1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/list_sort.h> 6 #include <linux/libnvdimm.h> 7 #include <linux/module.h> 8 #include <linux/nospec.h> 9 #include <linux/mutex.h> 10 #include <linux/ndctl.h> 11 #include <linux/sysfs.h> 12 #include <linux/delay.h> 13 #include <linux/list.h> 14 #include <linux/acpi.h> 15 #include <linux/sort.h> 16 #include <linux/io.h> 17 #include <linux/nd.h> 18 #include <asm/cacheflush.h> 19 #include <acpi/nfit.h> 20 #include "intel.h" 21 #include "nfit.h" 22 23 /* 24 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 25 * irrelevant. 26 */ 27 #include <linux/io-64-nonatomic-hi-lo.h> 28 29 static bool force_enable_dimms; 30 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); 31 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); 32 33 static bool disable_vendor_specific; 34 module_param(disable_vendor_specific, bool, S_IRUGO); 35 MODULE_PARM_DESC(disable_vendor_specific, 36 "Limit commands to the publicly specified set"); 37 38 static unsigned long override_dsm_mask; 39 module_param(override_dsm_mask, ulong, S_IRUGO); 40 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); 41 42 static int default_dsm_family = -1; 43 module_param(default_dsm_family, int, S_IRUGO); 44 MODULE_PARM_DESC(default_dsm_family, 45 "Try this DSM type first when identifying NVDIMM family"); 46 47 static bool no_init_ars; 48 module_param(no_init_ars, bool, 0644); 49 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); 50 51 static bool force_labels; 52 module_param(force_labels, bool, 0444); 53 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods"); 54 55 LIST_HEAD(acpi_descs); 56 DEFINE_MUTEX(acpi_desc_lock); 57 58 static struct workqueue_struct *nfit_wq; 59 60 struct nfit_table_prev { 61 struct list_head spas; 62 struct list_head memdevs; 63 struct list_head dcrs; 64 struct list_head bdws; 65 struct list_head idts; 66 struct list_head flushes; 67 }; 68 69 static guid_t nfit_uuid[NFIT_UUID_MAX]; 70 71 const guid_t *to_nfit_uuid(enum nfit_uuids id) 72 { 73 return &nfit_uuid[id]; 74 } 75 EXPORT_SYMBOL(to_nfit_uuid); 76 77 static const guid_t *to_nfit_bus_uuid(int family) 78 { 79 if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT, 80 "only secondary bus families can be translated\n")) 81 return NULL; 82 /* 83 * The index of bus UUIDs starts immediately following the last 84 * NVDIMM/leaf family. 85 */ 86 return to_nfit_uuid(family + NVDIMM_FAMILY_MAX); 87 } 88 89 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) 90 { 91 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 92 93 /* 94 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct 95 * acpi_device. 96 */ 97 if (!nd_desc->provider_name 98 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) 99 return NULL; 100 101 return to_acpi_device(acpi_desc->dev); 102 } 103 104 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) 105 { 106 struct nd_cmd_clear_error *clear_err; 107 struct nd_cmd_ars_status *ars_status; 108 u16 flags; 109 110 switch (cmd) { 111 case ND_CMD_ARS_CAP: 112 if ((status & 0xffff) == NFIT_ARS_CAP_NONE) 113 return -ENOTTY; 114 115 /* Command failed */ 116 if (status & 0xffff) 117 return -EIO; 118 119 /* No supported scan types for this range */ 120 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; 121 if ((status >> 16 & flags) == 0) 122 return -ENOTTY; 123 return 0; 124 case ND_CMD_ARS_START: 125 /* ARS is in progress */ 126 if ((status & 0xffff) == NFIT_ARS_START_BUSY) 127 return -EBUSY; 128 129 /* Command failed */ 130 if (status & 0xffff) 131 return -EIO; 132 return 0; 133 case ND_CMD_ARS_STATUS: 134 ars_status = buf; 135 /* Command failed */ 136 if (status & 0xffff) 137 return -EIO; 138 /* Check extended status (Upper two bytes) */ 139 if (status == NFIT_ARS_STATUS_DONE) 140 return 0; 141 142 /* ARS is in progress */ 143 if (status == NFIT_ARS_STATUS_BUSY) 144 return -EBUSY; 145 146 /* No ARS performed for the current boot */ 147 if (status == NFIT_ARS_STATUS_NONE) 148 return -EAGAIN; 149 150 /* 151 * ARS interrupted, either we overflowed or some other 152 * agent wants the scan to stop. If we didn't overflow 153 * then just continue with the returned results. 154 */ 155 if (status == NFIT_ARS_STATUS_INTR) { 156 if (ars_status->out_length >= 40 && (ars_status->flags 157 & NFIT_ARS_F_OVERFLOW)) 158 return -ENOSPC; 159 return 0; 160 } 161 162 /* Unknown status */ 163 if (status >> 16) 164 return -EIO; 165 return 0; 166 case ND_CMD_CLEAR_ERROR: 167 clear_err = buf; 168 if (status & 0xffff) 169 return -EIO; 170 if (!clear_err->cleared) 171 return -EIO; 172 if (clear_err->length > clear_err->cleared) 173 return clear_err->cleared; 174 return 0; 175 default: 176 break; 177 } 178 179 /* all other non-zero status results in an error */ 180 if (status) 181 return -EIO; 182 return 0; 183 } 184 185 #define ACPI_LABELS_LOCKED 3 186 187 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 188 u32 status) 189 { 190 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 191 192 switch (cmd) { 193 case ND_CMD_GET_CONFIG_SIZE: 194 /* 195 * In the _LSI, _LSR, _LSW case the locked status is 196 * communicated via the read/write commands 197 */ 198 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 199 break; 200 201 if (status >> 16 & ND_CONFIG_LOCKED) 202 return -EACCES; 203 break; 204 case ND_CMD_GET_CONFIG_DATA: 205 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 206 && status == ACPI_LABELS_LOCKED) 207 return -EACCES; 208 break; 209 case ND_CMD_SET_CONFIG_DATA: 210 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 211 && status == ACPI_LABELS_LOCKED) 212 return -EACCES; 213 break; 214 default: 215 break; 216 } 217 218 /* all other non-zero status results in an error */ 219 if (status) 220 return -EIO; 221 return 0; 222 } 223 224 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 225 u32 status) 226 { 227 if (!nvdimm) 228 return xlat_bus_status(buf, cmd, status); 229 return xlat_nvdimm_status(nvdimm, buf, cmd, status); 230 } 231 232 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ 233 static union acpi_object *pkg_to_buf(union acpi_object *pkg) 234 { 235 int i; 236 void *dst; 237 size_t size = 0; 238 union acpi_object *buf = NULL; 239 240 if (pkg->type != ACPI_TYPE_PACKAGE) { 241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 242 pkg->type); 243 goto err; 244 } 245 246 for (i = 0; i < pkg->package.count; i++) { 247 union acpi_object *obj = &pkg->package.elements[i]; 248 249 if (obj->type == ACPI_TYPE_INTEGER) 250 size += 4; 251 else if (obj->type == ACPI_TYPE_BUFFER) 252 size += obj->buffer.length; 253 else { 254 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 255 obj->type); 256 goto err; 257 } 258 } 259 260 buf = ACPI_ALLOCATE(sizeof(*buf) + size); 261 if (!buf) 262 goto err; 263 264 dst = buf + 1; 265 buf->type = ACPI_TYPE_BUFFER; 266 buf->buffer.length = size; 267 buf->buffer.pointer = dst; 268 for (i = 0; i < pkg->package.count; i++) { 269 union acpi_object *obj = &pkg->package.elements[i]; 270 271 if (obj->type == ACPI_TYPE_INTEGER) { 272 memcpy(dst, &obj->integer.value, 4); 273 dst += 4; 274 } else if (obj->type == ACPI_TYPE_BUFFER) { 275 memcpy(dst, obj->buffer.pointer, obj->buffer.length); 276 dst += obj->buffer.length; 277 } 278 } 279 err: 280 ACPI_FREE(pkg); 281 return buf; 282 } 283 284 static union acpi_object *int_to_buf(union acpi_object *integer) 285 { 286 union acpi_object *buf = NULL; 287 void *dst = NULL; 288 289 if (integer->type != ACPI_TYPE_INTEGER) { 290 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 291 integer->type); 292 goto err; 293 } 294 295 buf = ACPI_ALLOCATE(sizeof(*buf) + 4); 296 if (!buf) 297 goto err; 298 299 dst = buf + 1; 300 buf->type = ACPI_TYPE_BUFFER; 301 buf->buffer.length = 4; 302 buf->buffer.pointer = dst; 303 memcpy(dst, &integer->integer.value, 4); 304 err: 305 ACPI_FREE(integer); 306 return buf; 307 } 308 309 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, 310 u32 len, void *data) 311 { 312 acpi_status rc; 313 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 314 struct acpi_object_list input = { 315 .count = 3, 316 .pointer = (union acpi_object []) { 317 [0] = { 318 .integer.type = ACPI_TYPE_INTEGER, 319 .integer.value = offset, 320 }, 321 [1] = { 322 .integer.type = ACPI_TYPE_INTEGER, 323 .integer.value = len, 324 }, 325 [2] = { 326 .buffer.type = ACPI_TYPE_BUFFER, 327 .buffer.pointer = data, 328 .buffer.length = len, 329 }, 330 }, 331 }; 332 333 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); 334 if (ACPI_FAILURE(rc)) 335 return NULL; 336 return int_to_buf(buf.pointer); 337 } 338 339 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, 340 u32 len) 341 { 342 acpi_status rc; 343 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 344 struct acpi_object_list input = { 345 .count = 2, 346 .pointer = (union acpi_object []) { 347 [0] = { 348 .integer.type = ACPI_TYPE_INTEGER, 349 .integer.value = offset, 350 }, 351 [1] = { 352 .integer.type = ACPI_TYPE_INTEGER, 353 .integer.value = len, 354 }, 355 }, 356 }; 357 358 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); 359 if (ACPI_FAILURE(rc)) 360 return NULL; 361 return pkg_to_buf(buf.pointer); 362 } 363 364 static union acpi_object *acpi_label_info(acpi_handle handle) 365 { 366 acpi_status rc; 367 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 368 369 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); 370 if (ACPI_FAILURE(rc)) 371 return NULL; 372 return pkg_to_buf(buf.pointer); 373 } 374 375 static u8 nfit_dsm_revid(unsigned family, unsigned func) 376 { 377 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = { 378 [NVDIMM_FAMILY_INTEL] = { 379 [NVDIMM_INTEL_GET_MODES ... 380 NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2, 381 }, 382 }; 383 u8 id; 384 385 if (family > NVDIMM_FAMILY_MAX) 386 return 0; 387 if (func > NVDIMM_CMD_MAX) 388 return 0; 389 id = revid_table[family][func]; 390 if (id == 0) 391 return 1; /* default */ 392 return id; 393 } 394 395 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) 396 { 397 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 398 399 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL 400 && func >= NVDIMM_INTEL_GET_SECURITY_STATE 401 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) 402 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); 403 return true; 404 } 405 406 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, 407 struct nd_cmd_pkg *call_pkg, int *family) 408 { 409 if (call_pkg) { 410 int i; 411 412 if (nfit_mem && nfit_mem->family != call_pkg->nd_family) 413 return -ENOTTY; 414 415 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) 416 if (call_pkg->nd_reserved2[i]) 417 return -EINVAL; 418 *family = call_pkg->nd_family; 419 return call_pkg->nd_command; 420 } 421 422 /* In the !call_pkg case, bus commands == bus functions */ 423 if (!nfit_mem) 424 return cmd; 425 426 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ 427 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 428 return cmd; 429 430 /* 431 * Force function number validation to fail since 0 is never 432 * published as a valid function in dsm_mask. 433 */ 434 return 0; 435 } 436 437 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, 438 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) 439 { 440 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 441 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 442 union acpi_object in_obj, in_buf, *out_obj; 443 const struct nd_cmd_desc *desc = NULL; 444 struct device *dev = acpi_desc->dev; 445 struct nd_cmd_pkg *call_pkg = NULL; 446 const char *cmd_name, *dimm_name; 447 unsigned long cmd_mask, dsm_mask; 448 u32 offset, fw_status = 0; 449 acpi_handle handle; 450 const guid_t *guid; 451 int func, rc, i; 452 int family = 0; 453 454 if (cmd_rc) 455 *cmd_rc = -EINVAL; 456 457 if (cmd == ND_CMD_CALL) 458 call_pkg = buf; 459 func = cmd_to_func(nfit_mem, cmd, call_pkg, &family); 460 if (func < 0) 461 return func; 462 463 if (nvdimm) { 464 struct acpi_device *adev = nfit_mem->adev; 465 466 if (!adev) 467 return -ENOTTY; 468 469 dimm_name = nvdimm_name(nvdimm); 470 cmd_name = nvdimm_cmd_name(cmd); 471 cmd_mask = nvdimm_cmd_mask(nvdimm); 472 dsm_mask = nfit_mem->dsm_mask; 473 desc = nd_cmd_dimm_desc(cmd); 474 guid = to_nfit_uuid(nfit_mem->family); 475 handle = adev->handle; 476 } else { 477 struct acpi_device *adev = to_acpi_dev(acpi_desc); 478 479 cmd_name = nvdimm_bus_cmd_name(cmd); 480 cmd_mask = nd_desc->cmd_mask; 481 if (cmd == ND_CMD_CALL && call_pkg->nd_family) { 482 family = call_pkg->nd_family; 483 if (family > NVDIMM_BUS_FAMILY_MAX || 484 !test_bit(family, &nd_desc->bus_family_mask)) 485 return -EINVAL; 486 family = array_index_nospec(family, 487 NVDIMM_BUS_FAMILY_MAX + 1); 488 dsm_mask = acpi_desc->family_dsm_mask[family]; 489 guid = to_nfit_bus_uuid(family); 490 } else { 491 dsm_mask = acpi_desc->bus_dsm_mask; 492 guid = to_nfit_uuid(NFIT_DEV_BUS); 493 } 494 desc = nd_cmd_bus_desc(cmd); 495 handle = adev->handle; 496 dimm_name = "bus"; 497 } 498 499 if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) 500 return -ENOTTY; 501 502 /* 503 * Check for a valid command. For ND_CMD_CALL, we also have to 504 * make sure that the DSM function is supported. 505 */ 506 if (cmd == ND_CMD_CALL && 507 (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask))) 508 return -ENOTTY; 509 else if (!test_bit(cmd, &cmd_mask)) 510 return -ENOTTY; 511 512 in_obj.type = ACPI_TYPE_PACKAGE; 513 in_obj.package.count = 1; 514 in_obj.package.elements = &in_buf; 515 in_buf.type = ACPI_TYPE_BUFFER; 516 in_buf.buffer.pointer = buf; 517 in_buf.buffer.length = 0; 518 519 /* libnvdimm has already validated the input envelope */ 520 for (i = 0; i < desc->in_num; i++) 521 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, 522 i, buf); 523 524 if (call_pkg) { 525 /* skip over package wrapper */ 526 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; 527 in_buf.buffer.length = call_pkg->nd_size_in; 528 } 529 530 dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n", 531 dimm_name, cmd, family, func, in_buf.buffer.length); 532 if (payload_dumpable(nvdimm, func)) 533 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, 534 in_buf.buffer.pointer, 535 min_t(u32, 256, in_buf.buffer.length), true); 536 537 /* call the BIOS, prefer the named methods over _DSM if available */ 538 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE 539 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 540 out_obj = acpi_label_info(handle); 541 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA 542 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 543 struct nd_cmd_get_config_data_hdr *p = buf; 544 545 out_obj = acpi_label_read(handle, p->in_offset, p->in_length); 546 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA 547 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { 548 struct nd_cmd_set_config_hdr *p = buf; 549 550 out_obj = acpi_label_write(handle, p->in_offset, p->in_length, 551 p->in_buf); 552 } else { 553 u8 revid; 554 555 if (nvdimm) 556 revid = nfit_dsm_revid(nfit_mem->family, func); 557 else 558 revid = 1; 559 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 560 } 561 562 if (!out_obj) { 563 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); 564 return -EINVAL; 565 } 566 567 if (out_obj->type != ACPI_TYPE_BUFFER) { 568 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", 569 dimm_name, cmd_name, out_obj->type); 570 rc = -EINVAL; 571 goto out; 572 } 573 574 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, 575 cmd_name, out_obj->buffer.length); 576 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, 577 out_obj->buffer.pointer, 578 min_t(u32, 128, out_obj->buffer.length), true); 579 580 if (call_pkg) { 581 call_pkg->nd_fw_size = out_obj->buffer.length; 582 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, 583 out_obj->buffer.pointer, 584 min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); 585 586 ACPI_FREE(out_obj); 587 /* 588 * Need to support FW function w/o known size in advance. 589 * Caller can determine required size based upon nd_fw_size. 590 * If we return an error (like elsewhere) then caller wouldn't 591 * be able to rely upon data returned to make calculation. 592 */ 593 if (cmd_rc) 594 *cmd_rc = 0; 595 return 0; 596 } 597 598 for (i = 0, offset = 0; i < desc->out_num; i++) { 599 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, 600 (u32 *) out_obj->buffer.pointer, 601 out_obj->buffer.length - offset); 602 603 if (offset + out_size > out_obj->buffer.length) { 604 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", 605 dimm_name, cmd_name, i); 606 break; 607 } 608 609 if (in_buf.buffer.length + offset + out_size > buf_len) { 610 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", 611 dimm_name, cmd_name, i); 612 rc = -ENXIO; 613 goto out; 614 } 615 memcpy(buf + in_buf.buffer.length + offset, 616 out_obj->buffer.pointer + offset, out_size); 617 offset += out_size; 618 } 619 620 /* 621 * Set fw_status for all the commands with a known format to be 622 * later interpreted by xlat_status(). 623 */ 624 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP 625 && cmd <= ND_CMD_CLEAR_ERROR) 626 || (nvdimm && cmd >= ND_CMD_SMART 627 && cmd <= ND_CMD_VENDOR))) 628 fw_status = *(u32 *) out_obj->buffer.pointer; 629 630 if (offset + in_buf.buffer.length < buf_len) { 631 if (i >= 1) { 632 /* 633 * status valid, return the number of bytes left 634 * unfilled in the output buffer 635 */ 636 rc = buf_len - offset - in_buf.buffer.length; 637 if (cmd_rc) 638 *cmd_rc = xlat_status(nvdimm, buf, cmd, 639 fw_status); 640 } else { 641 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", 642 __func__, dimm_name, cmd_name, buf_len, 643 offset); 644 rc = -ENXIO; 645 } 646 } else { 647 rc = 0; 648 if (cmd_rc) 649 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); 650 } 651 652 out: 653 ACPI_FREE(out_obj); 654 655 return rc; 656 } 657 EXPORT_SYMBOL_GPL(acpi_nfit_ctl); 658 659 static const char *spa_type_name(u16 type) 660 { 661 static const char *to_name[] = { 662 [NFIT_SPA_VOLATILE] = "volatile", 663 [NFIT_SPA_PM] = "pmem", 664 [NFIT_SPA_DCR] = "dimm-control-region", 665 [NFIT_SPA_BDW] = "block-data-window", 666 [NFIT_SPA_VDISK] = "volatile-disk", 667 [NFIT_SPA_VCD] = "volatile-cd", 668 [NFIT_SPA_PDISK] = "persistent-disk", 669 [NFIT_SPA_PCD] = "persistent-cd", 670 671 }; 672 673 if (type > NFIT_SPA_PCD) 674 return "unknown"; 675 676 return to_name[type]; 677 } 678 679 int nfit_spa_type(struct acpi_nfit_system_address *spa) 680 { 681 int i; 682 683 for (i = 0; i < NFIT_UUID_MAX; i++) 684 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) 685 return i; 686 return -1; 687 } 688 689 static size_t sizeof_spa(struct acpi_nfit_system_address *spa) 690 { 691 if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID) 692 return sizeof(*spa); 693 return sizeof(*spa) - 8; 694 } 695 696 static bool add_spa(struct acpi_nfit_desc *acpi_desc, 697 struct nfit_table_prev *prev, 698 struct acpi_nfit_system_address *spa) 699 { 700 struct device *dev = acpi_desc->dev; 701 struct nfit_spa *nfit_spa; 702 703 if (spa->header.length != sizeof_spa(spa)) 704 return false; 705 706 list_for_each_entry(nfit_spa, &prev->spas, list) { 707 if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) { 708 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 709 return true; 710 } 711 } 712 713 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa), 714 GFP_KERNEL); 715 if (!nfit_spa) 716 return false; 717 INIT_LIST_HEAD(&nfit_spa->list); 718 memcpy(nfit_spa->spa, spa, sizeof_spa(spa)); 719 list_add_tail(&nfit_spa->list, &acpi_desc->spas); 720 dev_dbg(dev, "spa index: %d type: %s\n", 721 spa->range_index, 722 spa_type_name(nfit_spa_type(spa))); 723 return true; 724 } 725 726 static bool add_memdev(struct acpi_nfit_desc *acpi_desc, 727 struct nfit_table_prev *prev, 728 struct acpi_nfit_memory_map *memdev) 729 { 730 struct device *dev = acpi_desc->dev; 731 struct nfit_memdev *nfit_memdev; 732 733 if (memdev->header.length != sizeof(*memdev)) 734 return false; 735 736 list_for_each_entry(nfit_memdev, &prev->memdevs, list) 737 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { 738 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); 739 return true; 740 } 741 742 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), 743 GFP_KERNEL); 744 if (!nfit_memdev) 745 return false; 746 INIT_LIST_HEAD(&nfit_memdev->list); 747 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); 748 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); 749 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", 750 memdev->device_handle, memdev->range_index, 751 memdev->region_index, memdev->flags); 752 return true; 753 } 754 755 int nfit_get_smbios_id(u32 device_handle, u16 *flags) 756 { 757 struct acpi_nfit_memory_map *memdev; 758 struct acpi_nfit_desc *acpi_desc; 759 struct nfit_mem *nfit_mem; 760 u16 physical_id; 761 762 mutex_lock(&acpi_desc_lock); 763 list_for_each_entry(acpi_desc, &acpi_descs, list) { 764 mutex_lock(&acpi_desc->init_mutex); 765 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 766 memdev = __to_nfit_memdev(nfit_mem); 767 if (memdev->device_handle == device_handle) { 768 *flags = memdev->flags; 769 physical_id = memdev->physical_id; 770 mutex_unlock(&acpi_desc->init_mutex); 771 mutex_unlock(&acpi_desc_lock); 772 return physical_id; 773 } 774 } 775 mutex_unlock(&acpi_desc->init_mutex); 776 } 777 mutex_unlock(&acpi_desc_lock); 778 779 return -ENODEV; 780 } 781 EXPORT_SYMBOL_GPL(nfit_get_smbios_id); 782 783 /* 784 * An implementation may provide a truncated control region if no block windows 785 * are defined. 786 */ 787 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) 788 { 789 if (dcr->header.length < offsetof(struct acpi_nfit_control_region, 790 window_size)) 791 return 0; 792 if (dcr->windows) 793 return sizeof(*dcr); 794 return offsetof(struct acpi_nfit_control_region, window_size); 795 } 796 797 static bool add_dcr(struct acpi_nfit_desc *acpi_desc, 798 struct nfit_table_prev *prev, 799 struct acpi_nfit_control_region *dcr) 800 { 801 struct device *dev = acpi_desc->dev; 802 struct nfit_dcr *nfit_dcr; 803 804 if (!sizeof_dcr(dcr)) 805 return false; 806 807 list_for_each_entry(nfit_dcr, &prev->dcrs, list) 808 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { 809 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); 810 return true; 811 } 812 813 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), 814 GFP_KERNEL); 815 if (!nfit_dcr) 816 return false; 817 INIT_LIST_HEAD(&nfit_dcr->list); 818 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); 819 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); 820 dev_dbg(dev, "dcr index: %d windows: %d\n", 821 dcr->region_index, dcr->windows); 822 return true; 823 } 824 825 static bool add_bdw(struct acpi_nfit_desc *acpi_desc, 826 struct nfit_table_prev *prev, 827 struct acpi_nfit_data_region *bdw) 828 { 829 struct device *dev = acpi_desc->dev; 830 struct nfit_bdw *nfit_bdw; 831 832 if (bdw->header.length != sizeof(*bdw)) 833 return false; 834 list_for_each_entry(nfit_bdw, &prev->bdws, list) 835 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { 836 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); 837 return true; 838 } 839 840 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), 841 GFP_KERNEL); 842 if (!nfit_bdw) 843 return false; 844 INIT_LIST_HEAD(&nfit_bdw->list); 845 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); 846 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); 847 dev_dbg(dev, "bdw dcr: %d windows: %d\n", 848 bdw->region_index, bdw->windows); 849 return true; 850 } 851 852 static size_t sizeof_idt(struct acpi_nfit_interleave *idt) 853 { 854 if (idt->header.length < sizeof(*idt)) 855 return 0; 856 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); 857 } 858 859 static bool add_idt(struct acpi_nfit_desc *acpi_desc, 860 struct nfit_table_prev *prev, 861 struct acpi_nfit_interleave *idt) 862 { 863 struct device *dev = acpi_desc->dev; 864 struct nfit_idt *nfit_idt; 865 866 if (!sizeof_idt(idt)) 867 return false; 868 869 list_for_each_entry(nfit_idt, &prev->idts, list) { 870 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) 871 continue; 872 873 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { 874 list_move_tail(&nfit_idt->list, &acpi_desc->idts); 875 return true; 876 } 877 } 878 879 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), 880 GFP_KERNEL); 881 if (!nfit_idt) 882 return false; 883 INIT_LIST_HEAD(&nfit_idt->list); 884 memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); 885 list_add_tail(&nfit_idt->list, &acpi_desc->idts); 886 dev_dbg(dev, "idt index: %d num_lines: %d\n", 887 idt->interleave_index, idt->line_count); 888 return true; 889 } 890 891 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) 892 { 893 if (flush->header.length < sizeof(*flush)) 894 return 0; 895 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); 896 } 897 898 static bool add_flush(struct acpi_nfit_desc *acpi_desc, 899 struct nfit_table_prev *prev, 900 struct acpi_nfit_flush_address *flush) 901 { 902 struct device *dev = acpi_desc->dev; 903 struct nfit_flush *nfit_flush; 904 905 if (!sizeof_flush(flush)) 906 return false; 907 908 list_for_each_entry(nfit_flush, &prev->flushes, list) { 909 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) 910 continue; 911 912 if (memcmp(nfit_flush->flush, flush, 913 sizeof_flush(flush)) == 0) { 914 list_move_tail(&nfit_flush->list, &acpi_desc->flushes); 915 return true; 916 } 917 } 918 919 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) 920 + sizeof_flush(flush), GFP_KERNEL); 921 if (!nfit_flush) 922 return false; 923 INIT_LIST_HEAD(&nfit_flush->list); 924 memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); 925 list_add_tail(&nfit_flush->list, &acpi_desc->flushes); 926 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", 927 flush->device_handle, flush->hint_count); 928 return true; 929 } 930 931 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, 932 struct acpi_nfit_capabilities *pcap) 933 { 934 struct device *dev = acpi_desc->dev; 935 u32 mask; 936 937 mask = (1 << (pcap->highest_capability + 1)) - 1; 938 acpi_desc->platform_cap = pcap->capabilities & mask; 939 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); 940 return true; 941 } 942 943 static void *add_table(struct acpi_nfit_desc *acpi_desc, 944 struct nfit_table_prev *prev, void *table, const void *end) 945 { 946 struct device *dev = acpi_desc->dev; 947 struct acpi_nfit_header *hdr; 948 void *err = ERR_PTR(-ENOMEM); 949 950 if (table >= end) 951 return NULL; 952 953 hdr = table; 954 if (!hdr->length) { 955 dev_warn(dev, "found a zero length table '%d' parsing nfit\n", 956 hdr->type); 957 return NULL; 958 } 959 960 switch (hdr->type) { 961 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: 962 if (!add_spa(acpi_desc, prev, table)) 963 return err; 964 break; 965 case ACPI_NFIT_TYPE_MEMORY_MAP: 966 if (!add_memdev(acpi_desc, prev, table)) 967 return err; 968 break; 969 case ACPI_NFIT_TYPE_CONTROL_REGION: 970 if (!add_dcr(acpi_desc, prev, table)) 971 return err; 972 break; 973 case ACPI_NFIT_TYPE_DATA_REGION: 974 if (!add_bdw(acpi_desc, prev, table)) 975 return err; 976 break; 977 case ACPI_NFIT_TYPE_INTERLEAVE: 978 if (!add_idt(acpi_desc, prev, table)) 979 return err; 980 break; 981 case ACPI_NFIT_TYPE_FLUSH_ADDRESS: 982 if (!add_flush(acpi_desc, prev, table)) 983 return err; 984 break; 985 case ACPI_NFIT_TYPE_SMBIOS: 986 dev_dbg(dev, "smbios\n"); 987 break; 988 case ACPI_NFIT_TYPE_CAPABILITIES: 989 if (!add_platform_cap(acpi_desc, table)) 990 return err; 991 break; 992 default: 993 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); 994 break; 995 } 996 997 return table + hdr->length; 998 } 999 1000 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, 1001 struct nfit_mem *nfit_mem) 1002 { 1003 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 1004 u16 dcr = nfit_mem->dcr->region_index; 1005 struct nfit_spa *nfit_spa; 1006 1007 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1008 u16 range_index = nfit_spa->spa->range_index; 1009 int type = nfit_spa_type(nfit_spa->spa); 1010 struct nfit_memdev *nfit_memdev; 1011 1012 if (type != NFIT_SPA_BDW) 1013 continue; 1014 1015 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1016 if (nfit_memdev->memdev->range_index != range_index) 1017 continue; 1018 if (nfit_memdev->memdev->device_handle != device_handle) 1019 continue; 1020 if (nfit_memdev->memdev->region_index != dcr) 1021 continue; 1022 1023 nfit_mem->spa_bdw = nfit_spa->spa; 1024 return; 1025 } 1026 } 1027 1028 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", 1029 nfit_mem->spa_dcr->range_index); 1030 nfit_mem->bdw = NULL; 1031 } 1032 1033 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, 1034 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) 1035 { 1036 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; 1037 struct nfit_memdev *nfit_memdev; 1038 struct nfit_bdw *nfit_bdw; 1039 struct nfit_idt *nfit_idt; 1040 u16 idt_idx, range_index; 1041 1042 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { 1043 if (nfit_bdw->bdw->region_index != dcr) 1044 continue; 1045 nfit_mem->bdw = nfit_bdw->bdw; 1046 break; 1047 } 1048 1049 if (!nfit_mem->bdw) 1050 return; 1051 1052 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); 1053 1054 if (!nfit_mem->spa_bdw) 1055 return; 1056 1057 range_index = nfit_mem->spa_bdw->range_index; 1058 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1059 if (nfit_memdev->memdev->range_index != range_index || 1060 nfit_memdev->memdev->region_index != dcr) 1061 continue; 1062 nfit_mem->memdev_bdw = nfit_memdev->memdev; 1063 idt_idx = nfit_memdev->memdev->interleave_index; 1064 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1065 if (nfit_idt->idt->interleave_index != idt_idx) 1066 continue; 1067 nfit_mem->idt_bdw = nfit_idt->idt; 1068 break; 1069 } 1070 break; 1071 } 1072 } 1073 1074 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, 1075 struct acpi_nfit_system_address *spa) 1076 { 1077 struct nfit_mem *nfit_mem, *found; 1078 struct nfit_memdev *nfit_memdev; 1079 int type = spa ? nfit_spa_type(spa) : 0; 1080 1081 switch (type) { 1082 case NFIT_SPA_DCR: 1083 case NFIT_SPA_PM: 1084 break; 1085 default: 1086 if (spa) 1087 return 0; 1088 } 1089 1090 /* 1091 * This loop runs in two modes, when a dimm is mapped the loop 1092 * adds memdev associations to an existing dimm, or creates a 1093 * dimm. In the unmapped dimm case this loop sweeps for memdev 1094 * instances with an invalid / zero range_index and adds those 1095 * dimms without spa associations. 1096 */ 1097 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1098 struct nfit_flush *nfit_flush; 1099 struct nfit_dcr *nfit_dcr; 1100 u32 device_handle; 1101 u16 dcr; 1102 1103 if (spa && nfit_memdev->memdev->range_index != spa->range_index) 1104 continue; 1105 if (!spa && nfit_memdev->memdev->range_index) 1106 continue; 1107 found = NULL; 1108 dcr = nfit_memdev->memdev->region_index; 1109 device_handle = nfit_memdev->memdev->device_handle; 1110 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1111 if (__to_nfit_memdev(nfit_mem)->device_handle 1112 == device_handle) { 1113 found = nfit_mem; 1114 break; 1115 } 1116 1117 if (found) 1118 nfit_mem = found; 1119 else { 1120 nfit_mem = devm_kzalloc(acpi_desc->dev, 1121 sizeof(*nfit_mem), GFP_KERNEL); 1122 if (!nfit_mem) 1123 return -ENOMEM; 1124 INIT_LIST_HEAD(&nfit_mem->list); 1125 nfit_mem->acpi_desc = acpi_desc; 1126 list_add(&nfit_mem->list, &acpi_desc->dimms); 1127 } 1128 1129 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1130 if (nfit_dcr->dcr->region_index != dcr) 1131 continue; 1132 /* 1133 * Record the control region for the dimm. For 1134 * the ACPI 6.1 case, where there are separate 1135 * control regions for the pmem vs blk 1136 * interfaces, be sure to record the extended 1137 * blk details. 1138 */ 1139 if (!nfit_mem->dcr) 1140 nfit_mem->dcr = nfit_dcr->dcr; 1141 else if (nfit_mem->dcr->windows == 0 1142 && nfit_dcr->dcr->windows) 1143 nfit_mem->dcr = nfit_dcr->dcr; 1144 break; 1145 } 1146 1147 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { 1148 struct acpi_nfit_flush_address *flush; 1149 u16 i; 1150 1151 if (nfit_flush->flush->device_handle != device_handle) 1152 continue; 1153 nfit_mem->nfit_flush = nfit_flush; 1154 flush = nfit_flush->flush; 1155 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, 1156 flush->hint_count, 1157 sizeof(struct resource), 1158 GFP_KERNEL); 1159 if (!nfit_mem->flush_wpq) 1160 return -ENOMEM; 1161 for (i = 0; i < flush->hint_count; i++) { 1162 struct resource *res = &nfit_mem->flush_wpq[i]; 1163 1164 res->start = flush->hint_address[i]; 1165 res->end = res->start + 8 - 1; 1166 } 1167 break; 1168 } 1169 1170 if (dcr && !nfit_mem->dcr) { 1171 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", 1172 spa->range_index, dcr); 1173 return -ENODEV; 1174 } 1175 1176 if (type == NFIT_SPA_DCR) { 1177 struct nfit_idt *nfit_idt; 1178 u16 idt_idx; 1179 1180 /* multiple dimms may share a SPA when interleaved */ 1181 nfit_mem->spa_dcr = spa; 1182 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1183 idt_idx = nfit_memdev->memdev->interleave_index; 1184 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1185 if (nfit_idt->idt->interleave_index != idt_idx) 1186 continue; 1187 nfit_mem->idt_dcr = nfit_idt->idt; 1188 break; 1189 } 1190 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); 1191 } else if (type == NFIT_SPA_PM) { 1192 /* 1193 * A single dimm may belong to multiple SPA-PM 1194 * ranges, record at least one in addition to 1195 * any SPA-DCR range. 1196 */ 1197 nfit_mem->memdev_pmem = nfit_memdev->memdev; 1198 } else 1199 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1200 } 1201 1202 return 0; 1203 } 1204 1205 static int nfit_mem_cmp(void *priv, const struct list_head *_a, 1206 const struct list_head *_b) 1207 { 1208 struct nfit_mem *a = container_of(_a, typeof(*a), list); 1209 struct nfit_mem *b = container_of(_b, typeof(*b), list); 1210 u32 handleA, handleB; 1211 1212 handleA = __to_nfit_memdev(a)->device_handle; 1213 handleB = __to_nfit_memdev(b)->device_handle; 1214 if (handleA < handleB) 1215 return -1; 1216 else if (handleA > handleB) 1217 return 1; 1218 return 0; 1219 } 1220 1221 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) 1222 { 1223 struct nfit_spa *nfit_spa; 1224 int rc; 1225 1226 1227 /* 1228 * For each SPA-DCR or SPA-PMEM address range find its 1229 * corresponding MEMDEV(s). From each MEMDEV find the 1230 * corresponding DCR. Then, if we're operating on a SPA-DCR, 1231 * try to find a SPA-BDW and a corresponding BDW that references 1232 * the DCR. Throw it all into an nfit_mem object. Note, that 1233 * BDWs are optional. 1234 */ 1235 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1236 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); 1237 if (rc) 1238 return rc; 1239 } 1240 1241 /* 1242 * If a DIMM has failed to be mapped into SPA there will be no 1243 * SPA entries above. Find and register all the unmapped DIMMs 1244 * for reporting and recovery purposes. 1245 */ 1246 rc = __nfit_mem_init(acpi_desc, NULL); 1247 if (rc) 1248 return rc; 1249 1250 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); 1251 1252 return 0; 1253 } 1254 1255 static ssize_t bus_dsm_mask_show(struct device *dev, 1256 struct device_attribute *attr, char *buf) 1257 { 1258 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1259 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1260 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1261 1262 return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask); 1263 } 1264 static struct device_attribute dev_attr_bus_dsm_mask = 1265 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); 1266 1267 static ssize_t revision_show(struct device *dev, 1268 struct device_attribute *attr, char *buf) 1269 { 1270 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1271 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1272 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1273 1274 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); 1275 } 1276 static DEVICE_ATTR_RO(revision); 1277 1278 static ssize_t hw_error_scrub_show(struct device *dev, 1279 struct device_attribute *attr, char *buf) 1280 { 1281 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1282 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1283 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1284 1285 return sprintf(buf, "%d\n", acpi_desc->scrub_mode); 1286 } 1287 1288 /* 1289 * The 'hw_error_scrub' attribute can have the following values written to it: 1290 * '0': Switch to the default mode where an exception will only insert 1291 * the address of the memory error into the poison and badblocks lists. 1292 * '1': Enable a full scrub to happen if an exception for a memory error is 1293 * received. 1294 */ 1295 static ssize_t hw_error_scrub_store(struct device *dev, 1296 struct device_attribute *attr, const char *buf, size_t size) 1297 { 1298 struct nvdimm_bus_descriptor *nd_desc; 1299 ssize_t rc; 1300 long val; 1301 1302 rc = kstrtol(buf, 0, &val); 1303 if (rc) 1304 return rc; 1305 1306 nfit_device_lock(dev); 1307 nd_desc = dev_get_drvdata(dev); 1308 if (nd_desc) { 1309 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1310 1311 switch (val) { 1312 case HW_ERROR_SCRUB_ON: 1313 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; 1314 break; 1315 case HW_ERROR_SCRUB_OFF: 1316 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; 1317 break; 1318 default: 1319 rc = -EINVAL; 1320 break; 1321 } 1322 } 1323 nfit_device_unlock(dev); 1324 if (rc) 1325 return rc; 1326 return size; 1327 } 1328 static DEVICE_ATTR_RW(hw_error_scrub); 1329 1330 /* 1331 * This shows the number of full Address Range Scrubs that have been 1332 * completed since driver load time. Userspace can wait on this using 1333 * select/poll etc. A '+' at the end indicates an ARS is in progress 1334 */ 1335 static ssize_t scrub_show(struct device *dev, 1336 struct device_attribute *attr, char *buf) 1337 { 1338 struct nvdimm_bus_descriptor *nd_desc; 1339 struct acpi_nfit_desc *acpi_desc; 1340 ssize_t rc = -ENXIO; 1341 bool busy; 1342 1343 nfit_device_lock(dev); 1344 nd_desc = dev_get_drvdata(dev); 1345 if (!nd_desc) { 1346 nfit_device_unlock(dev); 1347 return rc; 1348 } 1349 acpi_desc = to_acpi_desc(nd_desc); 1350 1351 mutex_lock(&acpi_desc->init_mutex); 1352 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags) 1353 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 1354 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n"); 1355 /* Allow an admin to poll the busy state at a higher rate */ 1356 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL, 1357 &acpi_desc->scrub_flags)) { 1358 acpi_desc->scrub_tmo = 1; 1359 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ); 1360 } 1361 1362 mutex_unlock(&acpi_desc->init_mutex); 1363 nfit_device_unlock(dev); 1364 return rc; 1365 } 1366 1367 static ssize_t scrub_store(struct device *dev, 1368 struct device_attribute *attr, const char *buf, size_t size) 1369 { 1370 struct nvdimm_bus_descriptor *nd_desc; 1371 ssize_t rc; 1372 long val; 1373 1374 rc = kstrtol(buf, 0, &val); 1375 if (rc) 1376 return rc; 1377 if (val != 1) 1378 return -EINVAL; 1379 1380 nfit_device_lock(dev); 1381 nd_desc = dev_get_drvdata(dev); 1382 if (nd_desc) { 1383 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1384 1385 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 1386 } 1387 nfit_device_unlock(dev); 1388 if (rc) 1389 return rc; 1390 return size; 1391 } 1392 static DEVICE_ATTR_RW(scrub); 1393 1394 static bool ars_supported(struct nvdimm_bus *nvdimm_bus) 1395 { 1396 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1397 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START 1398 | 1 << ND_CMD_ARS_STATUS; 1399 1400 return (nd_desc->cmd_mask & mask) == mask; 1401 } 1402 1403 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) 1404 { 1405 struct device *dev = kobj_to_dev(kobj); 1406 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1407 1408 if (a == &dev_attr_scrub.attr) 1409 return ars_supported(nvdimm_bus) ? a->mode : 0; 1410 1411 if (a == &dev_attr_firmware_activate_noidle.attr) 1412 return intel_fwa_supported(nvdimm_bus) ? a->mode : 0; 1413 1414 return a->mode; 1415 } 1416 1417 static struct attribute *acpi_nfit_attributes[] = { 1418 &dev_attr_revision.attr, 1419 &dev_attr_scrub.attr, 1420 &dev_attr_hw_error_scrub.attr, 1421 &dev_attr_bus_dsm_mask.attr, 1422 &dev_attr_firmware_activate_noidle.attr, 1423 NULL, 1424 }; 1425 1426 static const struct attribute_group acpi_nfit_attribute_group = { 1427 .name = "nfit", 1428 .attrs = acpi_nfit_attributes, 1429 .is_visible = nfit_visible, 1430 }; 1431 1432 static const struct attribute_group *acpi_nfit_attribute_groups[] = { 1433 &acpi_nfit_attribute_group, 1434 NULL, 1435 }; 1436 1437 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) 1438 { 1439 struct nvdimm *nvdimm = to_nvdimm(dev); 1440 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1441 1442 return __to_nfit_memdev(nfit_mem); 1443 } 1444 1445 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) 1446 { 1447 struct nvdimm *nvdimm = to_nvdimm(dev); 1448 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1449 1450 return nfit_mem->dcr; 1451 } 1452 1453 static ssize_t handle_show(struct device *dev, 1454 struct device_attribute *attr, char *buf) 1455 { 1456 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1457 1458 return sprintf(buf, "%#x\n", memdev->device_handle); 1459 } 1460 static DEVICE_ATTR_RO(handle); 1461 1462 static ssize_t phys_id_show(struct device *dev, 1463 struct device_attribute *attr, char *buf) 1464 { 1465 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1466 1467 return sprintf(buf, "%#x\n", memdev->physical_id); 1468 } 1469 static DEVICE_ATTR_RO(phys_id); 1470 1471 static ssize_t vendor_show(struct device *dev, 1472 struct device_attribute *attr, char *buf) 1473 { 1474 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1475 1476 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); 1477 } 1478 static DEVICE_ATTR_RO(vendor); 1479 1480 static ssize_t rev_id_show(struct device *dev, 1481 struct device_attribute *attr, char *buf) 1482 { 1483 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1484 1485 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); 1486 } 1487 static DEVICE_ATTR_RO(rev_id); 1488 1489 static ssize_t device_show(struct device *dev, 1490 struct device_attribute *attr, char *buf) 1491 { 1492 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1493 1494 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); 1495 } 1496 static DEVICE_ATTR_RO(device); 1497 1498 static ssize_t subsystem_vendor_show(struct device *dev, 1499 struct device_attribute *attr, char *buf) 1500 { 1501 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1502 1503 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); 1504 } 1505 static DEVICE_ATTR_RO(subsystem_vendor); 1506 1507 static ssize_t subsystem_rev_id_show(struct device *dev, 1508 struct device_attribute *attr, char *buf) 1509 { 1510 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1511 1512 return sprintf(buf, "0x%04x\n", 1513 be16_to_cpu(dcr->subsystem_revision_id)); 1514 } 1515 static DEVICE_ATTR_RO(subsystem_rev_id); 1516 1517 static ssize_t subsystem_device_show(struct device *dev, 1518 struct device_attribute *attr, char *buf) 1519 { 1520 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1521 1522 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); 1523 } 1524 static DEVICE_ATTR_RO(subsystem_device); 1525 1526 static int num_nvdimm_formats(struct nvdimm *nvdimm) 1527 { 1528 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1529 int formats = 0; 1530 1531 if (nfit_mem->memdev_pmem) 1532 formats++; 1533 if (nfit_mem->memdev_bdw) 1534 formats++; 1535 return formats; 1536 } 1537 1538 static ssize_t format_show(struct device *dev, 1539 struct device_attribute *attr, char *buf) 1540 { 1541 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1542 1543 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); 1544 } 1545 static DEVICE_ATTR_RO(format); 1546 1547 static ssize_t format1_show(struct device *dev, 1548 struct device_attribute *attr, char *buf) 1549 { 1550 u32 handle; 1551 ssize_t rc = -ENXIO; 1552 struct nfit_mem *nfit_mem; 1553 struct nfit_memdev *nfit_memdev; 1554 struct acpi_nfit_desc *acpi_desc; 1555 struct nvdimm *nvdimm = to_nvdimm(dev); 1556 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1557 1558 nfit_mem = nvdimm_provider_data(nvdimm); 1559 acpi_desc = nfit_mem->acpi_desc; 1560 handle = to_nfit_memdev(dev)->device_handle; 1561 1562 /* assumes DIMMs have at most 2 published interface codes */ 1563 mutex_lock(&acpi_desc->init_mutex); 1564 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1565 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 1566 struct nfit_dcr *nfit_dcr; 1567 1568 if (memdev->device_handle != handle) 1569 continue; 1570 1571 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1572 if (nfit_dcr->dcr->region_index != memdev->region_index) 1573 continue; 1574 if (nfit_dcr->dcr->code == dcr->code) 1575 continue; 1576 rc = sprintf(buf, "0x%04x\n", 1577 le16_to_cpu(nfit_dcr->dcr->code)); 1578 break; 1579 } 1580 if (rc != -ENXIO) 1581 break; 1582 } 1583 mutex_unlock(&acpi_desc->init_mutex); 1584 return rc; 1585 } 1586 static DEVICE_ATTR_RO(format1); 1587 1588 static ssize_t formats_show(struct device *dev, 1589 struct device_attribute *attr, char *buf) 1590 { 1591 struct nvdimm *nvdimm = to_nvdimm(dev); 1592 1593 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); 1594 } 1595 static DEVICE_ATTR_RO(formats); 1596 1597 static ssize_t serial_show(struct device *dev, 1598 struct device_attribute *attr, char *buf) 1599 { 1600 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1601 1602 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); 1603 } 1604 static DEVICE_ATTR_RO(serial); 1605 1606 static ssize_t family_show(struct device *dev, 1607 struct device_attribute *attr, char *buf) 1608 { 1609 struct nvdimm *nvdimm = to_nvdimm(dev); 1610 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1611 1612 if (nfit_mem->family < 0) 1613 return -ENXIO; 1614 return sprintf(buf, "%d\n", nfit_mem->family); 1615 } 1616 static DEVICE_ATTR_RO(family); 1617 1618 static ssize_t dsm_mask_show(struct device *dev, 1619 struct device_attribute *attr, char *buf) 1620 { 1621 struct nvdimm *nvdimm = to_nvdimm(dev); 1622 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1623 1624 if (nfit_mem->family < 0) 1625 return -ENXIO; 1626 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); 1627 } 1628 static DEVICE_ATTR_RO(dsm_mask); 1629 1630 static ssize_t flags_show(struct device *dev, 1631 struct device_attribute *attr, char *buf) 1632 { 1633 struct nvdimm *nvdimm = to_nvdimm(dev); 1634 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1635 u16 flags = __to_nfit_memdev(nfit_mem)->flags; 1636 1637 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) 1638 flags |= ACPI_NFIT_MEM_FLUSH_FAILED; 1639 1640 return sprintf(buf, "%s%s%s%s%s%s%s\n", 1641 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", 1642 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", 1643 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", 1644 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", 1645 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", 1646 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", 1647 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); 1648 } 1649 static DEVICE_ATTR_RO(flags); 1650 1651 static ssize_t id_show(struct device *dev, 1652 struct device_attribute *attr, char *buf) 1653 { 1654 struct nvdimm *nvdimm = to_nvdimm(dev); 1655 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1656 1657 return sprintf(buf, "%s\n", nfit_mem->id); 1658 } 1659 static DEVICE_ATTR_RO(id); 1660 1661 static ssize_t dirty_shutdown_show(struct device *dev, 1662 struct device_attribute *attr, char *buf) 1663 { 1664 struct nvdimm *nvdimm = to_nvdimm(dev); 1665 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1666 1667 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); 1668 } 1669 static DEVICE_ATTR_RO(dirty_shutdown); 1670 1671 static struct attribute *acpi_nfit_dimm_attributes[] = { 1672 &dev_attr_handle.attr, 1673 &dev_attr_phys_id.attr, 1674 &dev_attr_vendor.attr, 1675 &dev_attr_device.attr, 1676 &dev_attr_rev_id.attr, 1677 &dev_attr_subsystem_vendor.attr, 1678 &dev_attr_subsystem_device.attr, 1679 &dev_attr_subsystem_rev_id.attr, 1680 &dev_attr_format.attr, 1681 &dev_attr_formats.attr, 1682 &dev_attr_format1.attr, 1683 &dev_attr_serial.attr, 1684 &dev_attr_flags.attr, 1685 &dev_attr_id.attr, 1686 &dev_attr_family.attr, 1687 &dev_attr_dsm_mask.attr, 1688 &dev_attr_dirty_shutdown.attr, 1689 NULL, 1690 }; 1691 1692 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, 1693 struct attribute *a, int n) 1694 { 1695 struct device *dev = kobj_to_dev(kobj); 1696 struct nvdimm *nvdimm = to_nvdimm(dev); 1697 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1698 1699 if (!to_nfit_dcr(dev)) { 1700 /* Without a dcr only the memdev attributes can be surfaced */ 1701 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr 1702 || a == &dev_attr_flags.attr 1703 || a == &dev_attr_family.attr 1704 || a == &dev_attr_dsm_mask.attr) 1705 return a->mode; 1706 return 0; 1707 } 1708 1709 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) 1710 return 0; 1711 1712 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) 1713 && a == &dev_attr_dirty_shutdown.attr) 1714 return 0; 1715 1716 return a->mode; 1717 } 1718 1719 static const struct attribute_group acpi_nfit_dimm_attribute_group = { 1720 .name = "nfit", 1721 .attrs = acpi_nfit_dimm_attributes, 1722 .is_visible = acpi_nfit_dimm_attr_visible, 1723 }; 1724 1725 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { 1726 &acpi_nfit_dimm_attribute_group, 1727 NULL, 1728 }; 1729 1730 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, 1731 u32 device_handle) 1732 { 1733 struct nfit_mem *nfit_mem; 1734 1735 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1736 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) 1737 return nfit_mem->nvdimm; 1738 1739 return NULL; 1740 } 1741 1742 void __acpi_nvdimm_notify(struct device *dev, u32 event) 1743 { 1744 struct nfit_mem *nfit_mem; 1745 struct acpi_nfit_desc *acpi_desc; 1746 1747 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), 1748 event); 1749 1750 if (event != NFIT_NOTIFY_DIMM_HEALTH) { 1751 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), 1752 event); 1753 return; 1754 } 1755 1756 acpi_desc = dev_get_drvdata(dev->parent); 1757 if (!acpi_desc) 1758 return; 1759 1760 /* 1761 * If we successfully retrieved acpi_desc, then we know nfit_mem data 1762 * is still valid. 1763 */ 1764 nfit_mem = dev_get_drvdata(dev); 1765 if (nfit_mem && nfit_mem->flags_attr) 1766 sysfs_notify_dirent(nfit_mem->flags_attr); 1767 } 1768 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); 1769 1770 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) 1771 { 1772 struct acpi_device *adev = data; 1773 struct device *dev = &adev->dev; 1774 1775 nfit_device_lock(dev->parent); 1776 __acpi_nvdimm_notify(dev, event); 1777 nfit_device_unlock(dev->parent); 1778 } 1779 1780 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) 1781 { 1782 acpi_handle handle; 1783 acpi_status status; 1784 1785 status = acpi_get_handle(adev->handle, method, &handle); 1786 1787 if (ACPI_SUCCESS(status)) 1788 return true; 1789 return false; 1790 } 1791 1792 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) 1793 { 1794 struct device *dev = &nfit_mem->adev->dev; 1795 struct nd_intel_smart smart = { 0 }; 1796 union acpi_object in_buf = { 1797 .buffer.type = ACPI_TYPE_BUFFER, 1798 .buffer.length = 0, 1799 }; 1800 union acpi_object in_obj = { 1801 .package.type = ACPI_TYPE_PACKAGE, 1802 .package.count = 1, 1803 .package.elements = &in_buf, 1804 }; 1805 const u8 func = ND_INTEL_SMART; 1806 const guid_t *guid = to_nfit_uuid(nfit_mem->family); 1807 u8 revid = nfit_dsm_revid(nfit_mem->family, func); 1808 struct acpi_device *adev = nfit_mem->adev; 1809 acpi_handle handle = adev->handle; 1810 union acpi_object *out_obj; 1811 1812 if ((nfit_mem->dsm_mask & (1 << func)) == 0) 1813 return; 1814 1815 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 1816 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER 1817 || out_obj->buffer.length < sizeof(smart)) { 1818 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n", 1819 dev_name(dev)); 1820 ACPI_FREE(out_obj); 1821 return; 1822 } 1823 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart)); 1824 ACPI_FREE(out_obj); 1825 1826 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { 1827 if (smart.shutdown_state) 1828 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); 1829 } 1830 1831 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { 1832 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); 1833 nfit_mem->dirty_shutdown = smart.shutdown_count; 1834 } 1835 } 1836 1837 static void populate_shutdown_status(struct nfit_mem *nfit_mem) 1838 { 1839 /* 1840 * For DIMMs that provide a dynamic facility to retrieve a 1841 * dirty-shutdown status and/or a dirty-shutdown count, cache 1842 * these values in nfit_mem. 1843 */ 1844 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 1845 nfit_intel_shutdown_status(nfit_mem); 1846 } 1847 1848 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, 1849 struct nfit_mem *nfit_mem, u32 device_handle) 1850 { 1851 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 1852 struct acpi_device *adev, *adev_dimm; 1853 struct device *dev = acpi_desc->dev; 1854 unsigned long dsm_mask, label_mask; 1855 const guid_t *guid; 1856 int i; 1857 int family = -1; 1858 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 1859 1860 /* nfit test assumes 1:1 relationship between commands and dsms */ 1861 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; 1862 nfit_mem->family = NVDIMM_FAMILY_INTEL; 1863 set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask); 1864 1865 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) 1866 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", 1867 be16_to_cpu(dcr->vendor_id), 1868 dcr->manufacturing_location, 1869 be16_to_cpu(dcr->manufacturing_date), 1870 be32_to_cpu(dcr->serial_number)); 1871 else 1872 sprintf(nfit_mem->id, "%04x-%08x", 1873 be16_to_cpu(dcr->vendor_id), 1874 be32_to_cpu(dcr->serial_number)); 1875 1876 adev = to_acpi_dev(acpi_desc); 1877 if (!adev) { 1878 /* unit test case */ 1879 populate_shutdown_status(nfit_mem); 1880 return 0; 1881 } 1882 1883 adev_dimm = acpi_find_child_device(adev, device_handle, false); 1884 nfit_mem->adev = adev_dimm; 1885 if (!adev_dimm) { 1886 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", 1887 device_handle); 1888 return force_enable_dimms ? 0 : -ENODEV; 1889 } 1890 1891 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, 1892 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { 1893 dev_err(dev, "%s: notification registration failed\n", 1894 dev_name(&adev_dimm->dev)); 1895 return -ENXIO; 1896 } 1897 /* 1898 * Record nfit_mem for the notification path to track back to 1899 * the nfit sysfs attributes for this dimm device object. 1900 */ 1901 dev_set_drvdata(&adev_dimm->dev, nfit_mem); 1902 1903 /* 1904 * There are 4 "legacy" NVDIMM command sets 1905 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before 1906 * an EFI working group was established to constrain this 1907 * proliferation. The nfit driver probes for the supported command 1908 * set by GUID. Note, if you're a platform developer looking to add 1909 * a new command set to this probe, consider using an existing set, 1910 * or otherwise seek approval to publish the command set at 1911 * http://www.uefi.org/RFIC_LIST. 1912 * 1913 * Note, that checking for function0 (bit0) tells us if any commands 1914 * are reachable through this GUID. 1915 */ 1916 clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask); 1917 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) 1918 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) { 1919 set_bit(i, &nd_desc->dimm_family_mask); 1920 if (family < 0 || i == default_dsm_family) 1921 family = i; 1922 } 1923 1924 /* limit the supported commands to those that are publicly documented */ 1925 nfit_mem->family = family; 1926 if (override_dsm_mask && !disable_vendor_specific) 1927 dsm_mask = override_dsm_mask; 1928 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 1929 dsm_mask = NVDIMM_INTEL_CMDMASK; 1930 if (disable_vendor_specific) 1931 dsm_mask &= ~(1 << ND_CMD_VENDOR); 1932 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { 1933 dsm_mask = 0x1c3c76; 1934 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { 1935 dsm_mask = 0x1fe; 1936 if (disable_vendor_specific) 1937 dsm_mask &= ~(1 << 8); 1938 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { 1939 dsm_mask = 0xffffffff; 1940 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) { 1941 dsm_mask = 0x1f; 1942 } else { 1943 dev_dbg(dev, "unknown dimm command family\n"); 1944 nfit_mem->family = -1; 1945 /* DSMs are optional, continue loading the driver... */ 1946 return 0; 1947 } 1948 1949 /* 1950 * Function 0 is the command interrogation function, don't 1951 * export it to potential userspace use, and enable it to be 1952 * used as an error value in acpi_nfit_ctl(). 1953 */ 1954 dsm_mask &= ~1UL; 1955 1956 guid = to_nfit_uuid(nfit_mem->family); 1957 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1958 if (acpi_check_dsm(adev_dimm->handle, guid, 1959 nfit_dsm_revid(nfit_mem->family, i), 1960 1ULL << i)) 1961 set_bit(i, &nfit_mem->dsm_mask); 1962 1963 /* 1964 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present 1965 * due to their better semantics handling locked capacity. 1966 */ 1967 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA 1968 | 1 << ND_CMD_SET_CONFIG_DATA; 1969 if (family == NVDIMM_FAMILY_INTEL 1970 && (dsm_mask & label_mask) == label_mask) 1971 /* skip _LS{I,R,W} enabling */; 1972 else { 1973 if (acpi_nvdimm_has_method(adev_dimm, "_LSI") 1974 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { 1975 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); 1976 set_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1977 } 1978 1979 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 1980 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { 1981 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); 1982 set_bit(NFIT_MEM_LSW, &nfit_mem->flags); 1983 } 1984 1985 /* 1986 * Quirk read-only label configurations to preserve 1987 * access to label-less namespaces by default. 1988 */ 1989 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 1990 && !force_labels) { 1991 dev_dbg(dev, "%s: No _LSW, disable labels\n", 1992 dev_name(&adev_dimm->dev)); 1993 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1994 } else 1995 dev_dbg(dev, "%s: Force enable labels\n", 1996 dev_name(&adev_dimm->dev)); 1997 } 1998 1999 populate_shutdown_status(nfit_mem); 2000 2001 return 0; 2002 } 2003 2004 static void shutdown_dimm_notify(void *data) 2005 { 2006 struct acpi_nfit_desc *acpi_desc = data; 2007 struct nfit_mem *nfit_mem; 2008 2009 mutex_lock(&acpi_desc->init_mutex); 2010 /* 2011 * Clear out the nfit_mem->flags_attr and shut down dimm event 2012 * notifications. 2013 */ 2014 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2015 struct acpi_device *adev_dimm = nfit_mem->adev; 2016 2017 if (nfit_mem->flags_attr) { 2018 sysfs_put(nfit_mem->flags_attr); 2019 nfit_mem->flags_attr = NULL; 2020 } 2021 if (adev_dimm) { 2022 acpi_remove_notify_handler(adev_dimm->handle, 2023 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); 2024 dev_set_drvdata(&adev_dimm->dev, NULL); 2025 } 2026 } 2027 mutex_unlock(&acpi_desc->init_mutex); 2028 } 2029 2030 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) 2031 { 2032 switch (family) { 2033 case NVDIMM_FAMILY_INTEL: 2034 return intel_security_ops; 2035 default: 2036 return NULL; 2037 } 2038 } 2039 2040 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops( 2041 struct nfit_mem *nfit_mem) 2042 { 2043 unsigned long mask; 2044 struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc; 2045 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2046 2047 if (!nd_desc->fw_ops) 2048 return NULL; 2049 2050 if (nfit_mem->family != NVDIMM_FAMILY_INTEL) 2051 return NULL; 2052 2053 mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK; 2054 if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK) 2055 return NULL; 2056 2057 return intel_fw_ops; 2058 } 2059 2060 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) 2061 { 2062 struct nfit_mem *nfit_mem; 2063 int dimm_count = 0, rc; 2064 struct nvdimm *nvdimm; 2065 2066 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2067 struct acpi_nfit_flush_address *flush; 2068 unsigned long flags = 0, cmd_mask; 2069 struct nfit_memdev *nfit_memdev; 2070 u32 device_handle; 2071 u16 mem_flags; 2072 2073 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 2074 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); 2075 if (nvdimm) { 2076 dimm_count++; 2077 continue; 2078 } 2079 2080 if (nfit_mem->bdw && nfit_mem->memdev_pmem) { 2081 set_bit(NDD_ALIASING, &flags); 2082 set_bit(NDD_LABELING, &flags); 2083 } 2084 2085 /* collate flags across all memdevs for this dimm */ 2086 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2087 struct acpi_nfit_memory_map *dimm_memdev; 2088 2089 dimm_memdev = __to_nfit_memdev(nfit_mem); 2090 if (dimm_memdev->device_handle 2091 != nfit_memdev->memdev->device_handle) 2092 continue; 2093 dimm_memdev->flags |= nfit_memdev->memdev->flags; 2094 } 2095 2096 mem_flags = __to_nfit_memdev(nfit_mem)->flags; 2097 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) 2098 set_bit(NDD_UNARMED, &flags); 2099 2100 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); 2101 if (rc) 2102 continue; 2103 2104 /* 2105 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL 2106 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the 2107 * userspace interface. 2108 */ 2109 cmd_mask = 1UL << ND_CMD_CALL; 2110 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 2111 /* 2112 * These commands have a 1:1 correspondence 2113 * between DSM payload and libnvdimm ioctl 2114 * payload format. 2115 */ 2116 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; 2117 } 2118 2119 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */ 2120 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) 2121 set_bit(NDD_NOBLK, &flags); 2122 2123 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 2124 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); 2125 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); 2126 } 2127 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) 2128 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); 2129 2130 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush 2131 : NULL; 2132 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, 2133 acpi_nfit_dimm_attribute_groups, 2134 flags, cmd_mask, flush ? flush->hint_count : 0, 2135 nfit_mem->flush_wpq, &nfit_mem->id[0], 2136 acpi_nfit_get_security_ops(nfit_mem->family), 2137 acpi_nfit_get_fw_ops(nfit_mem)); 2138 if (!nvdimm) 2139 return -ENOMEM; 2140 2141 nfit_mem->nvdimm = nvdimm; 2142 dimm_count++; 2143 2144 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) 2145 continue; 2146 2147 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n", 2148 nvdimm_name(nvdimm), 2149 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", 2150 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", 2151 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", 2152 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", 2153 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); 2154 2155 } 2156 2157 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); 2158 if (rc) 2159 return rc; 2160 2161 /* 2162 * Now that dimms are successfully registered, and async registration 2163 * is flushed, attempt to enable event notification. 2164 */ 2165 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2166 struct kernfs_node *nfit_kernfs; 2167 2168 nvdimm = nfit_mem->nvdimm; 2169 if (!nvdimm) 2170 continue; 2171 2172 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); 2173 if (nfit_kernfs) 2174 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, 2175 "flags"); 2176 sysfs_put(nfit_kernfs); 2177 if (!nfit_mem->flags_attr) 2178 dev_warn(acpi_desc->dev, "%s: notifications disabled\n", 2179 nvdimm_name(nvdimm)); 2180 } 2181 2182 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, 2183 acpi_desc); 2184 } 2185 2186 /* 2187 * These constants are private because there are no kernel consumers of 2188 * these commands. 2189 */ 2190 enum nfit_aux_cmds { 2191 NFIT_CMD_TRANSLATE_SPA = 5, 2192 NFIT_CMD_ARS_INJECT_SET = 7, 2193 NFIT_CMD_ARS_INJECT_CLEAR = 8, 2194 NFIT_CMD_ARS_INJECT_GET = 9, 2195 }; 2196 2197 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) 2198 { 2199 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2200 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); 2201 unsigned long dsm_mask, *mask; 2202 struct acpi_device *adev; 2203 int i; 2204 2205 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); 2206 set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask); 2207 2208 /* enable nfit_test to inject bus command emulation */ 2209 if (acpi_desc->bus_cmd_force_en) { 2210 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; 2211 mask = &nd_desc->bus_family_mask; 2212 if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) { 2213 set_bit(NVDIMM_BUS_FAMILY_INTEL, mask); 2214 nd_desc->fw_ops = intel_bus_fw_ops; 2215 } 2216 } 2217 2218 adev = to_acpi_dev(acpi_desc); 2219 if (!adev) 2220 return; 2221 2222 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) 2223 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2224 set_bit(i, &nd_desc->cmd_mask); 2225 2226 dsm_mask = 2227 (1 << ND_CMD_ARS_CAP) | 2228 (1 << ND_CMD_ARS_START) | 2229 (1 << ND_CMD_ARS_STATUS) | 2230 (1 << ND_CMD_CLEAR_ERROR) | 2231 (1 << NFIT_CMD_TRANSLATE_SPA) | 2232 (1 << NFIT_CMD_ARS_INJECT_SET) | 2233 (1 << NFIT_CMD_ARS_INJECT_CLEAR) | 2234 (1 << NFIT_CMD_ARS_INJECT_GET); 2235 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2236 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2237 set_bit(i, &acpi_desc->bus_dsm_mask); 2238 2239 /* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */ 2240 dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK; 2241 guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL); 2242 mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]; 2243 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2244 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2245 set_bit(i, mask); 2246 2247 if (*mask == dsm_mask) { 2248 set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask); 2249 nd_desc->fw_ops = intel_bus_fw_ops; 2250 } 2251 } 2252 2253 static ssize_t range_index_show(struct device *dev, 2254 struct device_attribute *attr, char *buf) 2255 { 2256 struct nd_region *nd_region = to_nd_region(dev); 2257 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); 2258 2259 return sprintf(buf, "%d\n", nfit_spa->spa->range_index); 2260 } 2261 static DEVICE_ATTR_RO(range_index); 2262 2263 static struct attribute *acpi_nfit_region_attributes[] = { 2264 &dev_attr_range_index.attr, 2265 NULL, 2266 }; 2267 2268 static const struct attribute_group acpi_nfit_region_attribute_group = { 2269 .name = "nfit", 2270 .attrs = acpi_nfit_region_attributes, 2271 }; 2272 2273 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { 2274 &acpi_nfit_region_attribute_group, 2275 NULL, 2276 }; 2277 2278 /* enough info to uniquely specify an interleave set */ 2279 struct nfit_set_info { 2280 u64 region_offset; 2281 u32 serial_number; 2282 u32 pad; 2283 }; 2284 2285 struct nfit_set_info2 { 2286 u64 region_offset; 2287 u32 serial_number; 2288 u16 vendor_id; 2289 u16 manufacturing_date; 2290 u8 manufacturing_location; 2291 u8 reserved[31]; 2292 }; 2293 2294 static int cmp_map_compat(const void *m0, const void *m1) 2295 { 2296 const struct nfit_set_info *map0 = m0; 2297 const struct nfit_set_info *map1 = m1; 2298 2299 return memcmp(&map0->region_offset, &map1->region_offset, 2300 sizeof(u64)); 2301 } 2302 2303 static int cmp_map(const void *m0, const void *m1) 2304 { 2305 const struct nfit_set_info *map0 = m0; 2306 const struct nfit_set_info *map1 = m1; 2307 2308 if (map0->region_offset < map1->region_offset) 2309 return -1; 2310 else if (map0->region_offset > map1->region_offset) 2311 return 1; 2312 return 0; 2313 } 2314 2315 static int cmp_map2(const void *m0, const void *m1) 2316 { 2317 const struct nfit_set_info2 *map0 = m0; 2318 const struct nfit_set_info2 *map1 = m1; 2319 2320 if (map0->region_offset < map1->region_offset) 2321 return -1; 2322 else if (map0->region_offset > map1->region_offset) 2323 return 1; 2324 return 0; 2325 } 2326 2327 /* Retrieve the nth entry referencing this spa */ 2328 static struct acpi_nfit_memory_map *memdev_from_spa( 2329 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) 2330 { 2331 struct nfit_memdev *nfit_memdev; 2332 2333 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) 2334 if (nfit_memdev->memdev->range_index == range_index) 2335 if (n-- == 0) 2336 return nfit_memdev->memdev; 2337 return NULL; 2338 } 2339 2340 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, 2341 struct nd_region_desc *ndr_desc, 2342 struct acpi_nfit_system_address *spa) 2343 { 2344 struct device *dev = acpi_desc->dev; 2345 struct nd_interleave_set *nd_set; 2346 u16 nr = ndr_desc->num_mappings; 2347 struct nfit_set_info2 *info2; 2348 struct nfit_set_info *info; 2349 int i; 2350 2351 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); 2352 if (!nd_set) 2353 return -ENOMEM; 2354 import_guid(&nd_set->type_guid, spa->range_guid); 2355 2356 info = devm_kcalloc(dev, nr, sizeof(*info), GFP_KERNEL); 2357 if (!info) 2358 return -ENOMEM; 2359 2360 info2 = devm_kcalloc(dev, nr, sizeof(*info2), GFP_KERNEL); 2361 if (!info2) 2362 return -ENOMEM; 2363 2364 for (i = 0; i < nr; i++) { 2365 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 2366 struct nvdimm *nvdimm = mapping->nvdimm; 2367 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2368 struct nfit_set_info *map = &info[i]; 2369 struct nfit_set_info2 *map2 = &info2[i]; 2370 struct acpi_nfit_memory_map *memdev = 2371 memdev_from_spa(acpi_desc, spa->range_index, i); 2372 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2373 2374 if (!memdev || !nfit_mem->dcr) { 2375 dev_err(dev, "%s: failed to find DCR\n", __func__); 2376 return -ENODEV; 2377 } 2378 2379 map->region_offset = memdev->region_offset; 2380 map->serial_number = dcr->serial_number; 2381 2382 map2->region_offset = memdev->region_offset; 2383 map2->serial_number = dcr->serial_number; 2384 map2->vendor_id = dcr->vendor_id; 2385 map2->manufacturing_date = dcr->manufacturing_date; 2386 map2->manufacturing_location = dcr->manufacturing_location; 2387 } 2388 2389 /* v1.1 namespaces */ 2390 sort(info, nr, sizeof(*info), cmp_map, NULL); 2391 nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0); 2392 2393 /* v1.2 namespaces */ 2394 sort(info2, nr, sizeof(*info2), cmp_map2, NULL); 2395 nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0); 2396 2397 /* support v1.1 namespaces created with the wrong sort order */ 2398 sort(info, nr, sizeof(*info), cmp_map_compat, NULL); 2399 nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0); 2400 2401 /* record the result of the sort for the mapping position */ 2402 for (i = 0; i < nr; i++) { 2403 struct nfit_set_info2 *map2 = &info2[i]; 2404 int j; 2405 2406 for (j = 0; j < nr; j++) { 2407 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; 2408 struct nvdimm *nvdimm = mapping->nvdimm; 2409 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2410 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2411 2412 if (map2->serial_number == dcr->serial_number && 2413 map2->vendor_id == dcr->vendor_id && 2414 map2->manufacturing_date == dcr->manufacturing_date && 2415 map2->manufacturing_location 2416 == dcr->manufacturing_location) { 2417 mapping->position = i; 2418 break; 2419 } 2420 } 2421 } 2422 2423 ndr_desc->nd_set = nd_set; 2424 devm_kfree(dev, info); 2425 devm_kfree(dev, info2); 2426 2427 return 0; 2428 } 2429 2430 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) 2431 { 2432 struct acpi_nfit_interleave *idt = mmio->idt; 2433 u32 sub_line_offset, line_index, line_offset; 2434 u64 line_no, table_skip_count, table_offset; 2435 2436 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); 2437 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); 2438 line_offset = idt->line_offset[line_index] 2439 * mmio->line_size; 2440 table_offset = table_skip_count * mmio->table_size; 2441 2442 return mmio->base_offset + line_offset + table_offset + sub_line_offset; 2443 } 2444 2445 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) 2446 { 2447 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2448 u64 offset = nfit_blk->stat_offset + mmio->size * bw; 2449 const u32 STATUS_MASK = 0x80000037; 2450 2451 if (mmio->num_lines) 2452 offset = to_interleave_offset(offset, mmio); 2453 2454 return readl(mmio->addr.base + offset) & STATUS_MASK; 2455 } 2456 2457 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, 2458 resource_size_t dpa, unsigned int len, unsigned int write) 2459 { 2460 u64 cmd, offset; 2461 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2462 2463 enum { 2464 BCW_OFFSET_MASK = (1ULL << 48)-1, 2465 BCW_LEN_SHIFT = 48, 2466 BCW_LEN_MASK = (1ULL << 8) - 1, 2467 BCW_CMD_SHIFT = 56, 2468 }; 2469 2470 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; 2471 len = len >> L1_CACHE_SHIFT; 2472 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; 2473 cmd |= ((u64) write) << BCW_CMD_SHIFT; 2474 2475 offset = nfit_blk->cmd_offset + mmio->size * bw; 2476 if (mmio->num_lines) 2477 offset = to_interleave_offset(offset, mmio); 2478 2479 writeq(cmd, mmio->addr.base + offset); 2480 nvdimm_flush(nfit_blk->nd_region, NULL); 2481 2482 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) 2483 readq(mmio->addr.base + offset); 2484 } 2485 2486 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, 2487 resource_size_t dpa, void *iobuf, size_t len, int rw, 2488 unsigned int lane) 2489 { 2490 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2491 unsigned int copied = 0; 2492 u64 base_offset; 2493 int rc; 2494 2495 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES 2496 + lane * mmio->size; 2497 write_blk_ctl(nfit_blk, lane, dpa, len, rw); 2498 while (len) { 2499 unsigned int c; 2500 u64 offset; 2501 2502 if (mmio->num_lines) { 2503 u32 line_offset; 2504 2505 offset = to_interleave_offset(base_offset + copied, 2506 mmio); 2507 div_u64_rem(offset, mmio->line_size, &line_offset); 2508 c = min_t(size_t, len, mmio->line_size - line_offset); 2509 } else { 2510 offset = base_offset + nfit_blk->bdw_offset; 2511 c = len; 2512 } 2513 2514 if (rw) 2515 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); 2516 else { 2517 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) 2518 arch_invalidate_pmem((void __force *) 2519 mmio->addr.aperture + offset, c); 2520 2521 memcpy(iobuf + copied, mmio->addr.aperture + offset, c); 2522 } 2523 2524 copied += c; 2525 len -= c; 2526 } 2527 2528 if (rw) 2529 nvdimm_flush(nfit_blk->nd_region, NULL); 2530 2531 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; 2532 return rc; 2533 } 2534 2535 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, 2536 resource_size_t dpa, void *iobuf, u64 len, int rw) 2537 { 2538 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); 2539 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2540 struct nd_region *nd_region = nfit_blk->nd_region; 2541 unsigned int lane, copied = 0; 2542 int rc = 0; 2543 2544 lane = nd_region_acquire_lane(nd_region); 2545 while (len) { 2546 u64 c = min(len, mmio->size); 2547 2548 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, 2549 iobuf + copied, c, rw, lane); 2550 if (rc) 2551 break; 2552 2553 copied += c; 2554 len -= c; 2555 } 2556 nd_region_release_lane(nd_region, lane); 2557 2558 return rc; 2559 } 2560 2561 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, 2562 struct acpi_nfit_interleave *idt, u16 interleave_ways) 2563 { 2564 if (idt) { 2565 mmio->num_lines = idt->line_count; 2566 mmio->line_size = idt->line_size; 2567 if (interleave_ways == 0) 2568 return -ENXIO; 2569 mmio->table_size = mmio->num_lines * interleave_ways 2570 * mmio->line_size; 2571 } 2572 2573 return 0; 2574 } 2575 2576 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, 2577 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) 2578 { 2579 struct nd_cmd_dimm_flags flags; 2580 int rc; 2581 2582 memset(&flags, 0, sizeof(flags)); 2583 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, 2584 sizeof(flags), NULL); 2585 2586 if (rc >= 0 && flags.status == 0) 2587 nfit_blk->dimm_flags = flags.flags; 2588 else if (rc == -ENOTTY) { 2589 /* fall back to a conservative default */ 2590 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; 2591 rc = 0; 2592 } else 2593 rc = -ENXIO; 2594 2595 return rc; 2596 } 2597 2598 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, 2599 struct device *dev) 2600 { 2601 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 2602 struct nd_blk_region *ndbr = to_nd_blk_region(dev); 2603 struct nfit_blk_mmio *mmio; 2604 struct nfit_blk *nfit_blk; 2605 struct nfit_mem *nfit_mem; 2606 struct nvdimm *nvdimm; 2607 int rc; 2608 2609 nvdimm = nd_blk_region_to_dimm(ndbr); 2610 nfit_mem = nvdimm_provider_data(nvdimm); 2611 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { 2612 dev_dbg(dev, "missing%s%s%s\n", 2613 nfit_mem ? "" : " nfit_mem", 2614 (nfit_mem && nfit_mem->dcr) ? "" : " dcr", 2615 (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); 2616 return -ENXIO; 2617 } 2618 2619 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); 2620 if (!nfit_blk) 2621 return -ENOMEM; 2622 nd_blk_region_set_provider_data(ndbr, nfit_blk); 2623 nfit_blk->nd_region = to_nd_region(dev); 2624 2625 /* map block aperture memory */ 2626 nfit_blk->bdw_offset = nfit_mem->bdw->offset; 2627 mmio = &nfit_blk->mmio[BDW]; 2628 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, 2629 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); 2630 if (!mmio->addr.base) { 2631 dev_dbg(dev, "%s failed to map bdw\n", 2632 nvdimm_name(nvdimm)); 2633 return -ENOMEM; 2634 } 2635 mmio->size = nfit_mem->bdw->size; 2636 mmio->base_offset = nfit_mem->memdev_bdw->region_offset; 2637 mmio->idt = nfit_mem->idt_bdw; 2638 mmio->spa = nfit_mem->spa_bdw; 2639 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, 2640 nfit_mem->memdev_bdw->interleave_ways); 2641 if (rc) { 2642 dev_dbg(dev, "%s failed to init bdw interleave\n", 2643 nvdimm_name(nvdimm)); 2644 return rc; 2645 } 2646 2647 /* map block control memory */ 2648 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; 2649 nfit_blk->stat_offset = nfit_mem->dcr->status_offset; 2650 mmio = &nfit_blk->mmio[DCR]; 2651 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, 2652 nfit_mem->spa_dcr->length); 2653 if (!mmio->addr.base) { 2654 dev_dbg(dev, "%s failed to map dcr\n", 2655 nvdimm_name(nvdimm)); 2656 return -ENOMEM; 2657 } 2658 mmio->size = nfit_mem->dcr->window_size; 2659 mmio->base_offset = nfit_mem->memdev_dcr->region_offset; 2660 mmio->idt = nfit_mem->idt_dcr; 2661 mmio->spa = nfit_mem->spa_dcr; 2662 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, 2663 nfit_mem->memdev_dcr->interleave_ways); 2664 if (rc) { 2665 dev_dbg(dev, "%s failed to init dcr interleave\n", 2666 nvdimm_name(nvdimm)); 2667 return rc; 2668 } 2669 2670 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); 2671 if (rc < 0) { 2672 dev_dbg(dev, "%s failed get DIMM flags\n", 2673 nvdimm_name(nvdimm)); 2674 return rc; 2675 } 2676 2677 if (nvdimm_has_flush(nfit_blk->nd_region) < 0) 2678 dev_warn(dev, "unable to guarantee persistence of writes\n"); 2679 2680 if (mmio->line_size == 0) 2681 return 0; 2682 2683 if ((u32) nfit_blk->cmd_offset % mmio->line_size 2684 + 8 > mmio->line_size) { 2685 dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); 2686 return -ENXIO; 2687 } else if ((u32) nfit_blk->stat_offset % mmio->line_size 2688 + 8 > mmio->line_size) { 2689 dev_dbg(dev, "stat_offset crosses interleave boundary\n"); 2690 return -ENXIO; 2691 } 2692 2693 return 0; 2694 } 2695 2696 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, 2697 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) 2698 { 2699 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2700 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2701 int cmd_rc, rc; 2702 2703 cmd->address = spa->address; 2704 cmd->length = spa->length; 2705 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, 2706 sizeof(*cmd), &cmd_rc); 2707 if (rc < 0) 2708 return rc; 2709 return cmd_rc; 2710 } 2711 2712 static int ars_start(struct acpi_nfit_desc *acpi_desc, 2713 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) 2714 { 2715 int rc; 2716 int cmd_rc; 2717 struct nd_cmd_ars_start ars_start; 2718 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2719 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2720 2721 memset(&ars_start, 0, sizeof(ars_start)); 2722 ars_start.address = spa->address; 2723 ars_start.length = spa->length; 2724 if (req_type == ARS_REQ_SHORT) 2725 ars_start.flags = ND_ARS_RETURN_PREV_DATA; 2726 if (nfit_spa_type(spa) == NFIT_SPA_PM) 2727 ars_start.type = ND_ARS_PERSISTENT; 2728 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) 2729 ars_start.type = ND_ARS_VOLATILE; 2730 else 2731 return -ENOTTY; 2732 2733 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2734 sizeof(ars_start), &cmd_rc); 2735 2736 if (rc < 0) 2737 return rc; 2738 if (cmd_rc < 0) 2739 return cmd_rc; 2740 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 2741 return 0; 2742 } 2743 2744 static int ars_continue(struct acpi_nfit_desc *acpi_desc) 2745 { 2746 int rc, cmd_rc; 2747 struct nd_cmd_ars_start ars_start; 2748 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2749 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2750 2751 ars_start = (struct nd_cmd_ars_start) { 2752 .address = ars_status->restart_address, 2753 .length = ars_status->restart_length, 2754 .type = ars_status->type, 2755 }; 2756 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2757 sizeof(ars_start), &cmd_rc); 2758 if (rc < 0) 2759 return rc; 2760 return cmd_rc; 2761 } 2762 2763 static int ars_get_status(struct acpi_nfit_desc *acpi_desc) 2764 { 2765 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2766 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2767 int rc, cmd_rc; 2768 2769 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, 2770 acpi_desc->max_ars, &cmd_rc); 2771 if (rc < 0) 2772 return rc; 2773 return cmd_rc; 2774 } 2775 2776 static void ars_complete(struct acpi_nfit_desc *acpi_desc, 2777 struct nfit_spa *nfit_spa) 2778 { 2779 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2780 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2781 struct nd_region *nd_region = nfit_spa->nd_region; 2782 struct device *dev; 2783 2784 lockdep_assert_held(&acpi_desc->init_mutex); 2785 /* 2786 * Only advance the ARS state for ARS runs initiated by the 2787 * kernel, ignore ARS results from BIOS initiated runs for scrub 2788 * completion tracking. 2789 */ 2790 if (acpi_desc->scrub_spa != nfit_spa) 2791 return; 2792 2793 if ((ars_status->address >= spa->address && ars_status->address 2794 < spa->address + spa->length) 2795 || (ars_status->address < spa->address)) { 2796 /* 2797 * Assume that if a scrub starts at an offset from the 2798 * start of nfit_spa that we are in the continuation 2799 * case. 2800 * 2801 * Otherwise, if the scrub covers the spa range, mark 2802 * any pending request complete. 2803 */ 2804 if (ars_status->address + ars_status->length 2805 >= spa->address + spa->length) 2806 /* complete */; 2807 else 2808 return; 2809 } else 2810 return; 2811 2812 acpi_desc->scrub_spa = NULL; 2813 if (nd_region) { 2814 dev = nd_region_dev(nd_region); 2815 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); 2816 } else 2817 dev = acpi_desc->dev; 2818 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); 2819 } 2820 2821 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) 2822 { 2823 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; 2824 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2825 int rc; 2826 u32 i; 2827 2828 /* 2829 * First record starts at 44 byte offset from the start of the 2830 * payload. 2831 */ 2832 if (ars_status->out_length < 44) 2833 return 0; 2834 2835 /* 2836 * Ignore potentially stale results that are only refreshed 2837 * after a start-ARS event. 2838 */ 2839 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) { 2840 dev_dbg(acpi_desc->dev, "skip %d stale records\n", 2841 ars_status->num_records); 2842 return 0; 2843 } 2844 2845 for (i = 0; i < ars_status->num_records; i++) { 2846 /* only process full records */ 2847 if (ars_status->out_length 2848 < 44 + sizeof(struct nd_ars_record) * (i + 1)) 2849 break; 2850 rc = nvdimm_bus_add_badrange(nvdimm_bus, 2851 ars_status->records[i].err_address, 2852 ars_status->records[i].length); 2853 if (rc) 2854 return rc; 2855 } 2856 if (i < ars_status->num_records) 2857 dev_warn(acpi_desc->dev, "detected truncated ars results\n"); 2858 2859 return 0; 2860 } 2861 2862 static void acpi_nfit_remove_resource(void *data) 2863 { 2864 struct resource *res = data; 2865 2866 remove_resource(res); 2867 } 2868 2869 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, 2870 struct nd_region_desc *ndr_desc) 2871 { 2872 struct resource *res, *nd_res = ndr_desc->res; 2873 int is_pmem, ret; 2874 2875 /* No operation if the region is already registered as PMEM */ 2876 is_pmem = region_intersects(nd_res->start, resource_size(nd_res), 2877 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); 2878 if (is_pmem == REGION_INTERSECTS) 2879 return 0; 2880 2881 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); 2882 if (!res) 2883 return -ENOMEM; 2884 2885 res->name = "Persistent Memory"; 2886 res->start = nd_res->start; 2887 res->end = nd_res->end; 2888 res->flags = IORESOURCE_MEM; 2889 res->desc = IORES_DESC_PERSISTENT_MEMORY; 2890 2891 ret = insert_resource(&iomem_resource, res); 2892 if (ret) 2893 return ret; 2894 2895 ret = devm_add_action_or_reset(acpi_desc->dev, 2896 acpi_nfit_remove_resource, 2897 res); 2898 if (ret) 2899 return ret; 2900 2901 return 0; 2902 } 2903 2904 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, 2905 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, 2906 struct acpi_nfit_memory_map *memdev, 2907 struct nfit_spa *nfit_spa) 2908 { 2909 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, 2910 memdev->device_handle); 2911 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2912 struct nd_blk_region_desc *ndbr_desc; 2913 struct nfit_mem *nfit_mem; 2914 int rc; 2915 2916 if (!nvdimm) { 2917 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", 2918 spa->range_index, memdev->device_handle); 2919 return -ENODEV; 2920 } 2921 2922 mapping->nvdimm = nvdimm; 2923 switch (nfit_spa_type(spa)) { 2924 case NFIT_SPA_PM: 2925 case NFIT_SPA_VOLATILE: 2926 mapping->start = memdev->address; 2927 mapping->size = memdev->region_size; 2928 break; 2929 case NFIT_SPA_DCR: 2930 nfit_mem = nvdimm_provider_data(nvdimm); 2931 if (!nfit_mem || !nfit_mem->bdw) { 2932 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", 2933 spa->range_index, nvdimm_name(nvdimm)); 2934 break; 2935 } 2936 2937 mapping->size = nfit_mem->bdw->capacity; 2938 mapping->start = nfit_mem->bdw->start_address; 2939 ndr_desc->num_lanes = nfit_mem->bdw->windows; 2940 ndr_desc->mapping = mapping; 2941 ndr_desc->num_mappings = 1; 2942 ndbr_desc = to_blk_region_desc(ndr_desc); 2943 ndbr_desc->enable = acpi_nfit_blk_region_enable; 2944 ndbr_desc->do_io = acpi_desc->blk_do_io; 2945 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2946 if (rc) 2947 return rc; 2948 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, 2949 ndr_desc); 2950 if (!nfit_spa->nd_region) 2951 return -ENOMEM; 2952 break; 2953 } 2954 2955 return 0; 2956 } 2957 2958 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) 2959 { 2960 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2961 nfit_spa_type(spa) == NFIT_SPA_VCD || 2962 nfit_spa_type(spa) == NFIT_SPA_PDISK || 2963 nfit_spa_type(spa) == NFIT_SPA_PCD); 2964 } 2965 2966 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) 2967 { 2968 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2969 nfit_spa_type(spa) == NFIT_SPA_VCD || 2970 nfit_spa_type(spa) == NFIT_SPA_VOLATILE); 2971 } 2972 2973 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, 2974 struct nfit_spa *nfit_spa) 2975 { 2976 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; 2977 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2978 struct nd_blk_region_desc ndbr_desc; 2979 struct nd_region_desc *ndr_desc; 2980 struct nfit_memdev *nfit_memdev; 2981 struct nvdimm_bus *nvdimm_bus; 2982 struct resource res; 2983 int count = 0, rc; 2984 2985 if (nfit_spa->nd_region) 2986 return 0; 2987 2988 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { 2989 dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); 2990 return 0; 2991 } 2992 2993 memset(&res, 0, sizeof(res)); 2994 memset(&mappings, 0, sizeof(mappings)); 2995 memset(&ndbr_desc, 0, sizeof(ndbr_desc)); 2996 res.start = spa->address; 2997 res.end = res.start + spa->length - 1; 2998 ndr_desc = &ndbr_desc.ndr_desc; 2999 ndr_desc->res = &res; 3000 ndr_desc->provider_data = nfit_spa; 3001 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; 3002 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) { 3003 ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain); 3004 ndr_desc->target_node = pxm_to_node(spa->proximity_domain); 3005 } else { 3006 ndr_desc->numa_node = NUMA_NO_NODE; 3007 ndr_desc->target_node = NUMA_NO_NODE; 3008 } 3009 3010 /* 3011 * Persistence domain bits are hierarchical, if 3012 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then 3013 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. 3014 */ 3015 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) 3016 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); 3017 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) 3018 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); 3019 3020 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 3021 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 3022 struct nd_mapping_desc *mapping; 3023 3024 /* range index 0 == unmapped in SPA or invalid-SPA */ 3025 if (memdev->range_index == 0 || spa->range_index == 0) 3026 continue; 3027 if (memdev->range_index != spa->range_index) 3028 continue; 3029 if (count >= ND_MAX_MAPPINGS) { 3030 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", 3031 spa->range_index, ND_MAX_MAPPINGS); 3032 return -ENXIO; 3033 } 3034 mapping = &mappings[count++]; 3035 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, 3036 memdev, nfit_spa); 3037 if (rc) 3038 goto out; 3039 } 3040 3041 ndr_desc->mapping = mappings; 3042 ndr_desc->num_mappings = count; 3043 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 3044 if (rc) 3045 goto out; 3046 3047 nvdimm_bus = acpi_desc->nvdimm_bus; 3048 if (nfit_spa_type(spa) == NFIT_SPA_PM) { 3049 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); 3050 if (rc) { 3051 dev_warn(acpi_desc->dev, 3052 "failed to insert pmem resource to iomem: %d\n", 3053 rc); 3054 goto out; 3055 } 3056 3057 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3058 ndr_desc); 3059 if (!nfit_spa->nd_region) 3060 rc = -ENOMEM; 3061 } else if (nfit_spa_is_volatile(spa)) { 3062 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, 3063 ndr_desc); 3064 if (!nfit_spa->nd_region) 3065 rc = -ENOMEM; 3066 } else if (nfit_spa_is_virtual(spa)) { 3067 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3068 ndr_desc); 3069 if (!nfit_spa->nd_region) 3070 rc = -ENOMEM; 3071 } 3072 3073 out: 3074 if (rc) 3075 dev_err(acpi_desc->dev, "failed to register spa range %d\n", 3076 nfit_spa->spa->range_index); 3077 return rc; 3078 } 3079 3080 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) 3081 { 3082 struct device *dev = acpi_desc->dev; 3083 struct nd_cmd_ars_status *ars_status; 3084 3085 if (acpi_desc->ars_status) { 3086 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3087 return 0; 3088 } 3089 3090 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); 3091 if (!ars_status) 3092 return -ENOMEM; 3093 acpi_desc->ars_status = ars_status; 3094 return 0; 3095 } 3096 3097 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) 3098 { 3099 int rc; 3100 3101 if (ars_status_alloc(acpi_desc)) 3102 return -ENOMEM; 3103 3104 rc = ars_get_status(acpi_desc); 3105 3106 if (rc < 0 && rc != -ENOSPC) 3107 return rc; 3108 3109 if (ars_status_process_records(acpi_desc)) 3110 dev_err(acpi_desc->dev, "Failed to process ARS records\n"); 3111 3112 return rc; 3113 } 3114 3115 static int ars_register(struct acpi_nfit_desc *acpi_desc, 3116 struct nfit_spa *nfit_spa) 3117 { 3118 int rc; 3119 3120 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3121 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3122 3123 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3124 if (!no_init_ars) 3125 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); 3126 3127 switch (acpi_nfit_query_poison(acpi_desc)) { 3128 case 0: 3129 case -ENOSPC: 3130 case -EAGAIN: 3131 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); 3132 /* shouldn't happen, try again later */ 3133 if (rc == -EBUSY) 3134 break; 3135 if (rc) { 3136 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3137 break; 3138 } 3139 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3140 rc = acpi_nfit_query_poison(acpi_desc); 3141 if (rc) 3142 break; 3143 acpi_desc->scrub_spa = nfit_spa; 3144 ars_complete(acpi_desc, nfit_spa); 3145 /* 3146 * If ars_complete() says we didn't complete the 3147 * short scrub, we'll try again with a long 3148 * request. 3149 */ 3150 acpi_desc->scrub_spa = NULL; 3151 break; 3152 case -EBUSY: 3153 case -ENOMEM: 3154 /* 3155 * BIOS was using ARS, wait for it to complete (or 3156 * resources to become available) and then perform our 3157 * own scrubs. 3158 */ 3159 break; 3160 default: 3161 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3162 break; 3163 } 3164 3165 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3166 } 3167 3168 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) 3169 { 3170 struct nfit_spa *nfit_spa; 3171 3172 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3173 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3174 continue; 3175 ars_complete(acpi_desc, nfit_spa); 3176 } 3177 } 3178 3179 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, 3180 int query_rc) 3181 { 3182 unsigned int tmo = acpi_desc->scrub_tmo; 3183 struct device *dev = acpi_desc->dev; 3184 struct nfit_spa *nfit_spa; 3185 3186 lockdep_assert_held(&acpi_desc->init_mutex); 3187 3188 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) 3189 return 0; 3190 3191 if (query_rc == -EBUSY) { 3192 dev_dbg(dev, "ARS: ARS busy\n"); 3193 return min(30U * 60U, tmo * 2); 3194 } 3195 if (query_rc == -ENOSPC) { 3196 dev_dbg(dev, "ARS: ARS continue\n"); 3197 ars_continue(acpi_desc); 3198 return 1; 3199 } 3200 if (query_rc && query_rc != -EAGAIN) { 3201 unsigned long long addr, end; 3202 3203 addr = acpi_desc->ars_status->address; 3204 end = addr + acpi_desc->ars_status->length; 3205 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, 3206 query_rc); 3207 } 3208 3209 ars_complete_all(acpi_desc); 3210 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3211 enum nfit_ars_state req_type; 3212 int rc; 3213 3214 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3215 continue; 3216 3217 /* prefer short ARS requests first */ 3218 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) 3219 req_type = ARS_REQ_SHORT; 3220 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) 3221 req_type = ARS_REQ_LONG; 3222 else 3223 continue; 3224 rc = ars_start(acpi_desc, nfit_spa, req_type); 3225 3226 dev = nd_region_dev(nfit_spa->nd_region); 3227 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", 3228 nfit_spa->spa->range_index, 3229 req_type == ARS_REQ_SHORT ? "short" : "long", 3230 rc); 3231 /* 3232 * Hmm, we raced someone else starting ARS? Try again in 3233 * a bit. 3234 */ 3235 if (rc == -EBUSY) 3236 return 1; 3237 if (rc == 0) { 3238 dev_WARN_ONCE(dev, acpi_desc->scrub_spa, 3239 "scrub start while range %d active\n", 3240 acpi_desc->scrub_spa->spa->range_index); 3241 clear_bit(req_type, &nfit_spa->ars_state); 3242 acpi_desc->scrub_spa = nfit_spa; 3243 /* 3244 * Consider this spa last for future scrub 3245 * requests 3246 */ 3247 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 3248 return 1; 3249 } 3250 3251 dev_err(dev, "ARS: range %d ARS failed (%d)\n", 3252 nfit_spa->spa->range_index, rc); 3253 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3254 } 3255 return 0; 3256 } 3257 3258 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) 3259 { 3260 lockdep_assert_held(&acpi_desc->init_mutex); 3261 3262 set_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3263 /* note this should only be set from within the workqueue */ 3264 if (tmo) 3265 acpi_desc->scrub_tmo = tmo; 3266 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); 3267 } 3268 3269 static void sched_ars(struct acpi_nfit_desc *acpi_desc) 3270 { 3271 __sched_ars(acpi_desc, 0); 3272 } 3273 3274 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) 3275 { 3276 lockdep_assert_held(&acpi_desc->init_mutex); 3277 3278 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3279 acpi_desc->scrub_count++; 3280 if (acpi_desc->scrub_count_state) 3281 sysfs_notify_dirent(acpi_desc->scrub_count_state); 3282 } 3283 3284 static void acpi_nfit_scrub(struct work_struct *work) 3285 { 3286 struct acpi_nfit_desc *acpi_desc; 3287 unsigned int tmo; 3288 int query_rc; 3289 3290 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); 3291 mutex_lock(&acpi_desc->init_mutex); 3292 query_rc = acpi_nfit_query_poison(acpi_desc); 3293 tmo = __acpi_nfit_scrub(acpi_desc, query_rc); 3294 if (tmo) 3295 __sched_ars(acpi_desc, tmo); 3296 else 3297 notify_ars_done(acpi_desc); 3298 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3299 clear_bit(ARS_POLL, &acpi_desc->scrub_flags); 3300 mutex_unlock(&acpi_desc->init_mutex); 3301 } 3302 3303 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, 3304 struct nfit_spa *nfit_spa) 3305 { 3306 int type = nfit_spa_type(nfit_spa->spa); 3307 struct nd_cmd_ars_cap ars_cap; 3308 int rc; 3309 3310 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3311 memset(&ars_cap, 0, sizeof(ars_cap)); 3312 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); 3313 if (rc < 0) 3314 return; 3315 /* check that the supported scrub types match the spa type */ 3316 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) 3317 & ND_ARS_VOLATILE) == 0) 3318 return; 3319 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) 3320 & ND_ARS_PERSISTENT) == 0) 3321 return; 3322 3323 nfit_spa->max_ars = ars_cap.max_ars_out; 3324 nfit_spa->clear_err_unit = ars_cap.clear_err_unit; 3325 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); 3326 clear_bit(ARS_FAILED, &nfit_spa->ars_state); 3327 } 3328 3329 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) 3330 { 3331 struct nfit_spa *nfit_spa; 3332 int rc, do_sched_ars = 0; 3333 3334 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 3335 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3336 switch (nfit_spa_type(nfit_spa->spa)) { 3337 case NFIT_SPA_VOLATILE: 3338 case NFIT_SPA_PM: 3339 acpi_nfit_init_ars(acpi_desc, nfit_spa); 3340 break; 3341 } 3342 } 3343 3344 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3345 switch (nfit_spa_type(nfit_spa->spa)) { 3346 case NFIT_SPA_VOLATILE: 3347 case NFIT_SPA_PM: 3348 /* register regions and kick off initial ARS run */ 3349 rc = ars_register(acpi_desc, nfit_spa); 3350 if (rc) 3351 return rc; 3352 3353 /* 3354 * Kick off background ARS if at least one 3355 * region successfully registered ARS 3356 */ 3357 if (!test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3358 do_sched_ars++; 3359 break; 3360 case NFIT_SPA_BDW: 3361 /* nothing to register */ 3362 break; 3363 case NFIT_SPA_DCR: 3364 case NFIT_SPA_VDISK: 3365 case NFIT_SPA_VCD: 3366 case NFIT_SPA_PDISK: 3367 case NFIT_SPA_PCD: 3368 /* register known regions that don't support ARS */ 3369 rc = acpi_nfit_register_region(acpi_desc, nfit_spa); 3370 if (rc) 3371 return rc; 3372 break; 3373 default: 3374 /* don't register unknown regions */ 3375 break; 3376 } 3377 } 3378 3379 if (do_sched_ars) 3380 sched_ars(acpi_desc); 3381 return 0; 3382 } 3383 3384 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, 3385 struct nfit_table_prev *prev) 3386 { 3387 struct device *dev = acpi_desc->dev; 3388 3389 if (!list_empty(&prev->spas) || 3390 !list_empty(&prev->memdevs) || 3391 !list_empty(&prev->dcrs) || 3392 !list_empty(&prev->bdws) || 3393 !list_empty(&prev->idts) || 3394 !list_empty(&prev->flushes)) { 3395 dev_err(dev, "new nfit deletes entries (unsupported)\n"); 3396 return -ENXIO; 3397 } 3398 return 0; 3399 } 3400 3401 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) 3402 { 3403 struct device *dev = acpi_desc->dev; 3404 struct kernfs_node *nfit; 3405 struct device *bus_dev; 3406 3407 if (!ars_supported(acpi_desc->nvdimm_bus)) 3408 return 0; 3409 3410 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3411 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); 3412 if (!nfit) { 3413 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); 3414 return -ENODEV; 3415 } 3416 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); 3417 sysfs_put(nfit); 3418 if (!acpi_desc->scrub_count_state) { 3419 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); 3420 return -ENODEV; 3421 } 3422 3423 return 0; 3424 } 3425 3426 static void acpi_nfit_unregister(void *data) 3427 { 3428 struct acpi_nfit_desc *acpi_desc = data; 3429 3430 nvdimm_bus_unregister(acpi_desc->nvdimm_bus); 3431 } 3432 3433 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) 3434 { 3435 struct device *dev = acpi_desc->dev; 3436 struct nfit_table_prev prev; 3437 const void *end; 3438 int rc; 3439 3440 if (!acpi_desc->nvdimm_bus) { 3441 acpi_nfit_init_dsms(acpi_desc); 3442 3443 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, 3444 &acpi_desc->nd_desc); 3445 if (!acpi_desc->nvdimm_bus) 3446 return -ENOMEM; 3447 3448 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, 3449 acpi_desc); 3450 if (rc) 3451 return rc; 3452 3453 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); 3454 if (rc) 3455 return rc; 3456 3457 /* register this acpi_desc for mce notifications */ 3458 mutex_lock(&acpi_desc_lock); 3459 list_add_tail(&acpi_desc->list, &acpi_descs); 3460 mutex_unlock(&acpi_desc_lock); 3461 } 3462 3463 mutex_lock(&acpi_desc->init_mutex); 3464 3465 INIT_LIST_HEAD(&prev.spas); 3466 INIT_LIST_HEAD(&prev.memdevs); 3467 INIT_LIST_HEAD(&prev.dcrs); 3468 INIT_LIST_HEAD(&prev.bdws); 3469 INIT_LIST_HEAD(&prev.idts); 3470 INIT_LIST_HEAD(&prev.flushes); 3471 3472 list_cut_position(&prev.spas, &acpi_desc->spas, 3473 acpi_desc->spas.prev); 3474 list_cut_position(&prev.memdevs, &acpi_desc->memdevs, 3475 acpi_desc->memdevs.prev); 3476 list_cut_position(&prev.dcrs, &acpi_desc->dcrs, 3477 acpi_desc->dcrs.prev); 3478 list_cut_position(&prev.bdws, &acpi_desc->bdws, 3479 acpi_desc->bdws.prev); 3480 list_cut_position(&prev.idts, &acpi_desc->idts, 3481 acpi_desc->idts.prev); 3482 list_cut_position(&prev.flushes, &acpi_desc->flushes, 3483 acpi_desc->flushes.prev); 3484 3485 end = data + sz; 3486 while (!IS_ERR_OR_NULL(data)) 3487 data = add_table(acpi_desc, &prev, data, end); 3488 3489 if (IS_ERR(data)) { 3490 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); 3491 rc = PTR_ERR(data); 3492 goto out_unlock; 3493 } 3494 3495 rc = acpi_nfit_check_deletions(acpi_desc, &prev); 3496 if (rc) 3497 goto out_unlock; 3498 3499 rc = nfit_mem_init(acpi_desc); 3500 if (rc) 3501 goto out_unlock; 3502 3503 rc = acpi_nfit_register_dimms(acpi_desc); 3504 if (rc) 3505 goto out_unlock; 3506 3507 rc = acpi_nfit_register_regions(acpi_desc); 3508 3509 out_unlock: 3510 mutex_unlock(&acpi_desc->init_mutex); 3511 return rc; 3512 } 3513 EXPORT_SYMBOL_GPL(acpi_nfit_init); 3514 3515 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) 3516 { 3517 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3518 struct device *dev = acpi_desc->dev; 3519 3520 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ 3521 nfit_device_lock(dev); 3522 nfit_device_unlock(dev); 3523 3524 /* Bounce the init_mutex to complete initial registration */ 3525 mutex_lock(&acpi_desc->init_mutex); 3526 mutex_unlock(&acpi_desc->init_mutex); 3527 3528 return 0; 3529 } 3530 3531 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3532 struct nvdimm *nvdimm, unsigned int cmd) 3533 { 3534 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3535 3536 if (nvdimm) 3537 return 0; 3538 if (cmd != ND_CMD_ARS_START) 3539 return 0; 3540 3541 /* 3542 * The kernel and userspace may race to initiate a scrub, but 3543 * the scrub thread is prepared to lose that initial race. It 3544 * just needs guarantees that any ARS it initiates are not 3545 * interrupted by any intervening start requests from userspace. 3546 */ 3547 if (work_busy(&acpi_desc->dwork.work)) 3548 return -EBUSY; 3549 3550 return 0; 3551 } 3552 3553 /* 3554 * Prevent security and firmware activate commands from being issued via 3555 * ioctl. 3556 */ 3557 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3558 struct nvdimm *nvdimm, unsigned int cmd, void *buf) 3559 { 3560 struct nd_cmd_pkg *call_pkg = buf; 3561 unsigned int func; 3562 3563 if (nvdimm && cmd == ND_CMD_CALL && 3564 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { 3565 func = call_pkg->nd_command; 3566 if (func > NVDIMM_CMD_MAX || 3567 (1 << func) & NVDIMM_INTEL_DENY_CMDMASK) 3568 return -EOPNOTSUPP; 3569 } 3570 3571 /* block all non-nfit bus commands */ 3572 if (!nvdimm && cmd == ND_CMD_CALL && 3573 call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT) 3574 return -EOPNOTSUPP; 3575 3576 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); 3577 } 3578 3579 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, 3580 enum nfit_ars_state req_type) 3581 { 3582 struct device *dev = acpi_desc->dev; 3583 int scheduled = 0, busy = 0; 3584 struct nfit_spa *nfit_spa; 3585 3586 mutex_lock(&acpi_desc->init_mutex); 3587 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) { 3588 mutex_unlock(&acpi_desc->init_mutex); 3589 return 0; 3590 } 3591 3592 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3593 int type = nfit_spa_type(nfit_spa->spa); 3594 3595 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) 3596 continue; 3597 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3598 continue; 3599 3600 if (test_and_set_bit(req_type, &nfit_spa->ars_state)) 3601 busy++; 3602 else 3603 scheduled++; 3604 } 3605 if (scheduled) { 3606 sched_ars(acpi_desc); 3607 dev_dbg(dev, "ars_scan triggered\n"); 3608 } 3609 mutex_unlock(&acpi_desc->init_mutex); 3610 3611 if (scheduled) 3612 return 0; 3613 if (busy) 3614 return -EBUSY; 3615 return -ENOTTY; 3616 } 3617 3618 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) 3619 { 3620 struct nvdimm_bus_descriptor *nd_desc; 3621 3622 dev_set_drvdata(dev, acpi_desc); 3623 acpi_desc->dev = dev; 3624 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; 3625 nd_desc = &acpi_desc->nd_desc; 3626 nd_desc->provider_name = "ACPI.NFIT"; 3627 nd_desc->module = THIS_MODULE; 3628 nd_desc->ndctl = acpi_nfit_ctl; 3629 nd_desc->flush_probe = acpi_nfit_flush_probe; 3630 nd_desc->clear_to_send = acpi_nfit_clear_to_send; 3631 nd_desc->attr_groups = acpi_nfit_attribute_groups; 3632 3633 INIT_LIST_HEAD(&acpi_desc->spas); 3634 INIT_LIST_HEAD(&acpi_desc->dcrs); 3635 INIT_LIST_HEAD(&acpi_desc->bdws); 3636 INIT_LIST_HEAD(&acpi_desc->idts); 3637 INIT_LIST_HEAD(&acpi_desc->flushes); 3638 INIT_LIST_HEAD(&acpi_desc->memdevs); 3639 INIT_LIST_HEAD(&acpi_desc->dimms); 3640 INIT_LIST_HEAD(&acpi_desc->list); 3641 mutex_init(&acpi_desc->init_mutex); 3642 acpi_desc->scrub_tmo = 1; 3643 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); 3644 } 3645 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); 3646 3647 static void acpi_nfit_put_table(void *table) 3648 { 3649 acpi_put_table(table); 3650 } 3651 3652 void acpi_nfit_shutdown(void *data) 3653 { 3654 struct acpi_nfit_desc *acpi_desc = data; 3655 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3656 3657 /* 3658 * Destruct under acpi_desc_lock so that nfit_handle_mce does not 3659 * race teardown 3660 */ 3661 mutex_lock(&acpi_desc_lock); 3662 list_del(&acpi_desc->list); 3663 mutex_unlock(&acpi_desc_lock); 3664 3665 mutex_lock(&acpi_desc->init_mutex); 3666 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 3667 cancel_delayed_work_sync(&acpi_desc->dwork); 3668 mutex_unlock(&acpi_desc->init_mutex); 3669 3670 /* 3671 * Bounce the nvdimm bus lock to make sure any in-flight 3672 * acpi_nfit_ars_rescan() submissions have had a chance to 3673 * either submit or see ->cancel set. 3674 */ 3675 nfit_device_lock(bus_dev); 3676 nfit_device_unlock(bus_dev); 3677 3678 flush_workqueue(nfit_wq); 3679 } 3680 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); 3681 3682 static int acpi_nfit_add(struct acpi_device *adev) 3683 { 3684 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3685 struct acpi_nfit_desc *acpi_desc; 3686 struct device *dev = &adev->dev; 3687 struct acpi_table_header *tbl; 3688 acpi_status status = AE_OK; 3689 acpi_size sz; 3690 int rc = 0; 3691 3692 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); 3693 if (ACPI_FAILURE(status)) { 3694 /* The NVDIMM root device allows OS to trigger enumeration of 3695 * NVDIMMs through NFIT at boot time and re-enumeration at 3696 * root level via the _FIT method during runtime. 3697 * This is ok to return 0 here, we could have an nvdimm 3698 * hotplugged later and evaluate _FIT method which returns 3699 * data in the format of a series of NFIT Structures. 3700 */ 3701 dev_dbg(dev, "failed to find NFIT at startup\n"); 3702 return 0; 3703 } 3704 3705 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); 3706 if (rc) 3707 return rc; 3708 sz = tbl->length; 3709 3710 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3711 if (!acpi_desc) 3712 return -ENOMEM; 3713 acpi_nfit_desc_init(acpi_desc, &adev->dev); 3714 3715 /* Save the acpi header for exporting the revision via sysfs */ 3716 acpi_desc->acpi_header = *tbl; 3717 3718 /* Evaluate _FIT and override with that if present */ 3719 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); 3720 if (ACPI_SUCCESS(status) && buf.length > 0) { 3721 union acpi_object *obj = buf.pointer; 3722 3723 if (obj->type == ACPI_TYPE_BUFFER) 3724 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3725 obj->buffer.length); 3726 else 3727 dev_dbg(dev, "invalid type %d, ignoring _FIT\n", 3728 (int) obj->type); 3729 kfree(buf.pointer); 3730 } else 3731 /* skip over the lead-in header table */ 3732 rc = acpi_nfit_init(acpi_desc, (void *) tbl 3733 + sizeof(struct acpi_table_nfit), 3734 sz - sizeof(struct acpi_table_nfit)); 3735 3736 if (rc) 3737 return rc; 3738 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); 3739 } 3740 3741 static int acpi_nfit_remove(struct acpi_device *adev) 3742 { 3743 /* see acpi_nfit_unregister */ 3744 return 0; 3745 } 3746 3747 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) 3748 { 3749 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3750 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3751 union acpi_object *obj; 3752 acpi_status status; 3753 int ret; 3754 3755 if (!dev->driver) { 3756 /* dev->driver may be null if we're being removed */ 3757 dev_dbg(dev, "no driver found for dev\n"); 3758 return; 3759 } 3760 3761 if (!acpi_desc) { 3762 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3763 if (!acpi_desc) 3764 return; 3765 acpi_nfit_desc_init(acpi_desc, dev); 3766 } else { 3767 /* 3768 * Finish previous registration before considering new 3769 * regions. 3770 */ 3771 flush_workqueue(nfit_wq); 3772 } 3773 3774 /* Evaluate _FIT */ 3775 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); 3776 if (ACPI_FAILURE(status)) { 3777 dev_err(dev, "failed to evaluate _FIT\n"); 3778 return; 3779 } 3780 3781 obj = buf.pointer; 3782 if (obj->type == ACPI_TYPE_BUFFER) { 3783 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3784 obj->buffer.length); 3785 if (ret) 3786 dev_err(dev, "failed to merge updated NFIT\n"); 3787 } else 3788 dev_err(dev, "Invalid _FIT\n"); 3789 kfree(buf.pointer); 3790 } 3791 3792 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) 3793 { 3794 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3795 3796 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) 3797 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 3798 else 3799 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); 3800 } 3801 3802 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) 3803 { 3804 dev_dbg(dev, "event: 0x%x\n", event); 3805 3806 switch (event) { 3807 case NFIT_NOTIFY_UPDATE: 3808 return acpi_nfit_update_notify(dev, handle); 3809 case NFIT_NOTIFY_UC_MEMORY_ERROR: 3810 return acpi_nfit_uc_error_notify(dev, handle); 3811 default: 3812 return; 3813 } 3814 } 3815 EXPORT_SYMBOL_GPL(__acpi_nfit_notify); 3816 3817 static void acpi_nfit_notify(struct acpi_device *adev, u32 event) 3818 { 3819 nfit_device_lock(&adev->dev); 3820 __acpi_nfit_notify(&adev->dev, adev->handle, event); 3821 nfit_device_unlock(&adev->dev); 3822 } 3823 3824 static const struct acpi_device_id acpi_nfit_ids[] = { 3825 { "ACPI0012", 0 }, 3826 { "", 0 }, 3827 }; 3828 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); 3829 3830 static struct acpi_driver acpi_nfit_driver = { 3831 .name = KBUILD_MODNAME, 3832 .ids = acpi_nfit_ids, 3833 .ops = { 3834 .add = acpi_nfit_add, 3835 .remove = acpi_nfit_remove, 3836 .notify = acpi_nfit_notify, 3837 }, 3838 }; 3839 3840 static __init int nfit_init(void) 3841 { 3842 int ret; 3843 3844 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); 3845 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64); 3846 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); 3847 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); 3848 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); 3849 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); 3850 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); 3851 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); 3852 3853 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); 3854 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); 3855 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); 3856 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); 3857 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); 3858 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); 3859 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); 3860 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); 3861 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); 3862 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); 3863 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); 3864 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); 3865 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); 3866 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]); 3867 guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]); 3868 3869 nfit_wq = create_singlethread_workqueue("nfit"); 3870 if (!nfit_wq) 3871 return -ENOMEM; 3872 3873 nfit_mce_register(); 3874 ret = acpi_bus_register_driver(&acpi_nfit_driver); 3875 if (ret) { 3876 nfit_mce_unregister(); 3877 destroy_workqueue(nfit_wq); 3878 } 3879 3880 return ret; 3881 3882 } 3883 3884 static __exit void nfit_exit(void) 3885 { 3886 nfit_mce_unregister(); 3887 acpi_bus_unregister_driver(&acpi_nfit_driver); 3888 destroy_workqueue(nfit_wq); 3889 WARN_ON(!list_empty(&acpi_descs)); 3890 } 3891 3892 module_init(nfit_init); 3893 module_exit(nfit_exit); 3894 MODULE_LICENSE("GPL v2"); 3895 MODULE_AUTHOR("Intel Corporation"); 3896