xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 2d96b44f)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/pmem.h>
24 #include <linux/io.h>
25 #include <linux/nd.h>
26 #include <asm/cacheflush.h>
27 #include "nfit.h"
28 
29 /*
30  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
31  * irrelevant.
32  */
33 #include <linux/io-64-nonatomic-hi-lo.h>
34 
35 static bool force_enable_dimms;
36 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
37 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
38 
39 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
40 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
41 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
42 
43 /* after three payloads of overflow, it's dead jim */
44 static unsigned int scrub_overflow_abort = 3;
45 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
46 MODULE_PARM_DESC(scrub_overflow_abort,
47 		"Number of times we overflow ARS results before abort");
48 
49 static bool disable_vendor_specific;
50 module_param(disable_vendor_specific, bool, S_IRUGO);
51 MODULE_PARM_DESC(disable_vendor_specific,
52 		"Limit commands to the publicly specified set\n");
53 
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56 
57 static struct workqueue_struct *nfit_wq;
58 
59 struct nfit_table_prev {
60 	struct list_head spas;
61 	struct list_head memdevs;
62 	struct list_head dcrs;
63 	struct list_head bdws;
64 	struct list_head idts;
65 	struct list_head flushes;
66 };
67 
68 static u8 nfit_uuid[NFIT_UUID_MAX][16];
69 
70 const u8 *to_nfit_uuid(enum nfit_uuids id)
71 {
72 	return nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75 
76 static struct acpi_nfit_desc *to_acpi_nfit_desc(
77 		struct nvdimm_bus_descriptor *nd_desc)
78 {
79 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
80 }
81 
82 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
83 {
84 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
85 
86 	/*
87 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
88 	 * acpi_device.
89 	 */
90 	if (!nd_desc->provider_name
91 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
92 		return NULL;
93 
94 	return to_acpi_device(acpi_desc->dev);
95 }
96 
97 static int xlat_status(void *buf, unsigned int cmd, u32 status)
98 {
99 	struct nd_cmd_clear_error *clear_err;
100 	struct nd_cmd_ars_status *ars_status;
101 	u16 flags;
102 
103 	switch (cmd) {
104 	case ND_CMD_ARS_CAP:
105 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
106 			return -ENOTTY;
107 
108 		/* Command failed */
109 		if (status & 0xffff)
110 			return -EIO;
111 
112 		/* No supported scan types for this range */
113 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
114 		if ((status >> 16 & flags) == 0)
115 			return -ENOTTY;
116 		break;
117 	case ND_CMD_ARS_START:
118 		/* ARS is in progress */
119 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
120 			return -EBUSY;
121 
122 		/* Command failed */
123 		if (status & 0xffff)
124 			return -EIO;
125 		break;
126 	case ND_CMD_ARS_STATUS:
127 		ars_status = buf;
128 		/* Command failed */
129 		if (status & 0xffff)
130 			return -EIO;
131 		/* Check extended status (Upper two bytes) */
132 		if (status == NFIT_ARS_STATUS_DONE)
133 			return 0;
134 
135 		/* ARS is in progress */
136 		if (status == NFIT_ARS_STATUS_BUSY)
137 			return -EBUSY;
138 
139 		/* No ARS performed for the current boot */
140 		if (status == NFIT_ARS_STATUS_NONE)
141 			return -EAGAIN;
142 
143 		/*
144 		 * ARS interrupted, either we overflowed or some other
145 		 * agent wants the scan to stop.  If we didn't overflow
146 		 * then just continue with the returned results.
147 		 */
148 		if (status == NFIT_ARS_STATUS_INTR) {
149 			if (ars_status->flags & NFIT_ARS_F_OVERFLOW)
150 				return -ENOSPC;
151 			return 0;
152 		}
153 
154 		/* Unknown status */
155 		if (status >> 16)
156 			return -EIO;
157 		break;
158 	case ND_CMD_CLEAR_ERROR:
159 		clear_err = buf;
160 		if (status & 0xffff)
161 			return -EIO;
162 		if (!clear_err->cleared)
163 			return -EIO;
164 		if (clear_err->length > clear_err->cleared)
165 			return clear_err->cleared;
166 		break;
167 	default:
168 		break;
169 	}
170 
171 	/* all other non-zero status results in an error */
172 	if (status)
173 		return -EIO;
174 	return 0;
175 }
176 
177 static int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc,
178 		struct nvdimm *nvdimm, unsigned int cmd, void *buf,
179 		unsigned int buf_len, int *cmd_rc)
180 {
181 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
182 	union acpi_object in_obj, in_buf, *out_obj;
183 	const struct nd_cmd_desc *desc = NULL;
184 	struct device *dev = acpi_desc->dev;
185 	struct nd_cmd_pkg *call_pkg = NULL;
186 	const char *cmd_name, *dimm_name;
187 	unsigned long cmd_mask, dsm_mask;
188 	u32 offset, fw_status = 0;
189 	acpi_handle handle;
190 	unsigned int func;
191 	const u8 *uuid;
192 	int rc, i;
193 
194 	func = cmd;
195 	if (cmd == ND_CMD_CALL) {
196 		call_pkg = buf;
197 		func = call_pkg->nd_command;
198 	}
199 
200 	if (nvdimm) {
201 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
202 		struct acpi_device *adev = nfit_mem->adev;
203 
204 		if (!adev)
205 			return -ENOTTY;
206 		if (call_pkg && nfit_mem->family != call_pkg->nd_family)
207 			return -ENOTTY;
208 
209 		dimm_name = nvdimm_name(nvdimm);
210 		cmd_name = nvdimm_cmd_name(cmd);
211 		cmd_mask = nvdimm_cmd_mask(nvdimm);
212 		dsm_mask = nfit_mem->dsm_mask;
213 		desc = nd_cmd_dimm_desc(cmd);
214 		uuid = to_nfit_uuid(nfit_mem->family);
215 		handle = adev->handle;
216 	} else {
217 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
218 
219 		cmd_name = nvdimm_bus_cmd_name(cmd);
220 		cmd_mask = nd_desc->cmd_mask;
221 		dsm_mask = cmd_mask;
222 		desc = nd_cmd_bus_desc(cmd);
223 		uuid = to_nfit_uuid(NFIT_DEV_BUS);
224 		handle = adev->handle;
225 		dimm_name = "bus";
226 	}
227 
228 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
229 		return -ENOTTY;
230 
231 	if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
232 		return -ENOTTY;
233 
234 	in_obj.type = ACPI_TYPE_PACKAGE;
235 	in_obj.package.count = 1;
236 	in_obj.package.elements = &in_buf;
237 	in_buf.type = ACPI_TYPE_BUFFER;
238 	in_buf.buffer.pointer = buf;
239 	in_buf.buffer.length = 0;
240 
241 	/* libnvdimm has already validated the input envelope */
242 	for (i = 0; i < desc->in_num; i++)
243 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
244 				i, buf);
245 
246 	if (call_pkg) {
247 		/* skip over package wrapper */
248 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
249 		in_buf.buffer.length = call_pkg->nd_size_in;
250 	}
251 
252 	if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
253 		dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n",
254 				__func__, dimm_name, cmd, func,
255 				in_buf.buffer.length);
256 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
257 			in_buf.buffer.pointer,
258 			min_t(u32, 256, in_buf.buffer.length), true);
259 	}
260 
261 	out_obj = acpi_evaluate_dsm(handle, uuid, 1, func, &in_obj);
262 	if (!out_obj) {
263 		dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
264 				cmd_name);
265 		return -EINVAL;
266 	}
267 
268 	if (call_pkg) {
269 		call_pkg->nd_fw_size = out_obj->buffer.length;
270 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
271 			out_obj->buffer.pointer,
272 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
273 
274 		ACPI_FREE(out_obj);
275 		/*
276 		 * Need to support FW function w/o known size in advance.
277 		 * Caller can determine required size based upon nd_fw_size.
278 		 * If we return an error (like elsewhere) then caller wouldn't
279 		 * be able to rely upon data returned to make calculation.
280 		 */
281 		return 0;
282 	}
283 
284 	if (out_obj->package.type != ACPI_TYPE_BUFFER) {
285 		dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n",
286 				__func__, dimm_name, cmd_name, out_obj->type);
287 		rc = -EINVAL;
288 		goto out;
289 	}
290 
291 	if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
292 		dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__,
293 				dimm_name, cmd_name, out_obj->buffer.length);
294 		print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4,
295 				4, out_obj->buffer.pointer, min_t(u32, 128,
296 					out_obj->buffer.length), true);
297 	}
298 
299 	for (i = 0, offset = 0; i < desc->out_num; i++) {
300 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
301 				(u32 *) out_obj->buffer.pointer);
302 
303 		if (offset + out_size > out_obj->buffer.length) {
304 			dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
305 					__func__, dimm_name, cmd_name, i);
306 			break;
307 		}
308 
309 		if (in_buf.buffer.length + offset + out_size > buf_len) {
310 			dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
311 					__func__, dimm_name, cmd_name, i);
312 			rc = -ENXIO;
313 			goto out;
314 		}
315 		memcpy(buf + in_buf.buffer.length + offset,
316 				out_obj->buffer.pointer + offset, out_size);
317 		offset += out_size;
318 	}
319 
320 	/*
321 	 * Set fw_status for all the commands with a known format to be
322 	 * later interpreted by xlat_status().
323 	 */
324 	if (i >= 1 && ((cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR)
325 			|| (cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR)))
326 		fw_status = *(u32 *) out_obj->buffer.pointer;
327 
328 	if (offset + in_buf.buffer.length < buf_len) {
329 		if (i >= 1) {
330 			/*
331 			 * status valid, return the number of bytes left
332 			 * unfilled in the output buffer
333 			 */
334 			rc = buf_len - offset - in_buf.buffer.length;
335 			if (cmd_rc)
336 				*cmd_rc = xlat_status(buf, cmd, fw_status);
337 		} else {
338 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
339 					__func__, dimm_name, cmd_name, buf_len,
340 					offset);
341 			rc = -ENXIO;
342 		}
343 	} else {
344 		rc = 0;
345 		if (cmd_rc)
346 			*cmd_rc = xlat_status(buf, cmd, fw_status);
347 	}
348 
349  out:
350 	ACPI_FREE(out_obj);
351 
352 	return rc;
353 }
354 
355 static const char *spa_type_name(u16 type)
356 {
357 	static const char *to_name[] = {
358 		[NFIT_SPA_VOLATILE] = "volatile",
359 		[NFIT_SPA_PM] = "pmem",
360 		[NFIT_SPA_DCR] = "dimm-control-region",
361 		[NFIT_SPA_BDW] = "block-data-window",
362 		[NFIT_SPA_VDISK] = "volatile-disk",
363 		[NFIT_SPA_VCD] = "volatile-cd",
364 		[NFIT_SPA_PDISK] = "persistent-disk",
365 		[NFIT_SPA_PCD] = "persistent-cd",
366 
367 	};
368 
369 	if (type > NFIT_SPA_PCD)
370 		return "unknown";
371 
372 	return to_name[type];
373 }
374 
375 int nfit_spa_type(struct acpi_nfit_system_address *spa)
376 {
377 	int i;
378 
379 	for (i = 0; i < NFIT_UUID_MAX; i++)
380 		if (memcmp(to_nfit_uuid(i), spa->range_guid, 16) == 0)
381 			return i;
382 	return -1;
383 }
384 
385 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
386 		struct nfit_table_prev *prev,
387 		struct acpi_nfit_system_address *spa)
388 {
389 	struct device *dev = acpi_desc->dev;
390 	struct nfit_spa *nfit_spa;
391 
392 	if (spa->header.length != sizeof(*spa))
393 		return false;
394 
395 	list_for_each_entry(nfit_spa, &prev->spas, list) {
396 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
397 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
398 			return true;
399 		}
400 	}
401 
402 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
403 			GFP_KERNEL);
404 	if (!nfit_spa)
405 		return false;
406 	INIT_LIST_HEAD(&nfit_spa->list);
407 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
408 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
409 	dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
410 			spa->range_index,
411 			spa_type_name(nfit_spa_type(spa)));
412 	return true;
413 }
414 
415 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
416 		struct nfit_table_prev *prev,
417 		struct acpi_nfit_memory_map *memdev)
418 {
419 	struct device *dev = acpi_desc->dev;
420 	struct nfit_memdev *nfit_memdev;
421 
422 	if (memdev->header.length != sizeof(*memdev))
423 		return false;
424 
425 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
426 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
427 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
428 			return true;
429 		}
430 
431 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
432 			GFP_KERNEL);
433 	if (!nfit_memdev)
434 		return false;
435 	INIT_LIST_HEAD(&nfit_memdev->list);
436 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
437 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
438 	dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d\n",
439 			__func__, memdev->device_handle, memdev->range_index,
440 			memdev->region_index);
441 	return true;
442 }
443 
444 /*
445  * An implementation may provide a truncated control region if no block windows
446  * are defined.
447  */
448 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
449 {
450 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
451 				window_size))
452 		return 0;
453 	if (dcr->windows)
454 		return sizeof(*dcr);
455 	return offsetof(struct acpi_nfit_control_region, window_size);
456 }
457 
458 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
459 		struct nfit_table_prev *prev,
460 		struct acpi_nfit_control_region *dcr)
461 {
462 	struct device *dev = acpi_desc->dev;
463 	struct nfit_dcr *nfit_dcr;
464 
465 	if (!sizeof_dcr(dcr))
466 		return false;
467 
468 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
469 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
470 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
471 			return true;
472 		}
473 
474 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
475 			GFP_KERNEL);
476 	if (!nfit_dcr)
477 		return false;
478 	INIT_LIST_HEAD(&nfit_dcr->list);
479 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
480 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
481 	dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
482 			dcr->region_index, dcr->windows);
483 	return true;
484 }
485 
486 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
487 		struct nfit_table_prev *prev,
488 		struct acpi_nfit_data_region *bdw)
489 {
490 	struct device *dev = acpi_desc->dev;
491 	struct nfit_bdw *nfit_bdw;
492 
493 	if (bdw->header.length != sizeof(*bdw))
494 		return false;
495 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
496 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
497 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
498 			return true;
499 		}
500 
501 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
502 			GFP_KERNEL);
503 	if (!nfit_bdw)
504 		return false;
505 	INIT_LIST_HEAD(&nfit_bdw->list);
506 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
507 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
508 	dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
509 			bdw->region_index, bdw->windows);
510 	return true;
511 }
512 
513 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
514 {
515 	if (idt->header.length < sizeof(*idt))
516 		return 0;
517 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
518 }
519 
520 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
521 		struct nfit_table_prev *prev,
522 		struct acpi_nfit_interleave *idt)
523 {
524 	struct device *dev = acpi_desc->dev;
525 	struct nfit_idt *nfit_idt;
526 
527 	if (!sizeof_idt(idt))
528 		return false;
529 
530 	list_for_each_entry(nfit_idt, &prev->idts, list) {
531 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
532 			continue;
533 
534 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
535 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
536 			return true;
537 		}
538 	}
539 
540 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
541 			GFP_KERNEL);
542 	if (!nfit_idt)
543 		return false;
544 	INIT_LIST_HEAD(&nfit_idt->list);
545 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
546 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
547 	dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
548 			idt->interleave_index, idt->line_count);
549 	return true;
550 }
551 
552 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
553 {
554 	if (flush->header.length < sizeof(*flush))
555 		return 0;
556 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
557 }
558 
559 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
560 		struct nfit_table_prev *prev,
561 		struct acpi_nfit_flush_address *flush)
562 {
563 	struct device *dev = acpi_desc->dev;
564 	struct nfit_flush *nfit_flush;
565 
566 	if (!sizeof_flush(flush))
567 		return false;
568 
569 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
570 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
571 			continue;
572 
573 		if (memcmp(nfit_flush->flush, flush,
574 					sizeof_flush(flush)) == 0) {
575 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
576 			return true;
577 		}
578 	}
579 
580 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
581 			+ sizeof_flush(flush), GFP_KERNEL);
582 	if (!nfit_flush)
583 		return false;
584 	INIT_LIST_HEAD(&nfit_flush->list);
585 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
586 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
587 	dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
588 			flush->device_handle, flush->hint_count);
589 	return true;
590 }
591 
592 static void *add_table(struct acpi_nfit_desc *acpi_desc,
593 		struct nfit_table_prev *prev, void *table, const void *end)
594 {
595 	struct device *dev = acpi_desc->dev;
596 	struct acpi_nfit_header *hdr;
597 	void *err = ERR_PTR(-ENOMEM);
598 
599 	if (table >= end)
600 		return NULL;
601 
602 	hdr = table;
603 	if (!hdr->length) {
604 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
605 			hdr->type);
606 		return NULL;
607 	}
608 
609 	switch (hdr->type) {
610 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
611 		if (!add_spa(acpi_desc, prev, table))
612 			return err;
613 		break;
614 	case ACPI_NFIT_TYPE_MEMORY_MAP:
615 		if (!add_memdev(acpi_desc, prev, table))
616 			return err;
617 		break;
618 	case ACPI_NFIT_TYPE_CONTROL_REGION:
619 		if (!add_dcr(acpi_desc, prev, table))
620 			return err;
621 		break;
622 	case ACPI_NFIT_TYPE_DATA_REGION:
623 		if (!add_bdw(acpi_desc, prev, table))
624 			return err;
625 		break;
626 	case ACPI_NFIT_TYPE_INTERLEAVE:
627 		if (!add_idt(acpi_desc, prev, table))
628 			return err;
629 		break;
630 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
631 		if (!add_flush(acpi_desc, prev, table))
632 			return err;
633 		break;
634 	case ACPI_NFIT_TYPE_SMBIOS:
635 		dev_dbg(dev, "%s: smbios\n", __func__);
636 		break;
637 	default:
638 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
639 		break;
640 	}
641 
642 	return table + hdr->length;
643 }
644 
645 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
646 		struct nfit_mem *nfit_mem)
647 {
648 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
649 	u16 dcr = nfit_mem->dcr->region_index;
650 	struct nfit_spa *nfit_spa;
651 
652 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
653 		u16 range_index = nfit_spa->spa->range_index;
654 		int type = nfit_spa_type(nfit_spa->spa);
655 		struct nfit_memdev *nfit_memdev;
656 
657 		if (type != NFIT_SPA_BDW)
658 			continue;
659 
660 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
661 			if (nfit_memdev->memdev->range_index != range_index)
662 				continue;
663 			if (nfit_memdev->memdev->device_handle != device_handle)
664 				continue;
665 			if (nfit_memdev->memdev->region_index != dcr)
666 				continue;
667 
668 			nfit_mem->spa_bdw = nfit_spa->spa;
669 			return;
670 		}
671 	}
672 
673 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
674 			nfit_mem->spa_dcr->range_index);
675 	nfit_mem->bdw = NULL;
676 }
677 
678 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
679 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
680 {
681 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
682 	struct nfit_memdev *nfit_memdev;
683 	struct nfit_bdw *nfit_bdw;
684 	struct nfit_idt *nfit_idt;
685 	u16 idt_idx, range_index;
686 
687 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
688 		if (nfit_bdw->bdw->region_index != dcr)
689 			continue;
690 		nfit_mem->bdw = nfit_bdw->bdw;
691 		break;
692 	}
693 
694 	if (!nfit_mem->bdw)
695 		return;
696 
697 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
698 
699 	if (!nfit_mem->spa_bdw)
700 		return;
701 
702 	range_index = nfit_mem->spa_bdw->range_index;
703 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
704 		if (nfit_memdev->memdev->range_index != range_index ||
705 				nfit_memdev->memdev->region_index != dcr)
706 			continue;
707 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
708 		idt_idx = nfit_memdev->memdev->interleave_index;
709 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
710 			if (nfit_idt->idt->interleave_index != idt_idx)
711 				continue;
712 			nfit_mem->idt_bdw = nfit_idt->idt;
713 			break;
714 		}
715 		break;
716 	}
717 }
718 
719 static int nfit_mem_dcr_init(struct acpi_nfit_desc *acpi_desc,
720 		struct acpi_nfit_system_address *spa)
721 {
722 	struct nfit_mem *nfit_mem, *found;
723 	struct nfit_memdev *nfit_memdev;
724 	int type = nfit_spa_type(spa);
725 
726 	switch (type) {
727 	case NFIT_SPA_DCR:
728 	case NFIT_SPA_PM:
729 		break;
730 	default:
731 		return 0;
732 	}
733 
734 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
735 		struct nfit_flush *nfit_flush;
736 		struct nfit_dcr *nfit_dcr;
737 		u32 device_handle;
738 		u16 dcr;
739 
740 		if (nfit_memdev->memdev->range_index != spa->range_index)
741 			continue;
742 		found = NULL;
743 		dcr = nfit_memdev->memdev->region_index;
744 		device_handle = nfit_memdev->memdev->device_handle;
745 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
746 			if (__to_nfit_memdev(nfit_mem)->device_handle
747 					== device_handle) {
748 				found = nfit_mem;
749 				break;
750 			}
751 
752 		if (found)
753 			nfit_mem = found;
754 		else {
755 			nfit_mem = devm_kzalloc(acpi_desc->dev,
756 					sizeof(*nfit_mem), GFP_KERNEL);
757 			if (!nfit_mem)
758 				return -ENOMEM;
759 			INIT_LIST_HEAD(&nfit_mem->list);
760 			nfit_mem->acpi_desc = acpi_desc;
761 			list_add(&nfit_mem->list, &acpi_desc->dimms);
762 		}
763 
764 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
765 			if (nfit_dcr->dcr->region_index != dcr)
766 				continue;
767 			/*
768 			 * Record the control region for the dimm.  For
769 			 * the ACPI 6.1 case, where there are separate
770 			 * control regions for the pmem vs blk
771 			 * interfaces, be sure to record the extended
772 			 * blk details.
773 			 */
774 			if (!nfit_mem->dcr)
775 				nfit_mem->dcr = nfit_dcr->dcr;
776 			else if (nfit_mem->dcr->windows == 0
777 					&& nfit_dcr->dcr->windows)
778 				nfit_mem->dcr = nfit_dcr->dcr;
779 			break;
780 		}
781 
782 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
783 			struct acpi_nfit_flush_address *flush;
784 			u16 i;
785 
786 			if (nfit_flush->flush->device_handle != device_handle)
787 				continue;
788 			nfit_mem->nfit_flush = nfit_flush;
789 			flush = nfit_flush->flush;
790 			nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
791 					flush->hint_count
792 					* sizeof(struct resource), GFP_KERNEL);
793 			if (!nfit_mem->flush_wpq)
794 				return -ENOMEM;
795 			for (i = 0; i < flush->hint_count; i++) {
796 				struct resource *res = &nfit_mem->flush_wpq[i];
797 
798 				res->start = flush->hint_address[i];
799 				res->end = res->start + 8 - 1;
800 			}
801 			break;
802 		}
803 
804 		if (dcr && !nfit_mem->dcr) {
805 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
806 					spa->range_index, dcr);
807 			return -ENODEV;
808 		}
809 
810 		if (type == NFIT_SPA_DCR) {
811 			struct nfit_idt *nfit_idt;
812 			u16 idt_idx;
813 
814 			/* multiple dimms may share a SPA when interleaved */
815 			nfit_mem->spa_dcr = spa;
816 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
817 			idt_idx = nfit_memdev->memdev->interleave_index;
818 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
819 				if (nfit_idt->idt->interleave_index != idt_idx)
820 					continue;
821 				nfit_mem->idt_dcr = nfit_idt->idt;
822 				break;
823 			}
824 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
825 		} else {
826 			/*
827 			 * A single dimm may belong to multiple SPA-PM
828 			 * ranges, record at least one in addition to
829 			 * any SPA-DCR range.
830 			 */
831 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
832 		}
833 	}
834 
835 	return 0;
836 }
837 
838 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
839 {
840 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
841 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
842 	u32 handleA, handleB;
843 
844 	handleA = __to_nfit_memdev(a)->device_handle;
845 	handleB = __to_nfit_memdev(b)->device_handle;
846 	if (handleA < handleB)
847 		return -1;
848 	else if (handleA > handleB)
849 		return 1;
850 	return 0;
851 }
852 
853 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
854 {
855 	struct nfit_spa *nfit_spa;
856 
857 	/*
858 	 * For each SPA-DCR or SPA-PMEM address range find its
859 	 * corresponding MEMDEV(s).  From each MEMDEV find the
860 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
861 	 * try to find a SPA-BDW and a corresponding BDW that references
862 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
863 	 * BDWs are optional.
864 	 */
865 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
866 		int rc;
867 
868 		rc = nfit_mem_dcr_init(acpi_desc, nfit_spa->spa);
869 		if (rc)
870 			return rc;
871 	}
872 
873 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
874 
875 	return 0;
876 }
877 
878 static ssize_t revision_show(struct device *dev,
879 		struct device_attribute *attr, char *buf)
880 {
881 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
882 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
883 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
884 
885 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
886 }
887 static DEVICE_ATTR_RO(revision);
888 
889 static ssize_t hw_error_scrub_show(struct device *dev,
890 		struct device_attribute *attr, char *buf)
891 {
892 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
893 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
894 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
895 
896 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
897 }
898 
899 /*
900  * The 'hw_error_scrub' attribute can have the following values written to it:
901  * '0': Switch to the default mode where an exception will only insert
902  *      the address of the memory error into the poison and badblocks lists.
903  * '1': Enable a full scrub to happen if an exception for a memory error is
904  *      received.
905  */
906 static ssize_t hw_error_scrub_store(struct device *dev,
907 		struct device_attribute *attr, const char *buf, size_t size)
908 {
909 	struct nvdimm_bus_descriptor *nd_desc;
910 	ssize_t rc;
911 	long val;
912 
913 	rc = kstrtol(buf, 0, &val);
914 	if (rc)
915 		return rc;
916 
917 	device_lock(dev);
918 	nd_desc = dev_get_drvdata(dev);
919 	if (nd_desc) {
920 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
921 
922 		switch (val) {
923 		case HW_ERROR_SCRUB_ON:
924 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
925 			break;
926 		case HW_ERROR_SCRUB_OFF:
927 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
928 			break;
929 		default:
930 			rc = -EINVAL;
931 			break;
932 		}
933 	}
934 	device_unlock(dev);
935 	if (rc)
936 		return rc;
937 	return size;
938 }
939 static DEVICE_ATTR_RW(hw_error_scrub);
940 
941 /*
942  * This shows the number of full Address Range Scrubs that have been
943  * completed since driver load time. Userspace can wait on this using
944  * select/poll etc. A '+' at the end indicates an ARS is in progress
945  */
946 static ssize_t scrub_show(struct device *dev,
947 		struct device_attribute *attr, char *buf)
948 {
949 	struct nvdimm_bus_descriptor *nd_desc;
950 	ssize_t rc = -ENXIO;
951 
952 	device_lock(dev);
953 	nd_desc = dev_get_drvdata(dev);
954 	if (nd_desc) {
955 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
956 
957 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
958 				(work_busy(&acpi_desc->work)) ? "+\n" : "\n");
959 	}
960 	device_unlock(dev);
961 	return rc;
962 }
963 
964 static ssize_t scrub_store(struct device *dev,
965 		struct device_attribute *attr, const char *buf, size_t size)
966 {
967 	struct nvdimm_bus_descriptor *nd_desc;
968 	ssize_t rc;
969 	long val;
970 
971 	rc = kstrtol(buf, 0, &val);
972 	if (rc)
973 		return rc;
974 	if (val != 1)
975 		return -EINVAL;
976 
977 	device_lock(dev);
978 	nd_desc = dev_get_drvdata(dev);
979 	if (nd_desc) {
980 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
981 
982 		rc = acpi_nfit_ars_rescan(acpi_desc);
983 	}
984 	device_unlock(dev);
985 	if (rc)
986 		return rc;
987 	return size;
988 }
989 static DEVICE_ATTR_RW(scrub);
990 
991 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
992 {
993 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
994 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
995 		| 1 << ND_CMD_ARS_STATUS;
996 
997 	return (nd_desc->cmd_mask & mask) == mask;
998 }
999 
1000 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1001 {
1002 	struct device *dev = container_of(kobj, struct device, kobj);
1003 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1004 
1005 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1006 		return 0;
1007 	return a->mode;
1008 }
1009 
1010 static struct attribute *acpi_nfit_attributes[] = {
1011 	&dev_attr_revision.attr,
1012 	&dev_attr_scrub.attr,
1013 	&dev_attr_hw_error_scrub.attr,
1014 	NULL,
1015 };
1016 
1017 static struct attribute_group acpi_nfit_attribute_group = {
1018 	.name = "nfit",
1019 	.attrs = acpi_nfit_attributes,
1020 	.is_visible = nfit_visible,
1021 };
1022 
1023 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1024 	&nvdimm_bus_attribute_group,
1025 	&acpi_nfit_attribute_group,
1026 	NULL,
1027 };
1028 
1029 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1030 {
1031 	struct nvdimm *nvdimm = to_nvdimm(dev);
1032 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1033 
1034 	return __to_nfit_memdev(nfit_mem);
1035 }
1036 
1037 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1038 {
1039 	struct nvdimm *nvdimm = to_nvdimm(dev);
1040 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1041 
1042 	return nfit_mem->dcr;
1043 }
1044 
1045 static ssize_t handle_show(struct device *dev,
1046 		struct device_attribute *attr, char *buf)
1047 {
1048 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1049 
1050 	return sprintf(buf, "%#x\n", memdev->device_handle);
1051 }
1052 static DEVICE_ATTR_RO(handle);
1053 
1054 static ssize_t phys_id_show(struct device *dev,
1055 		struct device_attribute *attr, char *buf)
1056 {
1057 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1058 
1059 	return sprintf(buf, "%#x\n", memdev->physical_id);
1060 }
1061 static DEVICE_ATTR_RO(phys_id);
1062 
1063 static ssize_t vendor_show(struct device *dev,
1064 		struct device_attribute *attr, char *buf)
1065 {
1066 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1067 
1068 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1069 }
1070 static DEVICE_ATTR_RO(vendor);
1071 
1072 static ssize_t rev_id_show(struct device *dev,
1073 		struct device_attribute *attr, char *buf)
1074 {
1075 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1076 
1077 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1078 }
1079 static DEVICE_ATTR_RO(rev_id);
1080 
1081 static ssize_t device_show(struct device *dev,
1082 		struct device_attribute *attr, char *buf)
1083 {
1084 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1085 
1086 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1087 }
1088 static DEVICE_ATTR_RO(device);
1089 
1090 static ssize_t subsystem_vendor_show(struct device *dev,
1091 		struct device_attribute *attr, char *buf)
1092 {
1093 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1094 
1095 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1096 }
1097 static DEVICE_ATTR_RO(subsystem_vendor);
1098 
1099 static ssize_t subsystem_rev_id_show(struct device *dev,
1100 		struct device_attribute *attr, char *buf)
1101 {
1102 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1103 
1104 	return sprintf(buf, "0x%04x\n",
1105 			be16_to_cpu(dcr->subsystem_revision_id));
1106 }
1107 static DEVICE_ATTR_RO(subsystem_rev_id);
1108 
1109 static ssize_t subsystem_device_show(struct device *dev,
1110 		struct device_attribute *attr, char *buf)
1111 {
1112 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1113 
1114 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1115 }
1116 static DEVICE_ATTR_RO(subsystem_device);
1117 
1118 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1119 {
1120 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1121 	int formats = 0;
1122 
1123 	if (nfit_mem->memdev_pmem)
1124 		formats++;
1125 	if (nfit_mem->memdev_bdw)
1126 		formats++;
1127 	return formats;
1128 }
1129 
1130 static ssize_t format_show(struct device *dev,
1131 		struct device_attribute *attr, char *buf)
1132 {
1133 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1134 
1135 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1136 }
1137 static DEVICE_ATTR_RO(format);
1138 
1139 static ssize_t format1_show(struct device *dev,
1140 		struct device_attribute *attr, char *buf)
1141 {
1142 	u32 handle;
1143 	ssize_t rc = -ENXIO;
1144 	struct nfit_mem *nfit_mem;
1145 	struct nfit_memdev *nfit_memdev;
1146 	struct acpi_nfit_desc *acpi_desc;
1147 	struct nvdimm *nvdimm = to_nvdimm(dev);
1148 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1149 
1150 	nfit_mem = nvdimm_provider_data(nvdimm);
1151 	acpi_desc = nfit_mem->acpi_desc;
1152 	handle = to_nfit_memdev(dev)->device_handle;
1153 
1154 	/* assumes DIMMs have at most 2 published interface codes */
1155 	mutex_lock(&acpi_desc->init_mutex);
1156 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1157 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1158 		struct nfit_dcr *nfit_dcr;
1159 
1160 		if (memdev->device_handle != handle)
1161 			continue;
1162 
1163 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1164 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1165 				continue;
1166 			if (nfit_dcr->dcr->code == dcr->code)
1167 				continue;
1168 			rc = sprintf(buf, "0x%04x\n",
1169 					le16_to_cpu(nfit_dcr->dcr->code));
1170 			break;
1171 		}
1172 		if (rc != ENXIO)
1173 			break;
1174 	}
1175 	mutex_unlock(&acpi_desc->init_mutex);
1176 	return rc;
1177 }
1178 static DEVICE_ATTR_RO(format1);
1179 
1180 static ssize_t formats_show(struct device *dev,
1181 		struct device_attribute *attr, char *buf)
1182 {
1183 	struct nvdimm *nvdimm = to_nvdimm(dev);
1184 
1185 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1186 }
1187 static DEVICE_ATTR_RO(formats);
1188 
1189 static ssize_t serial_show(struct device *dev,
1190 		struct device_attribute *attr, char *buf)
1191 {
1192 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1193 
1194 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1195 }
1196 static DEVICE_ATTR_RO(serial);
1197 
1198 static ssize_t family_show(struct device *dev,
1199 		struct device_attribute *attr, char *buf)
1200 {
1201 	struct nvdimm *nvdimm = to_nvdimm(dev);
1202 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1203 
1204 	if (nfit_mem->family < 0)
1205 		return -ENXIO;
1206 	return sprintf(buf, "%d\n", nfit_mem->family);
1207 }
1208 static DEVICE_ATTR_RO(family);
1209 
1210 static ssize_t dsm_mask_show(struct device *dev,
1211 		struct device_attribute *attr, char *buf)
1212 {
1213 	struct nvdimm *nvdimm = to_nvdimm(dev);
1214 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1215 
1216 	if (nfit_mem->family < 0)
1217 		return -ENXIO;
1218 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1219 }
1220 static DEVICE_ATTR_RO(dsm_mask);
1221 
1222 static ssize_t flags_show(struct device *dev,
1223 		struct device_attribute *attr, char *buf)
1224 {
1225 	u16 flags = to_nfit_memdev(dev)->flags;
1226 
1227 	return sprintf(buf, "%s%s%s%s%s\n",
1228 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1229 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1230 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1231 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1232 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "");
1233 }
1234 static DEVICE_ATTR_RO(flags);
1235 
1236 static ssize_t id_show(struct device *dev,
1237 		struct device_attribute *attr, char *buf)
1238 {
1239 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1240 
1241 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1242 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1243 				be16_to_cpu(dcr->vendor_id),
1244 				dcr->manufacturing_location,
1245 				be16_to_cpu(dcr->manufacturing_date),
1246 				be32_to_cpu(dcr->serial_number));
1247 	else
1248 		return sprintf(buf, "%04x-%08x\n",
1249 				be16_to_cpu(dcr->vendor_id),
1250 				be32_to_cpu(dcr->serial_number));
1251 }
1252 static DEVICE_ATTR_RO(id);
1253 
1254 static struct attribute *acpi_nfit_dimm_attributes[] = {
1255 	&dev_attr_handle.attr,
1256 	&dev_attr_phys_id.attr,
1257 	&dev_attr_vendor.attr,
1258 	&dev_attr_device.attr,
1259 	&dev_attr_rev_id.attr,
1260 	&dev_attr_subsystem_vendor.attr,
1261 	&dev_attr_subsystem_device.attr,
1262 	&dev_attr_subsystem_rev_id.attr,
1263 	&dev_attr_format.attr,
1264 	&dev_attr_formats.attr,
1265 	&dev_attr_format1.attr,
1266 	&dev_attr_serial.attr,
1267 	&dev_attr_flags.attr,
1268 	&dev_attr_id.attr,
1269 	&dev_attr_family.attr,
1270 	&dev_attr_dsm_mask.attr,
1271 	NULL,
1272 };
1273 
1274 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1275 		struct attribute *a, int n)
1276 {
1277 	struct device *dev = container_of(kobj, struct device, kobj);
1278 	struct nvdimm *nvdimm = to_nvdimm(dev);
1279 
1280 	if (!to_nfit_dcr(dev))
1281 		return 0;
1282 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1283 		return 0;
1284 	return a->mode;
1285 }
1286 
1287 static struct attribute_group acpi_nfit_dimm_attribute_group = {
1288 	.name = "nfit",
1289 	.attrs = acpi_nfit_dimm_attributes,
1290 	.is_visible = acpi_nfit_dimm_attr_visible,
1291 };
1292 
1293 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1294 	&nvdimm_attribute_group,
1295 	&nd_device_attribute_group,
1296 	&acpi_nfit_dimm_attribute_group,
1297 	NULL,
1298 };
1299 
1300 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1301 		u32 device_handle)
1302 {
1303 	struct nfit_mem *nfit_mem;
1304 
1305 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1306 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1307 			return nfit_mem->nvdimm;
1308 
1309 	return NULL;
1310 }
1311 
1312 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1313 {
1314 	struct nfit_mem *nfit_mem;
1315 	struct acpi_nfit_desc *acpi_desc;
1316 
1317 	dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__,
1318 			event);
1319 
1320 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1321 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1322 				event);
1323 		return;
1324 	}
1325 
1326 	acpi_desc = dev_get_drvdata(dev->parent);
1327 	if (!acpi_desc)
1328 		return;
1329 
1330 	/*
1331 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1332 	 * is still valid.
1333 	 */
1334 	nfit_mem = dev_get_drvdata(dev);
1335 	if (nfit_mem && nfit_mem->flags_attr)
1336 		sysfs_notify_dirent(nfit_mem->flags_attr);
1337 }
1338 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1339 
1340 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1341 {
1342 	struct acpi_device *adev = data;
1343 	struct device *dev = &adev->dev;
1344 
1345 	device_lock(dev->parent);
1346 	__acpi_nvdimm_notify(dev, event);
1347 	device_unlock(dev->parent);
1348 }
1349 
1350 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1351 		struct nfit_mem *nfit_mem, u32 device_handle)
1352 {
1353 	struct acpi_device *adev, *adev_dimm;
1354 	struct device *dev = acpi_desc->dev;
1355 	unsigned long dsm_mask;
1356 	const u8 *uuid;
1357 	int i;
1358 
1359 	/* nfit test assumes 1:1 relationship between commands and dsms */
1360 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1361 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1362 	adev = to_acpi_dev(acpi_desc);
1363 	if (!adev)
1364 		return 0;
1365 
1366 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1367 	nfit_mem->adev = adev_dimm;
1368 	if (!adev_dimm) {
1369 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1370 				device_handle);
1371 		return force_enable_dimms ? 0 : -ENODEV;
1372 	}
1373 
1374 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1375 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1376 		dev_err(dev, "%s: notification registration failed\n",
1377 				dev_name(&adev_dimm->dev));
1378 		return -ENXIO;
1379 	}
1380 
1381 	/*
1382 	 * Until standardization materializes we need to consider 4
1383 	 * different command sets.  Note, that checking for function0 (bit0)
1384 	 * tells us if any commands are reachable through this uuid.
1385 	 */
1386 	for (i = NVDIMM_FAMILY_INTEL; i <= NVDIMM_FAMILY_MSFT; i++)
1387 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1388 			break;
1389 
1390 	/* limit the supported commands to those that are publicly documented */
1391 	nfit_mem->family = i;
1392 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1393 		dsm_mask = 0x3fe;
1394 		if (disable_vendor_specific)
1395 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1396 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1397 		dsm_mask = 0x1c3c76;
1398 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1399 		dsm_mask = 0x1fe;
1400 		if (disable_vendor_specific)
1401 			dsm_mask &= ~(1 << 8);
1402 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1403 		dsm_mask = 0xffffffff;
1404 	} else {
1405 		dev_dbg(dev, "unknown dimm command family\n");
1406 		nfit_mem->family = -1;
1407 		/* DSMs are optional, continue loading the driver... */
1408 		return 0;
1409 	}
1410 
1411 	uuid = to_nfit_uuid(nfit_mem->family);
1412 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1413 		if (acpi_check_dsm(adev_dimm->handle, uuid, 1, 1ULL << i))
1414 			set_bit(i, &nfit_mem->dsm_mask);
1415 
1416 	return 0;
1417 }
1418 
1419 static void shutdown_dimm_notify(void *data)
1420 {
1421 	struct acpi_nfit_desc *acpi_desc = data;
1422 	struct nfit_mem *nfit_mem;
1423 
1424 	mutex_lock(&acpi_desc->init_mutex);
1425 	/*
1426 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1427 	 * notifications.
1428 	 */
1429 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1430 		struct acpi_device *adev_dimm = nfit_mem->adev;
1431 
1432 		if (nfit_mem->flags_attr) {
1433 			sysfs_put(nfit_mem->flags_attr);
1434 			nfit_mem->flags_attr = NULL;
1435 		}
1436 		if (adev_dimm)
1437 			acpi_remove_notify_handler(adev_dimm->handle,
1438 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1439 	}
1440 	mutex_unlock(&acpi_desc->init_mutex);
1441 }
1442 
1443 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1444 {
1445 	struct nfit_mem *nfit_mem;
1446 	int dimm_count = 0, rc;
1447 	struct nvdimm *nvdimm;
1448 
1449 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1450 		struct acpi_nfit_flush_address *flush;
1451 		unsigned long flags = 0, cmd_mask;
1452 		u32 device_handle;
1453 		u16 mem_flags;
1454 
1455 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1456 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1457 		if (nvdimm) {
1458 			dimm_count++;
1459 			continue;
1460 		}
1461 
1462 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1463 			flags |= NDD_ALIASING;
1464 
1465 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1466 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1467 			flags |= NDD_UNARMED;
1468 
1469 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1470 		if (rc)
1471 			continue;
1472 
1473 		/*
1474 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1475 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1476 		 * userspace interface.
1477 		 */
1478 		cmd_mask = 1UL << ND_CMD_CALL;
1479 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1480 			cmd_mask |= nfit_mem->dsm_mask;
1481 
1482 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1483 			: NULL;
1484 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1485 				acpi_nfit_dimm_attribute_groups,
1486 				flags, cmd_mask, flush ? flush->hint_count : 0,
1487 				nfit_mem->flush_wpq);
1488 		if (!nvdimm)
1489 			return -ENOMEM;
1490 
1491 		nfit_mem->nvdimm = nvdimm;
1492 		dimm_count++;
1493 
1494 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1495 			continue;
1496 
1497 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s\n",
1498 				nvdimm_name(nvdimm),
1499 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1500 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1501 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1502 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "");
1503 
1504 	}
1505 
1506 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1507 	if (rc)
1508 		return rc;
1509 
1510 	/*
1511 	 * Now that dimms are successfully registered, and async registration
1512 	 * is flushed, attempt to enable event notification.
1513 	 */
1514 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1515 		struct kernfs_node *nfit_kernfs;
1516 
1517 		nvdimm = nfit_mem->nvdimm;
1518 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1519 		if (nfit_kernfs)
1520 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1521 					"flags");
1522 		sysfs_put(nfit_kernfs);
1523 		if (!nfit_mem->flags_attr)
1524 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1525 					nvdimm_name(nvdimm));
1526 	}
1527 
1528 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1529 			acpi_desc);
1530 }
1531 
1532 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1533 {
1534 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1535 	const u8 *uuid = to_nfit_uuid(NFIT_DEV_BUS);
1536 	struct acpi_device *adev;
1537 	int i;
1538 
1539 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1540 	adev = to_acpi_dev(acpi_desc);
1541 	if (!adev)
1542 		return;
1543 
1544 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1545 		if (acpi_check_dsm(adev->handle, uuid, 1, 1ULL << i))
1546 			set_bit(i, &nd_desc->cmd_mask);
1547 }
1548 
1549 static ssize_t range_index_show(struct device *dev,
1550 		struct device_attribute *attr, char *buf)
1551 {
1552 	struct nd_region *nd_region = to_nd_region(dev);
1553 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1554 
1555 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1556 }
1557 static DEVICE_ATTR_RO(range_index);
1558 
1559 static struct attribute *acpi_nfit_region_attributes[] = {
1560 	&dev_attr_range_index.attr,
1561 	NULL,
1562 };
1563 
1564 static struct attribute_group acpi_nfit_region_attribute_group = {
1565 	.name = "nfit",
1566 	.attrs = acpi_nfit_region_attributes,
1567 };
1568 
1569 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1570 	&nd_region_attribute_group,
1571 	&nd_mapping_attribute_group,
1572 	&nd_device_attribute_group,
1573 	&nd_numa_attribute_group,
1574 	&acpi_nfit_region_attribute_group,
1575 	NULL,
1576 };
1577 
1578 /* enough info to uniquely specify an interleave set */
1579 struct nfit_set_info {
1580 	struct nfit_set_info_map {
1581 		u64 region_offset;
1582 		u32 serial_number;
1583 		u32 pad;
1584 	} mapping[0];
1585 };
1586 
1587 static size_t sizeof_nfit_set_info(int num_mappings)
1588 {
1589 	return sizeof(struct nfit_set_info)
1590 		+ num_mappings * sizeof(struct nfit_set_info_map);
1591 }
1592 
1593 static int cmp_map(const void *m0, const void *m1)
1594 {
1595 	const struct nfit_set_info_map *map0 = m0;
1596 	const struct nfit_set_info_map *map1 = m1;
1597 
1598 	return memcmp(&map0->region_offset, &map1->region_offset,
1599 			sizeof(u64));
1600 }
1601 
1602 /* Retrieve the nth entry referencing this spa */
1603 static struct acpi_nfit_memory_map *memdev_from_spa(
1604 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
1605 {
1606 	struct nfit_memdev *nfit_memdev;
1607 
1608 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
1609 		if (nfit_memdev->memdev->range_index == range_index)
1610 			if (n-- == 0)
1611 				return nfit_memdev->memdev;
1612 	return NULL;
1613 }
1614 
1615 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
1616 		struct nd_region_desc *ndr_desc,
1617 		struct acpi_nfit_system_address *spa)
1618 {
1619 	int i, spa_type = nfit_spa_type(spa);
1620 	struct device *dev = acpi_desc->dev;
1621 	struct nd_interleave_set *nd_set;
1622 	u16 nr = ndr_desc->num_mappings;
1623 	struct nfit_set_info *info;
1624 
1625 	if (spa_type == NFIT_SPA_PM || spa_type == NFIT_SPA_VOLATILE)
1626 		/* pass */;
1627 	else
1628 		return 0;
1629 
1630 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
1631 	if (!nd_set)
1632 		return -ENOMEM;
1633 
1634 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
1635 	if (!info)
1636 		return -ENOMEM;
1637 	for (i = 0; i < nr; i++) {
1638 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1639 		struct nfit_set_info_map *map = &info->mapping[i];
1640 		struct nvdimm *nvdimm = mapping->nvdimm;
1641 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1642 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
1643 				spa->range_index, i);
1644 
1645 		if (!memdev || !nfit_mem->dcr) {
1646 			dev_err(dev, "%s: failed to find DCR\n", __func__);
1647 			return -ENODEV;
1648 		}
1649 
1650 		map->region_offset = memdev->region_offset;
1651 		map->serial_number = nfit_mem->dcr->serial_number;
1652 	}
1653 
1654 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1655 			cmp_map, NULL);
1656 	nd_set->cookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1657 	ndr_desc->nd_set = nd_set;
1658 	devm_kfree(dev, info);
1659 
1660 	return 0;
1661 }
1662 
1663 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
1664 {
1665 	struct acpi_nfit_interleave *idt = mmio->idt;
1666 	u32 sub_line_offset, line_index, line_offset;
1667 	u64 line_no, table_skip_count, table_offset;
1668 
1669 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
1670 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
1671 	line_offset = idt->line_offset[line_index]
1672 		* mmio->line_size;
1673 	table_offset = table_skip_count * mmio->table_size;
1674 
1675 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
1676 }
1677 
1678 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
1679 {
1680 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1681 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
1682 	const u32 STATUS_MASK = 0x80000037;
1683 
1684 	if (mmio->num_lines)
1685 		offset = to_interleave_offset(offset, mmio);
1686 
1687 	return readl(mmio->addr.base + offset) & STATUS_MASK;
1688 }
1689 
1690 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
1691 		resource_size_t dpa, unsigned int len, unsigned int write)
1692 {
1693 	u64 cmd, offset;
1694 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1695 
1696 	enum {
1697 		BCW_OFFSET_MASK = (1ULL << 48)-1,
1698 		BCW_LEN_SHIFT = 48,
1699 		BCW_LEN_MASK = (1ULL << 8) - 1,
1700 		BCW_CMD_SHIFT = 56,
1701 	};
1702 
1703 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
1704 	len = len >> L1_CACHE_SHIFT;
1705 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
1706 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
1707 
1708 	offset = nfit_blk->cmd_offset + mmio->size * bw;
1709 	if (mmio->num_lines)
1710 		offset = to_interleave_offset(offset, mmio);
1711 
1712 	writeq(cmd, mmio->addr.base + offset);
1713 	nvdimm_flush(nfit_blk->nd_region);
1714 
1715 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
1716 		readq(mmio->addr.base + offset);
1717 }
1718 
1719 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
1720 		resource_size_t dpa, void *iobuf, size_t len, int rw,
1721 		unsigned int lane)
1722 {
1723 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1724 	unsigned int copied = 0;
1725 	u64 base_offset;
1726 	int rc;
1727 
1728 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
1729 		+ lane * mmio->size;
1730 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
1731 	while (len) {
1732 		unsigned int c;
1733 		u64 offset;
1734 
1735 		if (mmio->num_lines) {
1736 			u32 line_offset;
1737 
1738 			offset = to_interleave_offset(base_offset + copied,
1739 					mmio);
1740 			div_u64_rem(offset, mmio->line_size, &line_offset);
1741 			c = min_t(size_t, len, mmio->line_size - line_offset);
1742 		} else {
1743 			offset = base_offset + nfit_blk->bdw_offset;
1744 			c = len;
1745 		}
1746 
1747 		if (rw)
1748 			memcpy_to_pmem(mmio->addr.aperture + offset,
1749 					iobuf + copied, c);
1750 		else {
1751 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
1752 				mmio_flush_range((void __force *)
1753 					mmio->addr.aperture + offset, c);
1754 
1755 			memcpy_from_pmem(iobuf + copied,
1756 					mmio->addr.aperture + offset, c);
1757 		}
1758 
1759 		copied += c;
1760 		len -= c;
1761 	}
1762 
1763 	if (rw)
1764 		nvdimm_flush(nfit_blk->nd_region);
1765 
1766 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
1767 	return rc;
1768 }
1769 
1770 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
1771 		resource_size_t dpa, void *iobuf, u64 len, int rw)
1772 {
1773 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
1774 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1775 	struct nd_region *nd_region = nfit_blk->nd_region;
1776 	unsigned int lane, copied = 0;
1777 	int rc = 0;
1778 
1779 	lane = nd_region_acquire_lane(nd_region);
1780 	while (len) {
1781 		u64 c = min(len, mmio->size);
1782 
1783 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
1784 				iobuf + copied, c, rw, lane);
1785 		if (rc)
1786 			break;
1787 
1788 		copied += c;
1789 		len -= c;
1790 	}
1791 	nd_region_release_lane(nd_region, lane);
1792 
1793 	return rc;
1794 }
1795 
1796 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
1797 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
1798 {
1799 	if (idt) {
1800 		mmio->num_lines = idt->line_count;
1801 		mmio->line_size = idt->line_size;
1802 		if (interleave_ways == 0)
1803 			return -ENXIO;
1804 		mmio->table_size = mmio->num_lines * interleave_ways
1805 			* mmio->line_size;
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
1812 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
1813 {
1814 	struct nd_cmd_dimm_flags flags;
1815 	int rc;
1816 
1817 	memset(&flags, 0, sizeof(flags));
1818 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
1819 			sizeof(flags), NULL);
1820 
1821 	if (rc >= 0 && flags.status == 0)
1822 		nfit_blk->dimm_flags = flags.flags;
1823 	else if (rc == -ENOTTY) {
1824 		/* fall back to a conservative default */
1825 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
1826 		rc = 0;
1827 	} else
1828 		rc = -ENXIO;
1829 
1830 	return rc;
1831 }
1832 
1833 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
1834 		struct device *dev)
1835 {
1836 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1837 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
1838 	struct nfit_blk_mmio *mmio;
1839 	struct nfit_blk *nfit_blk;
1840 	struct nfit_mem *nfit_mem;
1841 	struct nvdimm *nvdimm;
1842 	int rc;
1843 
1844 	nvdimm = nd_blk_region_to_dimm(ndbr);
1845 	nfit_mem = nvdimm_provider_data(nvdimm);
1846 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
1847 		dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
1848 				nfit_mem ? "" : " nfit_mem",
1849 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
1850 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
1851 		return -ENXIO;
1852 	}
1853 
1854 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
1855 	if (!nfit_blk)
1856 		return -ENOMEM;
1857 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
1858 	nfit_blk->nd_region = to_nd_region(dev);
1859 
1860 	/* map block aperture memory */
1861 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
1862 	mmio = &nfit_blk->mmio[BDW];
1863 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
1864                         nfit_mem->spa_bdw->length, ARCH_MEMREMAP_PMEM);
1865 	if (!mmio->addr.base) {
1866 		dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
1867 				nvdimm_name(nvdimm));
1868 		return -ENOMEM;
1869 	}
1870 	mmio->size = nfit_mem->bdw->size;
1871 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
1872 	mmio->idt = nfit_mem->idt_bdw;
1873 	mmio->spa = nfit_mem->spa_bdw;
1874 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
1875 			nfit_mem->memdev_bdw->interleave_ways);
1876 	if (rc) {
1877 		dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
1878 				__func__, nvdimm_name(nvdimm));
1879 		return rc;
1880 	}
1881 
1882 	/* map block control memory */
1883 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
1884 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
1885 	mmio = &nfit_blk->mmio[DCR];
1886 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
1887 			nfit_mem->spa_dcr->length);
1888 	if (!mmio->addr.base) {
1889 		dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
1890 				nvdimm_name(nvdimm));
1891 		return -ENOMEM;
1892 	}
1893 	mmio->size = nfit_mem->dcr->window_size;
1894 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
1895 	mmio->idt = nfit_mem->idt_dcr;
1896 	mmio->spa = nfit_mem->spa_dcr;
1897 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
1898 			nfit_mem->memdev_dcr->interleave_ways);
1899 	if (rc) {
1900 		dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
1901 				__func__, nvdimm_name(nvdimm));
1902 		return rc;
1903 	}
1904 
1905 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
1906 	if (rc < 0) {
1907 		dev_dbg(dev, "%s: %s failed get DIMM flags\n",
1908 				__func__, nvdimm_name(nvdimm));
1909 		return rc;
1910 	}
1911 
1912 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
1913 		dev_warn(dev, "unable to guarantee persistence of writes\n");
1914 
1915 	if (mmio->line_size == 0)
1916 		return 0;
1917 
1918 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
1919 			+ 8 > mmio->line_size) {
1920 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
1921 		return -ENXIO;
1922 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
1923 			+ 8 > mmio->line_size) {
1924 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
1925 		return -ENXIO;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
1932 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
1933 {
1934 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1935 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
1936 	int cmd_rc, rc;
1937 
1938 	cmd->address = spa->address;
1939 	cmd->length = spa->length;
1940 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
1941 			sizeof(*cmd), &cmd_rc);
1942 	if (rc < 0)
1943 		return rc;
1944 	return cmd_rc;
1945 }
1946 
1947 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
1948 {
1949 	int rc;
1950 	int cmd_rc;
1951 	struct nd_cmd_ars_start ars_start;
1952 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
1953 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1954 
1955 	memset(&ars_start, 0, sizeof(ars_start));
1956 	ars_start.address = spa->address;
1957 	ars_start.length = spa->length;
1958 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
1959 		ars_start.type = ND_ARS_PERSISTENT;
1960 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
1961 		ars_start.type = ND_ARS_VOLATILE;
1962 	else
1963 		return -ENOTTY;
1964 
1965 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
1966 			sizeof(ars_start), &cmd_rc);
1967 
1968 	if (rc < 0)
1969 		return rc;
1970 	return cmd_rc;
1971 }
1972 
1973 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
1974 {
1975 	int rc, cmd_rc;
1976 	struct nd_cmd_ars_start ars_start;
1977 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1978 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
1979 
1980 	memset(&ars_start, 0, sizeof(ars_start));
1981 	ars_start.address = ars_status->restart_address;
1982 	ars_start.length = ars_status->restart_length;
1983 	ars_start.type = ars_status->type;
1984 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
1985 			sizeof(ars_start), &cmd_rc);
1986 	if (rc < 0)
1987 		return rc;
1988 	return cmd_rc;
1989 }
1990 
1991 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
1992 {
1993 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1994 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
1995 	int rc, cmd_rc;
1996 
1997 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
1998 			acpi_desc->ars_status_size, &cmd_rc);
1999 	if (rc < 0)
2000 		return rc;
2001 	return cmd_rc;
2002 }
2003 
2004 static int ars_status_process_records(struct nvdimm_bus *nvdimm_bus,
2005 		struct nd_cmd_ars_status *ars_status)
2006 {
2007 	int rc;
2008 	u32 i;
2009 
2010 	for (i = 0; i < ars_status->num_records; i++) {
2011 		rc = nvdimm_bus_add_poison(nvdimm_bus,
2012 				ars_status->records[i].err_address,
2013 				ars_status->records[i].length);
2014 		if (rc)
2015 			return rc;
2016 	}
2017 
2018 	return 0;
2019 }
2020 
2021 static void acpi_nfit_remove_resource(void *data)
2022 {
2023 	struct resource *res = data;
2024 
2025 	remove_resource(res);
2026 }
2027 
2028 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2029 		struct nd_region_desc *ndr_desc)
2030 {
2031 	struct resource *res, *nd_res = ndr_desc->res;
2032 	int is_pmem, ret;
2033 
2034 	/* No operation if the region is already registered as PMEM */
2035 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2036 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2037 	if (is_pmem == REGION_INTERSECTS)
2038 		return 0;
2039 
2040 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2041 	if (!res)
2042 		return -ENOMEM;
2043 
2044 	res->name = "Persistent Memory";
2045 	res->start = nd_res->start;
2046 	res->end = nd_res->end;
2047 	res->flags = IORESOURCE_MEM;
2048 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2049 
2050 	ret = insert_resource(&iomem_resource, res);
2051 	if (ret)
2052 		return ret;
2053 
2054 	ret = devm_add_action_or_reset(acpi_desc->dev,
2055 					acpi_nfit_remove_resource,
2056 					res);
2057 	if (ret)
2058 		return ret;
2059 
2060 	return 0;
2061 }
2062 
2063 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2064 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2065 		struct acpi_nfit_memory_map *memdev,
2066 		struct nfit_spa *nfit_spa)
2067 {
2068 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2069 			memdev->device_handle);
2070 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2071 	struct nd_blk_region_desc *ndbr_desc;
2072 	struct nfit_mem *nfit_mem;
2073 	int blk_valid = 0;
2074 
2075 	if (!nvdimm) {
2076 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2077 				spa->range_index, memdev->device_handle);
2078 		return -ENODEV;
2079 	}
2080 
2081 	mapping->nvdimm = nvdimm;
2082 	switch (nfit_spa_type(spa)) {
2083 	case NFIT_SPA_PM:
2084 	case NFIT_SPA_VOLATILE:
2085 		mapping->start = memdev->address;
2086 		mapping->size = memdev->region_size;
2087 		break;
2088 	case NFIT_SPA_DCR:
2089 		nfit_mem = nvdimm_provider_data(nvdimm);
2090 		if (!nfit_mem || !nfit_mem->bdw) {
2091 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2092 					spa->range_index, nvdimm_name(nvdimm));
2093 		} else {
2094 			mapping->size = nfit_mem->bdw->capacity;
2095 			mapping->start = nfit_mem->bdw->start_address;
2096 			ndr_desc->num_lanes = nfit_mem->bdw->windows;
2097 			blk_valid = 1;
2098 		}
2099 
2100 		ndr_desc->mapping = mapping;
2101 		ndr_desc->num_mappings = blk_valid;
2102 		ndbr_desc = to_blk_region_desc(ndr_desc);
2103 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2104 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2105 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2106 				ndr_desc);
2107 		if (!nfit_spa->nd_region)
2108 			return -ENOMEM;
2109 		break;
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2116 {
2117 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2118 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2119 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2120 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2121 }
2122 
2123 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2124 		struct nfit_spa *nfit_spa)
2125 {
2126 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2127 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2128 	struct nd_blk_region_desc ndbr_desc;
2129 	struct nd_region_desc *ndr_desc;
2130 	struct nfit_memdev *nfit_memdev;
2131 	struct nvdimm_bus *nvdimm_bus;
2132 	struct resource res;
2133 	int count = 0, rc;
2134 
2135 	if (nfit_spa->nd_region)
2136 		return 0;
2137 
2138 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2139 		dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
2140 				__func__);
2141 		return 0;
2142 	}
2143 
2144 	memset(&res, 0, sizeof(res));
2145 	memset(&mappings, 0, sizeof(mappings));
2146 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2147 	res.start = spa->address;
2148 	res.end = res.start + spa->length - 1;
2149 	ndr_desc = &ndbr_desc.ndr_desc;
2150 	ndr_desc->res = &res;
2151 	ndr_desc->provider_data = nfit_spa;
2152 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2153 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2154 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2155 						spa->proximity_domain);
2156 	else
2157 		ndr_desc->numa_node = NUMA_NO_NODE;
2158 
2159 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2160 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2161 		struct nd_mapping_desc *mapping;
2162 
2163 		if (memdev->range_index != spa->range_index)
2164 			continue;
2165 		if (count >= ND_MAX_MAPPINGS) {
2166 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2167 					spa->range_index, ND_MAX_MAPPINGS);
2168 			return -ENXIO;
2169 		}
2170 		mapping = &mappings[count++];
2171 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2172 				memdev, nfit_spa);
2173 		if (rc)
2174 			goto out;
2175 	}
2176 
2177 	ndr_desc->mapping = mappings;
2178 	ndr_desc->num_mappings = count;
2179 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2180 	if (rc)
2181 		goto out;
2182 
2183 	nvdimm_bus = acpi_desc->nvdimm_bus;
2184 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2185 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2186 		if (rc) {
2187 			dev_warn(acpi_desc->dev,
2188 				"failed to insert pmem resource to iomem: %d\n",
2189 				rc);
2190 			goto out;
2191 		}
2192 
2193 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2194 				ndr_desc);
2195 		if (!nfit_spa->nd_region)
2196 			rc = -ENOMEM;
2197 	} else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) {
2198 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2199 				ndr_desc);
2200 		if (!nfit_spa->nd_region)
2201 			rc = -ENOMEM;
2202 	} else if (nfit_spa_is_virtual(spa)) {
2203 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2204 				ndr_desc);
2205 		if (!nfit_spa->nd_region)
2206 			rc = -ENOMEM;
2207 	}
2208 
2209  out:
2210 	if (rc)
2211 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2212 				nfit_spa->spa->range_index);
2213 	return rc;
2214 }
2215 
2216 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2217 		u32 max_ars)
2218 {
2219 	struct device *dev = acpi_desc->dev;
2220 	struct nd_cmd_ars_status *ars_status;
2221 
2222 	if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2223 		memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2224 		return 0;
2225 	}
2226 
2227 	if (acpi_desc->ars_status)
2228 		devm_kfree(dev, acpi_desc->ars_status);
2229 	acpi_desc->ars_status = NULL;
2230 	ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2231 	if (!ars_status)
2232 		return -ENOMEM;
2233 	acpi_desc->ars_status = ars_status;
2234 	acpi_desc->ars_status_size = max_ars;
2235 	return 0;
2236 }
2237 
2238 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2239 		struct nfit_spa *nfit_spa)
2240 {
2241 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2242 	int rc;
2243 
2244 	if (!nfit_spa->max_ars) {
2245 		struct nd_cmd_ars_cap ars_cap;
2246 
2247 		memset(&ars_cap, 0, sizeof(ars_cap));
2248 		rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2249 		if (rc < 0)
2250 			return rc;
2251 		nfit_spa->max_ars = ars_cap.max_ars_out;
2252 		nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2253 		/* check that the supported scrub types match the spa type */
2254 		if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2255 				((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2256 			return -ENOTTY;
2257 		else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2258 				((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2259 			return -ENOTTY;
2260 	}
2261 
2262 	if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2263 		return -ENOMEM;
2264 
2265 	rc = ars_get_status(acpi_desc);
2266 	if (rc < 0 && rc != -ENOSPC)
2267 		return rc;
2268 
2269 	if (ars_status_process_records(acpi_desc->nvdimm_bus,
2270 				acpi_desc->ars_status))
2271 		return -ENOMEM;
2272 
2273 	return 0;
2274 }
2275 
2276 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2277 		struct nfit_spa *nfit_spa)
2278 {
2279 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2280 	unsigned int overflow_retry = scrub_overflow_abort;
2281 	u64 init_ars_start = 0, init_ars_len = 0;
2282 	struct device *dev = acpi_desc->dev;
2283 	unsigned int tmo = scrub_timeout;
2284 	int rc;
2285 
2286 	if (!nfit_spa->ars_required || !nfit_spa->nd_region)
2287 		return;
2288 
2289 	rc = ars_start(acpi_desc, nfit_spa);
2290 	/*
2291 	 * If we timed out the initial scan we'll still be busy here,
2292 	 * and will wait another timeout before giving up permanently.
2293 	 */
2294 	if (rc < 0 && rc != -EBUSY)
2295 		return;
2296 
2297 	do {
2298 		u64 ars_start, ars_len;
2299 
2300 		if (acpi_desc->cancel)
2301 			break;
2302 		rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2303 		if (rc == -ENOTTY)
2304 			break;
2305 		if (rc == -EBUSY && !tmo) {
2306 			dev_warn(dev, "range %d ars timeout, aborting\n",
2307 					spa->range_index);
2308 			break;
2309 		}
2310 
2311 		if (rc == -EBUSY) {
2312 			/*
2313 			 * Note, entries may be appended to the list
2314 			 * while the lock is dropped, but the workqueue
2315 			 * being active prevents entries being deleted /
2316 			 * freed.
2317 			 */
2318 			mutex_unlock(&acpi_desc->init_mutex);
2319 			ssleep(1);
2320 			tmo--;
2321 			mutex_lock(&acpi_desc->init_mutex);
2322 			continue;
2323 		}
2324 
2325 		/* we got some results, but there are more pending... */
2326 		if (rc == -ENOSPC && overflow_retry--) {
2327 			if (!init_ars_len) {
2328 				init_ars_len = acpi_desc->ars_status->length;
2329 				init_ars_start = acpi_desc->ars_status->address;
2330 			}
2331 			rc = ars_continue(acpi_desc);
2332 		}
2333 
2334 		if (rc < 0) {
2335 			dev_warn(dev, "range %d ars continuation failed\n",
2336 					spa->range_index);
2337 			break;
2338 		}
2339 
2340 		if (init_ars_len) {
2341 			ars_start = init_ars_start;
2342 			ars_len = init_ars_len;
2343 		} else {
2344 			ars_start = acpi_desc->ars_status->address;
2345 			ars_len = acpi_desc->ars_status->length;
2346 		}
2347 		dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2348 				spa->range_index, ars_start, ars_len);
2349 		/* notify the region about new poison entries */
2350 		nvdimm_region_notify(nfit_spa->nd_region,
2351 				NVDIMM_REVALIDATE_POISON);
2352 		break;
2353 	} while (1);
2354 }
2355 
2356 static void acpi_nfit_scrub(struct work_struct *work)
2357 {
2358 	struct device *dev;
2359 	u64 init_scrub_length = 0;
2360 	struct nfit_spa *nfit_spa;
2361 	u64 init_scrub_address = 0;
2362 	bool init_ars_done = false;
2363 	struct acpi_nfit_desc *acpi_desc;
2364 	unsigned int tmo = scrub_timeout;
2365 	unsigned int overflow_retry = scrub_overflow_abort;
2366 
2367 	acpi_desc = container_of(work, typeof(*acpi_desc), work);
2368 	dev = acpi_desc->dev;
2369 
2370 	/*
2371 	 * We scrub in 2 phases.  The first phase waits for any platform
2372 	 * firmware initiated scrubs to complete and then we go search for the
2373 	 * affected spa regions to mark them scanned.  In the second phase we
2374 	 * initiate a directed scrub for every range that was not scrubbed in
2375 	 * phase 1. If we're called for a 'rescan', we harmlessly pass through
2376 	 * the first phase, but really only care about running phase 2, where
2377 	 * regions can be notified of new poison.
2378 	 */
2379 
2380 	/* process platform firmware initiated scrubs */
2381  retry:
2382 	mutex_lock(&acpi_desc->init_mutex);
2383 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2384 		struct nd_cmd_ars_status *ars_status;
2385 		struct acpi_nfit_system_address *spa;
2386 		u64 ars_start, ars_len;
2387 		int rc;
2388 
2389 		if (acpi_desc->cancel)
2390 			break;
2391 
2392 		if (nfit_spa->nd_region)
2393 			continue;
2394 
2395 		if (init_ars_done) {
2396 			/*
2397 			 * No need to re-query, we're now just
2398 			 * reconciling all the ranges covered by the
2399 			 * initial scrub
2400 			 */
2401 			rc = 0;
2402 		} else
2403 			rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2404 
2405 		if (rc == -ENOTTY) {
2406 			/* no ars capability, just register spa and move on */
2407 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2408 			continue;
2409 		}
2410 
2411 		if (rc == -EBUSY && !tmo) {
2412 			/* fallthrough to directed scrub in phase 2 */
2413 			dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2414 			break;
2415 		} else if (rc == -EBUSY) {
2416 			mutex_unlock(&acpi_desc->init_mutex);
2417 			ssleep(1);
2418 			tmo--;
2419 			goto retry;
2420 		}
2421 
2422 		/* we got some results, but there are more pending... */
2423 		if (rc == -ENOSPC && overflow_retry--) {
2424 			ars_status = acpi_desc->ars_status;
2425 			/*
2426 			 * Record the original scrub range, so that we
2427 			 * can recall all the ranges impacted by the
2428 			 * initial scrub.
2429 			 */
2430 			if (!init_scrub_length) {
2431 				init_scrub_length = ars_status->length;
2432 				init_scrub_address = ars_status->address;
2433 			}
2434 			rc = ars_continue(acpi_desc);
2435 			if (rc == 0) {
2436 				mutex_unlock(&acpi_desc->init_mutex);
2437 				goto retry;
2438 			}
2439 		}
2440 
2441 		if (rc < 0) {
2442 			/*
2443 			 * Initial scrub failed, we'll give it one more
2444 			 * try below...
2445 			 */
2446 			break;
2447 		}
2448 
2449 		/* We got some final results, record completed ranges */
2450 		ars_status = acpi_desc->ars_status;
2451 		if (init_scrub_length) {
2452 			ars_start = init_scrub_address;
2453 			ars_len = ars_start + init_scrub_length;
2454 		} else {
2455 			ars_start = ars_status->address;
2456 			ars_len = ars_status->length;
2457 		}
2458 		spa = nfit_spa->spa;
2459 
2460 		if (!init_ars_done) {
2461 			init_ars_done = true;
2462 			dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2463 					ars_start, ars_len);
2464 		}
2465 		if (ars_start <= spa->address && ars_start + ars_len
2466 				>= spa->address + spa->length)
2467 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2468 	}
2469 
2470 	/*
2471 	 * For all the ranges not covered by an initial scrub we still
2472 	 * want to see if there are errors, but it's ok to discover them
2473 	 * asynchronously.
2474 	 */
2475 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2476 		/*
2477 		 * Flag all the ranges that still need scrubbing, but
2478 		 * register them now to make data available.
2479 		 */
2480 		if (!nfit_spa->nd_region) {
2481 			nfit_spa->ars_required = 1;
2482 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2483 		}
2484 	}
2485 
2486 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2487 		acpi_nfit_async_scrub(acpi_desc, nfit_spa);
2488 	acpi_desc->scrub_count++;
2489 	if (acpi_desc->scrub_count_state)
2490 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2491 	mutex_unlock(&acpi_desc->init_mutex);
2492 }
2493 
2494 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2495 {
2496 	struct nfit_spa *nfit_spa;
2497 	int rc;
2498 
2499 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2500 		if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) {
2501 			/* BLK regions don't need to wait for ars results */
2502 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
2503 			if (rc)
2504 				return rc;
2505 		}
2506 
2507 	queue_work(nfit_wq, &acpi_desc->work);
2508 	return 0;
2509 }
2510 
2511 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
2512 		struct nfit_table_prev *prev)
2513 {
2514 	struct device *dev = acpi_desc->dev;
2515 
2516 	if (!list_empty(&prev->spas) ||
2517 			!list_empty(&prev->memdevs) ||
2518 			!list_empty(&prev->dcrs) ||
2519 			!list_empty(&prev->bdws) ||
2520 			!list_empty(&prev->idts) ||
2521 			!list_empty(&prev->flushes)) {
2522 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
2523 		return -ENXIO;
2524 	}
2525 	return 0;
2526 }
2527 
2528 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
2529 {
2530 	struct device *dev = acpi_desc->dev;
2531 	struct kernfs_node *nfit;
2532 	struct device *bus_dev;
2533 
2534 	if (!ars_supported(acpi_desc->nvdimm_bus))
2535 		return 0;
2536 
2537 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2538 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
2539 	if (!nfit) {
2540 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
2541 		return -ENODEV;
2542 	}
2543 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
2544 	sysfs_put(nfit);
2545 	if (!acpi_desc->scrub_count_state) {
2546 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
2547 		return -ENODEV;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 static void acpi_nfit_destruct(void *data)
2554 {
2555 	struct acpi_nfit_desc *acpi_desc = data;
2556 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2557 
2558 	/*
2559 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
2560 	 * race teardown
2561 	 */
2562 	mutex_lock(&acpi_desc_lock);
2563 	acpi_desc->cancel = 1;
2564 	/*
2565 	 * Bounce the nvdimm bus lock to make sure any in-flight
2566 	 * acpi_nfit_ars_rescan() submissions have had a chance to
2567 	 * either submit or see ->cancel set.
2568 	 */
2569 	device_lock(bus_dev);
2570 	device_unlock(bus_dev);
2571 
2572 	flush_workqueue(nfit_wq);
2573 	if (acpi_desc->scrub_count_state)
2574 		sysfs_put(acpi_desc->scrub_count_state);
2575 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
2576 	acpi_desc->nvdimm_bus = NULL;
2577 	list_del(&acpi_desc->list);
2578 	mutex_unlock(&acpi_desc_lock);
2579 }
2580 
2581 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
2582 {
2583 	struct device *dev = acpi_desc->dev;
2584 	struct nfit_table_prev prev;
2585 	const void *end;
2586 	int rc;
2587 
2588 	if (!acpi_desc->nvdimm_bus) {
2589 		acpi_nfit_init_dsms(acpi_desc);
2590 
2591 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
2592 				&acpi_desc->nd_desc);
2593 		if (!acpi_desc->nvdimm_bus)
2594 			return -ENOMEM;
2595 
2596 		rc = devm_add_action_or_reset(dev, acpi_nfit_destruct,
2597 				acpi_desc);
2598 		if (rc)
2599 			return rc;
2600 
2601 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
2602 		if (rc)
2603 			return rc;
2604 
2605 		/* register this acpi_desc for mce notifications */
2606 		mutex_lock(&acpi_desc_lock);
2607 		list_add_tail(&acpi_desc->list, &acpi_descs);
2608 		mutex_unlock(&acpi_desc_lock);
2609 	}
2610 
2611 	mutex_lock(&acpi_desc->init_mutex);
2612 
2613 	INIT_LIST_HEAD(&prev.spas);
2614 	INIT_LIST_HEAD(&prev.memdevs);
2615 	INIT_LIST_HEAD(&prev.dcrs);
2616 	INIT_LIST_HEAD(&prev.bdws);
2617 	INIT_LIST_HEAD(&prev.idts);
2618 	INIT_LIST_HEAD(&prev.flushes);
2619 
2620 	list_cut_position(&prev.spas, &acpi_desc->spas,
2621 				acpi_desc->spas.prev);
2622 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
2623 				acpi_desc->memdevs.prev);
2624 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
2625 				acpi_desc->dcrs.prev);
2626 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
2627 				acpi_desc->bdws.prev);
2628 	list_cut_position(&prev.idts, &acpi_desc->idts,
2629 				acpi_desc->idts.prev);
2630 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
2631 				acpi_desc->flushes.prev);
2632 
2633 	end = data + sz;
2634 	while (!IS_ERR_OR_NULL(data))
2635 		data = add_table(acpi_desc, &prev, data, end);
2636 
2637 	if (IS_ERR(data)) {
2638 		dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
2639 				PTR_ERR(data));
2640 		rc = PTR_ERR(data);
2641 		goto out_unlock;
2642 	}
2643 
2644 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
2645 	if (rc)
2646 		goto out_unlock;
2647 
2648 	rc = nfit_mem_init(acpi_desc);
2649 	if (rc)
2650 		goto out_unlock;
2651 
2652 	rc = acpi_nfit_register_dimms(acpi_desc);
2653 	if (rc)
2654 		goto out_unlock;
2655 
2656 	rc = acpi_nfit_register_regions(acpi_desc);
2657 
2658  out_unlock:
2659 	mutex_unlock(&acpi_desc->init_mutex);
2660 	return rc;
2661 }
2662 EXPORT_SYMBOL_GPL(acpi_nfit_init);
2663 
2664 struct acpi_nfit_flush_work {
2665 	struct work_struct work;
2666 	struct completion cmp;
2667 };
2668 
2669 static void flush_probe(struct work_struct *work)
2670 {
2671 	struct acpi_nfit_flush_work *flush;
2672 
2673 	flush = container_of(work, typeof(*flush), work);
2674 	complete(&flush->cmp);
2675 }
2676 
2677 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
2678 {
2679 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2680 	struct device *dev = acpi_desc->dev;
2681 	struct acpi_nfit_flush_work flush;
2682 
2683 	/* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
2684 	device_lock(dev);
2685 	device_unlock(dev);
2686 
2687 	/*
2688 	 * Scrub work could take 10s of seconds, userspace may give up so we
2689 	 * need to be interruptible while waiting.
2690 	 */
2691 	INIT_WORK_ONSTACK(&flush.work, flush_probe);
2692 	COMPLETION_INITIALIZER_ONSTACK(flush.cmp);
2693 	queue_work(nfit_wq, &flush.work);
2694 	return wait_for_completion_interruptible(&flush.cmp);
2695 }
2696 
2697 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
2698 		struct nvdimm *nvdimm, unsigned int cmd)
2699 {
2700 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2701 
2702 	if (nvdimm)
2703 		return 0;
2704 	if (cmd != ND_CMD_ARS_START)
2705 		return 0;
2706 
2707 	/*
2708 	 * The kernel and userspace may race to initiate a scrub, but
2709 	 * the scrub thread is prepared to lose that initial race.  It
2710 	 * just needs guarantees that any ars it initiates are not
2711 	 * interrupted by any intervening start reqeusts from userspace.
2712 	 */
2713 	if (work_busy(&acpi_desc->work))
2714 		return -EBUSY;
2715 
2716 	return 0;
2717 }
2718 
2719 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc)
2720 {
2721 	struct device *dev = acpi_desc->dev;
2722 	struct nfit_spa *nfit_spa;
2723 
2724 	if (work_busy(&acpi_desc->work))
2725 		return -EBUSY;
2726 
2727 	if (acpi_desc->cancel)
2728 		return 0;
2729 
2730 	mutex_lock(&acpi_desc->init_mutex);
2731 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2732 		struct acpi_nfit_system_address *spa = nfit_spa->spa;
2733 
2734 		if (nfit_spa_type(spa) != NFIT_SPA_PM)
2735 			continue;
2736 
2737 		nfit_spa->ars_required = 1;
2738 	}
2739 	queue_work(nfit_wq, &acpi_desc->work);
2740 	dev_dbg(dev, "%s: ars_scan triggered\n", __func__);
2741 	mutex_unlock(&acpi_desc->init_mutex);
2742 
2743 	return 0;
2744 }
2745 
2746 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
2747 {
2748 	struct nvdimm_bus_descriptor *nd_desc;
2749 
2750 	dev_set_drvdata(dev, acpi_desc);
2751 	acpi_desc->dev = dev;
2752 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
2753 	nd_desc = &acpi_desc->nd_desc;
2754 	nd_desc->provider_name = "ACPI.NFIT";
2755 	nd_desc->module = THIS_MODULE;
2756 	nd_desc->ndctl = acpi_nfit_ctl;
2757 	nd_desc->flush_probe = acpi_nfit_flush_probe;
2758 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
2759 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
2760 
2761 	INIT_LIST_HEAD(&acpi_desc->spas);
2762 	INIT_LIST_HEAD(&acpi_desc->dcrs);
2763 	INIT_LIST_HEAD(&acpi_desc->bdws);
2764 	INIT_LIST_HEAD(&acpi_desc->idts);
2765 	INIT_LIST_HEAD(&acpi_desc->flushes);
2766 	INIT_LIST_HEAD(&acpi_desc->memdevs);
2767 	INIT_LIST_HEAD(&acpi_desc->dimms);
2768 	INIT_LIST_HEAD(&acpi_desc->list);
2769 	mutex_init(&acpi_desc->init_mutex);
2770 	INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
2771 }
2772 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
2773 
2774 static int acpi_nfit_add(struct acpi_device *adev)
2775 {
2776 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
2777 	struct acpi_nfit_desc *acpi_desc;
2778 	struct device *dev = &adev->dev;
2779 	struct acpi_table_header *tbl;
2780 	acpi_status status = AE_OK;
2781 	acpi_size sz;
2782 	int rc = 0;
2783 
2784 	status = acpi_get_table_with_size(ACPI_SIG_NFIT, 0, &tbl, &sz);
2785 	if (ACPI_FAILURE(status)) {
2786 		/* This is ok, we could have an nvdimm hotplugged later */
2787 		dev_dbg(dev, "failed to find NFIT at startup\n");
2788 		return 0;
2789 	}
2790 
2791 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
2792 	if (!acpi_desc)
2793 		return -ENOMEM;
2794 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
2795 
2796 	/* Save the acpi header for exporting the revision via sysfs */
2797 	acpi_desc->acpi_header = *tbl;
2798 
2799 	/* Evaluate _FIT and override with that if present */
2800 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
2801 	if (ACPI_SUCCESS(status) && buf.length > 0) {
2802 		union acpi_object *obj = buf.pointer;
2803 
2804 		if (obj->type == ACPI_TYPE_BUFFER)
2805 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
2806 					obj->buffer.length);
2807 		else
2808 			dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
2809 				 __func__, (int) obj->type);
2810 		kfree(buf.pointer);
2811 	} else
2812 		/* skip over the lead-in header table */
2813 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
2814 				+ sizeof(struct acpi_table_nfit),
2815 				sz - sizeof(struct acpi_table_nfit));
2816 	return rc;
2817 }
2818 
2819 static int acpi_nfit_remove(struct acpi_device *adev)
2820 {
2821 	/* see acpi_nfit_destruct */
2822 	return 0;
2823 }
2824 
2825 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
2826 {
2827 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
2828 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
2829 	union acpi_object *obj;
2830 	acpi_status status;
2831 	int ret;
2832 
2833 	dev_dbg(dev, "%s: event: %d\n", __func__, event);
2834 
2835 	if (event != NFIT_NOTIFY_UPDATE)
2836 		return;
2837 
2838 	if (!dev->driver) {
2839 		/* dev->driver may be null if we're being removed */
2840 		dev_dbg(dev, "%s: no driver found for dev\n", __func__);
2841 		return;
2842 	}
2843 
2844 	if (!acpi_desc) {
2845 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
2846 		if (!acpi_desc)
2847 			return;
2848 		acpi_nfit_desc_init(acpi_desc, dev);
2849 	} else {
2850 		/*
2851 		 * Finish previous registration before considering new
2852 		 * regions.
2853 		 */
2854 		flush_workqueue(nfit_wq);
2855 	}
2856 
2857 	/* Evaluate _FIT */
2858 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
2859 	if (ACPI_FAILURE(status)) {
2860 		dev_err(dev, "failed to evaluate _FIT\n");
2861 		return;
2862 	}
2863 
2864 	obj = buf.pointer;
2865 	if (obj->type == ACPI_TYPE_BUFFER) {
2866 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
2867 				obj->buffer.length);
2868 		if (ret)
2869 			dev_err(dev, "failed to merge updated NFIT\n");
2870 	} else
2871 		dev_err(dev, "Invalid _FIT\n");
2872 	kfree(buf.pointer);
2873 }
2874 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
2875 
2876 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
2877 {
2878 	device_lock(&adev->dev);
2879 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
2880 	device_unlock(&adev->dev);
2881 }
2882 
2883 static const struct acpi_device_id acpi_nfit_ids[] = {
2884 	{ "ACPI0012", 0 },
2885 	{ "", 0 },
2886 };
2887 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
2888 
2889 static struct acpi_driver acpi_nfit_driver = {
2890 	.name = KBUILD_MODNAME,
2891 	.ids = acpi_nfit_ids,
2892 	.ops = {
2893 		.add = acpi_nfit_add,
2894 		.remove = acpi_nfit_remove,
2895 		.notify = acpi_nfit_notify,
2896 	},
2897 };
2898 
2899 static __init int nfit_init(void)
2900 {
2901 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
2902 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
2903 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
2904 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
2905 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
2906 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
2907 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
2908 
2909 	acpi_str_to_uuid(UUID_VOLATILE_MEMORY, nfit_uuid[NFIT_SPA_VOLATILE]);
2910 	acpi_str_to_uuid(UUID_PERSISTENT_MEMORY, nfit_uuid[NFIT_SPA_PM]);
2911 	acpi_str_to_uuid(UUID_CONTROL_REGION, nfit_uuid[NFIT_SPA_DCR]);
2912 	acpi_str_to_uuid(UUID_DATA_REGION, nfit_uuid[NFIT_SPA_BDW]);
2913 	acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_VDISK]);
2914 	acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_CD, nfit_uuid[NFIT_SPA_VCD]);
2915 	acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_PDISK]);
2916 	acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_CD, nfit_uuid[NFIT_SPA_PCD]);
2917 	acpi_str_to_uuid(UUID_NFIT_BUS, nfit_uuid[NFIT_DEV_BUS]);
2918 	acpi_str_to_uuid(UUID_NFIT_DIMM, nfit_uuid[NFIT_DEV_DIMM]);
2919 	acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE1, nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
2920 	acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE2, nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
2921 	acpi_str_to_uuid(UUID_NFIT_DIMM_N_MSFT, nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
2922 
2923 	nfit_wq = create_singlethread_workqueue("nfit");
2924 	if (!nfit_wq)
2925 		return -ENOMEM;
2926 
2927 	nfit_mce_register();
2928 
2929 	return acpi_bus_register_driver(&acpi_nfit_driver);
2930 }
2931 
2932 static __exit void nfit_exit(void)
2933 {
2934 	nfit_mce_unregister();
2935 	acpi_bus_unregister_driver(&acpi_nfit_driver);
2936 	destroy_workqueue(nfit_wq);
2937 	WARN_ON(!list_empty(&acpi_descs));
2938 }
2939 
2940 module_init(nfit_init);
2941 module_exit(nfit_exit);
2942 MODULE_LICENSE("GPL v2");
2943 MODULE_AUTHOR("Intel Corporation");
2944