xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 400c2a45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/nospec.h>
9 #include <linux/mutex.h>
10 #include <linux/ndctl.h>
11 #include <linux/sysfs.h>
12 #include <linux/delay.h>
13 #include <linux/list.h>
14 #include <linux/acpi.h>
15 #include <linux/sort.h>
16 #include <linux/io.h>
17 #include <linux/nd.h>
18 #include <asm/cacheflush.h>
19 #include <acpi/nfit.h>
20 #include "intel.h"
21 #include "nfit.h"
22 
23 /*
24  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
25  * irrelevant.
26  */
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 
29 static bool force_enable_dimms;
30 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
31 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
32 
33 static bool disable_vendor_specific;
34 module_param(disable_vendor_specific, bool, S_IRUGO);
35 MODULE_PARM_DESC(disable_vendor_specific,
36 		"Limit commands to the publicly specified set");
37 
38 static unsigned long override_dsm_mask;
39 module_param(override_dsm_mask, ulong, S_IRUGO);
40 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
41 
42 static int default_dsm_family = -1;
43 module_param(default_dsm_family, int, S_IRUGO);
44 MODULE_PARM_DESC(default_dsm_family,
45 		"Try this DSM type first when identifying NVDIMM family");
46 
47 static bool no_init_ars;
48 module_param(no_init_ars, bool, 0644);
49 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
50 
51 static bool force_labels;
52 module_param(force_labels, bool, 0444);
53 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
54 
55 LIST_HEAD(acpi_descs);
56 DEFINE_MUTEX(acpi_desc_lock);
57 
58 static struct workqueue_struct *nfit_wq;
59 
60 struct nfit_table_prev {
61 	struct list_head spas;
62 	struct list_head memdevs;
63 	struct list_head dcrs;
64 	struct list_head bdws;
65 	struct list_head idts;
66 	struct list_head flushes;
67 };
68 
69 static guid_t nfit_uuid[NFIT_UUID_MAX];
70 
71 const guid_t *to_nfit_uuid(enum nfit_uuids id)
72 {
73 	return &nfit_uuid[id];
74 }
75 EXPORT_SYMBOL(to_nfit_uuid);
76 
77 static const guid_t *to_nfit_bus_uuid(int family)
78 {
79 	if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
80 			"only secondary bus families can be translated\n"))
81 		return NULL;
82 	/*
83 	 * The index of bus UUIDs starts immediately following the last
84 	 * NVDIMM/leaf family.
85 	 */
86 	return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
87 }
88 
89 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
90 {
91 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
92 
93 	/*
94 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
95 	 * acpi_device.
96 	 */
97 	if (!nd_desc->provider_name
98 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
99 		return NULL;
100 
101 	return to_acpi_device(acpi_desc->dev);
102 }
103 
104 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
105 {
106 	struct nd_cmd_clear_error *clear_err;
107 	struct nd_cmd_ars_status *ars_status;
108 	u16 flags;
109 
110 	switch (cmd) {
111 	case ND_CMD_ARS_CAP:
112 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
113 			return -ENOTTY;
114 
115 		/* Command failed */
116 		if (status & 0xffff)
117 			return -EIO;
118 
119 		/* No supported scan types for this range */
120 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
121 		if ((status >> 16 & flags) == 0)
122 			return -ENOTTY;
123 		return 0;
124 	case ND_CMD_ARS_START:
125 		/* ARS is in progress */
126 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
127 			return -EBUSY;
128 
129 		/* Command failed */
130 		if (status & 0xffff)
131 			return -EIO;
132 		return 0;
133 	case ND_CMD_ARS_STATUS:
134 		ars_status = buf;
135 		/* Command failed */
136 		if (status & 0xffff)
137 			return -EIO;
138 		/* Check extended status (Upper two bytes) */
139 		if (status == NFIT_ARS_STATUS_DONE)
140 			return 0;
141 
142 		/* ARS is in progress */
143 		if (status == NFIT_ARS_STATUS_BUSY)
144 			return -EBUSY;
145 
146 		/* No ARS performed for the current boot */
147 		if (status == NFIT_ARS_STATUS_NONE)
148 			return -EAGAIN;
149 
150 		/*
151 		 * ARS interrupted, either we overflowed or some other
152 		 * agent wants the scan to stop.  If we didn't overflow
153 		 * then just continue with the returned results.
154 		 */
155 		if (status == NFIT_ARS_STATUS_INTR) {
156 			if (ars_status->out_length >= 40 && (ars_status->flags
157 						& NFIT_ARS_F_OVERFLOW))
158 				return -ENOSPC;
159 			return 0;
160 		}
161 
162 		/* Unknown status */
163 		if (status >> 16)
164 			return -EIO;
165 		return 0;
166 	case ND_CMD_CLEAR_ERROR:
167 		clear_err = buf;
168 		if (status & 0xffff)
169 			return -EIO;
170 		if (!clear_err->cleared)
171 			return -EIO;
172 		if (clear_err->length > clear_err->cleared)
173 			return clear_err->cleared;
174 		return 0;
175 	default:
176 		break;
177 	}
178 
179 	/* all other non-zero status results in an error */
180 	if (status)
181 		return -EIO;
182 	return 0;
183 }
184 
185 #define ACPI_LABELS_LOCKED 3
186 
187 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
188 		u32 status)
189 {
190 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
191 
192 	switch (cmd) {
193 	case ND_CMD_GET_CONFIG_SIZE:
194 		/*
195 		 * In the _LSI, _LSR, _LSW case the locked status is
196 		 * communicated via the read/write commands
197 		 */
198 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
199 			break;
200 
201 		if (status >> 16 & ND_CONFIG_LOCKED)
202 			return -EACCES;
203 		break;
204 	case ND_CMD_GET_CONFIG_DATA:
205 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
206 				&& status == ACPI_LABELS_LOCKED)
207 			return -EACCES;
208 		break;
209 	case ND_CMD_SET_CONFIG_DATA:
210 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
211 				&& status == ACPI_LABELS_LOCKED)
212 			return -EACCES;
213 		break;
214 	default:
215 		break;
216 	}
217 
218 	/* all other non-zero status results in an error */
219 	if (status)
220 		return -EIO;
221 	return 0;
222 }
223 
224 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
225 		u32 status)
226 {
227 	if (!nvdimm)
228 		return xlat_bus_status(buf, cmd, status);
229 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
230 }
231 
232 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
233 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
234 {
235 	int i;
236 	void *dst;
237 	size_t size = 0;
238 	union acpi_object *buf = NULL;
239 
240 	if (pkg->type != ACPI_TYPE_PACKAGE) {
241 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242 				pkg->type);
243 		goto err;
244 	}
245 
246 	for (i = 0; i < pkg->package.count; i++) {
247 		union acpi_object *obj = &pkg->package.elements[i];
248 
249 		if (obj->type == ACPI_TYPE_INTEGER)
250 			size += 4;
251 		else if (obj->type == ACPI_TYPE_BUFFER)
252 			size += obj->buffer.length;
253 		else {
254 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
255 					obj->type);
256 			goto err;
257 		}
258 	}
259 
260 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
261 	if (!buf)
262 		goto err;
263 
264 	dst = buf + 1;
265 	buf->type = ACPI_TYPE_BUFFER;
266 	buf->buffer.length = size;
267 	buf->buffer.pointer = dst;
268 	for (i = 0; i < pkg->package.count; i++) {
269 		union acpi_object *obj = &pkg->package.elements[i];
270 
271 		if (obj->type == ACPI_TYPE_INTEGER) {
272 			memcpy(dst, &obj->integer.value, 4);
273 			dst += 4;
274 		} else if (obj->type == ACPI_TYPE_BUFFER) {
275 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
276 			dst += obj->buffer.length;
277 		}
278 	}
279 err:
280 	ACPI_FREE(pkg);
281 	return buf;
282 }
283 
284 static union acpi_object *int_to_buf(union acpi_object *integer)
285 {
286 	union acpi_object *buf = NULL;
287 	void *dst = NULL;
288 
289 	if (integer->type != ACPI_TYPE_INTEGER) {
290 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
291 				integer->type);
292 		goto err;
293 	}
294 
295 	buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
296 	if (!buf)
297 		goto err;
298 
299 	dst = buf + 1;
300 	buf->type = ACPI_TYPE_BUFFER;
301 	buf->buffer.length = 4;
302 	buf->buffer.pointer = dst;
303 	memcpy(dst, &integer->integer.value, 4);
304 err:
305 	ACPI_FREE(integer);
306 	return buf;
307 }
308 
309 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
310 		u32 len, void *data)
311 {
312 	acpi_status rc;
313 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
314 	struct acpi_object_list input = {
315 		.count = 3,
316 		.pointer = (union acpi_object []) {
317 			[0] = {
318 				.integer.type = ACPI_TYPE_INTEGER,
319 				.integer.value = offset,
320 			},
321 			[1] = {
322 				.integer.type = ACPI_TYPE_INTEGER,
323 				.integer.value = len,
324 			},
325 			[2] = {
326 				.buffer.type = ACPI_TYPE_BUFFER,
327 				.buffer.pointer = data,
328 				.buffer.length = len,
329 			},
330 		},
331 	};
332 
333 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
334 	if (ACPI_FAILURE(rc))
335 		return NULL;
336 	return int_to_buf(buf.pointer);
337 }
338 
339 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
340 		u32 len)
341 {
342 	acpi_status rc;
343 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
344 	struct acpi_object_list input = {
345 		.count = 2,
346 		.pointer = (union acpi_object []) {
347 			[0] = {
348 				.integer.type = ACPI_TYPE_INTEGER,
349 				.integer.value = offset,
350 			},
351 			[1] = {
352 				.integer.type = ACPI_TYPE_INTEGER,
353 				.integer.value = len,
354 			},
355 		},
356 	};
357 
358 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
359 	if (ACPI_FAILURE(rc))
360 		return NULL;
361 	return pkg_to_buf(buf.pointer);
362 }
363 
364 static union acpi_object *acpi_label_info(acpi_handle handle)
365 {
366 	acpi_status rc;
367 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
368 
369 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
370 	if (ACPI_FAILURE(rc))
371 		return NULL;
372 	return pkg_to_buf(buf.pointer);
373 }
374 
375 static u8 nfit_dsm_revid(unsigned family, unsigned func)
376 {
377 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
378 		[NVDIMM_FAMILY_INTEL] = {
379 			[NVDIMM_INTEL_GET_MODES ...
380 				NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
381 		},
382 	};
383 	u8 id;
384 
385 	if (family > NVDIMM_FAMILY_MAX)
386 		return 0;
387 	if (func > NVDIMM_CMD_MAX)
388 		return 0;
389 	id = revid_table[family][func];
390 	if (id == 0)
391 		return 1; /* default */
392 	return id;
393 }
394 
395 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
396 {
397 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
398 
399 	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
400 			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
401 			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
402 		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
403 	return true;
404 }
405 
406 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
407 		struct nd_cmd_pkg *call_pkg, int *family)
408 {
409 	if (call_pkg) {
410 		int i;
411 
412 		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
413 			return -ENOTTY;
414 
415 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
416 			if (call_pkg->nd_reserved2[i])
417 				return -EINVAL;
418 		*family = call_pkg->nd_family;
419 		return call_pkg->nd_command;
420 	}
421 
422 	/* In the !call_pkg case, bus commands == bus functions */
423 	if (!nfit_mem)
424 		return cmd;
425 
426 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
427 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
428 		return cmd;
429 
430 	/*
431 	 * Force function number validation to fail since 0 is never
432 	 * published as a valid function in dsm_mask.
433 	 */
434 	return 0;
435 }
436 
437 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
438 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
439 {
440 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
441 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
442 	union acpi_object in_obj, in_buf, *out_obj;
443 	const struct nd_cmd_desc *desc = NULL;
444 	struct device *dev = acpi_desc->dev;
445 	struct nd_cmd_pkg *call_pkg = NULL;
446 	const char *cmd_name, *dimm_name;
447 	unsigned long cmd_mask, dsm_mask;
448 	u32 offset, fw_status = 0;
449 	acpi_handle handle;
450 	const guid_t *guid;
451 	int func, rc, i;
452 	int family = 0;
453 
454 	if (cmd_rc)
455 		*cmd_rc = -EINVAL;
456 
457 	if (cmd == ND_CMD_CALL)
458 		call_pkg = buf;
459 	func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
460 	if (func < 0)
461 		return func;
462 
463 	if (nvdimm) {
464 		struct acpi_device *adev = nfit_mem->adev;
465 
466 		if (!adev)
467 			return -ENOTTY;
468 
469 		dimm_name = nvdimm_name(nvdimm);
470 		cmd_name = nvdimm_cmd_name(cmd);
471 		cmd_mask = nvdimm_cmd_mask(nvdimm);
472 		dsm_mask = nfit_mem->dsm_mask;
473 		desc = nd_cmd_dimm_desc(cmd);
474 		guid = to_nfit_uuid(nfit_mem->family);
475 		handle = adev->handle;
476 	} else {
477 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
478 
479 		cmd_name = nvdimm_bus_cmd_name(cmd);
480 		cmd_mask = nd_desc->cmd_mask;
481 		if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
482 			family = call_pkg->nd_family;
483 			if (family > NVDIMM_BUS_FAMILY_MAX ||
484 			    !test_bit(family, &nd_desc->bus_family_mask))
485 				return -EINVAL;
486 			family = array_index_nospec(family,
487 						    NVDIMM_BUS_FAMILY_MAX + 1);
488 			dsm_mask = acpi_desc->family_dsm_mask[family];
489 			guid = to_nfit_bus_uuid(family);
490 		} else {
491 			dsm_mask = acpi_desc->bus_dsm_mask;
492 			guid = to_nfit_uuid(NFIT_DEV_BUS);
493 		}
494 		desc = nd_cmd_bus_desc(cmd);
495 		handle = adev->handle;
496 		dimm_name = "bus";
497 	}
498 
499 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
500 		return -ENOTTY;
501 
502 	/*
503 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
504 	 * make sure that the DSM function is supported.
505 	 */
506 	if (cmd == ND_CMD_CALL &&
507 	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
508 		return -ENOTTY;
509 	else if (!test_bit(cmd, &cmd_mask))
510 		return -ENOTTY;
511 
512 	in_obj.type = ACPI_TYPE_PACKAGE;
513 	in_obj.package.count = 1;
514 	in_obj.package.elements = &in_buf;
515 	in_buf.type = ACPI_TYPE_BUFFER;
516 	in_buf.buffer.pointer = buf;
517 	in_buf.buffer.length = 0;
518 
519 	/* libnvdimm has already validated the input envelope */
520 	for (i = 0; i < desc->in_num; i++)
521 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
522 				i, buf);
523 
524 	if (call_pkg) {
525 		/* skip over package wrapper */
526 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
527 		in_buf.buffer.length = call_pkg->nd_size_in;
528 	}
529 
530 	dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
531 		dimm_name, cmd, family, func, in_buf.buffer.length);
532 	if (payload_dumpable(nvdimm, func))
533 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
534 				in_buf.buffer.pointer,
535 				min_t(u32, 256, in_buf.buffer.length), true);
536 
537 	/* call the BIOS, prefer the named methods over _DSM if available */
538 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
539 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
540 		out_obj = acpi_label_info(handle);
541 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
542 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
543 		struct nd_cmd_get_config_data_hdr *p = buf;
544 
545 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
546 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
547 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
548 		struct nd_cmd_set_config_hdr *p = buf;
549 
550 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
551 				p->in_buf);
552 	} else {
553 		u8 revid;
554 
555 		if (nvdimm)
556 			revid = nfit_dsm_revid(nfit_mem->family, func);
557 		else
558 			revid = 1;
559 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
560 	}
561 
562 	if (!out_obj) {
563 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
564 		return -EINVAL;
565 	}
566 
567 	if (out_obj->type != ACPI_TYPE_BUFFER) {
568 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
569 				dimm_name, cmd_name, out_obj->type);
570 		rc = -EINVAL;
571 		goto out;
572 	}
573 
574 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
575 			cmd_name, out_obj->buffer.length);
576 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
577 			out_obj->buffer.pointer,
578 			min_t(u32, 128, out_obj->buffer.length), true);
579 
580 	if (call_pkg) {
581 		call_pkg->nd_fw_size = out_obj->buffer.length;
582 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
583 			out_obj->buffer.pointer,
584 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
585 
586 		ACPI_FREE(out_obj);
587 		/*
588 		 * Need to support FW function w/o known size in advance.
589 		 * Caller can determine required size based upon nd_fw_size.
590 		 * If we return an error (like elsewhere) then caller wouldn't
591 		 * be able to rely upon data returned to make calculation.
592 		 */
593 		if (cmd_rc)
594 			*cmd_rc = 0;
595 		return 0;
596 	}
597 
598 	for (i = 0, offset = 0; i < desc->out_num; i++) {
599 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
600 				(u32 *) out_obj->buffer.pointer,
601 				out_obj->buffer.length - offset);
602 
603 		if (offset + out_size > out_obj->buffer.length) {
604 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
605 					dimm_name, cmd_name, i);
606 			break;
607 		}
608 
609 		if (in_buf.buffer.length + offset + out_size > buf_len) {
610 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
611 					dimm_name, cmd_name, i);
612 			rc = -ENXIO;
613 			goto out;
614 		}
615 		memcpy(buf + in_buf.buffer.length + offset,
616 				out_obj->buffer.pointer + offset, out_size);
617 		offset += out_size;
618 	}
619 
620 	/*
621 	 * Set fw_status for all the commands with a known format to be
622 	 * later interpreted by xlat_status().
623 	 */
624 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
625 					&& cmd <= ND_CMD_CLEAR_ERROR)
626 				|| (nvdimm && cmd >= ND_CMD_SMART
627 					&& cmd <= ND_CMD_VENDOR)))
628 		fw_status = *(u32 *) out_obj->buffer.pointer;
629 
630 	if (offset + in_buf.buffer.length < buf_len) {
631 		if (i >= 1) {
632 			/*
633 			 * status valid, return the number of bytes left
634 			 * unfilled in the output buffer
635 			 */
636 			rc = buf_len - offset - in_buf.buffer.length;
637 			if (cmd_rc)
638 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
639 						fw_status);
640 		} else {
641 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
642 					__func__, dimm_name, cmd_name, buf_len,
643 					offset);
644 			rc = -ENXIO;
645 		}
646 	} else {
647 		rc = 0;
648 		if (cmd_rc)
649 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
650 	}
651 
652  out:
653 	ACPI_FREE(out_obj);
654 
655 	return rc;
656 }
657 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
658 
659 static const char *spa_type_name(u16 type)
660 {
661 	static const char *to_name[] = {
662 		[NFIT_SPA_VOLATILE] = "volatile",
663 		[NFIT_SPA_PM] = "pmem",
664 		[NFIT_SPA_DCR] = "dimm-control-region",
665 		[NFIT_SPA_BDW] = "block-data-window",
666 		[NFIT_SPA_VDISK] = "volatile-disk",
667 		[NFIT_SPA_VCD] = "volatile-cd",
668 		[NFIT_SPA_PDISK] = "persistent-disk",
669 		[NFIT_SPA_PCD] = "persistent-cd",
670 
671 	};
672 
673 	if (type > NFIT_SPA_PCD)
674 		return "unknown";
675 
676 	return to_name[type];
677 }
678 
679 int nfit_spa_type(struct acpi_nfit_system_address *spa)
680 {
681 	int i;
682 
683 	for (i = 0; i < NFIT_UUID_MAX; i++)
684 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
685 			return i;
686 	return -1;
687 }
688 
689 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
690 		struct nfit_table_prev *prev,
691 		struct acpi_nfit_system_address *spa)
692 {
693 	struct device *dev = acpi_desc->dev;
694 	struct nfit_spa *nfit_spa;
695 
696 	if (spa->header.length != sizeof(*spa))
697 		return false;
698 
699 	list_for_each_entry(nfit_spa, &prev->spas, list) {
700 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
701 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
702 			return true;
703 		}
704 	}
705 
706 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
707 			GFP_KERNEL);
708 	if (!nfit_spa)
709 		return false;
710 	INIT_LIST_HEAD(&nfit_spa->list);
711 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
712 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
713 	dev_dbg(dev, "spa index: %d type: %s\n",
714 			spa->range_index,
715 			spa_type_name(nfit_spa_type(spa)));
716 	return true;
717 }
718 
719 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
720 		struct nfit_table_prev *prev,
721 		struct acpi_nfit_memory_map *memdev)
722 {
723 	struct device *dev = acpi_desc->dev;
724 	struct nfit_memdev *nfit_memdev;
725 
726 	if (memdev->header.length != sizeof(*memdev))
727 		return false;
728 
729 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
730 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
731 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
732 			return true;
733 		}
734 
735 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
736 			GFP_KERNEL);
737 	if (!nfit_memdev)
738 		return false;
739 	INIT_LIST_HEAD(&nfit_memdev->list);
740 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
741 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
742 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
743 			memdev->device_handle, memdev->range_index,
744 			memdev->region_index, memdev->flags);
745 	return true;
746 }
747 
748 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
749 {
750 	struct acpi_nfit_memory_map *memdev;
751 	struct acpi_nfit_desc *acpi_desc;
752 	struct nfit_mem *nfit_mem;
753 	u16 physical_id;
754 
755 	mutex_lock(&acpi_desc_lock);
756 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
757 		mutex_lock(&acpi_desc->init_mutex);
758 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
759 			memdev = __to_nfit_memdev(nfit_mem);
760 			if (memdev->device_handle == device_handle) {
761 				*flags = memdev->flags;
762 				physical_id = memdev->physical_id;
763 				mutex_unlock(&acpi_desc->init_mutex);
764 				mutex_unlock(&acpi_desc_lock);
765 				return physical_id;
766 			}
767 		}
768 		mutex_unlock(&acpi_desc->init_mutex);
769 	}
770 	mutex_unlock(&acpi_desc_lock);
771 
772 	return -ENODEV;
773 }
774 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
775 
776 /*
777  * An implementation may provide a truncated control region if no block windows
778  * are defined.
779  */
780 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
781 {
782 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
783 				window_size))
784 		return 0;
785 	if (dcr->windows)
786 		return sizeof(*dcr);
787 	return offsetof(struct acpi_nfit_control_region, window_size);
788 }
789 
790 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
791 		struct nfit_table_prev *prev,
792 		struct acpi_nfit_control_region *dcr)
793 {
794 	struct device *dev = acpi_desc->dev;
795 	struct nfit_dcr *nfit_dcr;
796 
797 	if (!sizeof_dcr(dcr))
798 		return false;
799 
800 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
801 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
802 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
803 			return true;
804 		}
805 
806 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
807 			GFP_KERNEL);
808 	if (!nfit_dcr)
809 		return false;
810 	INIT_LIST_HEAD(&nfit_dcr->list);
811 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
812 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
813 	dev_dbg(dev, "dcr index: %d windows: %d\n",
814 			dcr->region_index, dcr->windows);
815 	return true;
816 }
817 
818 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
819 		struct nfit_table_prev *prev,
820 		struct acpi_nfit_data_region *bdw)
821 {
822 	struct device *dev = acpi_desc->dev;
823 	struct nfit_bdw *nfit_bdw;
824 
825 	if (bdw->header.length != sizeof(*bdw))
826 		return false;
827 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
828 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
829 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
830 			return true;
831 		}
832 
833 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
834 			GFP_KERNEL);
835 	if (!nfit_bdw)
836 		return false;
837 	INIT_LIST_HEAD(&nfit_bdw->list);
838 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
839 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
840 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
841 			bdw->region_index, bdw->windows);
842 	return true;
843 }
844 
845 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
846 {
847 	if (idt->header.length < sizeof(*idt))
848 		return 0;
849 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
850 }
851 
852 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
853 		struct nfit_table_prev *prev,
854 		struct acpi_nfit_interleave *idt)
855 {
856 	struct device *dev = acpi_desc->dev;
857 	struct nfit_idt *nfit_idt;
858 
859 	if (!sizeof_idt(idt))
860 		return false;
861 
862 	list_for_each_entry(nfit_idt, &prev->idts, list) {
863 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
864 			continue;
865 
866 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
867 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
868 			return true;
869 		}
870 	}
871 
872 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
873 			GFP_KERNEL);
874 	if (!nfit_idt)
875 		return false;
876 	INIT_LIST_HEAD(&nfit_idt->list);
877 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
878 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
879 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
880 			idt->interleave_index, idt->line_count);
881 	return true;
882 }
883 
884 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
885 {
886 	if (flush->header.length < sizeof(*flush))
887 		return 0;
888 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
889 }
890 
891 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
892 		struct nfit_table_prev *prev,
893 		struct acpi_nfit_flush_address *flush)
894 {
895 	struct device *dev = acpi_desc->dev;
896 	struct nfit_flush *nfit_flush;
897 
898 	if (!sizeof_flush(flush))
899 		return false;
900 
901 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
902 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
903 			continue;
904 
905 		if (memcmp(nfit_flush->flush, flush,
906 					sizeof_flush(flush)) == 0) {
907 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
908 			return true;
909 		}
910 	}
911 
912 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
913 			+ sizeof_flush(flush), GFP_KERNEL);
914 	if (!nfit_flush)
915 		return false;
916 	INIT_LIST_HEAD(&nfit_flush->list);
917 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
918 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
919 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
920 			flush->device_handle, flush->hint_count);
921 	return true;
922 }
923 
924 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
925 		struct acpi_nfit_capabilities *pcap)
926 {
927 	struct device *dev = acpi_desc->dev;
928 	u32 mask;
929 
930 	mask = (1 << (pcap->highest_capability + 1)) - 1;
931 	acpi_desc->platform_cap = pcap->capabilities & mask;
932 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
933 	return true;
934 }
935 
936 static void *add_table(struct acpi_nfit_desc *acpi_desc,
937 		struct nfit_table_prev *prev, void *table, const void *end)
938 {
939 	struct device *dev = acpi_desc->dev;
940 	struct acpi_nfit_header *hdr;
941 	void *err = ERR_PTR(-ENOMEM);
942 
943 	if (table >= end)
944 		return NULL;
945 
946 	hdr = table;
947 	if (!hdr->length) {
948 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
949 			hdr->type);
950 		return NULL;
951 	}
952 
953 	switch (hdr->type) {
954 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
955 		if (!add_spa(acpi_desc, prev, table))
956 			return err;
957 		break;
958 	case ACPI_NFIT_TYPE_MEMORY_MAP:
959 		if (!add_memdev(acpi_desc, prev, table))
960 			return err;
961 		break;
962 	case ACPI_NFIT_TYPE_CONTROL_REGION:
963 		if (!add_dcr(acpi_desc, prev, table))
964 			return err;
965 		break;
966 	case ACPI_NFIT_TYPE_DATA_REGION:
967 		if (!add_bdw(acpi_desc, prev, table))
968 			return err;
969 		break;
970 	case ACPI_NFIT_TYPE_INTERLEAVE:
971 		if (!add_idt(acpi_desc, prev, table))
972 			return err;
973 		break;
974 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
975 		if (!add_flush(acpi_desc, prev, table))
976 			return err;
977 		break;
978 	case ACPI_NFIT_TYPE_SMBIOS:
979 		dev_dbg(dev, "smbios\n");
980 		break;
981 	case ACPI_NFIT_TYPE_CAPABILITIES:
982 		if (!add_platform_cap(acpi_desc, table))
983 			return err;
984 		break;
985 	default:
986 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
987 		break;
988 	}
989 
990 	return table + hdr->length;
991 }
992 
993 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
994 		struct nfit_mem *nfit_mem)
995 {
996 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
997 	u16 dcr = nfit_mem->dcr->region_index;
998 	struct nfit_spa *nfit_spa;
999 
1000 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1001 		u16 range_index = nfit_spa->spa->range_index;
1002 		int type = nfit_spa_type(nfit_spa->spa);
1003 		struct nfit_memdev *nfit_memdev;
1004 
1005 		if (type != NFIT_SPA_BDW)
1006 			continue;
1007 
1008 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1009 			if (nfit_memdev->memdev->range_index != range_index)
1010 				continue;
1011 			if (nfit_memdev->memdev->device_handle != device_handle)
1012 				continue;
1013 			if (nfit_memdev->memdev->region_index != dcr)
1014 				continue;
1015 
1016 			nfit_mem->spa_bdw = nfit_spa->spa;
1017 			return;
1018 		}
1019 	}
1020 
1021 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1022 			nfit_mem->spa_dcr->range_index);
1023 	nfit_mem->bdw = NULL;
1024 }
1025 
1026 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1027 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1028 {
1029 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1030 	struct nfit_memdev *nfit_memdev;
1031 	struct nfit_bdw *nfit_bdw;
1032 	struct nfit_idt *nfit_idt;
1033 	u16 idt_idx, range_index;
1034 
1035 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1036 		if (nfit_bdw->bdw->region_index != dcr)
1037 			continue;
1038 		nfit_mem->bdw = nfit_bdw->bdw;
1039 		break;
1040 	}
1041 
1042 	if (!nfit_mem->bdw)
1043 		return;
1044 
1045 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1046 
1047 	if (!nfit_mem->spa_bdw)
1048 		return;
1049 
1050 	range_index = nfit_mem->spa_bdw->range_index;
1051 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1052 		if (nfit_memdev->memdev->range_index != range_index ||
1053 				nfit_memdev->memdev->region_index != dcr)
1054 			continue;
1055 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
1056 		idt_idx = nfit_memdev->memdev->interleave_index;
1057 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1058 			if (nfit_idt->idt->interleave_index != idt_idx)
1059 				continue;
1060 			nfit_mem->idt_bdw = nfit_idt->idt;
1061 			break;
1062 		}
1063 		break;
1064 	}
1065 }
1066 
1067 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1068 		struct acpi_nfit_system_address *spa)
1069 {
1070 	struct nfit_mem *nfit_mem, *found;
1071 	struct nfit_memdev *nfit_memdev;
1072 	int type = spa ? nfit_spa_type(spa) : 0;
1073 
1074 	switch (type) {
1075 	case NFIT_SPA_DCR:
1076 	case NFIT_SPA_PM:
1077 		break;
1078 	default:
1079 		if (spa)
1080 			return 0;
1081 	}
1082 
1083 	/*
1084 	 * This loop runs in two modes, when a dimm is mapped the loop
1085 	 * adds memdev associations to an existing dimm, or creates a
1086 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1087 	 * instances with an invalid / zero range_index and adds those
1088 	 * dimms without spa associations.
1089 	 */
1090 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1091 		struct nfit_flush *nfit_flush;
1092 		struct nfit_dcr *nfit_dcr;
1093 		u32 device_handle;
1094 		u16 dcr;
1095 
1096 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1097 			continue;
1098 		if (!spa && nfit_memdev->memdev->range_index)
1099 			continue;
1100 		found = NULL;
1101 		dcr = nfit_memdev->memdev->region_index;
1102 		device_handle = nfit_memdev->memdev->device_handle;
1103 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1104 			if (__to_nfit_memdev(nfit_mem)->device_handle
1105 					== device_handle) {
1106 				found = nfit_mem;
1107 				break;
1108 			}
1109 
1110 		if (found)
1111 			nfit_mem = found;
1112 		else {
1113 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1114 					sizeof(*nfit_mem), GFP_KERNEL);
1115 			if (!nfit_mem)
1116 				return -ENOMEM;
1117 			INIT_LIST_HEAD(&nfit_mem->list);
1118 			nfit_mem->acpi_desc = acpi_desc;
1119 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1120 		}
1121 
1122 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1123 			if (nfit_dcr->dcr->region_index != dcr)
1124 				continue;
1125 			/*
1126 			 * Record the control region for the dimm.  For
1127 			 * the ACPI 6.1 case, where there are separate
1128 			 * control regions for the pmem vs blk
1129 			 * interfaces, be sure to record the extended
1130 			 * blk details.
1131 			 */
1132 			if (!nfit_mem->dcr)
1133 				nfit_mem->dcr = nfit_dcr->dcr;
1134 			else if (nfit_mem->dcr->windows == 0
1135 					&& nfit_dcr->dcr->windows)
1136 				nfit_mem->dcr = nfit_dcr->dcr;
1137 			break;
1138 		}
1139 
1140 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1141 			struct acpi_nfit_flush_address *flush;
1142 			u16 i;
1143 
1144 			if (nfit_flush->flush->device_handle != device_handle)
1145 				continue;
1146 			nfit_mem->nfit_flush = nfit_flush;
1147 			flush = nfit_flush->flush;
1148 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1149 					flush->hint_count,
1150 					sizeof(struct resource),
1151 					GFP_KERNEL);
1152 			if (!nfit_mem->flush_wpq)
1153 				return -ENOMEM;
1154 			for (i = 0; i < flush->hint_count; i++) {
1155 				struct resource *res = &nfit_mem->flush_wpq[i];
1156 
1157 				res->start = flush->hint_address[i];
1158 				res->end = res->start + 8 - 1;
1159 			}
1160 			break;
1161 		}
1162 
1163 		if (dcr && !nfit_mem->dcr) {
1164 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1165 					spa->range_index, dcr);
1166 			return -ENODEV;
1167 		}
1168 
1169 		if (type == NFIT_SPA_DCR) {
1170 			struct nfit_idt *nfit_idt;
1171 			u16 idt_idx;
1172 
1173 			/* multiple dimms may share a SPA when interleaved */
1174 			nfit_mem->spa_dcr = spa;
1175 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1176 			idt_idx = nfit_memdev->memdev->interleave_index;
1177 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1178 				if (nfit_idt->idt->interleave_index != idt_idx)
1179 					continue;
1180 				nfit_mem->idt_dcr = nfit_idt->idt;
1181 				break;
1182 			}
1183 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1184 		} else if (type == NFIT_SPA_PM) {
1185 			/*
1186 			 * A single dimm may belong to multiple SPA-PM
1187 			 * ranges, record at least one in addition to
1188 			 * any SPA-DCR range.
1189 			 */
1190 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1191 		} else
1192 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1199 {
1200 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1201 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1202 	u32 handleA, handleB;
1203 
1204 	handleA = __to_nfit_memdev(a)->device_handle;
1205 	handleB = __to_nfit_memdev(b)->device_handle;
1206 	if (handleA < handleB)
1207 		return -1;
1208 	else if (handleA > handleB)
1209 		return 1;
1210 	return 0;
1211 }
1212 
1213 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1214 {
1215 	struct nfit_spa *nfit_spa;
1216 	int rc;
1217 
1218 
1219 	/*
1220 	 * For each SPA-DCR or SPA-PMEM address range find its
1221 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1222 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1223 	 * try to find a SPA-BDW and a corresponding BDW that references
1224 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1225 	 * BDWs are optional.
1226 	 */
1227 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1228 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1229 		if (rc)
1230 			return rc;
1231 	}
1232 
1233 	/*
1234 	 * If a DIMM has failed to be mapped into SPA there will be no
1235 	 * SPA entries above. Find and register all the unmapped DIMMs
1236 	 * for reporting and recovery purposes.
1237 	 */
1238 	rc = __nfit_mem_init(acpi_desc, NULL);
1239 	if (rc)
1240 		return rc;
1241 
1242 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1243 
1244 	return 0;
1245 }
1246 
1247 static ssize_t bus_dsm_mask_show(struct device *dev,
1248 		struct device_attribute *attr, char *buf)
1249 {
1250 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1251 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1252 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1253 
1254 	return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1255 }
1256 static struct device_attribute dev_attr_bus_dsm_mask =
1257 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1258 
1259 static ssize_t revision_show(struct device *dev,
1260 		struct device_attribute *attr, char *buf)
1261 {
1262 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1263 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1264 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1265 
1266 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1267 }
1268 static DEVICE_ATTR_RO(revision);
1269 
1270 static ssize_t hw_error_scrub_show(struct device *dev,
1271 		struct device_attribute *attr, char *buf)
1272 {
1273 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1274 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1275 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1276 
1277 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1278 }
1279 
1280 /*
1281  * The 'hw_error_scrub' attribute can have the following values written to it:
1282  * '0': Switch to the default mode where an exception will only insert
1283  *      the address of the memory error into the poison and badblocks lists.
1284  * '1': Enable a full scrub to happen if an exception for a memory error is
1285  *      received.
1286  */
1287 static ssize_t hw_error_scrub_store(struct device *dev,
1288 		struct device_attribute *attr, const char *buf, size_t size)
1289 {
1290 	struct nvdimm_bus_descriptor *nd_desc;
1291 	ssize_t rc;
1292 	long val;
1293 
1294 	rc = kstrtol(buf, 0, &val);
1295 	if (rc)
1296 		return rc;
1297 
1298 	nfit_device_lock(dev);
1299 	nd_desc = dev_get_drvdata(dev);
1300 	if (nd_desc) {
1301 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1302 
1303 		switch (val) {
1304 		case HW_ERROR_SCRUB_ON:
1305 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1306 			break;
1307 		case HW_ERROR_SCRUB_OFF:
1308 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1309 			break;
1310 		default:
1311 			rc = -EINVAL;
1312 			break;
1313 		}
1314 	}
1315 	nfit_device_unlock(dev);
1316 	if (rc)
1317 		return rc;
1318 	return size;
1319 }
1320 static DEVICE_ATTR_RW(hw_error_scrub);
1321 
1322 /*
1323  * This shows the number of full Address Range Scrubs that have been
1324  * completed since driver load time. Userspace can wait on this using
1325  * select/poll etc. A '+' at the end indicates an ARS is in progress
1326  */
1327 static ssize_t scrub_show(struct device *dev,
1328 		struct device_attribute *attr, char *buf)
1329 {
1330 	struct nvdimm_bus_descriptor *nd_desc;
1331 	struct acpi_nfit_desc *acpi_desc;
1332 	ssize_t rc = -ENXIO;
1333 	bool busy;
1334 
1335 	nfit_device_lock(dev);
1336 	nd_desc = dev_get_drvdata(dev);
1337 	if (!nd_desc) {
1338 		nfit_device_unlock(dev);
1339 		return rc;
1340 	}
1341 	acpi_desc = to_acpi_desc(nd_desc);
1342 
1343 	mutex_lock(&acpi_desc->init_mutex);
1344 	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1345 		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1346 	rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1347 	/* Allow an admin to poll the busy state at a higher rate */
1348 	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1349 				&acpi_desc->scrub_flags)) {
1350 		acpi_desc->scrub_tmo = 1;
1351 		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1352 	}
1353 
1354 	mutex_unlock(&acpi_desc->init_mutex);
1355 	nfit_device_unlock(dev);
1356 	return rc;
1357 }
1358 
1359 static ssize_t scrub_store(struct device *dev,
1360 		struct device_attribute *attr, const char *buf, size_t size)
1361 {
1362 	struct nvdimm_bus_descriptor *nd_desc;
1363 	ssize_t rc;
1364 	long val;
1365 
1366 	rc = kstrtol(buf, 0, &val);
1367 	if (rc)
1368 		return rc;
1369 	if (val != 1)
1370 		return -EINVAL;
1371 
1372 	nfit_device_lock(dev);
1373 	nd_desc = dev_get_drvdata(dev);
1374 	if (nd_desc) {
1375 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1376 
1377 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1378 	}
1379 	nfit_device_unlock(dev);
1380 	if (rc)
1381 		return rc;
1382 	return size;
1383 }
1384 static DEVICE_ATTR_RW(scrub);
1385 
1386 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1387 {
1388 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1389 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1390 		| 1 << ND_CMD_ARS_STATUS;
1391 
1392 	return (nd_desc->cmd_mask & mask) == mask;
1393 }
1394 
1395 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1396 {
1397 	struct device *dev = kobj_to_dev(kobj);
1398 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1399 
1400 	if (a == &dev_attr_scrub.attr)
1401 		return ars_supported(nvdimm_bus) ? a->mode : 0;
1402 
1403 	if (a == &dev_attr_firmware_activate_noidle.attr)
1404 		return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1405 
1406 	return a->mode;
1407 }
1408 
1409 static struct attribute *acpi_nfit_attributes[] = {
1410 	&dev_attr_revision.attr,
1411 	&dev_attr_scrub.attr,
1412 	&dev_attr_hw_error_scrub.attr,
1413 	&dev_attr_bus_dsm_mask.attr,
1414 	&dev_attr_firmware_activate_noidle.attr,
1415 	NULL,
1416 };
1417 
1418 static const struct attribute_group acpi_nfit_attribute_group = {
1419 	.name = "nfit",
1420 	.attrs = acpi_nfit_attributes,
1421 	.is_visible = nfit_visible,
1422 };
1423 
1424 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1425 	&acpi_nfit_attribute_group,
1426 	NULL,
1427 };
1428 
1429 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1430 {
1431 	struct nvdimm *nvdimm = to_nvdimm(dev);
1432 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1433 
1434 	return __to_nfit_memdev(nfit_mem);
1435 }
1436 
1437 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1438 {
1439 	struct nvdimm *nvdimm = to_nvdimm(dev);
1440 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1441 
1442 	return nfit_mem->dcr;
1443 }
1444 
1445 static ssize_t handle_show(struct device *dev,
1446 		struct device_attribute *attr, char *buf)
1447 {
1448 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1449 
1450 	return sprintf(buf, "%#x\n", memdev->device_handle);
1451 }
1452 static DEVICE_ATTR_RO(handle);
1453 
1454 static ssize_t phys_id_show(struct device *dev,
1455 		struct device_attribute *attr, char *buf)
1456 {
1457 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1458 
1459 	return sprintf(buf, "%#x\n", memdev->physical_id);
1460 }
1461 static DEVICE_ATTR_RO(phys_id);
1462 
1463 static ssize_t vendor_show(struct device *dev,
1464 		struct device_attribute *attr, char *buf)
1465 {
1466 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1467 
1468 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1469 }
1470 static DEVICE_ATTR_RO(vendor);
1471 
1472 static ssize_t rev_id_show(struct device *dev,
1473 		struct device_attribute *attr, char *buf)
1474 {
1475 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1476 
1477 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1478 }
1479 static DEVICE_ATTR_RO(rev_id);
1480 
1481 static ssize_t device_show(struct device *dev,
1482 		struct device_attribute *attr, char *buf)
1483 {
1484 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1485 
1486 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1487 }
1488 static DEVICE_ATTR_RO(device);
1489 
1490 static ssize_t subsystem_vendor_show(struct device *dev,
1491 		struct device_attribute *attr, char *buf)
1492 {
1493 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1494 
1495 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1496 }
1497 static DEVICE_ATTR_RO(subsystem_vendor);
1498 
1499 static ssize_t subsystem_rev_id_show(struct device *dev,
1500 		struct device_attribute *attr, char *buf)
1501 {
1502 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1503 
1504 	return sprintf(buf, "0x%04x\n",
1505 			be16_to_cpu(dcr->subsystem_revision_id));
1506 }
1507 static DEVICE_ATTR_RO(subsystem_rev_id);
1508 
1509 static ssize_t subsystem_device_show(struct device *dev,
1510 		struct device_attribute *attr, char *buf)
1511 {
1512 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1513 
1514 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1515 }
1516 static DEVICE_ATTR_RO(subsystem_device);
1517 
1518 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1519 {
1520 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1521 	int formats = 0;
1522 
1523 	if (nfit_mem->memdev_pmem)
1524 		formats++;
1525 	if (nfit_mem->memdev_bdw)
1526 		formats++;
1527 	return formats;
1528 }
1529 
1530 static ssize_t format_show(struct device *dev,
1531 		struct device_attribute *attr, char *buf)
1532 {
1533 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1534 
1535 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1536 }
1537 static DEVICE_ATTR_RO(format);
1538 
1539 static ssize_t format1_show(struct device *dev,
1540 		struct device_attribute *attr, char *buf)
1541 {
1542 	u32 handle;
1543 	ssize_t rc = -ENXIO;
1544 	struct nfit_mem *nfit_mem;
1545 	struct nfit_memdev *nfit_memdev;
1546 	struct acpi_nfit_desc *acpi_desc;
1547 	struct nvdimm *nvdimm = to_nvdimm(dev);
1548 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1549 
1550 	nfit_mem = nvdimm_provider_data(nvdimm);
1551 	acpi_desc = nfit_mem->acpi_desc;
1552 	handle = to_nfit_memdev(dev)->device_handle;
1553 
1554 	/* assumes DIMMs have at most 2 published interface codes */
1555 	mutex_lock(&acpi_desc->init_mutex);
1556 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1557 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1558 		struct nfit_dcr *nfit_dcr;
1559 
1560 		if (memdev->device_handle != handle)
1561 			continue;
1562 
1563 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1564 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1565 				continue;
1566 			if (nfit_dcr->dcr->code == dcr->code)
1567 				continue;
1568 			rc = sprintf(buf, "0x%04x\n",
1569 					le16_to_cpu(nfit_dcr->dcr->code));
1570 			break;
1571 		}
1572 		if (rc != -ENXIO)
1573 			break;
1574 	}
1575 	mutex_unlock(&acpi_desc->init_mutex);
1576 	return rc;
1577 }
1578 static DEVICE_ATTR_RO(format1);
1579 
1580 static ssize_t formats_show(struct device *dev,
1581 		struct device_attribute *attr, char *buf)
1582 {
1583 	struct nvdimm *nvdimm = to_nvdimm(dev);
1584 
1585 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1586 }
1587 static DEVICE_ATTR_RO(formats);
1588 
1589 static ssize_t serial_show(struct device *dev,
1590 		struct device_attribute *attr, char *buf)
1591 {
1592 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1593 
1594 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1595 }
1596 static DEVICE_ATTR_RO(serial);
1597 
1598 static ssize_t family_show(struct device *dev,
1599 		struct device_attribute *attr, char *buf)
1600 {
1601 	struct nvdimm *nvdimm = to_nvdimm(dev);
1602 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1603 
1604 	if (nfit_mem->family < 0)
1605 		return -ENXIO;
1606 	return sprintf(buf, "%d\n", nfit_mem->family);
1607 }
1608 static DEVICE_ATTR_RO(family);
1609 
1610 static ssize_t dsm_mask_show(struct device *dev,
1611 		struct device_attribute *attr, char *buf)
1612 {
1613 	struct nvdimm *nvdimm = to_nvdimm(dev);
1614 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1615 
1616 	if (nfit_mem->family < 0)
1617 		return -ENXIO;
1618 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1619 }
1620 static DEVICE_ATTR_RO(dsm_mask);
1621 
1622 static ssize_t flags_show(struct device *dev,
1623 		struct device_attribute *attr, char *buf)
1624 {
1625 	struct nvdimm *nvdimm = to_nvdimm(dev);
1626 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1627 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1628 
1629 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1630 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1631 
1632 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1633 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1634 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1635 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1636 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1637 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1638 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1639 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1640 }
1641 static DEVICE_ATTR_RO(flags);
1642 
1643 static ssize_t id_show(struct device *dev,
1644 		struct device_attribute *attr, char *buf)
1645 {
1646 	struct nvdimm *nvdimm = to_nvdimm(dev);
1647 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1648 
1649 	return sprintf(buf, "%s\n", nfit_mem->id);
1650 }
1651 static DEVICE_ATTR_RO(id);
1652 
1653 static ssize_t dirty_shutdown_show(struct device *dev,
1654 		struct device_attribute *attr, char *buf)
1655 {
1656 	struct nvdimm *nvdimm = to_nvdimm(dev);
1657 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1658 
1659 	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1660 }
1661 static DEVICE_ATTR_RO(dirty_shutdown);
1662 
1663 static struct attribute *acpi_nfit_dimm_attributes[] = {
1664 	&dev_attr_handle.attr,
1665 	&dev_attr_phys_id.attr,
1666 	&dev_attr_vendor.attr,
1667 	&dev_attr_device.attr,
1668 	&dev_attr_rev_id.attr,
1669 	&dev_attr_subsystem_vendor.attr,
1670 	&dev_attr_subsystem_device.attr,
1671 	&dev_attr_subsystem_rev_id.attr,
1672 	&dev_attr_format.attr,
1673 	&dev_attr_formats.attr,
1674 	&dev_attr_format1.attr,
1675 	&dev_attr_serial.attr,
1676 	&dev_attr_flags.attr,
1677 	&dev_attr_id.attr,
1678 	&dev_attr_family.attr,
1679 	&dev_attr_dsm_mask.attr,
1680 	&dev_attr_dirty_shutdown.attr,
1681 	NULL,
1682 };
1683 
1684 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1685 		struct attribute *a, int n)
1686 {
1687 	struct device *dev = kobj_to_dev(kobj);
1688 	struct nvdimm *nvdimm = to_nvdimm(dev);
1689 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1690 
1691 	if (!to_nfit_dcr(dev)) {
1692 		/* Without a dcr only the memdev attributes can be surfaced */
1693 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1694 				|| a == &dev_attr_flags.attr
1695 				|| a == &dev_attr_family.attr
1696 				|| a == &dev_attr_dsm_mask.attr)
1697 			return a->mode;
1698 		return 0;
1699 	}
1700 
1701 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1702 		return 0;
1703 
1704 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1705 			&& a == &dev_attr_dirty_shutdown.attr)
1706 		return 0;
1707 
1708 	return a->mode;
1709 }
1710 
1711 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1712 	.name = "nfit",
1713 	.attrs = acpi_nfit_dimm_attributes,
1714 	.is_visible = acpi_nfit_dimm_attr_visible,
1715 };
1716 
1717 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1718 	&acpi_nfit_dimm_attribute_group,
1719 	NULL,
1720 };
1721 
1722 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1723 		u32 device_handle)
1724 {
1725 	struct nfit_mem *nfit_mem;
1726 
1727 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1728 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1729 			return nfit_mem->nvdimm;
1730 
1731 	return NULL;
1732 }
1733 
1734 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1735 {
1736 	struct nfit_mem *nfit_mem;
1737 	struct acpi_nfit_desc *acpi_desc;
1738 
1739 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1740 			event);
1741 
1742 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1743 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1744 				event);
1745 		return;
1746 	}
1747 
1748 	acpi_desc = dev_get_drvdata(dev->parent);
1749 	if (!acpi_desc)
1750 		return;
1751 
1752 	/*
1753 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1754 	 * is still valid.
1755 	 */
1756 	nfit_mem = dev_get_drvdata(dev);
1757 	if (nfit_mem && nfit_mem->flags_attr)
1758 		sysfs_notify_dirent(nfit_mem->flags_attr);
1759 }
1760 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1761 
1762 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1763 {
1764 	struct acpi_device *adev = data;
1765 	struct device *dev = &adev->dev;
1766 
1767 	nfit_device_lock(dev->parent);
1768 	__acpi_nvdimm_notify(dev, event);
1769 	nfit_device_unlock(dev->parent);
1770 }
1771 
1772 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1773 {
1774 	acpi_handle handle;
1775 	acpi_status status;
1776 
1777 	status = acpi_get_handle(adev->handle, method, &handle);
1778 
1779 	if (ACPI_SUCCESS(status))
1780 		return true;
1781 	return false;
1782 }
1783 
1784 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1785 {
1786 	struct device *dev = &nfit_mem->adev->dev;
1787 	struct nd_intel_smart smart = { 0 };
1788 	union acpi_object in_buf = {
1789 		.buffer.type = ACPI_TYPE_BUFFER,
1790 		.buffer.length = 0,
1791 	};
1792 	union acpi_object in_obj = {
1793 		.package.type = ACPI_TYPE_PACKAGE,
1794 		.package.count = 1,
1795 		.package.elements = &in_buf,
1796 	};
1797 	const u8 func = ND_INTEL_SMART;
1798 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1799 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1800 	struct acpi_device *adev = nfit_mem->adev;
1801 	acpi_handle handle = adev->handle;
1802 	union acpi_object *out_obj;
1803 
1804 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1805 		return;
1806 
1807 	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1808 	if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1809 			|| out_obj->buffer.length < sizeof(smart)) {
1810 		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1811 				dev_name(dev));
1812 		ACPI_FREE(out_obj);
1813 		return;
1814 	}
1815 	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1816 	ACPI_FREE(out_obj);
1817 
1818 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1819 		if (smart.shutdown_state)
1820 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1821 	}
1822 
1823 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1824 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1825 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1826 	}
1827 }
1828 
1829 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1830 {
1831 	/*
1832 	 * For DIMMs that provide a dynamic facility to retrieve a
1833 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1834 	 * these values in nfit_mem.
1835 	 */
1836 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1837 		nfit_intel_shutdown_status(nfit_mem);
1838 }
1839 
1840 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1841 		struct nfit_mem *nfit_mem, u32 device_handle)
1842 {
1843 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1844 	struct acpi_device *adev, *adev_dimm;
1845 	struct device *dev = acpi_desc->dev;
1846 	unsigned long dsm_mask, label_mask;
1847 	const guid_t *guid;
1848 	int i;
1849 	int family = -1;
1850 	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1851 
1852 	/* nfit test assumes 1:1 relationship between commands and dsms */
1853 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1854 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1855 	set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1856 
1857 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1858 		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1859 				be16_to_cpu(dcr->vendor_id),
1860 				dcr->manufacturing_location,
1861 				be16_to_cpu(dcr->manufacturing_date),
1862 				be32_to_cpu(dcr->serial_number));
1863 	else
1864 		sprintf(nfit_mem->id, "%04x-%08x",
1865 				be16_to_cpu(dcr->vendor_id),
1866 				be32_to_cpu(dcr->serial_number));
1867 
1868 	adev = to_acpi_dev(acpi_desc);
1869 	if (!adev) {
1870 		/* unit test case */
1871 		populate_shutdown_status(nfit_mem);
1872 		return 0;
1873 	}
1874 
1875 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1876 	nfit_mem->adev = adev_dimm;
1877 	if (!adev_dimm) {
1878 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1879 				device_handle);
1880 		return force_enable_dimms ? 0 : -ENODEV;
1881 	}
1882 
1883 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1884 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1885 		dev_err(dev, "%s: notification registration failed\n",
1886 				dev_name(&adev_dimm->dev));
1887 		return -ENXIO;
1888 	}
1889 	/*
1890 	 * Record nfit_mem for the notification path to track back to
1891 	 * the nfit sysfs attributes for this dimm device object.
1892 	 */
1893 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1894 
1895 	/*
1896 	 * There are 4 "legacy" NVDIMM command sets
1897 	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1898 	 * an EFI working group was established to constrain this
1899 	 * proliferation. The nfit driver probes for the supported command
1900 	 * set by GUID. Note, if you're a platform developer looking to add
1901 	 * a new command set to this probe, consider using an existing set,
1902 	 * or otherwise seek approval to publish the command set at
1903 	 * http://www.uefi.org/RFIC_LIST.
1904 	 *
1905 	 * Note, that checking for function0 (bit0) tells us if any commands
1906 	 * are reachable through this GUID.
1907 	 */
1908 	clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1909 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1910 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1911 			set_bit(i, &nd_desc->dimm_family_mask);
1912 			if (family < 0 || i == default_dsm_family)
1913 				family = i;
1914 		}
1915 
1916 	/* limit the supported commands to those that are publicly documented */
1917 	nfit_mem->family = family;
1918 	if (override_dsm_mask && !disable_vendor_specific)
1919 		dsm_mask = override_dsm_mask;
1920 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1921 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1922 		if (disable_vendor_specific)
1923 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1924 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1925 		dsm_mask = 0x1c3c76;
1926 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1927 		dsm_mask = 0x1fe;
1928 		if (disable_vendor_specific)
1929 			dsm_mask &= ~(1 << 8);
1930 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1931 		dsm_mask = 0xffffffff;
1932 	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1933 		dsm_mask = 0x1f;
1934 	} else {
1935 		dev_dbg(dev, "unknown dimm command family\n");
1936 		nfit_mem->family = -1;
1937 		/* DSMs are optional, continue loading the driver... */
1938 		return 0;
1939 	}
1940 
1941 	/*
1942 	 * Function 0 is the command interrogation function, don't
1943 	 * export it to potential userspace use, and enable it to be
1944 	 * used as an error value in acpi_nfit_ctl().
1945 	 */
1946 	dsm_mask &= ~1UL;
1947 
1948 	guid = to_nfit_uuid(nfit_mem->family);
1949 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1950 		if (acpi_check_dsm(adev_dimm->handle, guid,
1951 					nfit_dsm_revid(nfit_mem->family, i),
1952 					1ULL << i))
1953 			set_bit(i, &nfit_mem->dsm_mask);
1954 
1955 	/*
1956 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1957 	 * due to their better semantics handling locked capacity.
1958 	 */
1959 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1960 		| 1 << ND_CMD_SET_CONFIG_DATA;
1961 	if (family == NVDIMM_FAMILY_INTEL
1962 			&& (dsm_mask & label_mask) == label_mask)
1963 		/* skip _LS{I,R,W} enabling */;
1964 	else {
1965 		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1966 				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1967 			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1968 			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1969 		}
1970 
1971 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1972 				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1973 			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1974 			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1975 		}
1976 
1977 		/*
1978 		 * Quirk read-only label configurations to preserve
1979 		 * access to label-less namespaces by default.
1980 		 */
1981 		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1982 				&& !force_labels) {
1983 			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1984 					dev_name(&adev_dimm->dev));
1985 			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1986 		} else
1987 			dev_dbg(dev, "%s: Force enable labels\n",
1988 					dev_name(&adev_dimm->dev));
1989 	}
1990 
1991 	populate_shutdown_status(nfit_mem);
1992 
1993 	return 0;
1994 }
1995 
1996 static void shutdown_dimm_notify(void *data)
1997 {
1998 	struct acpi_nfit_desc *acpi_desc = data;
1999 	struct nfit_mem *nfit_mem;
2000 
2001 	mutex_lock(&acpi_desc->init_mutex);
2002 	/*
2003 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
2004 	 * notifications.
2005 	 */
2006 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2007 		struct acpi_device *adev_dimm = nfit_mem->adev;
2008 
2009 		if (nfit_mem->flags_attr) {
2010 			sysfs_put(nfit_mem->flags_attr);
2011 			nfit_mem->flags_attr = NULL;
2012 		}
2013 		if (adev_dimm) {
2014 			acpi_remove_notify_handler(adev_dimm->handle,
2015 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
2016 			dev_set_drvdata(&adev_dimm->dev, NULL);
2017 		}
2018 	}
2019 	mutex_unlock(&acpi_desc->init_mutex);
2020 }
2021 
2022 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
2023 {
2024 	switch (family) {
2025 	case NVDIMM_FAMILY_INTEL:
2026 		return intel_security_ops;
2027 	default:
2028 		return NULL;
2029 	}
2030 }
2031 
2032 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
2033 		struct nfit_mem *nfit_mem)
2034 {
2035 	unsigned long mask;
2036 	struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
2037 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2038 
2039 	if (!nd_desc->fw_ops)
2040 		return NULL;
2041 
2042 	if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
2043 		return NULL;
2044 
2045 	mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
2046 	if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
2047 		return NULL;
2048 
2049 	return intel_fw_ops;
2050 }
2051 
2052 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
2053 {
2054 	struct nfit_mem *nfit_mem;
2055 	int dimm_count = 0, rc;
2056 	struct nvdimm *nvdimm;
2057 
2058 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2059 		struct acpi_nfit_flush_address *flush;
2060 		unsigned long flags = 0, cmd_mask;
2061 		struct nfit_memdev *nfit_memdev;
2062 		u32 device_handle;
2063 		u16 mem_flags;
2064 
2065 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2066 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2067 		if (nvdimm) {
2068 			dimm_count++;
2069 			continue;
2070 		}
2071 
2072 		if (nfit_mem->bdw && nfit_mem->memdev_pmem) {
2073 			set_bit(NDD_ALIASING, &flags);
2074 			set_bit(NDD_LABELING, &flags);
2075 		}
2076 
2077 		/* collate flags across all memdevs for this dimm */
2078 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2079 			struct acpi_nfit_memory_map *dimm_memdev;
2080 
2081 			dimm_memdev = __to_nfit_memdev(nfit_mem);
2082 			if (dimm_memdev->device_handle
2083 					!= nfit_memdev->memdev->device_handle)
2084 				continue;
2085 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2086 		}
2087 
2088 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2089 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2090 			set_bit(NDD_UNARMED, &flags);
2091 
2092 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2093 		if (rc)
2094 			continue;
2095 
2096 		/*
2097 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2098 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2099 		 * userspace interface.
2100 		 */
2101 		cmd_mask = 1UL << ND_CMD_CALL;
2102 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2103 			/*
2104 			 * These commands have a 1:1 correspondence
2105 			 * between DSM payload and libnvdimm ioctl
2106 			 * payload format.
2107 			 */
2108 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2109 		}
2110 
2111 		/* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
2112 		if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
2113 			set_bit(NDD_NOBLK, &flags);
2114 
2115 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2116 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2117 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2118 		}
2119 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2120 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2121 
2122 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2123 			: NULL;
2124 		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2125 				acpi_nfit_dimm_attribute_groups,
2126 				flags, cmd_mask, flush ? flush->hint_count : 0,
2127 				nfit_mem->flush_wpq, &nfit_mem->id[0],
2128 				acpi_nfit_get_security_ops(nfit_mem->family),
2129 				acpi_nfit_get_fw_ops(nfit_mem));
2130 		if (!nvdimm)
2131 			return -ENOMEM;
2132 
2133 		nfit_mem->nvdimm = nvdimm;
2134 		dimm_count++;
2135 
2136 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2137 			continue;
2138 
2139 		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2140 				nvdimm_name(nvdimm),
2141 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2142 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2143 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2144 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2145 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2146 
2147 	}
2148 
2149 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2150 	if (rc)
2151 		return rc;
2152 
2153 	/*
2154 	 * Now that dimms are successfully registered, and async registration
2155 	 * is flushed, attempt to enable event notification.
2156 	 */
2157 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2158 		struct kernfs_node *nfit_kernfs;
2159 
2160 		nvdimm = nfit_mem->nvdimm;
2161 		if (!nvdimm)
2162 			continue;
2163 
2164 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2165 		if (nfit_kernfs)
2166 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2167 					"flags");
2168 		sysfs_put(nfit_kernfs);
2169 		if (!nfit_mem->flags_attr)
2170 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2171 					nvdimm_name(nvdimm));
2172 	}
2173 
2174 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2175 			acpi_desc);
2176 }
2177 
2178 /*
2179  * These constants are private because there are no kernel consumers of
2180  * these commands.
2181  */
2182 enum nfit_aux_cmds {
2183 	NFIT_CMD_TRANSLATE_SPA = 5,
2184 	NFIT_CMD_ARS_INJECT_SET = 7,
2185 	NFIT_CMD_ARS_INJECT_CLEAR = 8,
2186 	NFIT_CMD_ARS_INJECT_GET = 9,
2187 };
2188 
2189 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2190 {
2191 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2192 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2193 	unsigned long dsm_mask, *mask;
2194 	struct acpi_device *adev;
2195 	int i;
2196 
2197 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2198 	set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2199 
2200 	/* enable nfit_test to inject bus command emulation */
2201 	if (acpi_desc->bus_cmd_force_en) {
2202 		nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2203 		mask = &nd_desc->bus_family_mask;
2204 		if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2205 			set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2206 			nd_desc->fw_ops = intel_bus_fw_ops;
2207 		}
2208 	}
2209 
2210 	adev = to_acpi_dev(acpi_desc);
2211 	if (!adev)
2212 		return;
2213 
2214 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2215 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2216 			set_bit(i, &nd_desc->cmd_mask);
2217 
2218 	dsm_mask =
2219 		(1 << ND_CMD_ARS_CAP) |
2220 		(1 << ND_CMD_ARS_START) |
2221 		(1 << ND_CMD_ARS_STATUS) |
2222 		(1 << ND_CMD_CLEAR_ERROR) |
2223 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2224 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2225 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2226 		(1 << NFIT_CMD_ARS_INJECT_GET);
2227 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2228 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2229 			set_bit(i, &acpi_desc->bus_dsm_mask);
2230 
2231 	/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2232 	dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2233 	guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2234 	mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2235 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2236 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2237 			set_bit(i, mask);
2238 
2239 	if (*mask == dsm_mask) {
2240 		set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2241 		nd_desc->fw_ops = intel_bus_fw_ops;
2242 	}
2243 }
2244 
2245 static ssize_t range_index_show(struct device *dev,
2246 		struct device_attribute *attr, char *buf)
2247 {
2248 	struct nd_region *nd_region = to_nd_region(dev);
2249 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2250 
2251 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2252 }
2253 static DEVICE_ATTR_RO(range_index);
2254 
2255 static struct attribute *acpi_nfit_region_attributes[] = {
2256 	&dev_attr_range_index.attr,
2257 	NULL,
2258 };
2259 
2260 static const struct attribute_group acpi_nfit_region_attribute_group = {
2261 	.name = "nfit",
2262 	.attrs = acpi_nfit_region_attributes,
2263 };
2264 
2265 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2266 	&acpi_nfit_region_attribute_group,
2267 	NULL,
2268 };
2269 
2270 /* enough info to uniquely specify an interleave set */
2271 struct nfit_set_info {
2272 	struct nfit_set_info_map {
2273 		u64 region_offset;
2274 		u32 serial_number;
2275 		u32 pad;
2276 	} mapping[0];
2277 };
2278 
2279 struct nfit_set_info2 {
2280 	struct nfit_set_info_map2 {
2281 		u64 region_offset;
2282 		u32 serial_number;
2283 		u16 vendor_id;
2284 		u16 manufacturing_date;
2285 		u8  manufacturing_location;
2286 		u8  reserved[31];
2287 	} mapping[0];
2288 };
2289 
2290 static size_t sizeof_nfit_set_info(int num_mappings)
2291 {
2292 	return sizeof(struct nfit_set_info)
2293 		+ num_mappings * sizeof(struct nfit_set_info_map);
2294 }
2295 
2296 static size_t sizeof_nfit_set_info2(int num_mappings)
2297 {
2298 	return sizeof(struct nfit_set_info2)
2299 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2300 }
2301 
2302 static int cmp_map_compat(const void *m0, const void *m1)
2303 {
2304 	const struct nfit_set_info_map *map0 = m0;
2305 	const struct nfit_set_info_map *map1 = m1;
2306 
2307 	return memcmp(&map0->region_offset, &map1->region_offset,
2308 			sizeof(u64));
2309 }
2310 
2311 static int cmp_map(const void *m0, const void *m1)
2312 {
2313 	const struct nfit_set_info_map *map0 = m0;
2314 	const struct nfit_set_info_map *map1 = m1;
2315 
2316 	if (map0->region_offset < map1->region_offset)
2317 		return -1;
2318 	else if (map0->region_offset > map1->region_offset)
2319 		return 1;
2320 	return 0;
2321 }
2322 
2323 static int cmp_map2(const void *m0, const void *m1)
2324 {
2325 	const struct nfit_set_info_map2 *map0 = m0;
2326 	const struct nfit_set_info_map2 *map1 = m1;
2327 
2328 	if (map0->region_offset < map1->region_offset)
2329 		return -1;
2330 	else if (map0->region_offset > map1->region_offset)
2331 		return 1;
2332 	return 0;
2333 }
2334 
2335 /* Retrieve the nth entry referencing this spa */
2336 static struct acpi_nfit_memory_map *memdev_from_spa(
2337 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2338 {
2339 	struct nfit_memdev *nfit_memdev;
2340 
2341 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2342 		if (nfit_memdev->memdev->range_index == range_index)
2343 			if (n-- == 0)
2344 				return nfit_memdev->memdev;
2345 	return NULL;
2346 }
2347 
2348 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2349 		struct nd_region_desc *ndr_desc,
2350 		struct acpi_nfit_system_address *spa)
2351 {
2352 	struct device *dev = acpi_desc->dev;
2353 	struct nd_interleave_set *nd_set;
2354 	u16 nr = ndr_desc->num_mappings;
2355 	struct nfit_set_info2 *info2;
2356 	struct nfit_set_info *info;
2357 	int i;
2358 
2359 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2360 	if (!nd_set)
2361 		return -ENOMEM;
2362 	import_guid(&nd_set->type_guid, spa->range_guid);
2363 
2364 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2365 	if (!info)
2366 		return -ENOMEM;
2367 
2368 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2369 	if (!info2)
2370 		return -ENOMEM;
2371 
2372 	for (i = 0; i < nr; i++) {
2373 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2374 		struct nfit_set_info_map *map = &info->mapping[i];
2375 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2376 		struct nvdimm *nvdimm = mapping->nvdimm;
2377 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2378 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2379 				spa->range_index, i);
2380 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2381 
2382 		if (!memdev || !nfit_mem->dcr) {
2383 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2384 			return -ENODEV;
2385 		}
2386 
2387 		map->region_offset = memdev->region_offset;
2388 		map->serial_number = dcr->serial_number;
2389 
2390 		map2->region_offset = memdev->region_offset;
2391 		map2->serial_number = dcr->serial_number;
2392 		map2->vendor_id = dcr->vendor_id;
2393 		map2->manufacturing_date = dcr->manufacturing_date;
2394 		map2->manufacturing_location = dcr->manufacturing_location;
2395 	}
2396 
2397 	/* v1.1 namespaces */
2398 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2399 			cmp_map, NULL);
2400 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2401 
2402 	/* v1.2 namespaces */
2403 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2404 			cmp_map2, NULL);
2405 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2406 
2407 	/* support v1.1 namespaces created with the wrong sort order */
2408 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2409 			cmp_map_compat, NULL);
2410 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2411 
2412 	/* record the result of the sort for the mapping position */
2413 	for (i = 0; i < nr; i++) {
2414 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2415 		int j;
2416 
2417 		for (j = 0; j < nr; j++) {
2418 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2419 			struct nvdimm *nvdimm = mapping->nvdimm;
2420 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2421 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2422 
2423 			if (map2->serial_number == dcr->serial_number &&
2424 			    map2->vendor_id == dcr->vendor_id &&
2425 			    map2->manufacturing_date == dcr->manufacturing_date &&
2426 			    map2->manufacturing_location
2427 				    == dcr->manufacturing_location) {
2428 				mapping->position = i;
2429 				break;
2430 			}
2431 		}
2432 	}
2433 
2434 	ndr_desc->nd_set = nd_set;
2435 	devm_kfree(dev, info);
2436 	devm_kfree(dev, info2);
2437 
2438 	return 0;
2439 }
2440 
2441 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2442 {
2443 	struct acpi_nfit_interleave *idt = mmio->idt;
2444 	u32 sub_line_offset, line_index, line_offset;
2445 	u64 line_no, table_skip_count, table_offset;
2446 
2447 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2448 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2449 	line_offset = idt->line_offset[line_index]
2450 		* mmio->line_size;
2451 	table_offset = table_skip_count * mmio->table_size;
2452 
2453 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2454 }
2455 
2456 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2457 {
2458 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2459 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2460 	const u32 STATUS_MASK = 0x80000037;
2461 
2462 	if (mmio->num_lines)
2463 		offset = to_interleave_offset(offset, mmio);
2464 
2465 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2466 }
2467 
2468 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2469 		resource_size_t dpa, unsigned int len, unsigned int write)
2470 {
2471 	u64 cmd, offset;
2472 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2473 
2474 	enum {
2475 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2476 		BCW_LEN_SHIFT = 48,
2477 		BCW_LEN_MASK = (1ULL << 8) - 1,
2478 		BCW_CMD_SHIFT = 56,
2479 	};
2480 
2481 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2482 	len = len >> L1_CACHE_SHIFT;
2483 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2484 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2485 
2486 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2487 	if (mmio->num_lines)
2488 		offset = to_interleave_offset(offset, mmio);
2489 
2490 	writeq(cmd, mmio->addr.base + offset);
2491 	nvdimm_flush(nfit_blk->nd_region, NULL);
2492 
2493 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2494 		readq(mmio->addr.base + offset);
2495 }
2496 
2497 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2498 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2499 		unsigned int lane)
2500 {
2501 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2502 	unsigned int copied = 0;
2503 	u64 base_offset;
2504 	int rc;
2505 
2506 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2507 		+ lane * mmio->size;
2508 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2509 	while (len) {
2510 		unsigned int c;
2511 		u64 offset;
2512 
2513 		if (mmio->num_lines) {
2514 			u32 line_offset;
2515 
2516 			offset = to_interleave_offset(base_offset + copied,
2517 					mmio);
2518 			div_u64_rem(offset, mmio->line_size, &line_offset);
2519 			c = min_t(size_t, len, mmio->line_size - line_offset);
2520 		} else {
2521 			offset = base_offset + nfit_blk->bdw_offset;
2522 			c = len;
2523 		}
2524 
2525 		if (rw)
2526 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2527 		else {
2528 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2529 				arch_invalidate_pmem((void __force *)
2530 					mmio->addr.aperture + offset, c);
2531 
2532 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2533 		}
2534 
2535 		copied += c;
2536 		len -= c;
2537 	}
2538 
2539 	if (rw)
2540 		nvdimm_flush(nfit_blk->nd_region, NULL);
2541 
2542 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2543 	return rc;
2544 }
2545 
2546 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2547 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2548 {
2549 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2550 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2551 	struct nd_region *nd_region = nfit_blk->nd_region;
2552 	unsigned int lane, copied = 0;
2553 	int rc = 0;
2554 
2555 	lane = nd_region_acquire_lane(nd_region);
2556 	while (len) {
2557 		u64 c = min(len, mmio->size);
2558 
2559 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2560 				iobuf + copied, c, rw, lane);
2561 		if (rc)
2562 			break;
2563 
2564 		copied += c;
2565 		len -= c;
2566 	}
2567 	nd_region_release_lane(nd_region, lane);
2568 
2569 	return rc;
2570 }
2571 
2572 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2573 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2574 {
2575 	if (idt) {
2576 		mmio->num_lines = idt->line_count;
2577 		mmio->line_size = idt->line_size;
2578 		if (interleave_ways == 0)
2579 			return -ENXIO;
2580 		mmio->table_size = mmio->num_lines * interleave_ways
2581 			* mmio->line_size;
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2588 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2589 {
2590 	struct nd_cmd_dimm_flags flags;
2591 	int rc;
2592 
2593 	memset(&flags, 0, sizeof(flags));
2594 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2595 			sizeof(flags), NULL);
2596 
2597 	if (rc >= 0 && flags.status == 0)
2598 		nfit_blk->dimm_flags = flags.flags;
2599 	else if (rc == -ENOTTY) {
2600 		/* fall back to a conservative default */
2601 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2602 		rc = 0;
2603 	} else
2604 		rc = -ENXIO;
2605 
2606 	return rc;
2607 }
2608 
2609 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2610 		struct device *dev)
2611 {
2612 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2613 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2614 	struct nfit_blk_mmio *mmio;
2615 	struct nfit_blk *nfit_blk;
2616 	struct nfit_mem *nfit_mem;
2617 	struct nvdimm *nvdimm;
2618 	int rc;
2619 
2620 	nvdimm = nd_blk_region_to_dimm(ndbr);
2621 	nfit_mem = nvdimm_provider_data(nvdimm);
2622 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2623 		dev_dbg(dev, "missing%s%s%s\n",
2624 				nfit_mem ? "" : " nfit_mem",
2625 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2626 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2627 		return -ENXIO;
2628 	}
2629 
2630 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2631 	if (!nfit_blk)
2632 		return -ENOMEM;
2633 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2634 	nfit_blk->nd_region = to_nd_region(dev);
2635 
2636 	/* map block aperture memory */
2637 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2638 	mmio = &nfit_blk->mmio[BDW];
2639 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2640 			nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2641 	if (!mmio->addr.base) {
2642 		dev_dbg(dev, "%s failed to map bdw\n",
2643 				nvdimm_name(nvdimm));
2644 		return -ENOMEM;
2645 	}
2646 	mmio->size = nfit_mem->bdw->size;
2647 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2648 	mmio->idt = nfit_mem->idt_bdw;
2649 	mmio->spa = nfit_mem->spa_bdw;
2650 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2651 			nfit_mem->memdev_bdw->interleave_ways);
2652 	if (rc) {
2653 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2654 				nvdimm_name(nvdimm));
2655 		return rc;
2656 	}
2657 
2658 	/* map block control memory */
2659 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2660 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2661 	mmio = &nfit_blk->mmio[DCR];
2662 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2663 			nfit_mem->spa_dcr->length);
2664 	if (!mmio->addr.base) {
2665 		dev_dbg(dev, "%s failed to map dcr\n",
2666 				nvdimm_name(nvdimm));
2667 		return -ENOMEM;
2668 	}
2669 	mmio->size = nfit_mem->dcr->window_size;
2670 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2671 	mmio->idt = nfit_mem->idt_dcr;
2672 	mmio->spa = nfit_mem->spa_dcr;
2673 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2674 			nfit_mem->memdev_dcr->interleave_ways);
2675 	if (rc) {
2676 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2677 				nvdimm_name(nvdimm));
2678 		return rc;
2679 	}
2680 
2681 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2682 	if (rc < 0) {
2683 		dev_dbg(dev, "%s failed get DIMM flags\n",
2684 				nvdimm_name(nvdimm));
2685 		return rc;
2686 	}
2687 
2688 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2689 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2690 
2691 	if (mmio->line_size == 0)
2692 		return 0;
2693 
2694 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2695 			+ 8 > mmio->line_size) {
2696 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2697 		return -ENXIO;
2698 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2699 			+ 8 > mmio->line_size) {
2700 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2701 		return -ENXIO;
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2708 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2709 {
2710 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2711 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2712 	int cmd_rc, rc;
2713 
2714 	cmd->address = spa->address;
2715 	cmd->length = spa->length;
2716 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2717 			sizeof(*cmd), &cmd_rc);
2718 	if (rc < 0)
2719 		return rc;
2720 	return cmd_rc;
2721 }
2722 
2723 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2724 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2725 {
2726 	int rc;
2727 	int cmd_rc;
2728 	struct nd_cmd_ars_start ars_start;
2729 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2730 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2731 
2732 	memset(&ars_start, 0, sizeof(ars_start));
2733 	ars_start.address = spa->address;
2734 	ars_start.length = spa->length;
2735 	if (req_type == ARS_REQ_SHORT)
2736 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2737 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2738 		ars_start.type = ND_ARS_PERSISTENT;
2739 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2740 		ars_start.type = ND_ARS_VOLATILE;
2741 	else
2742 		return -ENOTTY;
2743 
2744 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2745 			sizeof(ars_start), &cmd_rc);
2746 
2747 	if (rc < 0)
2748 		return rc;
2749 	if (cmd_rc < 0)
2750 		return cmd_rc;
2751 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2752 	return 0;
2753 }
2754 
2755 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2756 {
2757 	int rc, cmd_rc;
2758 	struct nd_cmd_ars_start ars_start;
2759 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2760 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2761 
2762 	ars_start = (struct nd_cmd_ars_start) {
2763 		.address = ars_status->restart_address,
2764 		.length = ars_status->restart_length,
2765 		.type = ars_status->type,
2766 	};
2767 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2768 			sizeof(ars_start), &cmd_rc);
2769 	if (rc < 0)
2770 		return rc;
2771 	return cmd_rc;
2772 }
2773 
2774 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2775 {
2776 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2777 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2778 	int rc, cmd_rc;
2779 
2780 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2781 			acpi_desc->max_ars, &cmd_rc);
2782 	if (rc < 0)
2783 		return rc;
2784 	return cmd_rc;
2785 }
2786 
2787 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2788 		struct nfit_spa *nfit_spa)
2789 {
2790 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2791 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2792 	struct nd_region *nd_region = nfit_spa->nd_region;
2793 	struct device *dev;
2794 
2795 	lockdep_assert_held(&acpi_desc->init_mutex);
2796 	/*
2797 	 * Only advance the ARS state for ARS runs initiated by the
2798 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2799 	 * completion tracking.
2800 	 */
2801 	if (acpi_desc->scrub_spa != nfit_spa)
2802 		return;
2803 
2804 	if ((ars_status->address >= spa->address && ars_status->address
2805 				< spa->address + spa->length)
2806 			|| (ars_status->address < spa->address)) {
2807 		/*
2808 		 * Assume that if a scrub starts at an offset from the
2809 		 * start of nfit_spa that we are in the continuation
2810 		 * case.
2811 		 *
2812 		 * Otherwise, if the scrub covers the spa range, mark
2813 		 * any pending request complete.
2814 		 */
2815 		if (ars_status->address + ars_status->length
2816 				>= spa->address + spa->length)
2817 				/* complete */;
2818 		else
2819 			return;
2820 	} else
2821 		return;
2822 
2823 	acpi_desc->scrub_spa = NULL;
2824 	if (nd_region) {
2825 		dev = nd_region_dev(nd_region);
2826 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2827 	} else
2828 		dev = acpi_desc->dev;
2829 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2830 }
2831 
2832 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2833 {
2834 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2835 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2836 	int rc;
2837 	u32 i;
2838 
2839 	/*
2840 	 * First record starts at 44 byte offset from the start of the
2841 	 * payload.
2842 	 */
2843 	if (ars_status->out_length < 44)
2844 		return 0;
2845 
2846 	/*
2847 	 * Ignore potentially stale results that are only refreshed
2848 	 * after a start-ARS event.
2849 	 */
2850 	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2851 		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2852 				ars_status->num_records);
2853 		return 0;
2854 	}
2855 
2856 	for (i = 0; i < ars_status->num_records; i++) {
2857 		/* only process full records */
2858 		if (ars_status->out_length
2859 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2860 			break;
2861 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2862 				ars_status->records[i].err_address,
2863 				ars_status->records[i].length);
2864 		if (rc)
2865 			return rc;
2866 	}
2867 	if (i < ars_status->num_records)
2868 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2869 
2870 	return 0;
2871 }
2872 
2873 static void acpi_nfit_remove_resource(void *data)
2874 {
2875 	struct resource *res = data;
2876 
2877 	remove_resource(res);
2878 }
2879 
2880 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2881 		struct nd_region_desc *ndr_desc)
2882 {
2883 	struct resource *res, *nd_res = ndr_desc->res;
2884 	int is_pmem, ret;
2885 
2886 	/* No operation if the region is already registered as PMEM */
2887 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2888 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2889 	if (is_pmem == REGION_INTERSECTS)
2890 		return 0;
2891 
2892 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2893 	if (!res)
2894 		return -ENOMEM;
2895 
2896 	res->name = "Persistent Memory";
2897 	res->start = nd_res->start;
2898 	res->end = nd_res->end;
2899 	res->flags = IORESOURCE_MEM;
2900 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2901 
2902 	ret = insert_resource(&iomem_resource, res);
2903 	if (ret)
2904 		return ret;
2905 
2906 	ret = devm_add_action_or_reset(acpi_desc->dev,
2907 					acpi_nfit_remove_resource,
2908 					res);
2909 	if (ret)
2910 		return ret;
2911 
2912 	return 0;
2913 }
2914 
2915 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2916 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2917 		struct acpi_nfit_memory_map *memdev,
2918 		struct nfit_spa *nfit_spa)
2919 {
2920 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2921 			memdev->device_handle);
2922 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2923 	struct nd_blk_region_desc *ndbr_desc;
2924 	struct nfit_mem *nfit_mem;
2925 	int rc;
2926 
2927 	if (!nvdimm) {
2928 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2929 				spa->range_index, memdev->device_handle);
2930 		return -ENODEV;
2931 	}
2932 
2933 	mapping->nvdimm = nvdimm;
2934 	switch (nfit_spa_type(spa)) {
2935 	case NFIT_SPA_PM:
2936 	case NFIT_SPA_VOLATILE:
2937 		mapping->start = memdev->address;
2938 		mapping->size = memdev->region_size;
2939 		break;
2940 	case NFIT_SPA_DCR:
2941 		nfit_mem = nvdimm_provider_data(nvdimm);
2942 		if (!nfit_mem || !nfit_mem->bdw) {
2943 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2944 					spa->range_index, nvdimm_name(nvdimm));
2945 			break;
2946 		}
2947 
2948 		mapping->size = nfit_mem->bdw->capacity;
2949 		mapping->start = nfit_mem->bdw->start_address;
2950 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2951 		ndr_desc->mapping = mapping;
2952 		ndr_desc->num_mappings = 1;
2953 		ndbr_desc = to_blk_region_desc(ndr_desc);
2954 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2955 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2956 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2957 		if (rc)
2958 			return rc;
2959 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2960 				ndr_desc);
2961 		if (!nfit_spa->nd_region)
2962 			return -ENOMEM;
2963 		break;
2964 	}
2965 
2966 	return 0;
2967 }
2968 
2969 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2970 {
2971 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2972 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2973 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2974 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2975 }
2976 
2977 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2978 {
2979 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2980 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2981 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2982 }
2983 
2984 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2985 		struct nfit_spa *nfit_spa)
2986 {
2987 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2988 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2989 	struct nd_blk_region_desc ndbr_desc;
2990 	struct nd_region_desc *ndr_desc;
2991 	struct nfit_memdev *nfit_memdev;
2992 	struct nvdimm_bus *nvdimm_bus;
2993 	struct resource res;
2994 	int count = 0, rc;
2995 
2996 	if (nfit_spa->nd_region)
2997 		return 0;
2998 
2999 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
3000 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
3001 		return 0;
3002 	}
3003 
3004 	memset(&res, 0, sizeof(res));
3005 	memset(&mappings, 0, sizeof(mappings));
3006 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
3007 	res.start = spa->address;
3008 	res.end = res.start + spa->length - 1;
3009 	ndr_desc = &ndbr_desc.ndr_desc;
3010 	ndr_desc->res = &res;
3011 	ndr_desc->provider_data = nfit_spa;
3012 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
3013 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
3014 		ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
3015 		ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
3016 	} else {
3017 		ndr_desc->numa_node = NUMA_NO_NODE;
3018 		ndr_desc->target_node = NUMA_NO_NODE;
3019 	}
3020 
3021 	/*
3022 	 * Persistence domain bits are hierarchical, if
3023 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
3024 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
3025 	 */
3026 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
3027 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
3028 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
3029 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
3030 
3031 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
3032 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
3033 		struct nd_mapping_desc *mapping;
3034 
3035 		if (memdev->range_index != spa->range_index)
3036 			continue;
3037 		if (count >= ND_MAX_MAPPINGS) {
3038 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
3039 					spa->range_index, ND_MAX_MAPPINGS);
3040 			return -ENXIO;
3041 		}
3042 		mapping = &mappings[count++];
3043 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
3044 				memdev, nfit_spa);
3045 		if (rc)
3046 			goto out;
3047 	}
3048 
3049 	ndr_desc->mapping = mappings;
3050 	ndr_desc->num_mappings = count;
3051 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
3052 	if (rc)
3053 		goto out;
3054 
3055 	nvdimm_bus = acpi_desc->nvdimm_bus;
3056 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
3057 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
3058 		if (rc) {
3059 			dev_warn(acpi_desc->dev,
3060 				"failed to insert pmem resource to iomem: %d\n",
3061 				rc);
3062 			goto out;
3063 		}
3064 
3065 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3066 				ndr_desc);
3067 		if (!nfit_spa->nd_region)
3068 			rc = -ENOMEM;
3069 	} else if (nfit_spa_is_volatile(spa)) {
3070 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
3071 				ndr_desc);
3072 		if (!nfit_spa->nd_region)
3073 			rc = -ENOMEM;
3074 	} else if (nfit_spa_is_virtual(spa)) {
3075 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3076 				ndr_desc);
3077 		if (!nfit_spa->nd_region)
3078 			rc = -ENOMEM;
3079 	}
3080 
3081  out:
3082 	if (rc)
3083 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
3084 				nfit_spa->spa->range_index);
3085 	return rc;
3086 }
3087 
3088 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
3089 {
3090 	struct device *dev = acpi_desc->dev;
3091 	struct nd_cmd_ars_status *ars_status;
3092 
3093 	if (acpi_desc->ars_status) {
3094 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3095 		return 0;
3096 	}
3097 
3098 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
3099 	if (!ars_status)
3100 		return -ENOMEM;
3101 	acpi_desc->ars_status = ars_status;
3102 	return 0;
3103 }
3104 
3105 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
3106 {
3107 	int rc;
3108 
3109 	if (ars_status_alloc(acpi_desc))
3110 		return -ENOMEM;
3111 
3112 	rc = ars_get_status(acpi_desc);
3113 
3114 	if (rc < 0 && rc != -ENOSPC)
3115 		return rc;
3116 
3117 	if (ars_status_process_records(acpi_desc))
3118 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
3119 
3120 	return rc;
3121 }
3122 
3123 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3124 		struct nfit_spa *nfit_spa)
3125 {
3126 	int rc;
3127 
3128 	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3129 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
3130 
3131 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3132 	if (!no_init_ars)
3133 		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3134 
3135 	switch (acpi_nfit_query_poison(acpi_desc)) {
3136 	case 0:
3137 	case -ENOSPC:
3138 	case -EAGAIN:
3139 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3140 		/* shouldn't happen, try again later */
3141 		if (rc == -EBUSY)
3142 			break;
3143 		if (rc) {
3144 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
3145 			break;
3146 		}
3147 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3148 		rc = acpi_nfit_query_poison(acpi_desc);
3149 		if (rc)
3150 			break;
3151 		acpi_desc->scrub_spa = nfit_spa;
3152 		ars_complete(acpi_desc, nfit_spa);
3153 		/*
3154 		 * If ars_complete() says we didn't complete the
3155 		 * short scrub, we'll try again with a long
3156 		 * request.
3157 		 */
3158 		acpi_desc->scrub_spa = NULL;
3159 		break;
3160 	case -EBUSY:
3161 	case -ENOMEM:
3162 		/*
3163 		 * BIOS was using ARS, wait for it to complete (or
3164 		 * resources to become available) and then perform our
3165 		 * own scrubs.
3166 		 */
3167 		break;
3168 	default:
3169 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3170 		break;
3171 	}
3172 
3173 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
3174 }
3175 
3176 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3177 {
3178 	struct nfit_spa *nfit_spa;
3179 
3180 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3181 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3182 			continue;
3183 		ars_complete(acpi_desc, nfit_spa);
3184 	}
3185 }
3186 
3187 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3188 		int query_rc)
3189 {
3190 	unsigned int tmo = acpi_desc->scrub_tmo;
3191 	struct device *dev = acpi_desc->dev;
3192 	struct nfit_spa *nfit_spa;
3193 
3194 	lockdep_assert_held(&acpi_desc->init_mutex);
3195 
3196 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
3197 		return 0;
3198 
3199 	if (query_rc == -EBUSY) {
3200 		dev_dbg(dev, "ARS: ARS busy\n");
3201 		return min(30U * 60U, tmo * 2);
3202 	}
3203 	if (query_rc == -ENOSPC) {
3204 		dev_dbg(dev, "ARS: ARS continue\n");
3205 		ars_continue(acpi_desc);
3206 		return 1;
3207 	}
3208 	if (query_rc && query_rc != -EAGAIN) {
3209 		unsigned long long addr, end;
3210 
3211 		addr = acpi_desc->ars_status->address;
3212 		end = addr + acpi_desc->ars_status->length;
3213 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3214 				query_rc);
3215 	}
3216 
3217 	ars_complete_all(acpi_desc);
3218 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3219 		enum nfit_ars_state req_type;
3220 		int rc;
3221 
3222 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3223 			continue;
3224 
3225 		/* prefer short ARS requests first */
3226 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3227 			req_type = ARS_REQ_SHORT;
3228 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3229 			req_type = ARS_REQ_LONG;
3230 		else
3231 			continue;
3232 		rc = ars_start(acpi_desc, nfit_spa, req_type);
3233 
3234 		dev = nd_region_dev(nfit_spa->nd_region);
3235 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3236 				nfit_spa->spa->range_index,
3237 				req_type == ARS_REQ_SHORT ? "short" : "long",
3238 				rc);
3239 		/*
3240 		 * Hmm, we raced someone else starting ARS? Try again in
3241 		 * a bit.
3242 		 */
3243 		if (rc == -EBUSY)
3244 			return 1;
3245 		if (rc == 0) {
3246 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3247 					"scrub start while range %d active\n",
3248 					acpi_desc->scrub_spa->spa->range_index);
3249 			clear_bit(req_type, &nfit_spa->ars_state);
3250 			acpi_desc->scrub_spa = nfit_spa;
3251 			/*
3252 			 * Consider this spa last for future scrub
3253 			 * requests
3254 			 */
3255 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3256 			return 1;
3257 		}
3258 
3259 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3260 				nfit_spa->spa->range_index, rc);
3261 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3262 	}
3263 	return 0;
3264 }
3265 
3266 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3267 {
3268 	lockdep_assert_held(&acpi_desc->init_mutex);
3269 
3270 	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3271 	/* note this should only be set from within the workqueue */
3272 	if (tmo)
3273 		acpi_desc->scrub_tmo = tmo;
3274 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3275 }
3276 
3277 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3278 {
3279 	__sched_ars(acpi_desc, 0);
3280 }
3281 
3282 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3283 {
3284 	lockdep_assert_held(&acpi_desc->init_mutex);
3285 
3286 	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3287 	acpi_desc->scrub_count++;
3288 	if (acpi_desc->scrub_count_state)
3289 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3290 }
3291 
3292 static void acpi_nfit_scrub(struct work_struct *work)
3293 {
3294 	struct acpi_nfit_desc *acpi_desc;
3295 	unsigned int tmo;
3296 	int query_rc;
3297 
3298 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3299 	mutex_lock(&acpi_desc->init_mutex);
3300 	query_rc = acpi_nfit_query_poison(acpi_desc);
3301 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3302 	if (tmo)
3303 		__sched_ars(acpi_desc, tmo);
3304 	else
3305 		notify_ars_done(acpi_desc);
3306 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3307 	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3308 	mutex_unlock(&acpi_desc->init_mutex);
3309 }
3310 
3311 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3312 		struct nfit_spa *nfit_spa)
3313 {
3314 	int type = nfit_spa_type(nfit_spa->spa);
3315 	struct nd_cmd_ars_cap ars_cap;
3316 	int rc;
3317 
3318 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
3319 	memset(&ars_cap, 0, sizeof(ars_cap));
3320 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3321 	if (rc < 0)
3322 		return;
3323 	/* check that the supported scrub types match the spa type */
3324 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3325 				& ND_ARS_VOLATILE) == 0)
3326 		return;
3327 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3328 				& ND_ARS_PERSISTENT) == 0)
3329 		return;
3330 
3331 	nfit_spa->max_ars = ars_cap.max_ars_out;
3332 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3333 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3334 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3335 }
3336 
3337 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3338 {
3339 	struct nfit_spa *nfit_spa;
3340 	int rc, do_sched_ars = 0;
3341 
3342 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3343 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3344 		switch (nfit_spa_type(nfit_spa->spa)) {
3345 		case NFIT_SPA_VOLATILE:
3346 		case NFIT_SPA_PM:
3347 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3348 			break;
3349 		}
3350 	}
3351 
3352 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3353 		switch (nfit_spa_type(nfit_spa->spa)) {
3354 		case NFIT_SPA_VOLATILE:
3355 		case NFIT_SPA_PM:
3356 			/* register regions and kick off initial ARS run */
3357 			rc = ars_register(acpi_desc, nfit_spa);
3358 			if (rc)
3359 				return rc;
3360 
3361 			/*
3362 			 * Kick off background ARS if at least one
3363 			 * region successfully registered ARS
3364 			 */
3365 			if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
3366 				do_sched_ars++;
3367 			break;
3368 		case NFIT_SPA_BDW:
3369 			/* nothing to register */
3370 			break;
3371 		case NFIT_SPA_DCR:
3372 		case NFIT_SPA_VDISK:
3373 		case NFIT_SPA_VCD:
3374 		case NFIT_SPA_PDISK:
3375 		case NFIT_SPA_PCD:
3376 			/* register known regions that don't support ARS */
3377 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3378 			if (rc)
3379 				return rc;
3380 			break;
3381 		default:
3382 			/* don't register unknown regions */
3383 			break;
3384 		}
3385 	}
3386 
3387 	if (do_sched_ars)
3388 		sched_ars(acpi_desc);
3389 	return 0;
3390 }
3391 
3392 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3393 		struct nfit_table_prev *prev)
3394 {
3395 	struct device *dev = acpi_desc->dev;
3396 
3397 	if (!list_empty(&prev->spas) ||
3398 			!list_empty(&prev->memdevs) ||
3399 			!list_empty(&prev->dcrs) ||
3400 			!list_empty(&prev->bdws) ||
3401 			!list_empty(&prev->idts) ||
3402 			!list_empty(&prev->flushes)) {
3403 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3404 		return -ENXIO;
3405 	}
3406 	return 0;
3407 }
3408 
3409 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3410 {
3411 	struct device *dev = acpi_desc->dev;
3412 	struct kernfs_node *nfit;
3413 	struct device *bus_dev;
3414 
3415 	if (!ars_supported(acpi_desc->nvdimm_bus))
3416 		return 0;
3417 
3418 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3419 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3420 	if (!nfit) {
3421 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3422 		return -ENODEV;
3423 	}
3424 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3425 	sysfs_put(nfit);
3426 	if (!acpi_desc->scrub_count_state) {
3427 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3428 		return -ENODEV;
3429 	}
3430 
3431 	return 0;
3432 }
3433 
3434 static void acpi_nfit_unregister(void *data)
3435 {
3436 	struct acpi_nfit_desc *acpi_desc = data;
3437 
3438 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3439 }
3440 
3441 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3442 {
3443 	struct device *dev = acpi_desc->dev;
3444 	struct nfit_table_prev prev;
3445 	const void *end;
3446 	int rc;
3447 
3448 	if (!acpi_desc->nvdimm_bus) {
3449 		acpi_nfit_init_dsms(acpi_desc);
3450 
3451 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3452 				&acpi_desc->nd_desc);
3453 		if (!acpi_desc->nvdimm_bus)
3454 			return -ENOMEM;
3455 
3456 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3457 				acpi_desc);
3458 		if (rc)
3459 			return rc;
3460 
3461 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3462 		if (rc)
3463 			return rc;
3464 
3465 		/* register this acpi_desc for mce notifications */
3466 		mutex_lock(&acpi_desc_lock);
3467 		list_add_tail(&acpi_desc->list, &acpi_descs);
3468 		mutex_unlock(&acpi_desc_lock);
3469 	}
3470 
3471 	mutex_lock(&acpi_desc->init_mutex);
3472 
3473 	INIT_LIST_HEAD(&prev.spas);
3474 	INIT_LIST_HEAD(&prev.memdevs);
3475 	INIT_LIST_HEAD(&prev.dcrs);
3476 	INIT_LIST_HEAD(&prev.bdws);
3477 	INIT_LIST_HEAD(&prev.idts);
3478 	INIT_LIST_HEAD(&prev.flushes);
3479 
3480 	list_cut_position(&prev.spas, &acpi_desc->spas,
3481 				acpi_desc->spas.prev);
3482 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3483 				acpi_desc->memdevs.prev);
3484 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3485 				acpi_desc->dcrs.prev);
3486 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3487 				acpi_desc->bdws.prev);
3488 	list_cut_position(&prev.idts, &acpi_desc->idts,
3489 				acpi_desc->idts.prev);
3490 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3491 				acpi_desc->flushes.prev);
3492 
3493 	end = data + sz;
3494 	while (!IS_ERR_OR_NULL(data))
3495 		data = add_table(acpi_desc, &prev, data, end);
3496 
3497 	if (IS_ERR(data)) {
3498 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3499 		rc = PTR_ERR(data);
3500 		goto out_unlock;
3501 	}
3502 
3503 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3504 	if (rc)
3505 		goto out_unlock;
3506 
3507 	rc = nfit_mem_init(acpi_desc);
3508 	if (rc)
3509 		goto out_unlock;
3510 
3511 	rc = acpi_nfit_register_dimms(acpi_desc);
3512 	if (rc)
3513 		goto out_unlock;
3514 
3515 	rc = acpi_nfit_register_regions(acpi_desc);
3516 
3517  out_unlock:
3518 	mutex_unlock(&acpi_desc->init_mutex);
3519 	return rc;
3520 }
3521 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3522 
3523 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3524 {
3525 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3526 	struct device *dev = acpi_desc->dev;
3527 
3528 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3529 	nfit_device_lock(dev);
3530 	nfit_device_unlock(dev);
3531 
3532 	/* Bounce the init_mutex to complete initial registration */
3533 	mutex_lock(&acpi_desc->init_mutex);
3534 	mutex_unlock(&acpi_desc->init_mutex);
3535 
3536 	return 0;
3537 }
3538 
3539 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3540 		struct nvdimm *nvdimm, unsigned int cmd)
3541 {
3542 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3543 
3544 	if (nvdimm)
3545 		return 0;
3546 	if (cmd != ND_CMD_ARS_START)
3547 		return 0;
3548 
3549 	/*
3550 	 * The kernel and userspace may race to initiate a scrub, but
3551 	 * the scrub thread is prepared to lose that initial race.  It
3552 	 * just needs guarantees that any ARS it initiates are not
3553 	 * interrupted by any intervening start requests from userspace.
3554 	 */
3555 	if (work_busy(&acpi_desc->dwork.work))
3556 		return -EBUSY;
3557 
3558 	return 0;
3559 }
3560 
3561 /*
3562  * Prevent security and firmware activate commands from being issued via
3563  * ioctl.
3564  */
3565 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3566 		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3567 {
3568 	struct nd_cmd_pkg *call_pkg = buf;
3569 	unsigned int func;
3570 
3571 	if (nvdimm && cmd == ND_CMD_CALL &&
3572 			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3573 		func = call_pkg->nd_command;
3574 		if (func > NVDIMM_CMD_MAX ||
3575 		    (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3576 			return -EOPNOTSUPP;
3577 	}
3578 
3579 	/* block all non-nfit bus commands */
3580 	if (!nvdimm && cmd == ND_CMD_CALL &&
3581 			call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3582 		return -EOPNOTSUPP;
3583 
3584 	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3585 }
3586 
3587 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3588 		enum nfit_ars_state req_type)
3589 {
3590 	struct device *dev = acpi_desc->dev;
3591 	int scheduled = 0, busy = 0;
3592 	struct nfit_spa *nfit_spa;
3593 
3594 	mutex_lock(&acpi_desc->init_mutex);
3595 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3596 		mutex_unlock(&acpi_desc->init_mutex);
3597 		return 0;
3598 	}
3599 
3600 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3601 		int type = nfit_spa_type(nfit_spa->spa);
3602 
3603 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3604 			continue;
3605 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3606 			continue;
3607 
3608 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3609 			busy++;
3610 		else
3611 			scheduled++;
3612 	}
3613 	if (scheduled) {
3614 		sched_ars(acpi_desc);
3615 		dev_dbg(dev, "ars_scan triggered\n");
3616 	}
3617 	mutex_unlock(&acpi_desc->init_mutex);
3618 
3619 	if (scheduled)
3620 		return 0;
3621 	if (busy)
3622 		return -EBUSY;
3623 	return -ENOTTY;
3624 }
3625 
3626 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3627 {
3628 	struct nvdimm_bus_descriptor *nd_desc;
3629 
3630 	dev_set_drvdata(dev, acpi_desc);
3631 	acpi_desc->dev = dev;
3632 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3633 	nd_desc = &acpi_desc->nd_desc;
3634 	nd_desc->provider_name = "ACPI.NFIT";
3635 	nd_desc->module = THIS_MODULE;
3636 	nd_desc->ndctl = acpi_nfit_ctl;
3637 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3638 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3639 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3640 
3641 	INIT_LIST_HEAD(&acpi_desc->spas);
3642 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3643 	INIT_LIST_HEAD(&acpi_desc->bdws);
3644 	INIT_LIST_HEAD(&acpi_desc->idts);
3645 	INIT_LIST_HEAD(&acpi_desc->flushes);
3646 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3647 	INIT_LIST_HEAD(&acpi_desc->dimms);
3648 	INIT_LIST_HEAD(&acpi_desc->list);
3649 	mutex_init(&acpi_desc->init_mutex);
3650 	acpi_desc->scrub_tmo = 1;
3651 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3652 }
3653 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3654 
3655 static void acpi_nfit_put_table(void *table)
3656 {
3657 	acpi_put_table(table);
3658 }
3659 
3660 void acpi_nfit_shutdown(void *data)
3661 {
3662 	struct acpi_nfit_desc *acpi_desc = data;
3663 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3664 
3665 	/*
3666 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3667 	 * race teardown
3668 	 */
3669 	mutex_lock(&acpi_desc_lock);
3670 	list_del(&acpi_desc->list);
3671 	mutex_unlock(&acpi_desc_lock);
3672 
3673 	mutex_lock(&acpi_desc->init_mutex);
3674 	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3675 	cancel_delayed_work_sync(&acpi_desc->dwork);
3676 	mutex_unlock(&acpi_desc->init_mutex);
3677 
3678 	/*
3679 	 * Bounce the nvdimm bus lock to make sure any in-flight
3680 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3681 	 * either submit or see ->cancel set.
3682 	 */
3683 	nfit_device_lock(bus_dev);
3684 	nfit_device_unlock(bus_dev);
3685 
3686 	flush_workqueue(nfit_wq);
3687 }
3688 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3689 
3690 static int acpi_nfit_add(struct acpi_device *adev)
3691 {
3692 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3693 	struct acpi_nfit_desc *acpi_desc;
3694 	struct device *dev = &adev->dev;
3695 	struct acpi_table_header *tbl;
3696 	acpi_status status = AE_OK;
3697 	acpi_size sz;
3698 	int rc = 0;
3699 
3700 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3701 	if (ACPI_FAILURE(status)) {
3702 		/* The NVDIMM root device allows OS to trigger enumeration of
3703 		 * NVDIMMs through NFIT at boot time and re-enumeration at
3704 		 * root level via the _FIT method during runtime.
3705 		 * This is ok to return 0 here, we could have an nvdimm
3706 		 * hotplugged later and evaluate _FIT method which returns
3707 		 * data in the format of a series of NFIT Structures.
3708 		 */
3709 		dev_dbg(dev, "failed to find NFIT at startup\n");
3710 		return 0;
3711 	}
3712 
3713 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3714 	if (rc)
3715 		return rc;
3716 	sz = tbl->length;
3717 
3718 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3719 	if (!acpi_desc)
3720 		return -ENOMEM;
3721 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3722 
3723 	/* Save the acpi header for exporting the revision via sysfs */
3724 	acpi_desc->acpi_header = *tbl;
3725 
3726 	/* Evaluate _FIT and override with that if present */
3727 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3728 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3729 		union acpi_object *obj = buf.pointer;
3730 
3731 		if (obj->type == ACPI_TYPE_BUFFER)
3732 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3733 					obj->buffer.length);
3734 		else
3735 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3736 				(int) obj->type);
3737 		kfree(buf.pointer);
3738 	} else
3739 		/* skip over the lead-in header table */
3740 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3741 				+ sizeof(struct acpi_table_nfit),
3742 				sz - sizeof(struct acpi_table_nfit));
3743 
3744 	if (rc)
3745 		return rc;
3746 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3747 }
3748 
3749 static int acpi_nfit_remove(struct acpi_device *adev)
3750 {
3751 	/* see acpi_nfit_unregister */
3752 	return 0;
3753 }
3754 
3755 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3756 {
3757 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3758 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3759 	union acpi_object *obj;
3760 	acpi_status status;
3761 	int ret;
3762 
3763 	if (!dev->driver) {
3764 		/* dev->driver may be null if we're being removed */
3765 		dev_dbg(dev, "no driver found for dev\n");
3766 		return;
3767 	}
3768 
3769 	if (!acpi_desc) {
3770 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3771 		if (!acpi_desc)
3772 			return;
3773 		acpi_nfit_desc_init(acpi_desc, dev);
3774 	} else {
3775 		/*
3776 		 * Finish previous registration before considering new
3777 		 * regions.
3778 		 */
3779 		flush_workqueue(nfit_wq);
3780 	}
3781 
3782 	/* Evaluate _FIT */
3783 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3784 	if (ACPI_FAILURE(status)) {
3785 		dev_err(dev, "failed to evaluate _FIT\n");
3786 		return;
3787 	}
3788 
3789 	obj = buf.pointer;
3790 	if (obj->type == ACPI_TYPE_BUFFER) {
3791 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3792 				obj->buffer.length);
3793 		if (ret)
3794 			dev_err(dev, "failed to merge updated NFIT\n");
3795 	} else
3796 		dev_err(dev, "Invalid _FIT\n");
3797 	kfree(buf.pointer);
3798 }
3799 
3800 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3801 {
3802 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3803 
3804 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3805 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3806 	else
3807 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3808 }
3809 
3810 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3811 {
3812 	dev_dbg(dev, "event: 0x%x\n", event);
3813 
3814 	switch (event) {
3815 	case NFIT_NOTIFY_UPDATE:
3816 		return acpi_nfit_update_notify(dev, handle);
3817 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3818 		return acpi_nfit_uc_error_notify(dev, handle);
3819 	default:
3820 		return;
3821 	}
3822 }
3823 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3824 
3825 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3826 {
3827 	nfit_device_lock(&adev->dev);
3828 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3829 	nfit_device_unlock(&adev->dev);
3830 }
3831 
3832 static const struct acpi_device_id acpi_nfit_ids[] = {
3833 	{ "ACPI0012", 0 },
3834 	{ "", 0 },
3835 };
3836 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3837 
3838 static struct acpi_driver acpi_nfit_driver = {
3839 	.name = KBUILD_MODNAME,
3840 	.ids = acpi_nfit_ids,
3841 	.ops = {
3842 		.add = acpi_nfit_add,
3843 		.remove = acpi_nfit_remove,
3844 		.notify = acpi_nfit_notify,
3845 	},
3846 };
3847 
3848 static __init int nfit_init(void)
3849 {
3850 	int ret;
3851 
3852 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3853 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3854 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3855 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3856 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3857 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3858 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3859 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3860 
3861 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3862 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3863 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3864 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3865 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3866 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3867 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3868 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3869 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3870 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3871 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3872 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3873 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3874 	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3875 	guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3876 
3877 	nfit_wq = create_singlethread_workqueue("nfit");
3878 	if (!nfit_wq)
3879 		return -ENOMEM;
3880 
3881 	nfit_mce_register();
3882 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3883 	if (ret) {
3884 		nfit_mce_unregister();
3885 		destroy_workqueue(nfit_wq);
3886 	}
3887 
3888 	return ret;
3889 
3890 }
3891 
3892 static __exit void nfit_exit(void)
3893 {
3894 	nfit_mce_unregister();
3895 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3896 	destroy_workqueue(nfit_wq);
3897 	WARN_ON(!list_empty(&acpi_descs));
3898 }
3899 
3900 module_init(nfit_init);
3901 module_exit(nfit_exit);
3902 MODULE_LICENSE("GPL v2");
3903 MODULE_AUTHOR("Intel Corporation");
3904