xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 0cabf991)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/ndctl.h>
10 #include <linux/sysfs.h>
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/acpi.h>
14 #include <linux/sort.h>
15 #include <linux/io.h>
16 #include <linux/nd.h>
17 #include <asm/cacheflush.h>
18 #include <acpi/nfit.h>
19 #include "intel.h"
20 #include "nfit.h"
21 
22 /*
23  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
24  * irrelevant.
25  */
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 
28 static bool force_enable_dimms;
29 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
30 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
31 
32 static bool disable_vendor_specific;
33 module_param(disable_vendor_specific, bool, S_IRUGO);
34 MODULE_PARM_DESC(disable_vendor_specific,
35 		"Limit commands to the publicly specified set");
36 
37 static unsigned long override_dsm_mask;
38 module_param(override_dsm_mask, ulong, S_IRUGO);
39 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
40 
41 static int default_dsm_family = -1;
42 module_param(default_dsm_family, int, S_IRUGO);
43 MODULE_PARM_DESC(default_dsm_family,
44 		"Try this DSM type first when identifying NVDIMM family");
45 
46 static bool no_init_ars;
47 module_param(no_init_ars, bool, 0644);
48 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
49 
50 static bool force_labels;
51 module_param(force_labels, bool, 0444);
52 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
53 
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56 
57 static struct workqueue_struct *nfit_wq;
58 
59 struct nfit_table_prev {
60 	struct list_head spas;
61 	struct list_head memdevs;
62 	struct list_head dcrs;
63 	struct list_head bdws;
64 	struct list_head idts;
65 	struct list_head flushes;
66 };
67 
68 static guid_t nfit_uuid[NFIT_UUID_MAX];
69 
70 const guid_t *to_nfit_uuid(enum nfit_uuids id)
71 {
72 	return &nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75 
76 static const guid_t *to_nfit_bus_uuid(int family)
77 {
78 	if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
79 			"only secondary bus families can be translated\n"))
80 		return NULL;
81 	/*
82 	 * The index of bus UUIDs starts immediately following the last
83 	 * NVDIMM/leaf family.
84 	 */
85 	return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
86 }
87 
88 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
89 {
90 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
91 
92 	/*
93 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
94 	 * acpi_device.
95 	 */
96 	if (!nd_desc->provider_name
97 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
98 		return NULL;
99 
100 	return to_acpi_device(acpi_desc->dev);
101 }
102 
103 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
104 {
105 	struct nd_cmd_clear_error *clear_err;
106 	struct nd_cmd_ars_status *ars_status;
107 	u16 flags;
108 
109 	switch (cmd) {
110 	case ND_CMD_ARS_CAP:
111 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
112 			return -ENOTTY;
113 
114 		/* Command failed */
115 		if (status & 0xffff)
116 			return -EIO;
117 
118 		/* No supported scan types for this range */
119 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
120 		if ((status >> 16 & flags) == 0)
121 			return -ENOTTY;
122 		return 0;
123 	case ND_CMD_ARS_START:
124 		/* ARS is in progress */
125 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
126 			return -EBUSY;
127 
128 		/* Command failed */
129 		if (status & 0xffff)
130 			return -EIO;
131 		return 0;
132 	case ND_CMD_ARS_STATUS:
133 		ars_status = buf;
134 		/* Command failed */
135 		if (status & 0xffff)
136 			return -EIO;
137 		/* Check extended status (Upper two bytes) */
138 		if (status == NFIT_ARS_STATUS_DONE)
139 			return 0;
140 
141 		/* ARS is in progress */
142 		if (status == NFIT_ARS_STATUS_BUSY)
143 			return -EBUSY;
144 
145 		/* No ARS performed for the current boot */
146 		if (status == NFIT_ARS_STATUS_NONE)
147 			return -EAGAIN;
148 
149 		/*
150 		 * ARS interrupted, either we overflowed or some other
151 		 * agent wants the scan to stop.  If we didn't overflow
152 		 * then just continue with the returned results.
153 		 */
154 		if (status == NFIT_ARS_STATUS_INTR) {
155 			if (ars_status->out_length >= 40 && (ars_status->flags
156 						& NFIT_ARS_F_OVERFLOW))
157 				return -ENOSPC;
158 			return 0;
159 		}
160 
161 		/* Unknown status */
162 		if (status >> 16)
163 			return -EIO;
164 		return 0;
165 	case ND_CMD_CLEAR_ERROR:
166 		clear_err = buf;
167 		if (status & 0xffff)
168 			return -EIO;
169 		if (!clear_err->cleared)
170 			return -EIO;
171 		if (clear_err->length > clear_err->cleared)
172 			return clear_err->cleared;
173 		return 0;
174 	default:
175 		break;
176 	}
177 
178 	/* all other non-zero status results in an error */
179 	if (status)
180 		return -EIO;
181 	return 0;
182 }
183 
184 #define ACPI_LABELS_LOCKED 3
185 
186 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
187 		u32 status)
188 {
189 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
190 
191 	switch (cmd) {
192 	case ND_CMD_GET_CONFIG_SIZE:
193 		/*
194 		 * In the _LSI, _LSR, _LSW case the locked status is
195 		 * communicated via the read/write commands
196 		 */
197 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
198 			break;
199 
200 		if (status >> 16 & ND_CONFIG_LOCKED)
201 			return -EACCES;
202 		break;
203 	case ND_CMD_GET_CONFIG_DATA:
204 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
205 				&& status == ACPI_LABELS_LOCKED)
206 			return -EACCES;
207 		break;
208 	case ND_CMD_SET_CONFIG_DATA:
209 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
210 				&& status == ACPI_LABELS_LOCKED)
211 			return -EACCES;
212 		break;
213 	default:
214 		break;
215 	}
216 
217 	/* all other non-zero status results in an error */
218 	if (status)
219 		return -EIO;
220 	return 0;
221 }
222 
223 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
224 		u32 status)
225 {
226 	if (!nvdimm)
227 		return xlat_bus_status(buf, cmd, status);
228 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
229 }
230 
231 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
232 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
233 {
234 	int i;
235 	void *dst;
236 	size_t size = 0;
237 	union acpi_object *buf = NULL;
238 
239 	if (pkg->type != ACPI_TYPE_PACKAGE) {
240 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
241 				pkg->type);
242 		goto err;
243 	}
244 
245 	for (i = 0; i < pkg->package.count; i++) {
246 		union acpi_object *obj = &pkg->package.elements[i];
247 
248 		if (obj->type == ACPI_TYPE_INTEGER)
249 			size += 4;
250 		else if (obj->type == ACPI_TYPE_BUFFER)
251 			size += obj->buffer.length;
252 		else {
253 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
254 					obj->type);
255 			goto err;
256 		}
257 	}
258 
259 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
260 	if (!buf)
261 		goto err;
262 
263 	dst = buf + 1;
264 	buf->type = ACPI_TYPE_BUFFER;
265 	buf->buffer.length = size;
266 	buf->buffer.pointer = dst;
267 	for (i = 0; i < pkg->package.count; i++) {
268 		union acpi_object *obj = &pkg->package.elements[i];
269 
270 		if (obj->type == ACPI_TYPE_INTEGER) {
271 			memcpy(dst, &obj->integer.value, 4);
272 			dst += 4;
273 		} else if (obj->type == ACPI_TYPE_BUFFER) {
274 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
275 			dst += obj->buffer.length;
276 		}
277 	}
278 err:
279 	ACPI_FREE(pkg);
280 	return buf;
281 }
282 
283 static union acpi_object *int_to_buf(union acpi_object *integer)
284 {
285 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
286 	void *dst = NULL;
287 
288 	if (!buf)
289 		goto err;
290 
291 	if (integer->type != ACPI_TYPE_INTEGER) {
292 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
293 				integer->type);
294 		goto err;
295 	}
296 
297 	dst = buf + 1;
298 	buf->type = ACPI_TYPE_BUFFER;
299 	buf->buffer.length = 4;
300 	buf->buffer.pointer = dst;
301 	memcpy(dst, &integer->integer.value, 4);
302 err:
303 	ACPI_FREE(integer);
304 	return buf;
305 }
306 
307 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
308 		u32 len, void *data)
309 {
310 	acpi_status rc;
311 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
312 	struct acpi_object_list input = {
313 		.count = 3,
314 		.pointer = (union acpi_object []) {
315 			[0] = {
316 				.integer.type = ACPI_TYPE_INTEGER,
317 				.integer.value = offset,
318 			},
319 			[1] = {
320 				.integer.type = ACPI_TYPE_INTEGER,
321 				.integer.value = len,
322 			},
323 			[2] = {
324 				.buffer.type = ACPI_TYPE_BUFFER,
325 				.buffer.pointer = data,
326 				.buffer.length = len,
327 			},
328 		},
329 	};
330 
331 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
332 	if (ACPI_FAILURE(rc))
333 		return NULL;
334 	return int_to_buf(buf.pointer);
335 }
336 
337 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
338 		u32 len)
339 {
340 	acpi_status rc;
341 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
342 	struct acpi_object_list input = {
343 		.count = 2,
344 		.pointer = (union acpi_object []) {
345 			[0] = {
346 				.integer.type = ACPI_TYPE_INTEGER,
347 				.integer.value = offset,
348 			},
349 			[1] = {
350 				.integer.type = ACPI_TYPE_INTEGER,
351 				.integer.value = len,
352 			},
353 		},
354 	};
355 
356 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
357 	if (ACPI_FAILURE(rc))
358 		return NULL;
359 	return pkg_to_buf(buf.pointer);
360 }
361 
362 static union acpi_object *acpi_label_info(acpi_handle handle)
363 {
364 	acpi_status rc;
365 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
366 
367 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
368 	if (ACPI_FAILURE(rc))
369 		return NULL;
370 	return pkg_to_buf(buf.pointer);
371 }
372 
373 static u8 nfit_dsm_revid(unsigned family, unsigned func)
374 {
375 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
376 		[NVDIMM_FAMILY_INTEL] = {
377 			[NVDIMM_INTEL_GET_MODES ...
378 				NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
379 		},
380 	};
381 	u8 id;
382 
383 	if (family > NVDIMM_FAMILY_MAX)
384 		return 0;
385 	if (func > NVDIMM_CMD_MAX)
386 		return 0;
387 	id = revid_table[family][func];
388 	if (id == 0)
389 		return 1; /* default */
390 	return id;
391 }
392 
393 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
394 {
395 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
396 
397 	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
398 			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
399 			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
400 		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
401 	return true;
402 }
403 
404 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
405 		struct nd_cmd_pkg *call_pkg, int *family)
406 {
407 	if (call_pkg) {
408 		int i;
409 
410 		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
411 			return -ENOTTY;
412 
413 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
414 			if (call_pkg->nd_reserved2[i])
415 				return -EINVAL;
416 		*family = call_pkg->nd_family;
417 		return call_pkg->nd_command;
418 	}
419 
420 	/* In the !call_pkg case, bus commands == bus functions */
421 	if (!nfit_mem)
422 		return cmd;
423 
424 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
425 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
426 		return cmd;
427 
428 	/*
429 	 * Force function number validation to fail since 0 is never
430 	 * published as a valid function in dsm_mask.
431 	 */
432 	return 0;
433 }
434 
435 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
436 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
437 {
438 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
439 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
440 	union acpi_object in_obj, in_buf, *out_obj;
441 	const struct nd_cmd_desc *desc = NULL;
442 	struct device *dev = acpi_desc->dev;
443 	struct nd_cmd_pkg *call_pkg = NULL;
444 	const char *cmd_name, *dimm_name;
445 	unsigned long cmd_mask, dsm_mask;
446 	u32 offset, fw_status = 0;
447 	acpi_handle handle;
448 	const guid_t *guid;
449 	int func, rc, i;
450 	int family = 0;
451 
452 	if (cmd_rc)
453 		*cmd_rc = -EINVAL;
454 
455 	if (cmd == ND_CMD_CALL)
456 		call_pkg = buf;
457 	func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
458 	if (func < 0)
459 		return func;
460 
461 	if (nvdimm) {
462 		struct acpi_device *adev = nfit_mem->adev;
463 
464 		if (!adev)
465 			return -ENOTTY;
466 
467 		dimm_name = nvdimm_name(nvdimm);
468 		cmd_name = nvdimm_cmd_name(cmd);
469 		cmd_mask = nvdimm_cmd_mask(nvdimm);
470 		dsm_mask = nfit_mem->dsm_mask;
471 		desc = nd_cmd_dimm_desc(cmd);
472 		guid = to_nfit_uuid(nfit_mem->family);
473 		handle = adev->handle;
474 	} else {
475 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
476 
477 		cmd_name = nvdimm_bus_cmd_name(cmd);
478 		cmd_mask = nd_desc->cmd_mask;
479 		if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
480 			family = call_pkg->nd_family;
481 			if (!test_bit(family, &nd_desc->bus_family_mask))
482 				return -EINVAL;
483 			dsm_mask = acpi_desc->family_dsm_mask[family];
484 			guid = to_nfit_bus_uuid(family);
485 		} else {
486 			dsm_mask = acpi_desc->bus_dsm_mask;
487 			guid = to_nfit_uuid(NFIT_DEV_BUS);
488 		}
489 		desc = nd_cmd_bus_desc(cmd);
490 		handle = adev->handle;
491 		dimm_name = "bus";
492 	}
493 
494 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
495 		return -ENOTTY;
496 
497 	/*
498 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
499 	 * make sure that the DSM function is supported.
500 	 */
501 	if (cmd == ND_CMD_CALL &&
502 	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
503 		return -ENOTTY;
504 	else if (!test_bit(cmd, &cmd_mask))
505 		return -ENOTTY;
506 
507 	in_obj.type = ACPI_TYPE_PACKAGE;
508 	in_obj.package.count = 1;
509 	in_obj.package.elements = &in_buf;
510 	in_buf.type = ACPI_TYPE_BUFFER;
511 	in_buf.buffer.pointer = buf;
512 	in_buf.buffer.length = 0;
513 
514 	/* libnvdimm has already validated the input envelope */
515 	for (i = 0; i < desc->in_num; i++)
516 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
517 				i, buf);
518 
519 	if (call_pkg) {
520 		/* skip over package wrapper */
521 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
522 		in_buf.buffer.length = call_pkg->nd_size_in;
523 	}
524 
525 	dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
526 		dimm_name, cmd, family, func, in_buf.buffer.length);
527 	if (payload_dumpable(nvdimm, func))
528 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
529 				in_buf.buffer.pointer,
530 				min_t(u32, 256, in_buf.buffer.length), true);
531 
532 	/* call the BIOS, prefer the named methods over _DSM if available */
533 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
534 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
535 		out_obj = acpi_label_info(handle);
536 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
537 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
538 		struct nd_cmd_get_config_data_hdr *p = buf;
539 
540 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
541 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
542 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
543 		struct nd_cmd_set_config_hdr *p = buf;
544 
545 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
546 				p->in_buf);
547 	} else {
548 		u8 revid;
549 
550 		if (nvdimm)
551 			revid = nfit_dsm_revid(nfit_mem->family, func);
552 		else
553 			revid = 1;
554 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
555 	}
556 
557 	if (!out_obj) {
558 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
559 		return -EINVAL;
560 	}
561 
562 	if (out_obj->type != ACPI_TYPE_BUFFER) {
563 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
564 				dimm_name, cmd_name, out_obj->type);
565 		rc = -EINVAL;
566 		goto out;
567 	}
568 
569 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
570 			cmd_name, out_obj->buffer.length);
571 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
572 			out_obj->buffer.pointer,
573 			min_t(u32, 128, out_obj->buffer.length), true);
574 
575 	if (call_pkg) {
576 		call_pkg->nd_fw_size = out_obj->buffer.length;
577 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
578 			out_obj->buffer.pointer,
579 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
580 
581 		ACPI_FREE(out_obj);
582 		/*
583 		 * Need to support FW function w/o known size in advance.
584 		 * Caller can determine required size based upon nd_fw_size.
585 		 * If we return an error (like elsewhere) then caller wouldn't
586 		 * be able to rely upon data returned to make calculation.
587 		 */
588 		if (cmd_rc)
589 			*cmd_rc = 0;
590 		return 0;
591 	}
592 
593 	for (i = 0, offset = 0; i < desc->out_num; i++) {
594 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
595 				(u32 *) out_obj->buffer.pointer,
596 				out_obj->buffer.length - offset);
597 
598 		if (offset + out_size > out_obj->buffer.length) {
599 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
600 					dimm_name, cmd_name, i);
601 			break;
602 		}
603 
604 		if (in_buf.buffer.length + offset + out_size > buf_len) {
605 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
606 					dimm_name, cmd_name, i);
607 			rc = -ENXIO;
608 			goto out;
609 		}
610 		memcpy(buf + in_buf.buffer.length + offset,
611 				out_obj->buffer.pointer + offset, out_size);
612 		offset += out_size;
613 	}
614 
615 	/*
616 	 * Set fw_status for all the commands with a known format to be
617 	 * later interpreted by xlat_status().
618 	 */
619 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
620 					&& cmd <= ND_CMD_CLEAR_ERROR)
621 				|| (nvdimm && cmd >= ND_CMD_SMART
622 					&& cmd <= ND_CMD_VENDOR)))
623 		fw_status = *(u32 *) out_obj->buffer.pointer;
624 
625 	if (offset + in_buf.buffer.length < buf_len) {
626 		if (i >= 1) {
627 			/*
628 			 * status valid, return the number of bytes left
629 			 * unfilled in the output buffer
630 			 */
631 			rc = buf_len - offset - in_buf.buffer.length;
632 			if (cmd_rc)
633 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
634 						fw_status);
635 		} else {
636 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
637 					__func__, dimm_name, cmd_name, buf_len,
638 					offset);
639 			rc = -ENXIO;
640 		}
641 	} else {
642 		rc = 0;
643 		if (cmd_rc)
644 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
645 	}
646 
647  out:
648 	ACPI_FREE(out_obj);
649 
650 	return rc;
651 }
652 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
653 
654 static const char *spa_type_name(u16 type)
655 {
656 	static const char *to_name[] = {
657 		[NFIT_SPA_VOLATILE] = "volatile",
658 		[NFIT_SPA_PM] = "pmem",
659 		[NFIT_SPA_DCR] = "dimm-control-region",
660 		[NFIT_SPA_BDW] = "block-data-window",
661 		[NFIT_SPA_VDISK] = "volatile-disk",
662 		[NFIT_SPA_VCD] = "volatile-cd",
663 		[NFIT_SPA_PDISK] = "persistent-disk",
664 		[NFIT_SPA_PCD] = "persistent-cd",
665 
666 	};
667 
668 	if (type > NFIT_SPA_PCD)
669 		return "unknown";
670 
671 	return to_name[type];
672 }
673 
674 int nfit_spa_type(struct acpi_nfit_system_address *spa)
675 {
676 	int i;
677 
678 	for (i = 0; i < NFIT_UUID_MAX; i++)
679 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
680 			return i;
681 	return -1;
682 }
683 
684 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
685 		struct nfit_table_prev *prev,
686 		struct acpi_nfit_system_address *spa)
687 {
688 	struct device *dev = acpi_desc->dev;
689 	struct nfit_spa *nfit_spa;
690 
691 	if (spa->header.length != sizeof(*spa))
692 		return false;
693 
694 	list_for_each_entry(nfit_spa, &prev->spas, list) {
695 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
696 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
697 			return true;
698 		}
699 	}
700 
701 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
702 			GFP_KERNEL);
703 	if (!nfit_spa)
704 		return false;
705 	INIT_LIST_HEAD(&nfit_spa->list);
706 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
707 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
708 	dev_dbg(dev, "spa index: %d type: %s\n",
709 			spa->range_index,
710 			spa_type_name(nfit_spa_type(spa)));
711 	return true;
712 }
713 
714 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
715 		struct nfit_table_prev *prev,
716 		struct acpi_nfit_memory_map *memdev)
717 {
718 	struct device *dev = acpi_desc->dev;
719 	struct nfit_memdev *nfit_memdev;
720 
721 	if (memdev->header.length != sizeof(*memdev))
722 		return false;
723 
724 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
725 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
726 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
727 			return true;
728 		}
729 
730 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
731 			GFP_KERNEL);
732 	if (!nfit_memdev)
733 		return false;
734 	INIT_LIST_HEAD(&nfit_memdev->list);
735 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
736 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
737 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
738 			memdev->device_handle, memdev->range_index,
739 			memdev->region_index, memdev->flags);
740 	return true;
741 }
742 
743 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
744 {
745 	struct acpi_nfit_memory_map *memdev;
746 	struct acpi_nfit_desc *acpi_desc;
747 	struct nfit_mem *nfit_mem;
748 	u16 physical_id;
749 
750 	mutex_lock(&acpi_desc_lock);
751 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
752 		mutex_lock(&acpi_desc->init_mutex);
753 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
754 			memdev = __to_nfit_memdev(nfit_mem);
755 			if (memdev->device_handle == device_handle) {
756 				*flags = memdev->flags;
757 				physical_id = memdev->physical_id;
758 				mutex_unlock(&acpi_desc->init_mutex);
759 				mutex_unlock(&acpi_desc_lock);
760 				return physical_id;
761 			}
762 		}
763 		mutex_unlock(&acpi_desc->init_mutex);
764 	}
765 	mutex_unlock(&acpi_desc_lock);
766 
767 	return -ENODEV;
768 }
769 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
770 
771 /*
772  * An implementation may provide a truncated control region if no block windows
773  * are defined.
774  */
775 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
776 {
777 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
778 				window_size))
779 		return 0;
780 	if (dcr->windows)
781 		return sizeof(*dcr);
782 	return offsetof(struct acpi_nfit_control_region, window_size);
783 }
784 
785 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
786 		struct nfit_table_prev *prev,
787 		struct acpi_nfit_control_region *dcr)
788 {
789 	struct device *dev = acpi_desc->dev;
790 	struct nfit_dcr *nfit_dcr;
791 
792 	if (!sizeof_dcr(dcr))
793 		return false;
794 
795 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
796 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
797 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
798 			return true;
799 		}
800 
801 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
802 			GFP_KERNEL);
803 	if (!nfit_dcr)
804 		return false;
805 	INIT_LIST_HEAD(&nfit_dcr->list);
806 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
807 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
808 	dev_dbg(dev, "dcr index: %d windows: %d\n",
809 			dcr->region_index, dcr->windows);
810 	return true;
811 }
812 
813 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
814 		struct nfit_table_prev *prev,
815 		struct acpi_nfit_data_region *bdw)
816 {
817 	struct device *dev = acpi_desc->dev;
818 	struct nfit_bdw *nfit_bdw;
819 
820 	if (bdw->header.length != sizeof(*bdw))
821 		return false;
822 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
823 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
824 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
825 			return true;
826 		}
827 
828 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
829 			GFP_KERNEL);
830 	if (!nfit_bdw)
831 		return false;
832 	INIT_LIST_HEAD(&nfit_bdw->list);
833 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
834 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
835 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
836 			bdw->region_index, bdw->windows);
837 	return true;
838 }
839 
840 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
841 {
842 	if (idt->header.length < sizeof(*idt))
843 		return 0;
844 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
845 }
846 
847 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
848 		struct nfit_table_prev *prev,
849 		struct acpi_nfit_interleave *idt)
850 {
851 	struct device *dev = acpi_desc->dev;
852 	struct nfit_idt *nfit_idt;
853 
854 	if (!sizeof_idt(idt))
855 		return false;
856 
857 	list_for_each_entry(nfit_idt, &prev->idts, list) {
858 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
859 			continue;
860 
861 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
862 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
863 			return true;
864 		}
865 	}
866 
867 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
868 			GFP_KERNEL);
869 	if (!nfit_idt)
870 		return false;
871 	INIT_LIST_HEAD(&nfit_idt->list);
872 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
873 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
874 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
875 			idt->interleave_index, idt->line_count);
876 	return true;
877 }
878 
879 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
880 {
881 	if (flush->header.length < sizeof(*flush))
882 		return 0;
883 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
884 }
885 
886 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
887 		struct nfit_table_prev *prev,
888 		struct acpi_nfit_flush_address *flush)
889 {
890 	struct device *dev = acpi_desc->dev;
891 	struct nfit_flush *nfit_flush;
892 
893 	if (!sizeof_flush(flush))
894 		return false;
895 
896 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
897 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
898 			continue;
899 
900 		if (memcmp(nfit_flush->flush, flush,
901 					sizeof_flush(flush)) == 0) {
902 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
903 			return true;
904 		}
905 	}
906 
907 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
908 			+ sizeof_flush(flush), GFP_KERNEL);
909 	if (!nfit_flush)
910 		return false;
911 	INIT_LIST_HEAD(&nfit_flush->list);
912 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
913 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
914 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
915 			flush->device_handle, flush->hint_count);
916 	return true;
917 }
918 
919 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
920 		struct acpi_nfit_capabilities *pcap)
921 {
922 	struct device *dev = acpi_desc->dev;
923 	u32 mask;
924 
925 	mask = (1 << (pcap->highest_capability + 1)) - 1;
926 	acpi_desc->platform_cap = pcap->capabilities & mask;
927 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
928 	return true;
929 }
930 
931 static void *add_table(struct acpi_nfit_desc *acpi_desc,
932 		struct nfit_table_prev *prev, void *table, const void *end)
933 {
934 	struct device *dev = acpi_desc->dev;
935 	struct acpi_nfit_header *hdr;
936 	void *err = ERR_PTR(-ENOMEM);
937 
938 	if (table >= end)
939 		return NULL;
940 
941 	hdr = table;
942 	if (!hdr->length) {
943 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
944 			hdr->type);
945 		return NULL;
946 	}
947 
948 	switch (hdr->type) {
949 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
950 		if (!add_spa(acpi_desc, prev, table))
951 			return err;
952 		break;
953 	case ACPI_NFIT_TYPE_MEMORY_MAP:
954 		if (!add_memdev(acpi_desc, prev, table))
955 			return err;
956 		break;
957 	case ACPI_NFIT_TYPE_CONTROL_REGION:
958 		if (!add_dcr(acpi_desc, prev, table))
959 			return err;
960 		break;
961 	case ACPI_NFIT_TYPE_DATA_REGION:
962 		if (!add_bdw(acpi_desc, prev, table))
963 			return err;
964 		break;
965 	case ACPI_NFIT_TYPE_INTERLEAVE:
966 		if (!add_idt(acpi_desc, prev, table))
967 			return err;
968 		break;
969 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
970 		if (!add_flush(acpi_desc, prev, table))
971 			return err;
972 		break;
973 	case ACPI_NFIT_TYPE_SMBIOS:
974 		dev_dbg(dev, "smbios\n");
975 		break;
976 	case ACPI_NFIT_TYPE_CAPABILITIES:
977 		if (!add_platform_cap(acpi_desc, table))
978 			return err;
979 		break;
980 	default:
981 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
982 		break;
983 	}
984 
985 	return table + hdr->length;
986 }
987 
988 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
989 		struct nfit_mem *nfit_mem)
990 {
991 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
992 	u16 dcr = nfit_mem->dcr->region_index;
993 	struct nfit_spa *nfit_spa;
994 
995 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
996 		u16 range_index = nfit_spa->spa->range_index;
997 		int type = nfit_spa_type(nfit_spa->spa);
998 		struct nfit_memdev *nfit_memdev;
999 
1000 		if (type != NFIT_SPA_BDW)
1001 			continue;
1002 
1003 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1004 			if (nfit_memdev->memdev->range_index != range_index)
1005 				continue;
1006 			if (nfit_memdev->memdev->device_handle != device_handle)
1007 				continue;
1008 			if (nfit_memdev->memdev->region_index != dcr)
1009 				continue;
1010 
1011 			nfit_mem->spa_bdw = nfit_spa->spa;
1012 			return;
1013 		}
1014 	}
1015 
1016 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1017 			nfit_mem->spa_dcr->range_index);
1018 	nfit_mem->bdw = NULL;
1019 }
1020 
1021 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1022 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1023 {
1024 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1025 	struct nfit_memdev *nfit_memdev;
1026 	struct nfit_bdw *nfit_bdw;
1027 	struct nfit_idt *nfit_idt;
1028 	u16 idt_idx, range_index;
1029 
1030 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1031 		if (nfit_bdw->bdw->region_index != dcr)
1032 			continue;
1033 		nfit_mem->bdw = nfit_bdw->bdw;
1034 		break;
1035 	}
1036 
1037 	if (!nfit_mem->bdw)
1038 		return;
1039 
1040 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1041 
1042 	if (!nfit_mem->spa_bdw)
1043 		return;
1044 
1045 	range_index = nfit_mem->spa_bdw->range_index;
1046 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1047 		if (nfit_memdev->memdev->range_index != range_index ||
1048 				nfit_memdev->memdev->region_index != dcr)
1049 			continue;
1050 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
1051 		idt_idx = nfit_memdev->memdev->interleave_index;
1052 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1053 			if (nfit_idt->idt->interleave_index != idt_idx)
1054 				continue;
1055 			nfit_mem->idt_bdw = nfit_idt->idt;
1056 			break;
1057 		}
1058 		break;
1059 	}
1060 }
1061 
1062 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1063 		struct acpi_nfit_system_address *spa)
1064 {
1065 	struct nfit_mem *nfit_mem, *found;
1066 	struct nfit_memdev *nfit_memdev;
1067 	int type = spa ? nfit_spa_type(spa) : 0;
1068 
1069 	switch (type) {
1070 	case NFIT_SPA_DCR:
1071 	case NFIT_SPA_PM:
1072 		break;
1073 	default:
1074 		if (spa)
1075 			return 0;
1076 	}
1077 
1078 	/*
1079 	 * This loop runs in two modes, when a dimm is mapped the loop
1080 	 * adds memdev associations to an existing dimm, or creates a
1081 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1082 	 * instances with an invalid / zero range_index and adds those
1083 	 * dimms without spa associations.
1084 	 */
1085 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1086 		struct nfit_flush *nfit_flush;
1087 		struct nfit_dcr *nfit_dcr;
1088 		u32 device_handle;
1089 		u16 dcr;
1090 
1091 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1092 			continue;
1093 		if (!spa && nfit_memdev->memdev->range_index)
1094 			continue;
1095 		found = NULL;
1096 		dcr = nfit_memdev->memdev->region_index;
1097 		device_handle = nfit_memdev->memdev->device_handle;
1098 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1099 			if (__to_nfit_memdev(nfit_mem)->device_handle
1100 					== device_handle) {
1101 				found = nfit_mem;
1102 				break;
1103 			}
1104 
1105 		if (found)
1106 			nfit_mem = found;
1107 		else {
1108 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1109 					sizeof(*nfit_mem), GFP_KERNEL);
1110 			if (!nfit_mem)
1111 				return -ENOMEM;
1112 			INIT_LIST_HEAD(&nfit_mem->list);
1113 			nfit_mem->acpi_desc = acpi_desc;
1114 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1115 		}
1116 
1117 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1118 			if (nfit_dcr->dcr->region_index != dcr)
1119 				continue;
1120 			/*
1121 			 * Record the control region for the dimm.  For
1122 			 * the ACPI 6.1 case, where there are separate
1123 			 * control regions for the pmem vs blk
1124 			 * interfaces, be sure to record the extended
1125 			 * blk details.
1126 			 */
1127 			if (!nfit_mem->dcr)
1128 				nfit_mem->dcr = nfit_dcr->dcr;
1129 			else if (nfit_mem->dcr->windows == 0
1130 					&& nfit_dcr->dcr->windows)
1131 				nfit_mem->dcr = nfit_dcr->dcr;
1132 			break;
1133 		}
1134 
1135 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1136 			struct acpi_nfit_flush_address *flush;
1137 			u16 i;
1138 
1139 			if (nfit_flush->flush->device_handle != device_handle)
1140 				continue;
1141 			nfit_mem->nfit_flush = nfit_flush;
1142 			flush = nfit_flush->flush;
1143 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1144 					flush->hint_count,
1145 					sizeof(struct resource),
1146 					GFP_KERNEL);
1147 			if (!nfit_mem->flush_wpq)
1148 				return -ENOMEM;
1149 			for (i = 0; i < flush->hint_count; i++) {
1150 				struct resource *res = &nfit_mem->flush_wpq[i];
1151 
1152 				res->start = flush->hint_address[i];
1153 				res->end = res->start + 8 - 1;
1154 			}
1155 			break;
1156 		}
1157 
1158 		if (dcr && !nfit_mem->dcr) {
1159 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1160 					spa->range_index, dcr);
1161 			return -ENODEV;
1162 		}
1163 
1164 		if (type == NFIT_SPA_DCR) {
1165 			struct nfit_idt *nfit_idt;
1166 			u16 idt_idx;
1167 
1168 			/* multiple dimms may share a SPA when interleaved */
1169 			nfit_mem->spa_dcr = spa;
1170 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1171 			idt_idx = nfit_memdev->memdev->interleave_index;
1172 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1173 				if (nfit_idt->idt->interleave_index != idt_idx)
1174 					continue;
1175 				nfit_mem->idt_dcr = nfit_idt->idt;
1176 				break;
1177 			}
1178 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1179 		} else if (type == NFIT_SPA_PM) {
1180 			/*
1181 			 * A single dimm may belong to multiple SPA-PM
1182 			 * ranges, record at least one in addition to
1183 			 * any SPA-DCR range.
1184 			 */
1185 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1186 		} else
1187 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1194 {
1195 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1196 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1197 	u32 handleA, handleB;
1198 
1199 	handleA = __to_nfit_memdev(a)->device_handle;
1200 	handleB = __to_nfit_memdev(b)->device_handle;
1201 	if (handleA < handleB)
1202 		return -1;
1203 	else if (handleA > handleB)
1204 		return 1;
1205 	return 0;
1206 }
1207 
1208 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1209 {
1210 	struct nfit_spa *nfit_spa;
1211 	int rc;
1212 
1213 
1214 	/*
1215 	 * For each SPA-DCR or SPA-PMEM address range find its
1216 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1217 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1218 	 * try to find a SPA-BDW and a corresponding BDW that references
1219 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1220 	 * BDWs are optional.
1221 	 */
1222 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1223 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1224 		if (rc)
1225 			return rc;
1226 	}
1227 
1228 	/*
1229 	 * If a DIMM has failed to be mapped into SPA there will be no
1230 	 * SPA entries above. Find and register all the unmapped DIMMs
1231 	 * for reporting and recovery purposes.
1232 	 */
1233 	rc = __nfit_mem_init(acpi_desc, NULL);
1234 	if (rc)
1235 		return rc;
1236 
1237 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1238 
1239 	return 0;
1240 }
1241 
1242 static ssize_t bus_dsm_mask_show(struct device *dev,
1243 		struct device_attribute *attr, char *buf)
1244 {
1245 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1246 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1247 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1248 
1249 	return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1250 }
1251 static struct device_attribute dev_attr_bus_dsm_mask =
1252 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1253 
1254 static ssize_t revision_show(struct device *dev,
1255 		struct device_attribute *attr, char *buf)
1256 {
1257 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1258 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1259 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1260 
1261 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1262 }
1263 static DEVICE_ATTR_RO(revision);
1264 
1265 static ssize_t hw_error_scrub_show(struct device *dev,
1266 		struct device_attribute *attr, char *buf)
1267 {
1268 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1269 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1270 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1271 
1272 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1273 }
1274 
1275 /*
1276  * The 'hw_error_scrub' attribute can have the following values written to it:
1277  * '0': Switch to the default mode where an exception will only insert
1278  *      the address of the memory error into the poison and badblocks lists.
1279  * '1': Enable a full scrub to happen if an exception for a memory error is
1280  *      received.
1281  */
1282 static ssize_t hw_error_scrub_store(struct device *dev,
1283 		struct device_attribute *attr, const char *buf, size_t size)
1284 {
1285 	struct nvdimm_bus_descriptor *nd_desc;
1286 	ssize_t rc;
1287 	long val;
1288 
1289 	rc = kstrtol(buf, 0, &val);
1290 	if (rc)
1291 		return rc;
1292 
1293 	nfit_device_lock(dev);
1294 	nd_desc = dev_get_drvdata(dev);
1295 	if (nd_desc) {
1296 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1297 
1298 		switch (val) {
1299 		case HW_ERROR_SCRUB_ON:
1300 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1301 			break;
1302 		case HW_ERROR_SCRUB_OFF:
1303 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1304 			break;
1305 		default:
1306 			rc = -EINVAL;
1307 			break;
1308 		}
1309 	}
1310 	nfit_device_unlock(dev);
1311 	if (rc)
1312 		return rc;
1313 	return size;
1314 }
1315 static DEVICE_ATTR_RW(hw_error_scrub);
1316 
1317 /*
1318  * This shows the number of full Address Range Scrubs that have been
1319  * completed since driver load time. Userspace can wait on this using
1320  * select/poll etc. A '+' at the end indicates an ARS is in progress
1321  */
1322 static ssize_t scrub_show(struct device *dev,
1323 		struct device_attribute *attr, char *buf)
1324 {
1325 	struct nvdimm_bus_descriptor *nd_desc;
1326 	struct acpi_nfit_desc *acpi_desc;
1327 	ssize_t rc = -ENXIO;
1328 	bool busy;
1329 
1330 	nfit_device_lock(dev);
1331 	nd_desc = dev_get_drvdata(dev);
1332 	if (!nd_desc) {
1333 		nfit_device_unlock(dev);
1334 		return rc;
1335 	}
1336 	acpi_desc = to_acpi_desc(nd_desc);
1337 
1338 	mutex_lock(&acpi_desc->init_mutex);
1339 	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1340 		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1341 	rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1342 	/* Allow an admin to poll the busy state at a higher rate */
1343 	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1344 				&acpi_desc->scrub_flags)) {
1345 		acpi_desc->scrub_tmo = 1;
1346 		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1347 	}
1348 
1349 	mutex_unlock(&acpi_desc->init_mutex);
1350 	nfit_device_unlock(dev);
1351 	return rc;
1352 }
1353 
1354 static ssize_t scrub_store(struct device *dev,
1355 		struct device_attribute *attr, const char *buf, size_t size)
1356 {
1357 	struct nvdimm_bus_descriptor *nd_desc;
1358 	ssize_t rc;
1359 	long val;
1360 
1361 	rc = kstrtol(buf, 0, &val);
1362 	if (rc)
1363 		return rc;
1364 	if (val != 1)
1365 		return -EINVAL;
1366 
1367 	nfit_device_lock(dev);
1368 	nd_desc = dev_get_drvdata(dev);
1369 	if (nd_desc) {
1370 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1371 
1372 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1373 	}
1374 	nfit_device_unlock(dev);
1375 	if (rc)
1376 		return rc;
1377 	return size;
1378 }
1379 static DEVICE_ATTR_RW(scrub);
1380 
1381 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1382 {
1383 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1384 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1385 		| 1 << ND_CMD_ARS_STATUS;
1386 
1387 	return (nd_desc->cmd_mask & mask) == mask;
1388 }
1389 
1390 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1391 {
1392 	struct device *dev = container_of(kobj, struct device, kobj);
1393 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1394 
1395 	if (a == &dev_attr_scrub.attr)
1396 		return ars_supported(nvdimm_bus) ? a->mode : 0;
1397 
1398 	if (a == &dev_attr_firmware_activate_noidle.attr)
1399 		return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1400 
1401 	return a->mode;
1402 }
1403 
1404 static struct attribute *acpi_nfit_attributes[] = {
1405 	&dev_attr_revision.attr,
1406 	&dev_attr_scrub.attr,
1407 	&dev_attr_hw_error_scrub.attr,
1408 	&dev_attr_bus_dsm_mask.attr,
1409 	&dev_attr_firmware_activate_noidle.attr,
1410 	NULL,
1411 };
1412 
1413 static const struct attribute_group acpi_nfit_attribute_group = {
1414 	.name = "nfit",
1415 	.attrs = acpi_nfit_attributes,
1416 	.is_visible = nfit_visible,
1417 };
1418 
1419 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1420 	&acpi_nfit_attribute_group,
1421 	NULL,
1422 };
1423 
1424 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1425 {
1426 	struct nvdimm *nvdimm = to_nvdimm(dev);
1427 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1428 
1429 	return __to_nfit_memdev(nfit_mem);
1430 }
1431 
1432 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1433 {
1434 	struct nvdimm *nvdimm = to_nvdimm(dev);
1435 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1436 
1437 	return nfit_mem->dcr;
1438 }
1439 
1440 static ssize_t handle_show(struct device *dev,
1441 		struct device_attribute *attr, char *buf)
1442 {
1443 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1444 
1445 	return sprintf(buf, "%#x\n", memdev->device_handle);
1446 }
1447 static DEVICE_ATTR_RO(handle);
1448 
1449 static ssize_t phys_id_show(struct device *dev,
1450 		struct device_attribute *attr, char *buf)
1451 {
1452 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1453 
1454 	return sprintf(buf, "%#x\n", memdev->physical_id);
1455 }
1456 static DEVICE_ATTR_RO(phys_id);
1457 
1458 static ssize_t vendor_show(struct device *dev,
1459 		struct device_attribute *attr, char *buf)
1460 {
1461 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1462 
1463 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1464 }
1465 static DEVICE_ATTR_RO(vendor);
1466 
1467 static ssize_t rev_id_show(struct device *dev,
1468 		struct device_attribute *attr, char *buf)
1469 {
1470 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1471 
1472 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1473 }
1474 static DEVICE_ATTR_RO(rev_id);
1475 
1476 static ssize_t device_show(struct device *dev,
1477 		struct device_attribute *attr, char *buf)
1478 {
1479 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1480 
1481 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1482 }
1483 static DEVICE_ATTR_RO(device);
1484 
1485 static ssize_t subsystem_vendor_show(struct device *dev,
1486 		struct device_attribute *attr, char *buf)
1487 {
1488 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1489 
1490 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1491 }
1492 static DEVICE_ATTR_RO(subsystem_vendor);
1493 
1494 static ssize_t subsystem_rev_id_show(struct device *dev,
1495 		struct device_attribute *attr, char *buf)
1496 {
1497 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1498 
1499 	return sprintf(buf, "0x%04x\n",
1500 			be16_to_cpu(dcr->subsystem_revision_id));
1501 }
1502 static DEVICE_ATTR_RO(subsystem_rev_id);
1503 
1504 static ssize_t subsystem_device_show(struct device *dev,
1505 		struct device_attribute *attr, char *buf)
1506 {
1507 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1508 
1509 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1510 }
1511 static DEVICE_ATTR_RO(subsystem_device);
1512 
1513 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1514 {
1515 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1516 	int formats = 0;
1517 
1518 	if (nfit_mem->memdev_pmem)
1519 		formats++;
1520 	if (nfit_mem->memdev_bdw)
1521 		formats++;
1522 	return formats;
1523 }
1524 
1525 static ssize_t format_show(struct device *dev,
1526 		struct device_attribute *attr, char *buf)
1527 {
1528 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1529 
1530 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1531 }
1532 static DEVICE_ATTR_RO(format);
1533 
1534 static ssize_t format1_show(struct device *dev,
1535 		struct device_attribute *attr, char *buf)
1536 {
1537 	u32 handle;
1538 	ssize_t rc = -ENXIO;
1539 	struct nfit_mem *nfit_mem;
1540 	struct nfit_memdev *nfit_memdev;
1541 	struct acpi_nfit_desc *acpi_desc;
1542 	struct nvdimm *nvdimm = to_nvdimm(dev);
1543 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1544 
1545 	nfit_mem = nvdimm_provider_data(nvdimm);
1546 	acpi_desc = nfit_mem->acpi_desc;
1547 	handle = to_nfit_memdev(dev)->device_handle;
1548 
1549 	/* assumes DIMMs have at most 2 published interface codes */
1550 	mutex_lock(&acpi_desc->init_mutex);
1551 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1552 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1553 		struct nfit_dcr *nfit_dcr;
1554 
1555 		if (memdev->device_handle != handle)
1556 			continue;
1557 
1558 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1559 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1560 				continue;
1561 			if (nfit_dcr->dcr->code == dcr->code)
1562 				continue;
1563 			rc = sprintf(buf, "0x%04x\n",
1564 					le16_to_cpu(nfit_dcr->dcr->code));
1565 			break;
1566 		}
1567 		if (rc != ENXIO)
1568 			break;
1569 	}
1570 	mutex_unlock(&acpi_desc->init_mutex);
1571 	return rc;
1572 }
1573 static DEVICE_ATTR_RO(format1);
1574 
1575 static ssize_t formats_show(struct device *dev,
1576 		struct device_attribute *attr, char *buf)
1577 {
1578 	struct nvdimm *nvdimm = to_nvdimm(dev);
1579 
1580 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1581 }
1582 static DEVICE_ATTR_RO(formats);
1583 
1584 static ssize_t serial_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1588 
1589 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1590 }
1591 static DEVICE_ATTR_RO(serial);
1592 
1593 static ssize_t family_show(struct device *dev,
1594 		struct device_attribute *attr, char *buf)
1595 {
1596 	struct nvdimm *nvdimm = to_nvdimm(dev);
1597 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1598 
1599 	if (nfit_mem->family < 0)
1600 		return -ENXIO;
1601 	return sprintf(buf, "%d\n", nfit_mem->family);
1602 }
1603 static DEVICE_ATTR_RO(family);
1604 
1605 static ssize_t dsm_mask_show(struct device *dev,
1606 		struct device_attribute *attr, char *buf)
1607 {
1608 	struct nvdimm *nvdimm = to_nvdimm(dev);
1609 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1610 
1611 	if (nfit_mem->family < 0)
1612 		return -ENXIO;
1613 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1614 }
1615 static DEVICE_ATTR_RO(dsm_mask);
1616 
1617 static ssize_t flags_show(struct device *dev,
1618 		struct device_attribute *attr, char *buf)
1619 {
1620 	struct nvdimm *nvdimm = to_nvdimm(dev);
1621 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1622 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1623 
1624 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1625 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1626 
1627 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1628 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1629 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1630 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1631 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1632 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1633 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1634 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1635 }
1636 static DEVICE_ATTR_RO(flags);
1637 
1638 static ssize_t id_show(struct device *dev,
1639 		struct device_attribute *attr, char *buf)
1640 {
1641 	struct nvdimm *nvdimm = to_nvdimm(dev);
1642 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1643 
1644 	return sprintf(buf, "%s\n", nfit_mem->id);
1645 }
1646 static DEVICE_ATTR_RO(id);
1647 
1648 static ssize_t dirty_shutdown_show(struct device *dev,
1649 		struct device_attribute *attr, char *buf)
1650 {
1651 	struct nvdimm *nvdimm = to_nvdimm(dev);
1652 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1653 
1654 	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1655 }
1656 static DEVICE_ATTR_RO(dirty_shutdown);
1657 
1658 static struct attribute *acpi_nfit_dimm_attributes[] = {
1659 	&dev_attr_handle.attr,
1660 	&dev_attr_phys_id.attr,
1661 	&dev_attr_vendor.attr,
1662 	&dev_attr_device.attr,
1663 	&dev_attr_rev_id.attr,
1664 	&dev_attr_subsystem_vendor.attr,
1665 	&dev_attr_subsystem_device.attr,
1666 	&dev_attr_subsystem_rev_id.attr,
1667 	&dev_attr_format.attr,
1668 	&dev_attr_formats.attr,
1669 	&dev_attr_format1.attr,
1670 	&dev_attr_serial.attr,
1671 	&dev_attr_flags.attr,
1672 	&dev_attr_id.attr,
1673 	&dev_attr_family.attr,
1674 	&dev_attr_dsm_mask.attr,
1675 	&dev_attr_dirty_shutdown.attr,
1676 	NULL,
1677 };
1678 
1679 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1680 		struct attribute *a, int n)
1681 {
1682 	struct device *dev = container_of(kobj, struct device, kobj);
1683 	struct nvdimm *nvdimm = to_nvdimm(dev);
1684 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1685 
1686 	if (!to_nfit_dcr(dev)) {
1687 		/* Without a dcr only the memdev attributes can be surfaced */
1688 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1689 				|| a == &dev_attr_flags.attr
1690 				|| a == &dev_attr_family.attr
1691 				|| a == &dev_attr_dsm_mask.attr)
1692 			return a->mode;
1693 		return 0;
1694 	}
1695 
1696 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1697 		return 0;
1698 
1699 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1700 			&& a == &dev_attr_dirty_shutdown.attr)
1701 		return 0;
1702 
1703 	return a->mode;
1704 }
1705 
1706 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1707 	.name = "nfit",
1708 	.attrs = acpi_nfit_dimm_attributes,
1709 	.is_visible = acpi_nfit_dimm_attr_visible,
1710 };
1711 
1712 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1713 	&acpi_nfit_dimm_attribute_group,
1714 	NULL,
1715 };
1716 
1717 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1718 		u32 device_handle)
1719 {
1720 	struct nfit_mem *nfit_mem;
1721 
1722 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1723 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1724 			return nfit_mem->nvdimm;
1725 
1726 	return NULL;
1727 }
1728 
1729 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1730 {
1731 	struct nfit_mem *nfit_mem;
1732 	struct acpi_nfit_desc *acpi_desc;
1733 
1734 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1735 			event);
1736 
1737 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1738 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1739 				event);
1740 		return;
1741 	}
1742 
1743 	acpi_desc = dev_get_drvdata(dev->parent);
1744 	if (!acpi_desc)
1745 		return;
1746 
1747 	/*
1748 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1749 	 * is still valid.
1750 	 */
1751 	nfit_mem = dev_get_drvdata(dev);
1752 	if (nfit_mem && nfit_mem->flags_attr)
1753 		sysfs_notify_dirent(nfit_mem->flags_attr);
1754 }
1755 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1756 
1757 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1758 {
1759 	struct acpi_device *adev = data;
1760 	struct device *dev = &adev->dev;
1761 
1762 	nfit_device_lock(dev->parent);
1763 	__acpi_nvdimm_notify(dev, event);
1764 	nfit_device_unlock(dev->parent);
1765 }
1766 
1767 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1768 {
1769 	acpi_handle handle;
1770 	acpi_status status;
1771 
1772 	status = acpi_get_handle(adev->handle, method, &handle);
1773 
1774 	if (ACPI_SUCCESS(status))
1775 		return true;
1776 	return false;
1777 }
1778 
1779 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1780 {
1781 	struct device *dev = &nfit_mem->adev->dev;
1782 	struct nd_intel_smart smart = { 0 };
1783 	union acpi_object in_buf = {
1784 		.buffer.type = ACPI_TYPE_BUFFER,
1785 		.buffer.length = 0,
1786 	};
1787 	union acpi_object in_obj = {
1788 		.package.type = ACPI_TYPE_PACKAGE,
1789 		.package.count = 1,
1790 		.package.elements = &in_buf,
1791 	};
1792 	const u8 func = ND_INTEL_SMART;
1793 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1794 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1795 	struct acpi_device *adev = nfit_mem->adev;
1796 	acpi_handle handle = adev->handle;
1797 	union acpi_object *out_obj;
1798 
1799 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1800 		return;
1801 
1802 	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1803 	if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1804 			|| out_obj->buffer.length < sizeof(smart)) {
1805 		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1806 				dev_name(dev));
1807 		ACPI_FREE(out_obj);
1808 		return;
1809 	}
1810 	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1811 	ACPI_FREE(out_obj);
1812 
1813 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1814 		if (smart.shutdown_state)
1815 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1816 	}
1817 
1818 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1819 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1820 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1821 	}
1822 }
1823 
1824 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1825 {
1826 	/*
1827 	 * For DIMMs that provide a dynamic facility to retrieve a
1828 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1829 	 * these values in nfit_mem.
1830 	 */
1831 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1832 		nfit_intel_shutdown_status(nfit_mem);
1833 }
1834 
1835 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1836 		struct nfit_mem *nfit_mem, u32 device_handle)
1837 {
1838 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1839 	struct acpi_device *adev, *adev_dimm;
1840 	struct device *dev = acpi_desc->dev;
1841 	unsigned long dsm_mask, label_mask;
1842 	const guid_t *guid;
1843 	int i;
1844 	int family = -1;
1845 	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1846 
1847 	/* nfit test assumes 1:1 relationship between commands and dsms */
1848 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1849 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1850 	set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1851 
1852 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1853 		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1854 				be16_to_cpu(dcr->vendor_id),
1855 				dcr->manufacturing_location,
1856 				be16_to_cpu(dcr->manufacturing_date),
1857 				be32_to_cpu(dcr->serial_number));
1858 	else
1859 		sprintf(nfit_mem->id, "%04x-%08x",
1860 				be16_to_cpu(dcr->vendor_id),
1861 				be32_to_cpu(dcr->serial_number));
1862 
1863 	adev = to_acpi_dev(acpi_desc);
1864 	if (!adev) {
1865 		/* unit test case */
1866 		populate_shutdown_status(nfit_mem);
1867 		return 0;
1868 	}
1869 
1870 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1871 	nfit_mem->adev = adev_dimm;
1872 	if (!adev_dimm) {
1873 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1874 				device_handle);
1875 		return force_enable_dimms ? 0 : -ENODEV;
1876 	}
1877 
1878 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1879 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1880 		dev_err(dev, "%s: notification registration failed\n",
1881 				dev_name(&adev_dimm->dev));
1882 		return -ENXIO;
1883 	}
1884 	/*
1885 	 * Record nfit_mem for the notification path to track back to
1886 	 * the nfit sysfs attributes for this dimm device object.
1887 	 */
1888 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1889 
1890 	/*
1891 	 * There are 4 "legacy" NVDIMM command sets
1892 	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1893 	 * an EFI working group was established to constrain this
1894 	 * proliferation. The nfit driver probes for the supported command
1895 	 * set by GUID. Note, if you're a platform developer looking to add
1896 	 * a new command set to this probe, consider using an existing set,
1897 	 * or otherwise seek approval to publish the command set at
1898 	 * http://www.uefi.org/RFIC_LIST.
1899 	 *
1900 	 * Note, that checking for function0 (bit0) tells us if any commands
1901 	 * are reachable through this GUID.
1902 	 */
1903 	clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1904 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1905 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1906 			set_bit(i, &nd_desc->dimm_family_mask);
1907 			if (family < 0 || i == default_dsm_family)
1908 				family = i;
1909 		}
1910 
1911 	/* limit the supported commands to those that are publicly documented */
1912 	nfit_mem->family = family;
1913 	if (override_dsm_mask && !disable_vendor_specific)
1914 		dsm_mask = override_dsm_mask;
1915 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1916 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1917 		if (disable_vendor_specific)
1918 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1919 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1920 		dsm_mask = 0x1c3c76;
1921 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1922 		dsm_mask = 0x1fe;
1923 		if (disable_vendor_specific)
1924 			dsm_mask &= ~(1 << 8);
1925 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1926 		dsm_mask = 0xffffffff;
1927 	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1928 		dsm_mask = 0x1f;
1929 	} else {
1930 		dev_dbg(dev, "unknown dimm command family\n");
1931 		nfit_mem->family = -1;
1932 		/* DSMs are optional, continue loading the driver... */
1933 		return 0;
1934 	}
1935 
1936 	/*
1937 	 * Function 0 is the command interrogation function, don't
1938 	 * export it to potential userspace use, and enable it to be
1939 	 * used as an error value in acpi_nfit_ctl().
1940 	 */
1941 	dsm_mask &= ~1UL;
1942 
1943 	guid = to_nfit_uuid(nfit_mem->family);
1944 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1945 		if (acpi_check_dsm(adev_dimm->handle, guid,
1946 					nfit_dsm_revid(nfit_mem->family, i),
1947 					1ULL << i))
1948 			set_bit(i, &nfit_mem->dsm_mask);
1949 
1950 	/*
1951 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1952 	 * due to their better semantics handling locked capacity.
1953 	 */
1954 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1955 		| 1 << ND_CMD_SET_CONFIG_DATA;
1956 	if (family == NVDIMM_FAMILY_INTEL
1957 			&& (dsm_mask & label_mask) == label_mask)
1958 		/* skip _LS{I,R,W} enabling */;
1959 	else {
1960 		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1961 				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1962 			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1963 			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1964 		}
1965 
1966 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1967 				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1968 			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1969 			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1970 		}
1971 
1972 		/*
1973 		 * Quirk read-only label configurations to preserve
1974 		 * access to label-less namespaces by default.
1975 		 */
1976 		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1977 				&& !force_labels) {
1978 			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1979 					dev_name(&adev_dimm->dev));
1980 			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1981 		} else
1982 			dev_dbg(dev, "%s: Force enable labels\n",
1983 					dev_name(&adev_dimm->dev));
1984 	}
1985 
1986 	populate_shutdown_status(nfit_mem);
1987 
1988 	return 0;
1989 }
1990 
1991 static void shutdown_dimm_notify(void *data)
1992 {
1993 	struct acpi_nfit_desc *acpi_desc = data;
1994 	struct nfit_mem *nfit_mem;
1995 
1996 	mutex_lock(&acpi_desc->init_mutex);
1997 	/*
1998 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1999 	 * notifications.
2000 	 */
2001 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2002 		struct acpi_device *adev_dimm = nfit_mem->adev;
2003 
2004 		if (nfit_mem->flags_attr) {
2005 			sysfs_put(nfit_mem->flags_attr);
2006 			nfit_mem->flags_attr = NULL;
2007 		}
2008 		if (adev_dimm) {
2009 			acpi_remove_notify_handler(adev_dimm->handle,
2010 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
2011 			dev_set_drvdata(&adev_dimm->dev, NULL);
2012 		}
2013 	}
2014 	mutex_unlock(&acpi_desc->init_mutex);
2015 }
2016 
2017 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
2018 {
2019 	switch (family) {
2020 	case NVDIMM_FAMILY_INTEL:
2021 		return intel_security_ops;
2022 	default:
2023 		return NULL;
2024 	}
2025 }
2026 
2027 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
2028 		struct nfit_mem *nfit_mem)
2029 {
2030 	unsigned long mask;
2031 	struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
2032 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2033 
2034 	if (!nd_desc->fw_ops)
2035 		return NULL;
2036 
2037 	if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
2038 		return NULL;
2039 
2040 	mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
2041 	if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
2042 		return NULL;
2043 
2044 	return intel_fw_ops;
2045 }
2046 
2047 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
2048 {
2049 	struct nfit_mem *nfit_mem;
2050 	int dimm_count = 0, rc;
2051 	struct nvdimm *nvdimm;
2052 
2053 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2054 		struct acpi_nfit_flush_address *flush;
2055 		unsigned long flags = 0, cmd_mask;
2056 		struct nfit_memdev *nfit_memdev;
2057 		u32 device_handle;
2058 		u16 mem_flags;
2059 
2060 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2061 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2062 		if (nvdimm) {
2063 			dimm_count++;
2064 			continue;
2065 		}
2066 
2067 		if (nfit_mem->bdw && nfit_mem->memdev_pmem) {
2068 			set_bit(NDD_ALIASING, &flags);
2069 			set_bit(NDD_LABELING, &flags);
2070 		}
2071 
2072 		/* collate flags across all memdevs for this dimm */
2073 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2074 			struct acpi_nfit_memory_map *dimm_memdev;
2075 
2076 			dimm_memdev = __to_nfit_memdev(nfit_mem);
2077 			if (dimm_memdev->device_handle
2078 					!= nfit_memdev->memdev->device_handle)
2079 				continue;
2080 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2081 		}
2082 
2083 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2084 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2085 			set_bit(NDD_UNARMED, &flags);
2086 
2087 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2088 		if (rc)
2089 			continue;
2090 
2091 		/*
2092 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2093 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2094 		 * userspace interface.
2095 		 */
2096 		cmd_mask = 1UL << ND_CMD_CALL;
2097 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2098 			/*
2099 			 * These commands have a 1:1 correspondence
2100 			 * between DSM payload and libnvdimm ioctl
2101 			 * payload format.
2102 			 */
2103 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2104 		}
2105 
2106 		/* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
2107 		if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
2108 			set_bit(NDD_NOBLK, &flags);
2109 
2110 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2111 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2112 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2113 		}
2114 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2115 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2116 
2117 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2118 			: NULL;
2119 		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2120 				acpi_nfit_dimm_attribute_groups,
2121 				flags, cmd_mask, flush ? flush->hint_count : 0,
2122 				nfit_mem->flush_wpq, &nfit_mem->id[0],
2123 				acpi_nfit_get_security_ops(nfit_mem->family),
2124 				acpi_nfit_get_fw_ops(nfit_mem));
2125 		if (!nvdimm)
2126 			return -ENOMEM;
2127 
2128 		nfit_mem->nvdimm = nvdimm;
2129 		dimm_count++;
2130 
2131 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2132 			continue;
2133 
2134 		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2135 				nvdimm_name(nvdimm),
2136 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2137 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2138 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2139 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2140 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2141 
2142 	}
2143 
2144 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2145 	if (rc)
2146 		return rc;
2147 
2148 	/*
2149 	 * Now that dimms are successfully registered, and async registration
2150 	 * is flushed, attempt to enable event notification.
2151 	 */
2152 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2153 		struct kernfs_node *nfit_kernfs;
2154 
2155 		nvdimm = nfit_mem->nvdimm;
2156 		if (!nvdimm)
2157 			continue;
2158 
2159 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2160 		if (nfit_kernfs)
2161 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2162 					"flags");
2163 		sysfs_put(nfit_kernfs);
2164 		if (!nfit_mem->flags_attr)
2165 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2166 					nvdimm_name(nvdimm));
2167 	}
2168 
2169 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2170 			acpi_desc);
2171 }
2172 
2173 /*
2174  * These constants are private because there are no kernel consumers of
2175  * these commands.
2176  */
2177 enum nfit_aux_cmds {
2178         NFIT_CMD_TRANSLATE_SPA = 5,
2179         NFIT_CMD_ARS_INJECT_SET = 7,
2180         NFIT_CMD_ARS_INJECT_CLEAR = 8,
2181         NFIT_CMD_ARS_INJECT_GET = 9,
2182 };
2183 
2184 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2185 {
2186 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2187 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2188 	unsigned long dsm_mask, *mask;
2189 	struct acpi_device *adev;
2190 	int i;
2191 
2192 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2193 	set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2194 
2195 	/* enable nfit_test to inject bus command emulation */
2196 	if (acpi_desc->bus_cmd_force_en) {
2197 		nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2198 		mask = &nd_desc->bus_family_mask;
2199 		if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2200 			set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2201 			nd_desc->fw_ops = intel_bus_fw_ops;
2202 		}
2203 	}
2204 
2205 	adev = to_acpi_dev(acpi_desc);
2206 	if (!adev)
2207 		return;
2208 
2209 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2210 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2211 			set_bit(i, &nd_desc->cmd_mask);
2212 
2213 	dsm_mask =
2214 		(1 << ND_CMD_ARS_CAP) |
2215 		(1 << ND_CMD_ARS_START) |
2216 		(1 << ND_CMD_ARS_STATUS) |
2217 		(1 << ND_CMD_CLEAR_ERROR) |
2218 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2219 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2220 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2221 		(1 << NFIT_CMD_ARS_INJECT_GET);
2222 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2223 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2224 			set_bit(i, &acpi_desc->bus_dsm_mask);
2225 
2226 	/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2227 	dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2228 	guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2229 	mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2230 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2231 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2232 			set_bit(i, mask);
2233 
2234 	if (*mask == dsm_mask) {
2235 		set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2236 		nd_desc->fw_ops = intel_bus_fw_ops;
2237 	}
2238 }
2239 
2240 static ssize_t range_index_show(struct device *dev,
2241 		struct device_attribute *attr, char *buf)
2242 {
2243 	struct nd_region *nd_region = to_nd_region(dev);
2244 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2245 
2246 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2247 }
2248 static DEVICE_ATTR_RO(range_index);
2249 
2250 static struct attribute *acpi_nfit_region_attributes[] = {
2251 	&dev_attr_range_index.attr,
2252 	NULL,
2253 };
2254 
2255 static const struct attribute_group acpi_nfit_region_attribute_group = {
2256 	.name = "nfit",
2257 	.attrs = acpi_nfit_region_attributes,
2258 };
2259 
2260 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2261 	&acpi_nfit_region_attribute_group,
2262 	NULL,
2263 };
2264 
2265 /* enough info to uniquely specify an interleave set */
2266 struct nfit_set_info {
2267 	struct nfit_set_info_map {
2268 		u64 region_offset;
2269 		u32 serial_number;
2270 		u32 pad;
2271 	} mapping[0];
2272 };
2273 
2274 struct nfit_set_info2 {
2275 	struct nfit_set_info_map2 {
2276 		u64 region_offset;
2277 		u32 serial_number;
2278 		u16 vendor_id;
2279 		u16 manufacturing_date;
2280 		u8  manufacturing_location;
2281 		u8  reserved[31];
2282 	} mapping[0];
2283 };
2284 
2285 static size_t sizeof_nfit_set_info(int num_mappings)
2286 {
2287 	return sizeof(struct nfit_set_info)
2288 		+ num_mappings * sizeof(struct nfit_set_info_map);
2289 }
2290 
2291 static size_t sizeof_nfit_set_info2(int num_mappings)
2292 {
2293 	return sizeof(struct nfit_set_info2)
2294 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2295 }
2296 
2297 static int cmp_map_compat(const void *m0, const void *m1)
2298 {
2299 	const struct nfit_set_info_map *map0 = m0;
2300 	const struct nfit_set_info_map *map1 = m1;
2301 
2302 	return memcmp(&map0->region_offset, &map1->region_offset,
2303 			sizeof(u64));
2304 }
2305 
2306 static int cmp_map(const void *m0, const void *m1)
2307 {
2308 	const struct nfit_set_info_map *map0 = m0;
2309 	const struct nfit_set_info_map *map1 = m1;
2310 
2311 	if (map0->region_offset < map1->region_offset)
2312 		return -1;
2313 	else if (map0->region_offset > map1->region_offset)
2314 		return 1;
2315 	return 0;
2316 }
2317 
2318 static int cmp_map2(const void *m0, const void *m1)
2319 {
2320 	const struct nfit_set_info_map2 *map0 = m0;
2321 	const struct nfit_set_info_map2 *map1 = m1;
2322 
2323 	if (map0->region_offset < map1->region_offset)
2324 		return -1;
2325 	else if (map0->region_offset > map1->region_offset)
2326 		return 1;
2327 	return 0;
2328 }
2329 
2330 /* Retrieve the nth entry referencing this spa */
2331 static struct acpi_nfit_memory_map *memdev_from_spa(
2332 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2333 {
2334 	struct nfit_memdev *nfit_memdev;
2335 
2336 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2337 		if (nfit_memdev->memdev->range_index == range_index)
2338 			if (n-- == 0)
2339 				return nfit_memdev->memdev;
2340 	return NULL;
2341 }
2342 
2343 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2344 		struct nd_region_desc *ndr_desc,
2345 		struct acpi_nfit_system_address *spa)
2346 {
2347 	struct device *dev = acpi_desc->dev;
2348 	struct nd_interleave_set *nd_set;
2349 	u16 nr = ndr_desc->num_mappings;
2350 	struct nfit_set_info2 *info2;
2351 	struct nfit_set_info *info;
2352 	int i;
2353 
2354 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2355 	if (!nd_set)
2356 		return -ENOMEM;
2357 	import_guid(&nd_set->type_guid, spa->range_guid);
2358 
2359 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2360 	if (!info)
2361 		return -ENOMEM;
2362 
2363 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2364 	if (!info2)
2365 		return -ENOMEM;
2366 
2367 	for (i = 0; i < nr; i++) {
2368 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2369 		struct nfit_set_info_map *map = &info->mapping[i];
2370 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2371 		struct nvdimm *nvdimm = mapping->nvdimm;
2372 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2373 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2374 				spa->range_index, i);
2375 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2376 
2377 		if (!memdev || !nfit_mem->dcr) {
2378 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2379 			return -ENODEV;
2380 		}
2381 
2382 		map->region_offset = memdev->region_offset;
2383 		map->serial_number = dcr->serial_number;
2384 
2385 		map2->region_offset = memdev->region_offset;
2386 		map2->serial_number = dcr->serial_number;
2387 		map2->vendor_id = dcr->vendor_id;
2388 		map2->manufacturing_date = dcr->manufacturing_date;
2389 		map2->manufacturing_location = dcr->manufacturing_location;
2390 	}
2391 
2392 	/* v1.1 namespaces */
2393 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2394 			cmp_map, NULL);
2395 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2396 
2397 	/* v1.2 namespaces */
2398 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2399 			cmp_map2, NULL);
2400 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2401 
2402 	/* support v1.1 namespaces created with the wrong sort order */
2403 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2404 			cmp_map_compat, NULL);
2405 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2406 
2407 	/* record the result of the sort for the mapping position */
2408 	for (i = 0; i < nr; i++) {
2409 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2410 		int j;
2411 
2412 		for (j = 0; j < nr; j++) {
2413 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2414 			struct nvdimm *nvdimm = mapping->nvdimm;
2415 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2416 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2417 
2418 			if (map2->serial_number == dcr->serial_number &&
2419 			    map2->vendor_id == dcr->vendor_id &&
2420 			    map2->manufacturing_date == dcr->manufacturing_date &&
2421 			    map2->manufacturing_location
2422 				    == dcr->manufacturing_location) {
2423 				mapping->position = i;
2424 				break;
2425 			}
2426 		}
2427 	}
2428 
2429 	ndr_desc->nd_set = nd_set;
2430 	devm_kfree(dev, info);
2431 	devm_kfree(dev, info2);
2432 
2433 	return 0;
2434 }
2435 
2436 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2437 {
2438 	struct acpi_nfit_interleave *idt = mmio->idt;
2439 	u32 sub_line_offset, line_index, line_offset;
2440 	u64 line_no, table_skip_count, table_offset;
2441 
2442 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2443 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2444 	line_offset = idt->line_offset[line_index]
2445 		* mmio->line_size;
2446 	table_offset = table_skip_count * mmio->table_size;
2447 
2448 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2449 }
2450 
2451 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2452 {
2453 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2454 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2455 	const u32 STATUS_MASK = 0x80000037;
2456 
2457 	if (mmio->num_lines)
2458 		offset = to_interleave_offset(offset, mmio);
2459 
2460 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2461 }
2462 
2463 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2464 		resource_size_t dpa, unsigned int len, unsigned int write)
2465 {
2466 	u64 cmd, offset;
2467 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2468 
2469 	enum {
2470 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2471 		BCW_LEN_SHIFT = 48,
2472 		BCW_LEN_MASK = (1ULL << 8) - 1,
2473 		BCW_CMD_SHIFT = 56,
2474 	};
2475 
2476 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2477 	len = len >> L1_CACHE_SHIFT;
2478 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2479 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2480 
2481 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2482 	if (mmio->num_lines)
2483 		offset = to_interleave_offset(offset, mmio);
2484 
2485 	writeq(cmd, mmio->addr.base + offset);
2486 	nvdimm_flush(nfit_blk->nd_region, NULL);
2487 
2488 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2489 		readq(mmio->addr.base + offset);
2490 }
2491 
2492 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2493 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2494 		unsigned int lane)
2495 {
2496 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2497 	unsigned int copied = 0;
2498 	u64 base_offset;
2499 	int rc;
2500 
2501 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2502 		+ lane * mmio->size;
2503 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2504 	while (len) {
2505 		unsigned int c;
2506 		u64 offset;
2507 
2508 		if (mmio->num_lines) {
2509 			u32 line_offset;
2510 
2511 			offset = to_interleave_offset(base_offset + copied,
2512 					mmio);
2513 			div_u64_rem(offset, mmio->line_size, &line_offset);
2514 			c = min_t(size_t, len, mmio->line_size - line_offset);
2515 		} else {
2516 			offset = base_offset + nfit_blk->bdw_offset;
2517 			c = len;
2518 		}
2519 
2520 		if (rw)
2521 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2522 		else {
2523 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2524 				arch_invalidate_pmem((void __force *)
2525 					mmio->addr.aperture + offset, c);
2526 
2527 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2528 		}
2529 
2530 		copied += c;
2531 		len -= c;
2532 	}
2533 
2534 	if (rw)
2535 		nvdimm_flush(nfit_blk->nd_region, NULL);
2536 
2537 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2538 	return rc;
2539 }
2540 
2541 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2542 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2543 {
2544 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2545 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2546 	struct nd_region *nd_region = nfit_blk->nd_region;
2547 	unsigned int lane, copied = 0;
2548 	int rc = 0;
2549 
2550 	lane = nd_region_acquire_lane(nd_region);
2551 	while (len) {
2552 		u64 c = min(len, mmio->size);
2553 
2554 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2555 				iobuf + copied, c, rw, lane);
2556 		if (rc)
2557 			break;
2558 
2559 		copied += c;
2560 		len -= c;
2561 	}
2562 	nd_region_release_lane(nd_region, lane);
2563 
2564 	return rc;
2565 }
2566 
2567 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2568 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2569 {
2570 	if (idt) {
2571 		mmio->num_lines = idt->line_count;
2572 		mmio->line_size = idt->line_size;
2573 		if (interleave_ways == 0)
2574 			return -ENXIO;
2575 		mmio->table_size = mmio->num_lines * interleave_ways
2576 			* mmio->line_size;
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2583 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2584 {
2585 	struct nd_cmd_dimm_flags flags;
2586 	int rc;
2587 
2588 	memset(&flags, 0, sizeof(flags));
2589 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2590 			sizeof(flags), NULL);
2591 
2592 	if (rc >= 0 && flags.status == 0)
2593 		nfit_blk->dimm_flags = flags.flags;
2594 	else if (rc == -ENOTTY) {
2595 		/* fall back to a conservative default */
2596 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2597 		rc = 0;
2598 	} else
2599 		rc = -ENXIO;
2600 
2601 	return rc;
2602 }
2603 
2604 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2605 		struct device *dev)
2606 {
2607 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2608 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2609 	struct nfit_blk_mmio *mmio;
2610 	struct nfit_blk *nfit_blk;
2611 	struct nfit_mem *nfit_mem;
2612 	struct nvdimm *nvdimm;
2613 	int rc;
2614 
2615 	nvdimm = nd_blk_region_to_dimm(ndbr);
2616 	nfit_mem = nvdimm_provider_data(nvdimm);
2617 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2618 		dev_dbg(dev, "missing%s%s%s\n",
2619 				nfit_mem ? "" : " nfit_mem",
2620 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2621 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2622 		return -ENXIO;
2623 	}
2624 
2625 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2626 	if (!nfit_blk)
2627 		return -ENOMEM;
2628 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2629 	nfit_blk->nd_region = to_nd_region(dev);
2630 
2631 	/* map block aperture memory */
2632 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2633 	mmio = &nfit_blk->mmio[BDW];
2634 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2635                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2636 	if (!mmio->addr.base) {
2637 		dev_dbg(dev, "%s failed to map bdw\n",
2638 				nvdimm_name(nvdimm));
2639 		return -ENOMEM;
2640 	}
2641 	mmio->size = nfit_mem->bdw->size;
2642 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2643 	mmio->idt = nfit_mem->idt_bdw;
2644 	mmio->spa = nfit_mem->spa_bdw;
2645 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2646 			nfit_mem->memdev_bdw->interleave_ways);
2647 	if (rc) {
2648 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2649 				nvdimm_name(nvdimm));
2650 		return rc;
2651 	}
2652 
2653 	/* map block control memory */
2654 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2655 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2656 	mmio = &nfit_blk->mmio[DCR];
2657 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2658 			nfit_mem->spa_dcr->length);
2659 	if (!mmio->addr.base) {
2660 		dev_dbg(dev, "%s failed to map dcr\n",
2661 				nvdimm_name(nvdimm));
2662 		return -ENOMEM;
2663 	}
2664 	mmio->size = nfit_mem->dcr->window_size;
2665 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2666 	mmio->idt = nfit_mem->idt_dcr;
2667 	mmio->spa = nfit_mem->spa_dcr;
2668 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2669 			nfit_mem->memdev_dcr->interleave_ways);
2670 	if (rc) {
2671 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2672 				nvdimm_name(nvdimm));
2673 		return rc;
2674 	}
2675 
2676 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2677 	if (rc < 0) {
2678 		dev_dbg(dev, "%s failed get DIMM flags\n",
2679 				nvdimm_name(nvdimm));
2680 		return rc;
2681 	}
2682 
2683 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2684 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2685 
2686 	if (mmio->line_size == 0)
2687 		return 0;
2688 
2689 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2690 			+ 8 > mmio->line_size) {
2691 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2692 		return -ENXIO;
2693 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2694 			+ 8 > mmio->line_size) {
2695 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2696 		return -ENXIO;
2697 	}
2698 
2699 	return 0;
2700 }
2701 
2702 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2703 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2704 {
2705 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2706 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2707 	int cmd_rc, rc;
2708 
2709 	cmd->address = spa->address;
2710 	cmd->length = spa->length;
2711 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2712 			sizeof(*cmd), &cmd_rc);
2713 	if (rc < 0)
2714 		return rc;
2715 	return cmd_rc;
2716 }
2717 
2718 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2719 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2720 {
2721 	int rc;
2722 	int cmd_rc;
2723 	struct nd_cmd_ars_start ars_start;
2724 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2725 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2726 
2727 	memset(&ars_start, 0, sizeof(ars_start));
2728 	ars_start.address = spa->address;
2729 	ars_start.length = spa->length;
2730 	if (req_type == ARS_REQ_SHORT)
2731 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2732 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2733 		ars_start.type = ND_ARS_PERSISTENT;
2734 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2735 		ars_start.type = ND_ARS_VOLATILE;
2736 	else
2737 		return -ENOTTY;
2738 
2739 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2740 			sizeof(ars_start), &cmd_rc);
2741 
2742 	if (rc < 0)
2743 		return rc;
2744 	if (cmd_rc < 0)
2745 		return cmd_rc;
2746 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2747 	return 0;
2748 }
2749 
2750 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2751 {
2752 	int rc, cmd_rc;
2753 	struct nd_cmd_ars_start ars_start;
2754 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2755 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2756 
2757 	ars_start = (struct nd_cmd_ars_start) {
2758 		.address = ars_status->restart_address,
2759 		.length = ars_status->restart_length,
2760 		.type = ars_status->type,
2761 	};
2762 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2763 			sizeof(ars_start), &cmd_rc);
2764 	if (rc < 0)
2765 		return rc;
2766 	return cmd_rc;
2767 }
2768 
2769 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2770 {
2771 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2772 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2773 	int rc, cmd_rc;
2774 
2775 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2776 			acpi_desc->max_ars, &cmd_rc);
2777 	if (rc < 0)
2778 		return rc;
2779 	return cmd_rc;
2780 }
2781 
2782 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2783 		struct nfit_spa *nfit_spa)
2784 {
2785 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2786 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2787 	struct nd_region *nd_region = nfit_spa->nd_region;
2788 	struct device *dev;
2789 
2790 	lockdep_assert_held(&acpi_desc->init_mutex);
2791 	/*
2792 	 * Only advance the ARS state for ARS runs initiated by the
2793 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2794 	 * completion tracking.
2795 	 */
2796 	if (acpi_desc->scrub_spa != nfit_spa)
2797 		return;
2798 
2799 	if ((ars_status->address >= spa->address && ars_status->address
2800 				< spa->address + spa->length)
2801 			|| (ars_status->address < spa->address)) {
2802 		/*
2803 		 * Assume that if a scrub starts at an offset from the
2804 		 * start of nfit_spa that we are in the continuation
2805 		 * case.
2806 		 *
2807 		 * Otherwise, if the scrub covers the spa range, mark
2808 		 * any pending request complete.
2809 		 */
2810 		if (ars_status->address + ars_status->length
2811 				>= spa->address + spa->length)
2812 				/* complete */;
2813 		else
2814 			return;
2815 	} else
2816 		return;
2817 
2818 	acpi_desc->scrub_spa = NULL;
2819 	if (nd_region) {
2820 		dev = nd_region_dev(nd_region);
2821 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2822 	} else
2823 		dev = acpi_desc->dev;
2824 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2825 }
2826 
2827 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2828 {
2829 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2830 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2831 	int rc;
2832 	u32 i;
2833 
2834 	/*
2835 	 * First record starts at 44 byte offset from the start of the
2836 	 * payload.
2837 	 */
2838 	if (ars_status->out_length < 44)
2839 		return 0;
2840 
2841 	/*
2842 	 * Ignore potentially stale results that are only refreshed
2843 	 * after a start-ARS event.
2844 	 */
2845 	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2846 		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2847 				ars_status->num_records);
2848 		return 0;
2849 	}
2850 
2851 	for (i = 0; i < ars_status->num_records; i++) {
2852 		/* only process full records */
2853 		if (ars_status->out_length
2854 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2855 			break;
2856 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2857 				ars_status->records[i].err_address,
2858 				ars_status->records[i].length);
2859 		if (rc)
2860 			return rc;
2861 	}
2862 	if (i < ars_status->num_records)
2863 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2864 
2865 	return 0;
2866 }
2867 
2868 static void acpi_nfit_remove_resource(void *data)
2869 {
2870 	struct resource *res = data;
2871 
2872 	remove_resource(res);
2873 }
2874 
2875 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2876 		struct nd_region_desc *ndr_desc)
2877 {
2878 	struct resource *res, *nd_res = ndr_desc->res;
2879 	int is_pmem, ret;
2880 
2881 	/* No operation if the region is already registered as PMEM */
2882 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2883 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2884 	if (is_pmem == REGION_INTERSECTS)
2885 		return 0;
2886 
2887 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2888 	if (!res)
2889 		return -ENOMEM;
2890 
2891 	res->name = "Persistent Memory";
2892 	res->start = nd_res->start;
2893 	res->end = nd_res->end;
2894 	res->flags = IORESOURCE_MEM;
2895 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2896 
2897 	ret = insert_resource(&iomem_resource, res);
2898 	if (ret)
2899 		return ret;
2900 
2901 	ret = devm_add_action_or_reset(acpi_desc->dev,
2902 					acpi_nfit_remove_resource,
2903 					res);
2904 	if (ret)
2905 		return ret;
2906 
2907 	return 0;
2908 }
2909 
2910 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2911 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2912 		struct acpi_nfit_memory_map *memdev,
2913 		struct nfit_spa *nfit_spa)
2914 {
2915 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2916 			memdev->device_handle);
2917 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2918 	struct nd_blk_region_desc *ndbr_desc;
2919 	struct nfit_mem *nfit_mem;
2920 	int rc;
2921 
2922 	if (!nvdimm) {
2923 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2924 				spa->range_index, memdev->device_handle);
2925 		return -ENODEV;
2926 	}
2927 
2928 	mapping->nvdimm = nvdimm;
2929 	switch (nfit_spa_type(spa)) {
2930 	case NFIT_SPA_PM:
2931 	case NFIT_SPA_VOLATILE:
2932 		mapping->start = memdev->address;
2933 		mapping->size = memdev->region_size;
2934 		break;
2935 	case NFIT_SPA_DCR:
2936 		nfit_mem = nvdimm_provider_data(nvdimm);
2937 		if (!nfit_mem || !nfit_mem->bdw) {
2938 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2939 					spa->range_index, nvdimm_name(nvdimm));
2940 			break;
2941 		}
2942 
2943 		mapping->size = nfit_mem->bdw->capacity;
2944 		mapping->start = nfit_mem->bdw->start_address;
2945 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2946 		ndr_desc->mapping = mapping;
2947 		ndr_desc->num_mappings = 1;
2948 		ndbr_desc = to_blk_region_desc(ndr_desc);
2949 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2950 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2951 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2952 		if (rc)
2953 			return rc;
2954 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2955 				ndr_desc);
2956 		if (!nfit_spa->nd_region)
2957 			return -ENOMEM;
2958 		break;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2965 {
2966 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2967 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2968 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2969 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2970 }
2971 
2972 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2973 {
2974 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2975 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2976 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2977 }
2978 
2979 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2980 		struct nfit_spa *nfit_spa)
2981 {
2982 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2983 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2984 	struct nd_blk_region_desc ndbr_desc;
2985 	struct nd_region_desc *ndr_desc;
2986 	struct nfit_memdev *nfit_memdev;
2987 	struct nvdimm_bus *nvdimm_bus;
2988 	struct resource res;
2989 	int count = 0, rc;
2990 
2991 	if (nfit_spa->nd_region)
2992 		return 0;
2993 
2994 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2995 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2996 		return 0;
2997 	}
2998 
2999 	memset(&res, 0, sizeof(res));
3000 	memset(&mappings, 0, sizeof(mappings));
3001 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
3002 	res.start = spa->address;
3003 	res.end = res.start + spa->length - 1;
3004 	ndr_desc = &ndbr_desc.ndr_desc;
3005 	ndr_desc->res = &res;
3006 	ndr_desc->provider_data = nfit_spa;
3007 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
3008 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
3009 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
3010 						spa->proximity_domain);
3011 		ndr_desc->target_node = acpi_map_pxm_to_node(
3012 				spa->proximity_domain);
3013 	} else {
3014 		ndr_desc->numa_node = NUMA_NO_NODE;
3015 		ndr_desc->target_node = NUMA_NO_NODE;
3016 	}
3017 
3018 	/*
3019 	 * Persistence domain bits are hierarchical, if
3020 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
3021 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
3022 	 */
3023 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
3024 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
3025 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
3026 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
3027 
3028 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
3029 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
3030 		struct nd_mapping_desc *mapping;
3031 
3032 		if (memdev->range_index != spa->range_index)
3033 			continue;
3034 		if (count >= ND_MAX_MAPPINGS) {
3035 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
3036 					spa->range_index, ND_MAX_MAPPINGS);
3037 			return -ENXIO;
3038 		}
3039 		mapping = &mappings[count++];
3040 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
3041 				memdev, nfit_spa);
3042 		if (rc)
3043 			goto out;
3044 	}
3045 
3046 	ndr_desc->mapping = mappings;
3047 	ndr_desc->num_mappings = count;
3048 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
3049 	if (rc)
3050 		goto out;
3051 
3052 	nvdimm_bus = acpi_desc->nvdimm_bus;
3053 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
3054 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
3055 		if (rc) {
3056 			dev_warn(acpi_desc->dev,
3057 				"failed to insert pmem resource to iomem: %d\n",
3058 				rc);
3059 			goto out;
3060 		}
3061 
3062 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3063 				ndr_desc);
3064 		if (!nfit_spa->nd_region)
3065 			rc = -ENOMEM;
3066 	} else if (nfit_spa_is_volatile(spa)) {
3067 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
3068 				ndr_desc);
3069 		if (!nfit_spa->nd_region)
3070 			rc = -ENOMEM;
3071 	} else if (nfit_spa_is_virtual(spa)) {
3072 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3073 				ndr_desc);
3074 		if (!nfit_spa->nd_region)
3075 			rc = -ENOMEM;
3076 	}
3077 
3078  out:
3079 	if (rc)
3080 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
3081 				nfit_spa->spa->range_index);
3082 	return rc;
3083 }
3084 
3085 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
3086 {
3087 	struct device *dev = acpi_desc->dev;
3088 	struct nd_cmd_ars_status *ars_status;
3089 
3090 	if (acpi_desc->ars_status) {
3091 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3092 		return 0;
3093 	}
3094 
3095 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
3096 	if (!ars_status)
3097 		return -ENOMEM;
3098 	acpi_desc->ars_status = ars_status;
3099 	return 0;
3100 }
3101 
3102 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
3103 {
3104 	int rc;
3105 
3106 	if (ars_status_alloc(acpi_desc))
3107 		return -ENOMEM;
3108 
3109 	rc = ars_get_status(acpi_desc);
3110 
3111 	if (rc < 0 && rc != -ENOSPC)
3112 		return rc;
3113 
3114 	if (ars_status_process_records(acpi_desc))
3115 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
3116 
3117 	return rc;
3118 }
3119 
3120 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3121 		struct nfit_spa *nfit_spa)
3122 {
3123 	int rc;
3124 
3125 	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3126 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
3127 
3128 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3129 	if (!no_init_ars)
3130 		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3131 
3132 	switch (acpi_nfit_query_poison(acpi_desc)) {
3133 	case 0:
3134 	case -ENOSPC:
3135 	case -EAGAIN:
3136 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3137 		/* shouldn't happen, try again later */
3138 		if (rc == -EBUSY)
3139 			break;
3140 		if (rc) {
3141 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
3142 			break;
3143 		}
3144 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3145 		rc = acpi_nfit_query_poison(acpi_desc);
3146 		if (rc)
3147 			break;
3148 		acpi_desc->scrub_spa = nfit_spa;
3149 		ars_complete(acpi_desc, nfit_spa);
3150 		/*
3151 		 * If ars_complete() says we didn't complete the
3152 		 * short scrub, we'll try again with a long
3153 		 * request.
3154 		 */
3155 		acpi_desc->scrub_spa = NULL;
3156 		break;
3157 	case -EBUSY:
3158 	case -ENOMEM:
3159 		/*
3160 		 * BIOS was using ARS, wait for it to complete (or
3161 		 * resources to become available) and then perform our
3162 		 * own scrubs.
3163 		 */
3164 		break;
3165 	default:
3166 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3167 		break;
3168 	}
3169 
3170 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
3171 }
3172 
3173 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3174 {
3175 	struct nfit_spa *nfit_spa;
3176 
3177 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3178 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3179 			continue;
3180 		ars_complete(acpi_desc, nfit_spa);
3181 	}
3182 }
3183 
3184 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3185 		int query_rc)
3186 {
3187 	unsigned int tmo = acpi_desc->scrub_tmo;
3188 	struct device *dev = acpi_desc->dev;
3189 	struct nfit_spa *nfit_spa;
3190 
3191 	lockdep_assert_held(&acpi_desc->init_mutex);
3192 
3193 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
3194 		return 0;
3195 
3196 	if (query_rc == -EBUSY) {
3197 		dev_dbg(dev, "ARS: ARS busy\n");
3198 		return min(30U * 60U, tmo * 2);
3199 	}
3200 	if (query_rc == -ENOSPC) {
3201 		dev_dbg(dev, "ARS: ARS continue\n");
3202 		ars_continue(acpi_desc);
3203 		return 1;
3204 	}
3205 	if (query_rc && query_rc != -EAGAIN) {
3206 		unsigned long long addr, end;
3207 
3208 		addr = acpi_desc->ars_status->address;
3209 		end = addr + acpi_desc->ars_status->length;
3210 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3211 				query_rc);
3212 	}
3213 
3214 	ars_complete_all(acpi_desc);
3215 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3216 		enum nfit_ars_state req_type;
3217 		int rc;
3218 
3219 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3220 			continue;
3221 
3222 		/* prefer short ARS requests first */
3223 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3224 			req_type = ARS_REQ_SHORT;
3225 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3226 			req_type = ARS_REQ_LONG;
3227 		else
3228 			continue;
3229 		rc = ars_start(acpi_desc, nfit_spa, req_type);
3230 
3231 		dev = nd_region_dev(nfit_spa->nd_region);
3232 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3233 				nfit_spa->spa->range_index,
3234 				req_type == ARS_REQ_SHORT ? "short" : "long",
3235 				rc);
3236 		/*
3237 		 * Hmm, we raced someone else starting ARS? Try again in
3238 		 * a bit.
3239 		 */
3240 		if (rc == -EBUSY)
3241 			return 1;
3242 		if (rc == 0) {
3243 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3244 					"scrub start while range %d active\n",
3245 					acpi_desc->scrub_spa->spa->range_index);
3246 			clear_bit(req_type, &nfit_spa->ars_state);
3247 			acpi_desc->scrub_spa = nfit_spa;
3248 			/*
3249 			 * Consider this spa last for future scrub
3250 			 * requests
3251 			 */
3252 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3253 			return 1;
3254 		}
3255 
3256 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3257 				nfit_spa->spa->range_index, rc);
3258 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3259 	}
3260 	return 0;
3261 }
3262 
3263 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3264 {
3265 	lockdep_assert_held(&acpi_desc->init_mutex);
3266 
3267 	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3268 	/* note this should only be set from within the workqueue */
3269 	if (tmo)
3270 		acpi_desc->scrub_tmo = tmo;
3271 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3272 }
3273 
3274 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3275 {
3276 	__sched_ars(acpi_desc, 0);
3277 }
3278 
3279 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3280 {
3281 	lockdep_assert_held(&acpi_desc->init_mutex);
3282 
3283 	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3284 	acpi_desc->scrub_count++;
3285 	if (acpi_desc->scrub_count_state)
3286 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3287 }
3288 
3289 static void acpi_nfit_scrub(struct work_struct *work)
3290 {
3291 	struct acpi_nfit_desc *acpi_desc;
3292 	unsigned int tmo;
3293 	int query_rc;
3294 
3295 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3296 	mutex_lock(&acpi_desc->init_mutex);
3297 	query_rc = acpi_nfit_query_poison(acpi_desc);
3298 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3299 	if (tmo)
3300 		__sched_ars(acpi_desc, tmo);
3301 	else
3302 		notify_ars_done(acpi_desc);
3303 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3304 	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3305 	mutex_unlock(&acpi_desc->init_mutex);
3306 }
3307 
3308 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3309 		struct nfit_spa *nfit_spa)
3310 {
3311 	int type = nfit_spa_type(nfit_spa->spa);
3312 	struct nd_cmd_ars_cap ars_cap;
3313 	int rc;
3314 
3315 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
3316 	memset(&ars_cap, 0, sizeof(ars_cap));
3317 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3318 	if (rc < 0)
3319 		return;
3320 	/* check that the supported scrub types match the spa type */
3321 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3322 				& ND_ARS_VOLATILE) == 0)
3323 		return;
3324 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3325 				& ND_ARS_PERSISTENT) == 0)
3326 		return;
3327 
3328 	nfit_spa->max_ars = ars_cap.max_ars_out;
3329 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3330 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3331 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3332 }
3333 
3334 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3335 {
3336 	struct nfit_spa *nfit_spa;
3337 	int rc, do_sched_ars = 0;
3338 
3339 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3340 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3341 		switch (nfit_spa_type(nfit_spa->spa)) {
3342 		case NFIT_SPA_VOLATILE:
3343 		case NFIT_SPA_PM:
3344 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3345 			break;
3346 		}
3347 	}
3348 
3349 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3350 		switch (nfit_spa_type(nfit_spa->spa)) {
3351 		case NFIT_SPA_VOLATILE:
3352 		case NFIT_SPA_PM:
3353 			/* register regions and kick off initial ARS run */
3354 			rc = ars_register(acpi_desc, nfit_spa);
3355 			if (rc)
3356 				return rc;
3357 
3358 			/*
3359 			 * Kick off background ARS if at least one
3360 			 * region successfully registered ARS
3361 			 */
3362 			if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
3363 				do_sched_ars++;
3364 			break;
3365 		case NFIT_SPA_BDW:
3366 			/* nothing to register */
3367 			break;
3368 		case NFIT_SPA_DCR:
3369 		case NFIT_SPA_VDISK:
3370 		case NFIT_SPA_VCD:
3371 		case NFIT_SPA_PDISK:
3372 		case NFIT_SPA_PCD:
3373 			/* register known regions that don't support ARS */
3374 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3375 			if (rc)
3376 				return rc;
3377 			break;
3378 		default:
3379 			/* don't register unknown regions */
3380 			break;
3381 		}
3382 	}
3383 
3384 	if (do_sched_ars)
3385 		sched_ars(acpi_desc);
3386 	return 0;
3387 }
3388 
3389 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3390 		struct nfit_table_prev *prev)
3391 {
3392 	struct device *dev = acpi_desc->dev;
3393 
3394 	if (!list_empty(&prev->spas) ||
3395 			!list_empty(&prev->memdevs) ||
3396 			!list_empty(&prev->dcrs) ||
3397 			!list_empty(&prev->bdws) ||
3398 			!list_empty(&prev->idts) ||
3399 			!list_empty(&prev->flushes)) {
3400 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3401 		return -ENXIO;
3402 	}
3403 	return 0;
3404 }
3405 
3406 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3407 {
3408 	struct device *dev = acpi_desc->dev;
3409 	struct kernfs_node *nfit;
3410 	struct device *bus_dev;
3411 
3412 	if (!ars_supported(acpi_desc->nvdimm_bus))
3413 		return 0;
3414 
3415 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3416 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3417 	if (!nfit) {
3418 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3419 		return -ENODEV;
3420 	}
3421 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3422 	sysfs_put(nfit);
3423 	if (!acpi_desc->scrub_count_state) {
3424 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3425 		return -ENODEV;
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 static void acpi_nfit_unregister(void *data)
3432 {
3433 	struct acpi_nfit_desc *acpi_desc = data;
3434 
3435 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3436 }
3437 
3438 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3439 {
3440 	struct device *dev = acpi_desc->dev;
3441 	struct nfit_table_prev prev;
3442 	const void *end;
3443 	int rc;
3444 
3445 	if (!acpi_desc->nvdimm_bus) {
3446 		acpi_nfit_init_dsms(acpi_desc);
3447 
3448 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3449 				&acpi_desc->nd_desc);
3450 		if (!acpi_desc->nvdimm_bus)
3451 			return -ENOMEM;
3452 
3453 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3454 				acpi_desc);
3455 		if (rc)
3456 			return rc;
3457 
3458 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3459 		if (rc)
3460 			return rc;
3461 
3462 		/* register this acpi_desc for mce notifications */
3463 		mutex_lock(&acpi_desc_lock);
3464 		list_add_tail(&acpi_desc->list, &acpi_descs);
3465 		mutex_unlock(&acpi_desc_lock);
3466 	}
3467 
3468 	mutex_lock(&acpi_desc->init_mutex);
3469 
3470 	INIT_LIST_HEAD(&prev.spas);
3471 	INIT_LIST_HEAD(&prev.memdevs);
3472 	INIT_LIST_HEAD(&prev.dcrs);
3473 	INIT_LIST_HEAD(&prev.bdws);
3474 	INIT_LIST_HEAD(&prev.idts);
3475 	INIT_LIST_HEAD(&prev.flushes);
3476 
3477 	list_cut_position(&prev.spas, &acpi_desc->spas,
3478 				acpi_desc->spas.prev);
3479 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3480 				acpi_desc->memdevs.prev);
3481 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3482 				acpi_desc->dcrs.prev);
3483 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3484 				acpi_desc->bdws.prev);
3485 	list_cut_position(&prev.idts, &acpi_desc->idts,
3486 				acpi_desc->idts.prev);
3487 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3488 				acpi_desc->flushes.prev);
3489 
3490 	end = data + sz;
3491 	while (!IS_ERR_OR_NULL(data))
3492 		data = add_table(acpi_desc, &prev, data, end);
3493 
3494 	if (IS_ERR(data)) {
3495 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3496 		rc = PTR_ERR(data);
3497 		goto out_unlock;
3498 	}
3499 
3500 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3501 	if (rc)
3502 		goto out_unlock;
3503 
3504 	rc = nfit_mem_init(acpi_desc);
3505 	if (rc)
3506 		goto out_unlock;
3507 
3508 	rc = acpi_nfit_register_dimms(acpi_desc);
3509 	if (rc)
3510 		goto out_unlock;
3511 
3512 	rc = acpi_nfit_register_regions(acpi_desc);
3513 
3514  out_unlock:
3515 	mutex_unlock(&acpi_desc->init_mutex);
3516 	return rc;
3517 }
3518 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3519 
3520 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3521 {
3522 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3523 	struct device *dev = acpi_desc->dev;
3524 
3525 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3526 	nfit_device_lock(dev);
3527 	nfit_device_unlock(dev);
3528 
3529 	/* Bounce the init_mutex to complete initial registration */
3530 	mutex_lock(&acpi_desc->init_mutex);
3531 	mutex_unlock(&acpi_desc->init_mutex);
3532 
3533 	return 0;
3534 }
3535 
3536 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3537 		struct nvdimm *nvdimm, unsigned int cmd)
3538 {
3539 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3540 
3541 	if (nvdimm)
3542 		return 0;
3543 	if (cmd != ND_CMD_ARS_START)
3544 		return 0;
3545 
3546 	/*
3547 	 * The kernel and userspace may race to initiate a scrub, but
3548 	 * the scrub thread is prepared to lose that initial race.  It
3549 	 * just needs guarantees that any ARS it initiates are not
3550 	 * interrupted by any intervening start requests from userspace.
3551 	 */
3552 	if (work_busy(&acpi_desc->dwork.work))
3553 		return -EBUSY;
3554 
3555 	return 0;
3556 }
3557 
3558 /*
3559  * Prevent security and firmware activate commands from being issued via
3560  * ioctl.
3561  */
3562 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3563 		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3564 {
3565 	struct nd_cmd_pkg *call_pkg = buf;
3566 	unsigned int func;
3567 
3568 	if (nvdimm && cmd == ND_CMD_CALL &&
3569 			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3570 		func = call_pkg->nd_command;
3571 		if (func > NVDIMM_CMD_MAX ||
3572 		    (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3573 			return -EOPNOTSUPP;
3574 	}
3575 
3576 	/* block all non-nfit bus commands */
3577 	if (!nvdimm && cmd == ND_CMD_CALL &&
3578 			call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3579 		return -EOPNOTSUPP;
3580 
3581 	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3582 }
3583 
3584 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3585 		enum nfit_ars_state req_type)
3586 {
3587 	struct device *dev = acpi_desc->dev;
3588 	int scheduled = 0, busy = 0;
3589 	struct nfit_spa *nfit_spa;
3590 
3591 	mutex_lock(&acpi_desc->init_mutex);
3592 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3593 		mutex_unlock(&acpi_desc->init_mutex);
3594 		return 0;
3595 	}
3596 
3597 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3598 		int type = nfit_spa_type(nfit_spa->spa);
3599 
3600 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3601 			continue;
3602 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3603 			continue;
3604 
3605 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3606 			busy++;
3607 		else
3608 			scheduled++;
3609 	}
3610 	if (scheduled) {
3611 		sched_ars(acpi_desc);
3612 		dev_dbg(dev, "ars_scan triggered\n");
3613 	}
3614 	mutex_unlock(&acpi_desc->init_mutex);
3615 
3616 	if (scheduled)
3617 		return 0;
3618 	if (busy)
3619 		return -EBUSY;
3620 	return -ENOTTY;
3621 }
3622 
3623 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3624 {
3625 	struct nvdimm_bus_descriptor *nd_desc;
3626 
3627 	dev_set_drvdata(dev, acpi_desc);
3628 	acpi_desc->dev = dev;
3629 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3630 	nd_desc = &acpi_desc->nd_desc;
3631 	nd_desc->provider_name = "ACPI.NFIT";
3632 	nd_desc->module = THIS_MODULE;
3633 	nd_desc->ndctl = acpi_nfit_ctl;
3634 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3635 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3636 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3637 
3638 	INIT_LIST_HEAD(&acpi_desc->spas);
3639 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3640 	INIT_LIST_HEAD(&acpi_desc->bdws);
3641 	INIT_LIST_HEAD(&acpi_desc->idts);
3642 	INIT_LIST_HEAD(&acpi_desc->flushes);
3643 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3644 	INIT_LIST_HEAD(&acpi_desc->dimms);
3645 	INIT_LIST_HEAD(&acpi_desc->list);
3646 	mutex_init(&acpi_desc->init_mutex);
3647 	acpi_desc->scrub_tmo = 1;
3648 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3649 }
3650 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3651 
3652 static void acpi_nfit_put_table(void *table)
3653 {
3654 	acpi_put_table(table);
3655 }
3656 
3657 void acpi_nfit_shutdown(void *data)
3658 {
3659 	struct acpi_nfit_desc *acpi_desc = data;
3660 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3661 
3662 	/*
3663 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3664 	 * race teardown
3665 	 */
3666 	mutex_lock(&acpi_desc_lock);
3667 	list_del(&acpi_desc->list);
3668 	mutex_unlock(&acpi_desc_lock);
3669 
3670 	mutex_lock(&acpi_desc->init_mutex);
3671 	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3672 	cancel_delayed_work_sync(&acpi_desc->dwork);
3673 	mutex_unlock(&acpi_desc->init_mutex);
3674 
3675 	/*
3676 	 * Bounce the nvdimm bus lock to make sure any in-flight
3677 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3678 	 * either submit or see ->cancel set.
3679 	 */
3680 	nfit_device_lock(bus_dev);
3681 	nfit_device_unlock(bus_dev);
3682 
3683 	flush_workqueue(nfit_wq);
3684 }
3685 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3686 
3687 static int acpi_nfit_add(struct acpi_device *adev)
3688 {
3689 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3690 	struct acpi_nfit_desc *acpi_desc;
3691 	struct device *dev = &adev->dev;
3692 	struct acpi_table_header *tbl;
3693 	acpi_status status = AE_OK;
3694 	acpi_size sz;
3695 	int rc = 0;
3696 
3697 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3698 	if (ACPI_FAILURE(status)) {
3699 		/* The NVDIMM root device allows OS to trigger enumeration of
3700 		 * NVDIMMs through NFIT at boot time and re-enumeration at
3701 		 * root level via the _FIT method during runtime.
3702 		 * This is ok to return 0 here, we could have an nvdimm
3703 		 * hotplugged later and evaluate _FIT method which returns
3704 		 * data in the format of a series of NFIT Structures.
3705 		 */
3706 		dev_dbg(dev, "failed to find NFIT at startup\n");
3707 		return 0;
3708 	}
3709 
3710 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3711 	if (rc)
3712 		return rc;
3713 	sz = tbl->length;
3714 
3715 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3716 	if (!acpi_desc)
3717 		return -ENOMEM;
3718 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3719 
3720 	/* Save the acpi header for exporting the revision via sysfs */
3721 	acpi_desc->acpi_header = *tbl;
3722 
3723 	/* Evaluate _FIT and override with that if present */
3724 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3725 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3726 		union acpi_object *obj = buf.pointer;
3727 
3728 		if (obj->type == ACPI_TYPE_BUFFER)
3729 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3730 					obj->buffer.length);
3731 		else
3732 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3733 				(int) obj->type);
3734 		kfree(buf.pointer);
3735 	} else
3736 		/* skip over the lead-in header table */
3737 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3738 				+ sizeof(struct acpi_table_nfit),
3739 				sz - sizeof(struct acpi_table_nfit));
3740 
3741 	if (rc)
3742 		return rc;
3743 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3744 }
3745 
3746 static int acpi_nfit_remove(struct acpi_device *adev)
3747 {
3748 	/* see acpi_nfit_unregister */
3749 	return 0;
3750 }
3751 
3752 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3753 {
3754 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3755 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3756 	union acpi_object *obj;
3757 	acpi_status status;
3758 	int ret;
3759 
3760 	if (!dev->driver) {
3761 		/* dev->driver may be null if we're being removed */
3762 		dev_dbg(dev, "no driver found for dev\n");
3763 		return;
3764 	}
3765 
3766 	if (!acpi_desc) {
3767 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3768 		if (!acpi_desc)
3769 			return;
3770 		acpi_nfit_desc_init(acpi_desc, dev);
3771 	} else {
3772 		/*
3773 		 * Finish previous registration before considering new
3774 		 * regions.
3775 		 */
3776 		flush_workqueue(nfit_wq);
3777 	}
3778 
3779 	/* Evaluate _FIT */
3780 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3781 	if (ACPI_FAILURE(status)) {
3782 		dev_err(dev, "failed to evaluate _FIT\n");
3783 		return;
3784 	}
3785 
3786 	obj = buf.pointer;
3787 	if (obj->type == ACPI_TYPE_BUFFER) {
3788 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3789 				obj->buffer.length);
3790 		if (ret)
3791 			dev_err(dev, "failed to merge updated NFIT\n");
3792 	} else
3793 		dev_err(dev, "Invalid _FIT\n");
3794 	kfree(buf.pointer);
3795 }
3796 
3797 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3798 {
3799 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3800 
3801 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3802 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3803 	else
3804 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3805 }
3806 
3807 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3808 {
3809 	dev_dbg(dev, "event: 0x%x\n", event);
3810 
3811 	switch (event) {
3812 	case NFIT_NOTIFY_UPDATE:
3813 		return acpi_nfit_update_notify(dev, handle);
3814 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3815 		return acpi_nfit_uc_error_notify(dev, handle);
3816 	default:
3817 		return;
3818 	}
3819 }
3820 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3821 
3822 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3823 {
3824 	nfit_device_lock(&adev->dev);
3825 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3826 	nfit_device_unlock(&adev->dev);
3827 }
3828 
3829 static const struct acpi_device_id acpi_nfit_ids[] = {
3830 	{ "ACPI0012", 0 },
3831 	{ "", 0 },
3832 };
3833 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3834 
3835 static struct acpi_driver acpi_nfit_driver = {
3836 	.name = KBUILD_MODNAME,
3837 	.ids = acpi_nfit_ids,
3838 	.ops = {
3839 		.add = acpi_nfit_add,
3840 		.remove = acpi_nfit_remove,
3841 		.notify = acpi_nfit_notify,
3842 	},
3843 };
3844 
3845 static __init int nfit_init(void)
3846 {
3847 	int ret;
3848 
3849 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3850 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3851 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3852 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3853 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3854 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3855 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3856 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3857 
3858 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3859 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3860 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3861 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3862 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3863 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3864 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3865 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3866 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3867 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3868 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3869 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3870 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3871 	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3872 	guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3873 
3874 	nfit_wq = create_singlethread_workqueue("nfit");
3875 	if (!nfit_wq)
3876 		return -ENOMEM;
3877 
3878 	nfit_mce_register();
3879 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3880 	if (ret) {
3881 		nfit_mce_unregister();
3882 		destroy_workqueue(nfit_wq);
3883 	}
3884 
3885 	return ret;
3886 
3887 }
3888 
3889 static __exit void nfit_exit(void)
3890 {
3891 	nfit_mce_unregister();
3892 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3893 	destroy_workqueue(nfit_wq);
3894 	WARN_ON(!list_empty(&acpi_descs));
3895 }
3896 
3897 module_init(nfit_init);
3898 module_exit(nfit_exit);
3899 MODULE_LICENSE("GPL v2");
3900 MODULE_AUTHOR("Intel Corporation");
3901