rc = wait_for_completion_interruptible(&flush.cmp);
2892 	cancel_work_sync(&flush.work);
2893 	return rc;
2894 }
2895 
2896 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
2897 		struct nvdimm *nvdimm, unsigned int cmd)
2898 {
2899 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2900 
2901 	if (nvdimm)
2902 		return 0;
2903 	if (cmd != ND_CMD_ARS_START)
2904 		return 0;
2905 
2906 	/*
2907 	 * The kernel and userspace may race to initiate a scrub, but
2908 	 * the scrub thread is prepared to lose that initial race.  It
2909 	 * just needs guarantees that any ars it initiates are not
2910 	 * interrupted by any intervening start reqeusts from userspace.
2911 	 */
2912 	if (work_busy(&acpi_desc->work))
2913 		return -EBUSY;
2914 
2915 	return 0;
2916 }
2917 
2918 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, u8 flags)
2919 {
2920 	struct device *dev = acpi_desc->dev;
2921 	struct nfit_spa *nfit_spa;
2922 
2923 	if (work_busy(&acpi_desc->work))
2924 		return -EBUSY;
2925 
2926 	mutex_lock(&acpi_desc->init_mutex);
2927 	if (acpi_desc->cancel) {
2928 		mutex_unlock(&acpi_desc->init_mutex);
2929 		return 0;
2930 	}
2931 
2932 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2933 		struct acpi_nfit_system_address *spa = nfit_spa->spa;
2934 
2935 		if (nfit_spa_type(spa) != NFIT_SPA_PM)
2936 			continue;
2937 
2938 		nfit_spa->ars_required = 1;
2939 	}
2940 	acpi_desc->ars_start_flags = flags;
2941 	queue_work(nfit_wq, &acpi_desc->work);
2942 	dev_dbg(dev, "%s: ars_scan triggered\n", __func__);
2943 	mutex_unlock(&acpi_desc->init_mutex);
2944 
2945 	return 0;
2946 }
2947 
2948 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
2949 {
2950 	struct nvdimm_bus_descriptor *nd_desc;
2951 
2952 	dev_set_drvdata(dev, acpi_desc);
2953 	acpi_desc->dev = dev;
2954 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
2955 	nd_desc = &acpi_desc->nd_desc;
2956 	nd_desc->provider_name = "ACPI.NFIT";
2957 	nd_desc->module = THIS_MODULE;
2958 	nd_desc->ndctl = acpi_nfit_ctl;
2959 	nd_desc->flush_probe = acpi_nfit_flush_probe;
2960 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
2961 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
2962 
2963 	INIT_LIST_HEAD(&acpi_desc->spas);
2964 	INIT_LIST_HEAD(&acpi_desc->dcrs);
2965 	INIT_LIST_HEAD(&acpi_desc->bdws);
2966 	INIT_LIST_HEAD(&acpi_desc->idts);
2967 	INIT_LIST_HEAD(&acpi_desc->flushes);
2968 	INIT_LIST_HEAD(&acpi_desc->memdevs);
2969 	INIT_LIST_HEAD(&acpi_desc->dimms);
2970 	INIT_LIST_HEAD(&acpi_desc->list);
2971 	mutex_init(&acpi_desc->init_mutex);
2972 	INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
2973 }
2974 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
2975 
2976 static void acpi_nfit_put_table(void *table)
2977 {
2978 	acpi_put_table(table);
2979 }
2980 
2981 void acpi_nfit_shutdown(void *data)
2982 {
2983 	struct acpi_nfit_desc *acpi_desc = data;
2984 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2985 
2986 	/*
2987 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
2988 	 * race teardown
2989 	 */
2990 	mutex_lock(&acpi_desc_lock);
2991 	list_del(&acpi_desc->list);
2992 	mutex_unlock(&acpi_desc_lock);
2993 
2994 	mutex_lock(&acpi_desc->init_mutex);
2995 	acpi_desc->cancel = 1;
2996 	mutex_unlock(&acpi_desc->init_mutex);
2997 
2998 	/*
2999 	 * Bounce the nvdimm bus lock to make sure any in-flight
3000 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3001 	 * either submit or see ->cancel set.
3002 	 */
3003 	device_lock(bus_dev);
3004 	device_unlock(bus_dev);
3005 
3006 	flush_workqueue(nfit_wq);
3007 }
3008 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3009 
3010 static int acpi_nfit_add(struct acpi_device *adev)
3011 {
3012 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3013 	struct acpi_nfit_desc *acpi_desc;
3014 	struct device *dev = &adev->dev;
3015 	struct acpi_table_header *tbl;
3016 	acpi_status status = AE_OK;
3017 	acpi_size sz;
3018 	int rc = 0;
3019 
3020 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3021 	if (ACPI_FAILURE(status)) {
3022 		/* This is ok, we could have an nvdimm hotplugged later */
3023 		dev_dbg(dev, "failed to find NFIT at startup\n");
3024 		return 0;
3025 	}
3026 
3027 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3028 	if (rc)
3029 		return rc;
3030 	sz = tbl->length;
3031 
3032 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3033 	if (!acpi_desc)
3034 		return -ENOMEM;
3035 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3036 
3037 	/* Save the acpi header for exporting the revision via sysfs */
3038 	acpi_desc->acpi_header = *tbl;
3039 
3040 	/* Evaluate _FIT and override with that if present */
3041 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3042 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3043 		union acpi_object *obj = buf.pointer;
3044 
3045 		if (obj->type == ACPI_TYPE_BUFFER)
3046 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3047 					obj->buffer.length);
3048 		else
3049 			dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
3050 				 __func__, (int) obj->type);
3051 		kfree(buf.pointer);
3052 	} else
3053 		/* skip over the lead-in header table */
3054 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3055 				+ sizeof(struct acpi_table_nfit),
3056 				sz - sizeof(struct acpi_table_nfit));
3057 
3058 	if (rc)
3059 		return rc;
3060 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3061 }
3062 
3063 static int acpi_nfit_remove(struct acpi_device *adev)
3064 {
3065 	/* see acpi_nfit_unregister */
3066 	return 0;
3067 }
3068 
3069 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3070 {
3071 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3072 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3073 	union acpi_object *obj;
3074 	acpi_status status;
3075 	int ret;
3076 
3077 	if (!dev->driver) {
3078 		/* dev->driver may be null if we're being removed */
3079 		dev_dbg(dev, "%s: no driver found for dev\n", __func__);
3080 		return;
3081 	}
3082 
3083 	if (!acpi_desc) {
3084 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3085 		if (!acpi_desc)
3086 			return;
3087 		acpi_nfit_desc_init(acpi_desc, dev);
3088 	} else {
3089 		/*
3090 		 * Finish previous registration before considering new
3091 		 * regions.
3092 		 */
3093 		flush_workqueue(nfit_wq);
3094 	}
3095 
3096 	/* Evaluate _FIT */
3097 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3098 	if (ACPI_FAILURE(status)) {
3099 		dev_err(dev, "failed to evaluate _FIT\n");
3100 		return;
3101 	}
3102 
3103 	obj = buf.pointer;
3104 	if (obj->type == ACPI_TYPE_BUFFER) {
3105 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3106 				obj->buffer.length);
3107 		if (ret)
3108 			dev_err(dev, "failed to merge updated NFIT\n");
3109 	} else
3110 		dev_err(dev, "Invalid _FIT\n");
3111 	kfree(buf.pointer);
3112 }
3113 
3114 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3115 {
3116 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3117 	u8 flags = (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) ?
3118 			0 : ND_ARS_RETURN_PREV_DATA;
3119 
3120 	acpi_nfit_ars_rescan(acpi_desc, flags);
3121 }
3122 
3123 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3124 {
3125 	dev_dbg(dev, "%s: event: 0x%x\n", __func__, event);
3126 
3127 	switch (event) {
3128 	case NFIT_NOTIFY_UPDATE:
3129 		return acpi_nfit_update_notify(dev, handle);
3130 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3131 		return acpi_nfit_uc_error_notify(dev, handle);
3132 	default:
3133 		return;
3134 	}
3135 }
3136 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3137 
3138 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3139 {
3140 	device_lock(&adev->dev);
3141 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3142 	device_unlock(&adev->dev);
3143 }
3144 
3145 static const struct acpi_device_id acpi_nfit_ids[] = {
3146 	{ "ACPI0012", 0 },
3147 	{ "", 0 },
3148 };
3149 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3150 
3151 static struct acpi_driver acpi_nfit_driver = {
3152 	.name = KBUILD_MODNAME,
3153 	.ids = acpi_nfit_ids,
3154 	.ops = {
3155 		.add = acpi_nfit_add,
3156 		.remove = acpi_nfit_remove,
3157 		.notify = acpi_nfit_notify,
3158 	},
3159 };
3160 
3161 static __init int nfit_init(void)
3162 {
3163 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3164 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3165 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3166 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3167 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3168 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3169 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3170 
3171 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3172 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3173 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3174 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3175 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3176 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3177 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3178 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3179 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3180 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3181 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3182 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3183 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3184 
3185 	nfit_wq = create_singlethread_workqueue("nfit");
3186 	if (!nfit_wq)
3187 		return -ENOMEM;
3188 
3189 	nfit_mce_register();
3190 
3191 	return acpi_bus_register_driver(&acpi_nfit_driver);
3192 }
3193 
3194 static __exit void nfit_exit(void)
3195 {
3196 	nfit_mce_unregister();
3197 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3198 	destroy_workqueue(nfit_wq);
3199 	WARN_ON(!list_empty(&acpi_descs));
3200 }
3201 
3202 module_init(nfit_init);
3203 module_exit(nfit_exit);
3204 MODULE_LICENSE("GPL v2");
3205 MODULE_AUTHOR("Intel Corporation");
3206