1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ec.c - ACPI Embedded Controller Driver (v3) 4 * 5 * Copyright (C) 2001-2015 Intel Corporation 6 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com> 7 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com> 8 * 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 * 2004 Luming Yu <luming.yu@intel.com> 10 * 2001, 2002 Andy Grover <andrew.grover@intel.com> 11 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 12 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de> 13 */ 14 15 /* Uncomment next line to get verbose printout */ 16 /* #define DEBUG */ 17 #define pr_fmt(fmt) "ACPI: EC: " fmt 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/init.h> 22 #include <linux/types.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/list.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/acpi.h> 30 #include <linux/dmi.h> 31 #include <asm/io.h> 32 33 #include "internal.h" 34 35 #define ACPI_EC_CLASS "embedded_controller" 36 #define ACPI_EC_DEVICE_NAME "Embedded Controller" 37 38 /* EC status register */ 39 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */ 40 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */ 41 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */ 42 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */ 43 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */ 44 45 /* 46 * The SCI_EVT clearing timing is not defined by the ACPI specification. 47 * This leads to lots of practical timing issues for the host EC driver. 48 * The following variations are defined (from the target EC firmware's 49 * perspective): 50 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the 51 * target can clear SCI_EVT at any time so long as the host can see 52 * the indication by reading the status register (EC_SC). So the 53 * host should re-check SCI_EVT after the first time the SCI_EVT 54 * indication is seen, which is the same time the query request 55 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set 56 * at any later time could indicate another event. Normally such 57 * kind of EC firmware has implemented an event queue and will 58 * return 0x00 to indicate "no outstanding event". 59 * QUERY: After seeing the query request (QR_EC) written to the command 60 * register (EC_CMD) by the host and having prepared the responding 61 * event value in the data register (EC_DATA), the target can safely 62 * clear SCI_EVT because the target can confirm that the current 63 * event is being handled by the host. The host then should check 64 * SCI_EVT right after reading the event response from the data 65 * register (EC_DATA). 66 * EVENT: After seeing the event response read from the data register 67 * (EC_DATA) by the host, the target can clear SCI_EVT. As the 68 * target requires time to notice the change in the data register 69 * (EC_DATA), the host may be required to wait additional guarding 70 * time before checking the SCI_EVT again. Such guarding may not be 71 * necessary if the host is notified via another IRQ. 72 */ 73 #define ACPI_EC_EVT_TIMING_STATUS 0x00 74 #define ACPI_EC_EVT_TIMING_QUERY 0x01 75 #define ACPI_EC_EVT_TIMING_EVENT 0x02 76 77 /* EC commands */ 78 enum ec_command { 79 ACPI_EC_COMMAND_READ = 0x80, 80 ACPI_EC_COMMAND_WRITE = 0x81, 81 ACPI_EC_BURST_ENABLE = 0x82, 82 ACPI_EC_BURST_DISABLE = 0x83, 83 ACPI_EC_COMMAND_QUERY = 0x84, 84 }; 85 86 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */ 87 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */ 88 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */ 89 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query 90 * when trying to clear the EC */ 91 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */ 92 93 enum { 94 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */ 95 EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */ 96 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */ 97 EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */ 98 EC_FLAGS_STARTED, /* Driver is started */ 99 EC_FLAGS_STOPPED, /* Driver is stopped */ 100 EC_FLAGS_EVENTS_MASKED, /* Events masked */ 101 }; 102 103 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */ 104 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */ 105 106 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */ 107 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY; 108 module_param(ec_delay, uint, 0644); 109 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes"); 110 111 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES; 112 module_param(ec_max_queries, uint, 0644); 113 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations"); 114 115 static bool ec_busy_polling __read_mostly; 116 module_param(ec_busy_polling, bool, 0644); 117 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction"); 118 119 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL; 120 module_param(ec_polling_guard, uint, 0644); 121 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes"); 122 123 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY; 124 125 /* 126 * If the number of false interrupts per one transaction exceeds 127 * this threshold, will think there is a GPE storm happened and 128 * will disable the GPE for normal transaction. 129 */ 130 static unsigned int ec_storm_threshold __read_mostly = 8; 131 module_param(ec_storm_threshold, uint, 0644); 132 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm"); 133 134 static bool ec_freeze_events __read_mostly; 135 module_param(ec_freeze_events, bool, 0644); 136 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume"); 137 138 static bool ec_no_wakeup __read_mostly; 139 module_param(ec_no_wakeup, bool, 0644); 140 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle"); 141 142 struct acpi_ec_query_handler { 143 struct list_head node; 144 acpi_ec_query_func func; 145 acpi_handle handle; 146 void *data; 147 u8 query_bit; 148 struct kref kref; 149 }; 150 151 struct transaction { 152 const u8 *wdata; 153 u8 *rdata; 154 unsigned short irq_count; 155 u8 command; 156 u8 wi; 157 u8 ri; 158 u8 wlen; 159 u8 rlen; 160 u8 flags; 161 }; 162 163 struct acpi_ec_query { 164 struct transaction transaction; 165 struct work_struct work; 166 struct acpi_ec_query_handler *handler; 167 struct acpi_ec *ec; 168 }; 169 170 static int acpi_ec_submit_query(struct acpi_ec *ec); 171 static void advance_transaction(struct acpi_ec *ec, bool interrupt); 172 static void acpi_ec_event_handler(struct work_struct *work); 173 174 struct acpi_ec *first_ec; 175 EXPORT_SYMBOL(first_ec); 176 177 static struct acpi_ec *boot_ec; 178 static bool boot_ec_is_ecdt; 179 static struct workqueue_struct *ec_wq; 180 static struct workqueue_struct *ec_query_wq; 181 182 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */ 183 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */ 184 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */ 185 186 /* -------------------------------------------------------------------------- 187 * Logging/Debugging 188 * -------------------------------------------------------------------------- */ 189 190 /* 191 * Splitters used by the developers to track the boundary of the EC 192 * handling processes. 193 */ 194 #ifdef DEBUG 195 #define EC_DBG_SEP " " 196 #define EC_DBG_DRV "+++++" 197 #define EC_DBG_STM "=====" 198 #define EC_DBG_REQ "*****" 199 #define EC_DBG_EVT "#####" 200 #else 201 #define EC_DBG_SEP "" 202 #define EC_DBG_DRV 203 #define EC_DBG_STM 204 #define EC_DBG_REQ 205 #define EC_DBG_EVT 206 #endif 207 208 #define ec_log_raw(fmt, ...) \ 209 pr_info(fmt "\n", ##__VA_ARGS__) 210 #define ec_dbg_raw(fmt, ...) \ 211 pr_debug(fmt "\n", ##__VA_ARGS__) 212 #define ec_log(filter, fmt, ...) \ 213 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) 214 #define ec_dbg(filter, fmt, ...) \ 215 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) 216 217 #define ec_log_drv(fmt, ...) \ 218 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__) 219 #define ec_dbg_drv(fmt, ...) \ 220 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__) 221 #define ec_dbg_stm(fmt, ...) \ 222 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__) 223 #define ec_dbg_req(fmt, ...) \ 224 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__) 225 #define ec_dbg_evt(fmt, ...) \ 226 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__) 227 #define ec_dbg_ref(ec, fmt, ...) \ 228 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__) 229 230 /* -------------------------------------------------------------------------- 231 * Device Flags 232 * -------------------------------------------------------------------------- */ 233 234 static bool acpi_ec_started(struct acpi_ec *ec) 235 { 236 return test_bit(EC_FLAGS_STARTED, &ec->flags) && 237 !test_bit(EC_FLAGS_STOPPED, &ec->flags); 238 } 239 240 static bool acpi_ec_event_enabled(struct acpi_ec *ec) 241 { 242 /* 243 * There is an OSPM early stage logic. During the early stages 244 * (boot/resume), OSPMs shouldn't enable the event handling, only 245 * the EC transactions are allowed to be performed. 246 */ 247 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 248 return false; 249 /* 250 * However, disabling the event handling is experimental for late 251 * stage (suspend), and is controlled by the boot parameter of 252 * "ec_freeze_events": 253 * 1. true: The EC event handling is disabled before entering 254 * the noirq stage. 255 * 2. false: The EC event handling is automatically disabled as 256 * soon as the EC driver is stopped. 257 */ 258 if (ec_freeze_events) 259 return acpi_ec_started(ec); 260 else 261 return test_bit(EC_FLAGS_STARTED, &ec->flags); 262 } 263 264 static bool acpi_ec_flushed(struct acpi_ec *ec) 265 { 266 return ec->reference_count == 1; 267 } 268 269 /* -------------------------------------------------------------------------- 270 * EC Registers 271 * -------------------------------------------------------------------------- */ 272 273 static inline u8 acpi_ec_read_status(struct acpi_ec *ec) 274 { 275 u8 x = inb(ec->command_addr); 276 277 ec_dbg_raw("EC_SC(R) = 0x%2.2x " 278 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d", 279 x, 280 !!(x & ACPI_EC_FLAG_SCI), 281 !!(x & ACPI_EC_FLAG_BURST), 282 !!(x & ACPI_EC_FLAG_CMD), 283 !!(x & ACPI_EC_FLAG_IBF), 284 !!(x & ACPI_EC_FLAG_OBF)); 285 return x; 286 } 287 288 static inline u8 acpi_ec_read_data(struct acpi_ec *ec) 289 { 290 u8 x = inb(ec->data_addr); 291 292 ec->timestamp = jiffies; 293 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x); 294 return x; 295 } 296 297 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command) 298 { 299 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command); 300 outb(command, ec->command_addr); 301 ec->timestamp = jiffies; 302 } 303 304 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data) 305 { 306 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data); 307 outb(data, ec->data_addr); 308 ec->timestamp = jiffies; 309 } 310 311 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 312 static const char *acpi_ec_cmd_string(u8 cmd) 313 { 314 switch (cmd) { 315 case 0x80: 316 return "RD_EC"; 317 case 0x81: 318 return "WR_EC"; 319 case 0x82: 320 return "BE_EC"; 321 case 0x83: 322 return "BD_EC"; 323 case 0x84: 324 return "QR_EC"; 325 } 326 return "UNKNOWN"; 327 } 328 #else 329 #define acpi_ec_cmd_string(cmd) "UNDEF" 330 #endif 331 332 /* -------------------------------------------------------------------------- 333 * GPE Registers 334 * -------------------------------------------------------------------------- */ 335 336 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec) 337 { 338 acpi_event_status gpe_status = 0; 339 340 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status); 341 return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET); 342 } 343 344 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open) 345 { 346 if (open) 347 acpi_enable_gpe(NULL, ec->gpe); 348 else { 349 BUG_ON(ec->reference_count < 1); 350 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); 351 } 352 if (acpi_ec_gpe_status_set(ec)) { 353 /* 354 * On some platforms, EN=1 writes cannot trigger GPE. So 355 * software need to manually trigger a pseudo GPE event on 356 * EN=1 writes. 357 */ 358 ec_dbg_raw("Polling quirk"); 359 advance_transaction(ec, false); 360 } 361 } 362 363 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close) 364 { 365 if (close) 366 acpi_disable_gpe(NULL, ec->gpe); 367 else { 368 BUG_ON(ec->reference_count < 1); 369 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); 370 } 371 } 372 373 /* -------------------------------------------------------------------------- 374 * Transaction Management 375 * -------------------------------------------------------------------------- */ 376 377 static void acpi_ec_submit_request(struct acpi_ec *ec) 378 { 379 ec->reference_count++; 380 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && 381 ec->gpe >= 0 && ec->reference_count == 1) 382 acpi_ec_enable_gpe(ec, true); 383 } 384 385 static void acpi_ec_complete_request(struct acpi_ec *ec) 386 { 387 bool flushed = false; 388 389 ec->reference_count--; 390 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && 391 ec->gpe >= 0 && ec->reference_count == 0) 392 acpi_ec_disable_gpe(ec, true); 393 flushed = acpi_ec_flushed(ec); 394 if (flushed) 395 wake_up(&ec->wait); 396 } 397 398 static void acpi_ec_mask_events(struct acpi_ec *ec) 399 { 400 if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { 401 if (ec->gpe >= 0) 402 acpi_ec_disable_gpe(ec, false); 403 else 404 disable_irq_nosync(ec->irq); 405 406 ec_dbg_drv("Polling enabled"); 407 set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); 408 } 409 } 410 411 static void acpi_ec_unmask_events(struct acpi_ec *ec) 412 { 413 if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { 414 clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); 415 if (ec->gpe >= 0) 416 acpi_ec_enable_gpe(ec, false); 417 else 418 enable_irq(ec->irq); 419 420 ec_dbg_drv("Polling disabled"); 421 } 422 } 423 424 /* 425 * acpi_ec_submit_flushable_request() - Increase the reference count unless 426 * the flush operation is not in 427 * progress 428 * @ec: the EC device 429 * 430 * This function must be used before taking a new action that should hold 431 * the reference count. If this function returns false, then the action 432 * must be discarded or it will prevent the flush operation from being 433 * completed. 434 */ 435 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec) 436 { 437 if (!acpi_ec_started(ec)) 438 return false; 439 acpi_ec_submit_request(ec); 440 return true; 441 } 442 443 static void acpi_ec_submit_event(struct acpi_ec *ec) 444 { 445 /* 446 * It is safe to mask the events here, because acpi_ec_close_event() 447 * will run at least once after this. 448 */ 449 acpi_ec_mask_events(ec); 450 if (!acpi_ec_event_enabled(ec)) 451 return; 452 453 if (ec->event_state != EC_EVENT_READY) 454 return; 455 456 ec_dbg_evt("Command(%s) submitted/blocked", 457 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 458 459 ec->event_state = EC_EVENT_IN_PROGRESS; 460 /* 461 * If events_to_process is greater than 0 at this point, the while () 462 * loop in acpi_ec_event_handler() is still running and incrementing 463 * events_to_process will cause it to invoke acpi_ec_submit_query() once 464 * more, so it is not necessary to queue up the event work to start the 465 * same loop again. 466 */ 467 if (ec->events_to_process++ > 0) 468 return; 469 470 ec->events_in_progress++; 471 queue_work(ec_wq, &ec->work); 472 } 473 474 static void acpi_ec_complete_event(struct acpi_ec *ec) 475 { 476 if (ec->event_state == EC_EVENT_IN_PROGRESS) 477 ec->event_state = EC_EVENT_COMPLETE; 478 } 479 480 static void acpi_ec_close_event(struct acpi_ec *ec) 481 { 482 if (ec->event_state != EC_EVENT_READY) 483 ec_dbg_evt("Command(%s) unblocked", 484 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 485 486 ec->event_state = EC_EVENT_READY; 487 acpi_ec_unmask_events(ec); 488 } 489 490 static inline void __acpi_ec_enable_event(struct acpi_ec *ec) 491 { 492 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 493 ec_log_drv("event unblocked"); 494 /* 495 * Unconditionally invoke this once after enabling the event 496 * handling mechanism to detect the pending events. 497 */ 498 advance_transaction(ec, false); 499 } 500 501 static inline void __acpi_ec_disable_event(struct acpi_ec *ec) 502 { 503 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 504 ec_log_drv("event blocked"); 505 } 506 507 /* 508 * Process _Q events that might have accumulated in the EC. 509 * Run with locked ec mutex. 510 */ 511 static void acpi_ec_clear(struct acpi_ec *ec) 512 { 513 int i; 514 515 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) { 516 if (acpi_ec_submit_query(ec)) 517 break; 518 } 519 if (unlikely(i == ACPI_EC_CLEAR_MAX)) 520 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i); 521 else 522 pr_info("%d stale EC events cleared\n", i); 523 } 524 525 static void acpi_ec_enable_event(struct acpi_ec *ec) 526 { 527 unsigned long flags; 528 529 spin_lock_irqsave(&ec->lock, flags); 530 if (acpi_ec_started(ec)) 531 __acpi_ec_enable_event(ec); 532 spin_unlock_irqrestore(&ec->lock, flags); 533 534 /* Drain additional events if hardware requires that */ 535 if (EC_FLAGS_CLEAR_ON_RESUME) 536 acpi_ec_clear(ec); 537 } 538 539 #ifdef CONFIG_PM_SLEEP 540 static void __acpi_ec_flush_work(void) 541 { 542 flush_workqueue(ec_wq); /* flush ec->work */ 543 flush_workqueue(ec_query_wq); /* flush queries */ 544 } 545 546 static void acpi_ec_disable_event(struct acpi_ec *ec) 547 { 548 unsigned long flags; 549 550 spin_lock_irqsave(&ec->lock, flags); 551 __acpi_ec_disable_event(ec); 552 spin_unlock_irqrestore(&ec->lock, flags); 553 554 /* 555 * When ec_freeze_events is true, we need to flush events in 556 * the proper position before entering the noirq stage. 557 */ 558 __acpi_ec_flush_work(); 559 } 560 561 void acpi_ec_flush_work(void) 562 { 563 /* Without ec_wq there is nothing to flush. */ 564 if (!ec_wq) 565 return; 566 567 __acpi_ec_flush_work(); 568 } 569 #endif /* CONFIG_PM_SLEEP */ 570 571 static bool acpi_ec_guard_event(struct acpi_ec *ec) 572 { 573 unsigned long flags; 574 bool guarded; 575 576 spin_lock_irqsave(&ec->lock, flags); 577 /* 578 * If firmware SCI_EVT clearing timing is "event", we actually 579 * don't know when the SCI_EVT will be cleared by firmware after 580 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an 581 * acceptable period. 582 * 583 * The guarding period is applicable if the event state is not 584 * EC_EVENT_READY, but otherwise if the current transaction is of the 585 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already 586 * and it should not be applied to let the transaction transition into 587 * the ACPI_EC_COMMAND_POLL state immediately. 588 */ 589 guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && 590 ec->event_state != EC_EVENT_READY && 591 (!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY); 592 spin_unlock_irqrestore(&ec->lock, flags); 593 return guarded; 594 } 595 596 static int ec_transaction_polled(struct acpi_ec *ec) 597 { 598 unsigned long flags; 599 int ret = 0; 600 601 spin_lock_irqsave(&ec->lock, flags); 602 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL)) 603 ret = 1; 604 spin_unlock_irqrestore(&ec->lock, flags); 605 return ret; 606 } 607 608 static int ec_transaction_completed(struct acpi_ec *ec) 609 { 610 unsigned long flags; 611 int ret = 0; 612 613 spin_lock_irqsave(&ec->lock, flags); 614 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE)) 615 ret = 1; 616 spin_unlock_irqrestore(&ec->lock, flags); 617 return ret; 618 } 619 620 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag) 621 { 622 ec->curr->flags |= flag; 623 624 if (ec->curr->command != ACPI_EC_COMMAND_QUERY) 625 return; 626 627 switch (ec_event_clearing) { 628 case ACPI_EC_EVT_TIMING_STATUS: 629 if (flag == ACPI_EC_COMMAND_POLL) 630 acpi_ec_close_event(ec); 631 632 return; 633 634 case ACPI_EC_EVT_TIMING_QUERY: 635 if (flag == ACPI_EC_COMMAND_COMPLETE) 636 acpi_ec_close_event(ec); 637 638 return; 639 640 case ACPI_EC_EVT_TIMING_EVENT: 641 if (flag == ACPI_EC_COMMAND_COMPLETE) 642 acpi_ec_complete_event(ec); 643 } 644 } 645 646 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t) 647 { 648 if (t->irq_count < ec_storm_threshold) 649 ++t->irq_count; 650 651 /* Trigger if the threshold is 0 too. */ 652 if (t->irq_count == ec_storm_threshold) 653 acpi_ec_mask_events(ec); 654 } 655 656 static void advance_transaction(struct acpi_ec *ec, bool interrupt) 657 { 658 struct transaction *t = ec->curr; 659 bool wakeup = false; 660 u8 status; 661 662 ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id()); 663 664 /* 665 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1 666 * changes to always trigger a GPE interrupt. 667 * 668 * GPE STS is a W1C register, which means: 669 * 670 * 1. Software can clear it without worrying about clearing the other 671 * GPEs' STS bits when the hardware sets them in parallel. 672 * 673 * 2. As long as software can ensure only clearing it when it is set, 674 * hardware won't set it in parallel. 675 */ 676 if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec)) 677 acpi_clear_gpe(NULL, ec->gpe); 678 679 status = acpi_ec_read_status(ec); 680 681 /* 682 * Another IRQ or a guarded polling mode advancement is detected, 683 * the next QR_EC submission is then allowed. 684 */ 685 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) { 686 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && 687 ec->event_state == EC_EVENT_COMPLETE) 688 acpi_ec_close_event(ec); 689 690 if (!t) 691 goto out; 692 } 693 694 if (t->flags & ACPI_EC_COMMAND_POLL) { 695 if (t->wlen > t->wi) { 696 if (!(status & ACPI_EC_FLAG_IBF)) 697 acpi_ec_write_data(ec, t->wdata[t->wi++]); 698 else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) 699 acpi_ec_spurious_interrupt(ec, t); 700 } else if (t->rlen > t->ri) { 701 if (status & ACPI_EC_FLAG_OBF) { 702 t->rdata[t->ri++] = acpi_ec_read_data(ec); 703 if (t->rlen == t->ri) { 704 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); 705 wakeup = true; 706 if (t->command == ACPI_EC_COMMAND_QUERY) 707 ec_dbg_evt("Command(%s) completed by hardware", 708 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 709 } 710 } else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) { 711 acpi_ec_spurious_interrupt(ec, t); 712 } 713 } else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) { 714 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); 715 wakeup = true; 716 } 717 } else if (!(status & ACPI_EC_FLAG_IBF)) { 718 acpi_ec_write_cmd(ec, t->command); 719 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL); 720 } 721 722 out: 723 if (status & ACPI_EC_FLAG_SCI) 724 acpi_ec_submit_event(ec); 725 726 if (wakeup && interrupt) 727 wake_up(&ec->wait); 728 } 729 730 static void start_transaction(struct acpi_ec *ec) 731 { 732 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0; 733 ec->curr->flags = 0; 734 } 735 736 static int ec_guard(struct acpi_ec *ec) 737 { 738 unsigned long guard = usecs_to_jiffies(ec->polling_guard); 739 unsigned long timeout = ec->timestamp + guard; 740 741 /* Ensure guarding period before polling EC status */ 742 do { 743 if (ec->busy_polling) { 744 /* Perform busy polling */ 745 if (ec_transaction_completed(ec)) 746 return 0; 747 udelay(jiffies_to_usecs(guard)); 748 } else { 749 /* 750 * Perform wait polling 751 * 1. Wait the transaction to be completed by the 752 * GPE handler after the transaction enters 753 * ACPI_EC_COMMAND_POLL state. 754 * 2. A special guarding logic is also required 755 * for event clearing mode "event" before the 756 * transaction enters ACPI_EC_COMMAND_POLL 757 * state. 758 */ 759 if (!ec_transaction_polled(ec) && 760 !acpi_ec_guard_event(ec)) 761 break; 762 if (wait_event_timeout(ec->wait, 763 ec_transaction_completed(ec), 764 guard)) 765 return 0; 766 } 767 } while (time_before(jiffies, timeout)); 768 return -ETIME; 769 } 770 771 static int ec_poll(struct acpi_ec *ec) 772 { 773 unsigned long flags; 774 int repeat = 5; /* number of command restarts */ 775 776 while (repeat--) { 777 unsigned long delay = jiffies + 778 msecs_to_jiffies(ec_delay); 779 do { 780 if (!ec_guard(ec)) 781 return 0; 782 spin_lock_irqsave(&ec->lock, flags); 783 advance_transaction(ec, false); 784 spin_unlock_irqrestore(&ec->lock, flags); 785 } while (time_before(jiffies, delay)); 786 pr_debug("controller reset, restart transaction\n"); 787 spin_lock_irqsave(&ec->lock, flags); 788 start_transaction(ec); 789 spin_unlock_irqrestore(&ec->lock, flags); 790 } 791 return -ETIME; 792 } 793 794 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec, 795 struct transaction *t) 796 { 797 unsigned long tmp; 798 int ret = 0; 799 800 /* start transaction */ 801 spin_lock_irqsave(&ec->lock, tmp); 802 /* Enable GPE for command processing (IBF=0/OBF=1) */ 803 if (!acpi_ec_submit_flushable_request(ec)) { 804 ret = -EINVAL; 805 goto unlock; 806 } 807 ec_dbg_ref(ec, "Increase command"); 808 /* following two actions should be kept atomic */ 809 ec->curr = t; 810 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command)); 811 start_transaction(ec); 812 spin_unlock_irqrestore(&ec->lock, tmp); 813 814 ret = ec_poll(ec); 815 816 spin_lock_irqsave(&ec->lock, tmp); 817 if (t->irq_count == ec_storm_threshold) 818 acpi_ec_unmask_events(ec); 819 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command)); 820 ec->curr = NULL; 821 /* Disable GPE for command processing (IBF=0/OBF=1) */ 822 acpi_ec_complete_request(ec); 823 ec_dbg_ref(ec, "Decrease command"); 824 unlock: 825 spin_unlock_irqrestore(&ec->lock, tmp); 826 return ret; 827 } 828 829 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t) 830 { 831 int status; 832 u32 glk; 833 834 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata)) 835 return -EINVAL; 836 if (t->rdata) 837 memset(t->rdata, 0, t->rlen); 838 839 mutex_lock(&ec->mutex); 840 if (ec->global_lock) { 841 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); 842 if (ACPI_FAILURE(status)) { 843 status = -ENODEV; 844 goto unlock; 845 } 846 } 847 848 status = acpi_ec_transaction_unlocked(ec, t); 849 850 if (ec->global_lock) 851 acpi_release_global_lock(glk); 852 unlock: 853 mutex_unlock(&ec->mutex); 854 return status; 855 } 856 857 static int acpi_ec_burst_enable(struct acpi_ec *ec) 858 { 859 u8 d; 860 struct transaction t = {.command = ACPI_EC_BURST_ENABLE, 861 .wdata = NULL, .rdata = &d, 862 .wlen = 0, .rlen = 1}; 863 864 return acpi_ec_transaction(ec, &t); 865 } 866 867 static int acpi_ec_burst_disable(struct acpi_ec *ec) 868 { 869 struct transaction t = {.command = ACPI_EC_BURST_DISABLE, 870 .wdata = NULL, .rdata = NULL, 871 .wlen = 0, .rlen = 0}; 872 873 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ? 874 acpi_ec_transaction(ec, &t) : 0; 875 } 876 877 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data) 878 { 879 int result; 880 u8 d; 881 struct transaction t = {.command = ACPI_EC_COMMAND_READ, 882 .wdata = &address, .rdata = &d, 883 .wlen = 1, .rlen = 1}; 884 885 result = acpi_ec_transaction(ec, &t); 886 *data = d; 887 return result; 888 } 889 890 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data) 891 { 892 u8 wdata[2] = { address, data }; 893 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE, 894 .wdata = wdata, .rdata = NULL, 895 .wlen = 2, .rlen = 0}; 896 897 return acpi_ec_transaction(ec, &t); 898 } 899 900 int ec_read(u8 addr, u8 *val) 901 { 902 int err; 903 u8 temp_data; 904 905 if (!first_ec) 906 return -ENODEV; 907 908 err = acpi_ec_read(first_ec, addr, &temp_data); 909 910 if (!err) { 911 *val = temp_data; 912 return 0; 913 } 914 return err; 915 } 916 EXPORT_SYMBOL(ec_read); 917 918 int ec_write(u8 addr, u8 val) 919 { 920 int err; 921 922 if (!first_ec) 923 return -ENODEV; 924 925 err = acpi_ec_write(first_ec, addr, val); 926 927 return err; 928 } 929 EXPORT_SYMBOL(ec_write); 930 931 int ec_transaction(u8 command, 932 const u8 *wdata, unsigned wdata_len, 933 u8 *rdata, unsigned rdata_len) 934 { 935 struct transaction t = {.command = command, 936 .wdata = wdata, .rdata = rdata, 937 .wlen = wdata_len, .rlen = rdata_len}; 938 939 if (!first_ec) 940 return -ENODEV; 941 942 return acpi_ec_transaction(first_ec, &t); 943 } 944 EXPORT_SYMBOL(ec_transaction); 945 946 /* Get the handle to the EC device */ 947 acpi_handle ec_get_handle(void) 948 { 949 if (!first_ec) 950 return NULL; 951 return first_ec->handle; 952 } 953 EXPORT_SYMBOL(ec_get_handle); 954 955 static void acpi_ec_start(struct acpi_ec *ec, bool resuming) 956 { 957 unsigned long flags; 958 959 spin_lock_irqsave(&ec->lock, flags); 960 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) { 961 ec_dbg_drv("Starting EC"); 962 /* Enable GPE for event processing (SCI_EVT=1) */ 963 if (!resuming) { 964 acpi_ec_submit_request(ec); 965 ec_dbg_ref(ec, "Increase driver"); 966 } 967 ec_log_drv("EC started"); 968 } 969 spin_unlock_irqrestore(&ec->lock, flags); 970 } 971 972 static bool acpi_ec_stopped(struct acpi_ec *ec) 973 { 974 unsigned long flags; 975 bool flushed; 976 977 spin_lock_irqsave(&ec->lock, flags); 978 flushed = acpi_ec_flushed(ec); 979 spin_unlock_irqrestore(&ec->lock, flags); 980 return flushed; 981 } 982 983 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending) 984 { 985 unsigned long flags; 986 987 spin_lock_irqsave(&ec->lock, flags); 988 if (acpi_ec_started(ec)) { 989 ec_dbg_drv("Stopping EC"); 990 set_bit(EC_FLAGS_STOPPED, &ec->flags); 991 spin_unlock_irqrestore(&ec->lock, flags); 992 wait_event(ec->wait, acpi_ec_stopped(ec)); 993 spin_lock_irqsave(&ec->lock, flags); 994 /* Disable GPE for event processing (SCI_EVT=1) */ 995 if (!suspending) { 996 acpi_ec_complete_request(ec); 997 ec_dbg_ref(ec, "Decrease driver"); 998 } else if (!ec_freeze_events) 999 __acpi_ec_disable_event(ec); 1000 clear_bit(EC_FLAGS_STARTED, &ec->flags); 1001 clear_bit(EC_FLAGS_STOPPED, &ec->flags); 1002 ec_log_drv("EC stopped"); 1003 } 1004 spin_unlock_irqrestore(&ec->lock, flags); 1005 } 1006 1007 static void acpi_ec_enter_noirq(struct acpi_ec *ec) 1008 { 1009 unsigned long flags; 1010 1011 spin_lock_irqsave(&ec->lock, flags); 1012 ec->busy_polling = true; 1013 ec->polling_guard = 0; 1014 ec_log_drv("interrupt blocked"); 1015 spin_unlock_irqrestore(&ec->lock, flags); 1016 } 1017 1018 static void acpi_ec_leave_noirq(struct acpi_ec *ec) 1019 { 1020 unsigned long flags; 1021 1022 spin_lock_irqsave(&ec->lock, flags); 1023 ec->busy_polling = ec_busy_polling; 1024 ec->polling_guard = ec_polling_guard; 1025 ec_log_drv("interrupt unblocked"); 1026 spin_unlock_irqrestore(&ec->lock, flags); 1027 } 1028 1029 void acpi_ec_block_transactions(void) 1030 { 1031 struct acpi_ec *ec = first_ec; 1032 1033 if (!ec) 1034 return; 1035 1036 mutex_lock(&ec->mutex); 1037 /* Prevent transactions from being carried out */ 1038 acpi_ec_stop(ec, true); 1039 mutex_unlock(&ec->mutex); 1040 } 1041 1042 void acpi_ec_unblock_transactions(void) 1043 { 1044 /* 1045 * Allow transactions to happen again (this function is called from 1046 * atomic context during wakeup, so we don't need to acquire the mutex). 1047 */ 1048 if (first_ec) 1049 acpi_ec_start(first_ec, true); 1050 } 1051 1052 /* -------------------------------------------------------------------------- 1053 Event Management 1054 -------------------------------------------------------------------------- */ 1055 static struct acpi_ec_query_handler * 1056 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value) 1057 { 1058 struct acpi_ec_query_handler *handler; 1059 1060 mutex_lock(&ec->mutex); 1061 list_for_each_entry(handler, &ec->list, node) { 1062 if (value == handler->query_bit) { 1063 kref_get(&handler->kref); 1064 mutex_unlock(&ec->mutex); 1065 return handler; 1066 } 1067 } 1068 mutex_unlock(&ec->mutex); 1069 return NULL; 1070 } 1071 1072 static void acpi_ec_query_handler_release(struct kref *kref) 1073 { 1074 struct acpi_ec_query_handler *handler = 1075 container_of(kref, struct acpi_ec_query_handler, kref); 1076 1077 kfree(handler); 1078 } 1079 1080 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler) 1081 { 1082 kref_put(&handler->kref, acpi_ec_query_handler_release); 1083 } 1084 1085 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit, 1086 acpi_handle handle, acpi_ec_query_func func, 1087 void *data) 1088 { 1089 struct acpi_ec_query_handler *handler = 1090 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL); 1091 1092 if (!handler) 1093 return -ENOMEM; 1094 1095 handler->query_bit = query_bit; 1096 handler->handle = handle; 1097 handler->func = func; 1098 handler->data = data; 1099 mutex_lock(&ec->mutex); 1100 kref_init(&handler->kref); 1101 list_add(&handler->node, &ec->list); 1102 mutex_unlock(&ec->mutex); 1103 return 0; 1104 } 1105 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler); 1106 1107 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec, 1108 bool remove_all, u8 query_bit) 1109 { 1110 struct acpi_ec_query_handler *handler, *tmp; 1111 LIST_HEAD(free_list); 1112 1113 mutex_lock(&ec->mutex); 1114 list_for_each_entry_safe(handler, tmp, &ec->list, node) { 1115 if (remove_all || query_bit == handler->query_bit) { 1116 list_del_init(&handler->node); 1117 list_add(&handler->node, &free_list); 1118 } 1119 } 1120 mutex_unlock(&ec->mutex); 1121 list_for_each_entry_safe(handler, tmp, &free_list, node) 1122 acpi_ec_put_query_handler(handler); 1123 } 1124 1125 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit) 1126 { 1127 acpi_ec_remove_query_handlers(ec, false, query_bit); 1128 } 1129 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler); 1130 1131 static void acpi_ec_event_processor(struct work_struct *work) 1132 { 1133 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work); 1134 struct acpi_ec_query_handler *handler = q->handler; 1135 struct acpi_ec *ec = q->ec; 1136 1137 ec_dbg_evt("Query(0x%02x) started", handler->query_bit); 1138 1139 if (handler->func) 1140 handler->func(handler->data); 1141 else if (handler->handle) 1142 acpi_evaluate_object(handler->handle, NULL, NULL, NULL); 1143 1144 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit); 1145 1146 spin_lock_irq(&ec->lock); 1147 ec->queries_in_progress--; 1148 spin_unlock_irq(&ec->lock); 1149 1150 acpi_ec_put_query_handler(handler); 1151 kfree(q); 1152 } 1153 1154 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval) 1155 { 1156 struct acpi_ec_query *q; 1157 struct transaction *t; 1158 1159 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL); 1160 if (!q) 1161 return NULL; 1162 1163 INIT_WORK(&q->work, acpi_ec_event_processor); 1164 t = &q->transaction; 1165 t->command = ACPI_EC_COMMAND_QUERY; 1166 t->rdata = pval; 1167 t->rlen = 1; 1168 q->ec = ec; 1169 return q; 1170 } 1171 1172 static int acpi_ec_submit_query(struct acpi_ec *ec) 1173 { 1174 struct acpi_ec_query *q; 1175 u8 value = 0; 1176 int result; 1177 1178 q = acpi_ec_create_query(ec, &value); 1179 if (!q) 1180 return -ENOMEM; 1181 1182 /* 1183 * Query the EC to find out which _Qxx method we need to evaluate. 1184 * Note that successful completion of the query causes the ACPI_EC_SCI 1185 * bit to be cleared (and thus clearing the interrupt source). 1186 */ 1187 result = acpi_ec_transaction(ec, &q->transaction); 1188 if (result) 1189 goto err_exit; 1190 1191 if (!value) { 1192 result = -ENODATA; 1193 goto err_exit; 1194 } 1195 1196 q->handler = acpi_ec_get_query_handler_by_value(ec, value); 1197 if (!q->handler) { 1198 result = -ENODATA; 1199 goto err_exit; 1200 } 1201 1202 /* 1203 * It is reported that _Qxx are evaluated in a parallel way on Windows: 1204 * https://bugzilla.kernel.org/show_bug.cgi?id=94411 1205 * 1206 * Put this log entry before queue_work() to make it appear in the log 1207 * before any other messages emitted during workqueue handling. 1208 */ 1209 ec_dbg_evt("Query(0x%02x) scheduled", value); 1210 1211 spin_lock_irq(&ec->lock); 1212 1213 ec->queries_in_progress++; 1214 queue_work(ec_query_wq, &q->work); 1215 1216 spin_unlock_irq(&ec->lock); 1217 1218 return 0; 1219 1220 err_exit: 1221 kfree(q); 1222 1223 return result; 1224 } 1225 1226 static void acpi_ec_event_handler(struct work_struct *work) 1227 { 1228 struct acpi_ec *ec = container_of(work, struct acpi_ec, work); 1229 1230 ec_dbg_evt("Event started"); 1231 1232 spin_lock_irq(&ec->lock); 1233 1234 while (ec->events_to_process) { 1235 spin_unlock_irq(&ec->lock); 1236 1237 acpi_ec_submit_query(ec); 1238 1239 spin_lock_irq(&ec->lock); 1240 1241 ec->events_to_process--; 1242 } 1243 1244 /* 1245 * Before exit, make sure that the it will be possible to queue up the 1246 * event handling work again regardless of whether or not the query 1247 * queued up above is processed successfully. 1248 */ 1249 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) { 1250 bool guard_timeout; 1251 1252 acpi_ec_complete_event(ec); 1253 1254 ec_dbg_evt("Event stopped"); 1255 1256 spin_unlock_irq(&ec->lock); 1257 1258 guard_timeout = !!ec_guard(ec); 1259 1260 spin_lock_irq(&ec->lock); 1261 1262 /* Take care of SCI_EVT unless someone else is doing that. */ 1263 if (guard_timeout && !ec->curr) 1264 advance_transaction(ec, false); 1265 } else { 1266 acpi_ec_close_event(ec); 1267 1268 ec_dbg_evt("Event stopped"); 1269 } 1270 1271 ec->events_in_progress--; 1272 1273 spin_unlock_irq(&ec->lock); 1274 } 1275 1276 static void acpi_ec_handle_interrupt(struct acpi_ec *ec) 1277 { 1278 unsigned long flags; 1279 1280 spin_lock_irqsave(&ec->lock, flags); 1281 advance_transaction(ec, true); 1282 spin_unlock_irqrestore(&ec->lock, flags); 1283 } 1284 1285 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device, 1286 u32 gpe_number, void *data) 1287 { 1288 acpi_ec_handle_interrupt(data); 1289 return ACPI_INTERRUPT_HANDLED; 1290 } 1291 1292 static irqreturn_t acpi_ec_irq_handler(int irq, void *data) 1293 { 1294 acpi_ec_handle_interrupt(data); 1295 return IRQ_HANDLED; 1296 } 1297 1298 /* -------------------------------------------------------------------------- 1299 * Address Space Management 1300 * -------------------------------------------------------------------------- */ 1301 1302 static acpi_status 1303 acpi_ec_space_handler(u32 function, acpi_physical_address address, 1304 u32 bits, u64 *value64, 1305 void *handler_context, void *region_context) 1306 { 1307 struct acpi_ec *ec = handler_context; 1308 int result = 0, i, bytes = bits / 8; 1309 u8 *value = (u8 *)value64; 1310 1311 if ((address > 0xFF) || !value || !handler_context) 1312 return AE_BAD_PARAMETER; 1313 1314 if (function != ACPI_READ && function != ACPI_WRITE) 1315 return AE_BAD_PARAMETER; 1316 1317 if (ec->busy_polling || bits > 8) 1318 acpi_ec_burst_enable(ec); 1319 1320 for (i = 0; i < bytes; ++i, ++address, ++value) 1321 result = (function == ACPI_READ) ? 1322 acpi_ec_read(ec, address, value) : 1323 acpi_ec_write(ec, address, *value); 1324 1325 if (ec->busy_polling || bits > 8) 1326 acpi_ec_burst_disable(ec); 1327 1328 switch (result) { 1329 case -EINVAL: 1330 return AE_BAD_PARAMETER; 1331 case -ENODEV: 1332 return AE_NOT_FOUND; 1333 case -ETIME: 1334 return AE_TIME; 1335 default: 1336 return AE_OK; 1337 } 1338 } 1339 1340 /* -------------------------------------------------------------------------- 1341 * Driver Interface 1342 * -------------------------------------------------------------------------- */ 1343 1344 static acpi_status 1345 ec_parse_io_ports(struct acpi_resource *resource, void *context); 1346 1347 static void acpi_ec_free(struct acpi_ec *ec) 1348 { 1349 if (first_ec == ec) 1350 first_ec = NULL; 1351 if (boot_ec == ec) 1352 boot_ec = NULL; 1353 kfree(ec); 1354 } 1355 1356 static struct acpi_ec *acpi_ec_alloc(void) 1357 { 1358 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL); 1359 1360 if (!ec) 1361 return NULL; 1362 mutex_init(&ec->mutex); 1363 init_waitqueue_head(&ec->wait); 1364 INIT_LIST_HEAD(&ec->list); 1365 spin_lock_init(&ec->lock); 1366 INIT_WORK(&ec->work, acpi_ec_event_handler); 1367 ec->timestamp = jiffies; 1368 ec->busy_polling = true; 1369 ec->polling_guard = 0; 1370 ec->gpe = -1; 1371 ec->irq = -1; 1372 return ec; 1373 } 1374 1375 static acpi_status 1376 acpi_ec_register_query_methods(acpi_handle handle, u32 level, 1377 void *context, void **return_value) 1378 { 1379 char node_name[5]; 1380 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 1381 struct acpi_ec *ec = context; 1382 int value = 0; 1383 acpi_status status; 1384 1385 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 1386 1387 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1) 1388 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL); 1389 return AE_OK; 1390 } 1391 1392 static acpi_status 1393 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval) 1394 { 1395 acpi_status status; 1396 unsigned long long tmp = 0; 1397 struct acpi_ec *ec = context; 1398 1399 /* clear addr values, ec_parse_io_ports depend on it */ 1400 ec->command_addr = ec->data_addr = 0; 1401 1402 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1403 ec_parse_io_ports, ec); 1404 if (ACPI_FAILURE(status)) 1405 return status; 1406 if (ec->data_addr == 0 || ec->command_addr == 0) 1407 return AE_OK; 1408 1409 /* Get GPE bit assignment (EC events). */ 1410 /* TODO: Add support for _GPE returning a package */ 1411 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 1412 if (ACPI_SUCCESS(status)) 1413 ec->gpe = tmp; 1414 /* 1415 * Errors are non-fatal, allowing for ACPI Reduced Hardware 1416 * platforms which use GpioInt instead of GPE. 1417 */ 1418 1419 /* Use the global lock for all EC transactions? */ 1420 tmp = 0; 1421 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp); 1422 ec->global_lock = tmp; 1423 ec->handle = handle; 1424 return AE_CTRL_TERMINATE; 1425 } 1426 1427 static bool install_gpe_event_handler(struct acpi_ec *ec) 1428 { 1429 acpi_status status; 1430 1431 status = acpi_install_gpe_raw_handler(NULL, ec->gpe, 1432 ACPI_GPE_EDGE_TRIGGERED, 1433 &acpi_ec_gpe_handler, ec); 1434 if (ACPI_FAILURE(status)) 1435 return false; 1436 1437 if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1) 1438 acpi_ec_enable_gpe(ec, true); 1439 1440 return true; 1441 } 1442 1443 static bool install_gpio_irq_event_handler(struct acpi_ec *ec) 1444 { 1445 return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED, 1446 "ACPI EC", ec) >= 0; 1447 } 1448 1449 /** 1450 * ec_install_handlers - Install service callbacks and register query methods. 1451 * @ec: Target EC. 1452 * @device: ACPI device object corresponding to @ec. 1453 * 1454 * Install a handler for the EC address space type unless it has been installed 1455 * already. If @device is not NULL, also look for EC query methods in the 1456 * namespace and register them, and install an event (either GPE or GPIO IRQ) 1457 * handler for the EC, if possible. 1458 * 1459 * Return: 1460 * -ENODEV if the address space handler cannot be installed, which means 1461 * "unable to handle transactions", 1462 * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred, 1463 * or 0 (success) otherwise. 1464 */ 1465 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device) 1466 { 1467 acpi_status status; 1468 1469 acpi_ec_start(ec, false); 1470 1471 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { 1472 acpi_ec_enter_noirq(ec); 1473 status = acpi_install_address_space_handler(ec->handle, 1474 ACPI_ADR_SPACE_EC, 1475 &acpi_ec_space_handler, 1476 NULL, ec); 1477 if (ACPI_FAILURE(status)) { 1478 acpi_ec_stop(ec, false); 1479 return -ENODEV; 1480 } 1481 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); 1482 } 1483 1484 if (!device) 1485 return 0; 1486 1487 if (ec->gpe < 0) { 1488 /* ACPI reduced hardware platforms use a GpioInt from _CRS. */ 1489 int irq = acpi_dev_gpio_irq_get(device, 0); 1490 /* 1491 * Bail out right away for deferred probing or complete the 1492 * initialization regardless of any other errors. 1493 */ 1494 if (irq == -EPROBE_DEFER) 1495 return -EPROBE_DEFER; 1496 else if (irq >= 0) 1497 ec->irq = irq; 1498 } 1499 1500 if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { 1501 /* Find and register all query methods */ 1502 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1, 1503 acpi_ec_register_query_methods, 1504 NULL, ec, NULL); 1505 set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); 1506 } 1507 if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1508 bool ready = false; 1509 1510 if (ec->gpe >= 0) 1511 ready = install_gpe_event_handler(ec); 1512 else if (ec->irq >= 0) 1513 ready = install_gpio_irq_event_handler(ec); 1514 1515 if (ready) { 1516 set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); 1517 acpi_ec_leave_noirq(ec); 1518 } 1519 /* 1520 * Failures to install an event handler are not fatal, because 1521 * the EC can be polled for events. 1522 */ 1523 } 1524 /* EC is fully operational, allow queries */ 1525 acpi_ec_enable_event(ec); 1526 1527 return 0; 1528 } 1529 1530 static void ec_remove_handlers(struct acpi_ec *ec) 1531 { 1532 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { 1533 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle, 1534 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler))) 1535 pr_err("failed to remove space handler\n"); 1536 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); 1537 } 1538 1539 /* 1540 * Stops handling the EC transactions after removing the operation 1541 * region handler. This is required because _REG(DISCONNECT) 1542 * invoked during the removal can result in new EC transactions. 1543 * 1544 * Flushes the EC requests and thus disables the GPE before 1545 * removing the GPE handler. This is required by the current ACPICA 1546 * GPE core. ACPICA GPE core will automatically disable a GPE when 1547 * it is indicated but there is no way to handle it. So the drivers 1548 * must disable the GPEs prior to removing the GPE handlers. 1549 */ 1550 acpi_ec_stop(ec, false); 1551 1552 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1553 if (ec->gpe >= 0 && 1554 ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe, 1555 &acpi_ec_gpe_handler))) 1556 pr_err("failed to remove gpe handler\n"); 1557 1558 if (ec->irq >= 0) 1559 free_irq(ec->irq, ec); 1560 1561 clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); 1562 } 1563 if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { 1564 acpi_ec_remove_query_handlers(ec, true, 0); 1565 clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); 1566 } 1567 } 1568 1569 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device) 1570 { 1571 int ret; 1572 1573 ret = ec_install_handlers(ec, device); 1574 if (ret) 1575 return ret; 1576 1577 /* First EC capable of handling transactions */ 1578 if (!first_ec) 1579 first_ec = ec; 1580 1581 pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr, 1582 ec->data_addr); 1583 1584 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1585 if (ec->gpe >= 0) 1586 pr_info("GPE=0x%x\n", ec->gpe); 1587 else 1588 pr_info("IRQ=%d\n", ec->irq); 1589 } 1590 1591 return ret; 1592 } 1593 1594 static int acpi_ec_add(struct acpi_device *device) 1595 { 1596 struct acpi_ec *ec; 1597 int ret; 1598 1599 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); 1600 strcpy(acpi_device_class(device), ACPI_EC_CLASS); 1601 1602 if (boot_ec && (boot_ec->handle == device->handle || 1603 !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) { 1604 /* Fast path: this device corresponds to the boot EC. */ 1605 ec = boot_ec; 1606 } else { 1607 acpi_status status; 1608 1609 ec = acpi_ec_alloc(); 1610 if (!ec) 1611 return -ENOMEM; 1612 1613 status = ec_parse_device(device->handle, 0, ec, NULL); 1614 if (status != AE_CTRL_TERMINATE) { 1615 ret = -EINVAL; 1616 goto err; 1617 } 1618 1619 if (boot_ec && ec->command_addr == boot_ec->command_addr && 1620 ec->data_addr == boot_ec->data_addr) { 1621 /* 1622 * Trust PNP0C09 namespace location rather than ECDT ID. 1623 * But trust ECDT GPE rather than _GPE because of ASUS 1624 * quirks. So do not change boot_ec->gpe to ec->gpe, 1625 * except when the TRUST_DSDT_GPE quirk is set. 1626 */ 1627 boot_ec->handle = ec->handle; 1628 1629 if (EC_FLAGS_TRUST_DSDT_GPE) 1630 boot_ec->gpe = ec->gpe; 1631 1632 acpi_handle_debug(ec->handle, "duplicated.\n"); 1633 acpi_ec_free(ec); 1634 ec = boot_ec; 1635 } 1636 } 1637 1638 ret = acpi_ec_setup(ec, device); 1639 if (ret) 1640 goto err; 1641 1642 if (ec == boot_ec) 1643 acpi_handle_info(boot_ec->handle, 1644 "Boot %s EC initialization complete\n", 1645 boot_ec_is_ecdt ? "ECDT" : "DSDT"); 1646 1647 acpi_handle_info(ec->handle, 1648 "EC: Used to handle transactions and events\n"); 1649 1650 device->driver_data = ec; 1651 1652 ret = !!request_region(ec->data_addr, 1, "EC data"); 1653 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr); 1654 ret = !!request_region(ec->command_addr, 1, "EC cmd"); 1655 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr); 1656 1657 /* Reprobe devices depending on the EC */ 1658 acpi_dev_clear_dependencies(device); 1659 1660 acpi_handle_debug(ec->handle, "enumerated.\n"); 1661 return 0; 1662 1663 err: 1664 if (ec != boot_ec) 1665 acpi_ec_free(ec); 1666 1667 return ret; 1668 } 1669 1670 static int acpi_ec_remove(struct acpi_device *device) 1671 { 1672 struct acpi_ec *ec; 1673 1674 if (!device) 1675 return -EINVAL; 1676 1677 ec = acpi_driver_data(device); 1678 release_region(ec->data_addr, 1); 1679 release_region(ec->command_addr, 1); 1680 device->driver_data = NULL; 1681 if (ec != boot_ec) { 1682 ec_remove_handlers(ec); 1683 acpi_ec_free(ec); 1684 } 1685 return 0; 1686 } 1687 1688 static acpi_status 1689 ec_parse_io_ports(struct acpi_resource *resource, void *context) 1690 { 1691 struct acpi_ec *ec = context; 1692 1693 if (resource->type != ACPI_RESOURCE_TYPE_IO) 1694 return AE_OK; 1695 1696 /* 1697 * The first address region returned is the data port, and 1698 * the second address region returned is the status/command 1699 * port. 1700 */ 1701 if (ec->data_addr == 0) 1702 ec->data_addr = resource->data.io.minimum; 1703 else if (ec->command_addr == 0) 1704 ec->command_addr = resource->data.io.minimum; 1705 else 1706 return AE_CTRL_TERMINATE; 1707 1708 return AE_OK; 1709 } 1710 1711 static const struct acpi_device_id ec_device_ids[] = { 1712 {"PNP0C09", 0}, 1713 {ACPI_ECDT_HID, 0}, 1714 {"", 0}, 1715 }; 1716 1717 /* 1718 * This function is not Windows-compatible as Windows never enumerates the 1719 * namespace EC before the main ACPI device enumeration process. It is 1720 * retained for historical reason and will be deprecated in the future. 1721 */ 1722 void __init acpi_ec_dsdt_probe(void) 1723 { 1724 struct acpi_ec *ec; 1725 acpi_status status; 1726 int ret; 1727 1728 /* 1729 * If a platform has ECDT, there is no need to proceed as the 1730 * following probe is not a part of the ACPI device enumeration, 1731 * executing _STA is not safe, and thus this probe may risk of 1732 * picking up an invalid EC device. 1733 */ 1734 if (boot_ec) 1735 return; 1736 1737 ec = acpi_ec_alloc(); 1738 if (!ec) 1739 return; 1740 1741 /* 1742 * At this point, the namespace is initialized, so start to find 1743 * the namespace objects. 1744 */ 1745 status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL); 1746 if (ACPI_FAILURE(status) || !ec->handle) { 1747 acpi_ec_free(ec); 1748 return; 1749 } 1750 1751 /* 1752 * When the DSDT EC is available, always re-configure boot EC to 1753 * have _REG evaluated. _REG can only be evaluated after the 1754 * namespace initialization. 1755 * At this point, the GPE is not fully initialized, so do not to 1756 * handle the events. 1757 */ 1758 ret = acpi_ec_setup(ec, NULL); 1759 if (ret) { 1760 acpi_ec_free(ec); 1761 return; 1762 } 1763 1764 boot_ec = ec; 1765 1766 acpi_handle_info(ec->handle, 1767 "Boot DSDT EC used to handle transactions\n"); 1768 } 1769 1770 /* 1771 * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization. 1772 * 1773 * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not 1774 * found a matching object in the namespace. 1775 * 1776 * Next, in case the DSDT EC is not functioning, it is still necessary to 1777 * provide a functional ECDT EC to handle events, so add an extra device object 1778 * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021). 1779 * 1780 * This is useful on platforms with valid ECDT and invalid DSDT EC settings, 1781 * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847). 1782 */ 1783 static void __init acpi_ec_ecdt_start(void) 1784 { 1785 struct acpi_table_ecdt *ecdt_ptr; 1786 acpi_handle handle; 1787 acpi_status status; 1788 1789 /* Bail out if a matching EC has been found in the namespace. */ 1790 if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT) 1791 return; 1792 1793 /* Look up the object pointed to from the ECDT in the namespace. */ 1794 status = acpi_get_table(ACPI_SIG_ECDT, 1, 1795 (struct acpi_table_header **)&ecdt_ptr); 1796 if (ACPI_FAILURE(status)) 1797 return; 1798 1799 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle); 1800 if (ACPI_SUCCESS(status)) { 1801 boot_ec->handle = handle; 1802 1803 /* Add a special ACPI device object to represent the boot EC. */ 1804 acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC); 1805 } 1806 1807 acpi_put_table((struct acpi_table_header *)ecdt_ptr); 1808 } 1809 1810 /* 1811 * On some hardware it is necessary to clear events accumulated by the EC during 1812 * sleep. These ECs stop reporting GPEs until they are manually polled, if too 1813 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks) 1814 * 1815 * https://bugzilla.kernel.org/show_bug.cgi?id=44161 1816 * 1817 * Ideally, the EC should also be instructed NOT to accumulate events during 1818 * sleep (which Windows seems to do somehow), but the interface to control this 1819 * behaviour is not known at this time. 1820 * 1821 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx, 1822 * however it is very likely that other Samsung models are affected. 1823 * 1824 * On systems which don't accumulate _Q events during sleep, this extra check 1825 * should be harmless. 1826 */ 1827 static int ec_clear_on_resume(const struct dmi_system_id *id) 1828 { 1829 pr_debug("Detected system needing EC poll on resume.\n"); 1830 EC_FLAGS_CLEAR_ON_RESUME = 1; 1831 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; 1832 return 0; 1833 } 1834 1835 /* 1836 * Some ECDTs contain wrong register addresses. 1837 * MSI MS-171F 1838 * https://bugzilla.kernel.org/show_bug.cgi?id=12461 1839 */ 1840 static int ec_correct_ecdt(const struct dmi_system_id *id) 1841 { 1842 pr_debug("Detected system needing ECDT address correction.\n"); 1843 EC_FLAGS_CORRECT_ECDT = 1; 1844 return 0; 1845 } 1846 1847 /* 1848 * Some ECDTs contain wrong GPE setting, but they share the same port addresses 1849 * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case. 1850 * https://bugzilla.kernel.org/show_bug.cgi?id=209989 1851 */ 1852 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id) 1853 { 1854 pr_debug("Detected system needing DSDT GPE setting.\n"); 1855 EC_FLAGS_TRUST_DSDT_GPE = 1; 1856 return 0; 1857 } 1858 1859 static const struct dmi_system_id ec_dmi_table[] __initconst = { 1860 { 1861 /* 1862 * MSI MS-171F 1863 * https://bugzilla.kernel.org/show_bug.cgi?id=12461 1864 */ 1865 .callback = ec_correct_ecdt, 1866 .matches = { 1867 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"), 1868 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"), 1869 }, 1870 }, 1871 { 1872 /* 1873 * HP Pavilion Gaming Laptop 15-cx0xxx 1874 * https://bugzilla.kernel.org/show_bug.cgi?id=209989 1875 */ 1876 .callback = ec_honor_dsdt_gpe, 1877 .matches = { 1878 DMI_MATCH(DMI_SYS_VENDOR, "HP"), 1879 DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"), 1880 }, 1881 }, 1882 { 1883 /* 1884 * Samsung hardware 1885 * https://bugzilla.kernel.org/show_bug.cgi?id=44161 1886 */ 1887 .callback = ec_clear_on_resume, 1888 .matches = { 1889 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."), 1890 }, 1891 }, 1892 {} 1893 }; 1894 1895 void __init acpi_ec_ecdt_probe(void) 1896 { 1897 struct acpi_table_ecdt *ecdt_ptr; 1898 struct acpi_ec *ec; 1899 acpi_status status; 1900 int ret; 1901 1902 /* Generate a boot ec context. */ 1903 dmi_check_system(ec_dmi_table); 1904 status = acpi_get_table(ACPI_SIG_ECDT, 1, 1905 (struct acpi_table_header **)&ecdt_ptr); 1906 if (ACPI_FAILURE(status)) 1907 return; 1908 1909 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) { 1910 /* 1911 * Asus X50GL: 1912 * https://bugzilla.kernel.org/show_bug.cgi?id=11880 1913 */ 1914 goto out; 1915 } 1916 1917 ec = acpi_ec_alloc(); 1918 if (!ec) 1919 goto out; 1920 1921 if (EC_FLAGS_CORRECT_ECDT) { 1922 ec->command_addr = ecdt_ptr->data.address; 1923 ec->data_addr = ecdt_ptr->control.address; 1924 } else { 1925 ec->command_addr = ecdt_ptr->control.address; 1926 ec->data_addr = ecdt_ptr->data.address; 1927 } 1928 1929 /* 1930 * Ignore the GPE value on Reduced Hardware platforms. 1931 * Some products have this set to an erroneous value. 1932 */ 1933 if (!acpi_gbl_reduced_hardware) 1934 ec->gpe = ecdt_ptr->gpe; 1935 1936 ec->handle = ACPI_ROOT_OBJECT; 1937 1938 /* 1939 * At this point, the namespace is not initialized, so do not find 1940 * the namespace objects, or handle the events. 1941 */ 1942 ret = acpi_ec_setup(ec, NULL); 1943 if (ret) { 1944 acpi_ec_free(ec); 1945 goto out; 1946 } 1947 1948 boot_ec = ec; 1949 boot_ec_is_ecdt = true; 1950 1951 pr_info("Boot ECDT EC used to handle transactions\n"); 1952 1953 out: 1954 acpi_put_table((struct acpi_table_header *)ecdt_ptr); 1955 } 1956 1957 #ifdef CONFIG_PM_SLEEP 1958 static int acpi_ec_suspend(struct device *dev) 1959 { 1960 struct acpi_ec *ec = 1961 acpi_driver_data(to_acpi_device(dev)); 1962 1963 if (!pm_suspend_no_platform() && ec_freeze_events) 1964 acpi_ec_disable_event(ec); 1965 return 0; 1966 } 1967 1968 static int acpi_ec_suspend_noirq(struct device *dev) 1969 { 1970 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); 1971 1972 /* 1973 * The SCI handler doesn't run at this point, so the GPE can be 1974 * masked at the low level without side effects. 1975 */ 1976 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && 1977 ec->gpe >= 0 && ec->reference_count >= 1) 1978 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); 1979 1980 acpi_ec_enter_noirq(ec); 1981 1982 return 0; 1983 } 1984 1985 static int acpi_ec_resume_noirq(struct device *dev) 1986 { 1987 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); 1988 1989 acpi_ec_leave_noirq(ec); 1990 1991 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && 1992 ec->gpe >= 0 && ec->reference_count >= 1) 1993 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); 1994 1995 return 0; 1996 } 1997 1998 static int acpi_ec_resume(struct device *dev) 1999 { 2000 struct acpi_ec *ec = 2001 acpi_driver_data(to_acpi_device(dev)); 2002 2003 acpi_ec_enable_event(ec); 2004 return 0; 2005 } 2006 2007 void acpi_ec_mark_gpe_for_wake(void) 2008 { 2009 if (first_ec && !ec_no_wakeup) 2010 acpi_mark_gpe_for_wake(NULL, first_ec->gpe); 2011 } 2012 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake); 2013 2014 void acpi_ec_set_gpe_wake_mask(u8 action) 2015 { 2016 if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup) 2017 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action); 2018 } 2019 2020 static bool acpi_ec_work_in_progress(struct acpi_ec *ec) 2021 { 2022 return ec->events_in_progress + ec->queries_in_progress > 0; 2023 } 2024 2025 bool acpi_ec_dispatch_gpe(void) 2026 { 2027 bool work_in_progress = false; 2028 2029 if (!first_ec) 2030 return acpi_any_gpe_status_set(U32_MAX); 2031 2032 /* 2033 * Report wakeup if the status bit is set for any enabled GPE other 2034 * than the EC one. 2035 */ 2036 if (acpi_any_gpe_status_set(first_ec->gpe)) 2037 return true; 2038 2039 /* 2040 * Cancel the SCI wakeup and process all pending events in case there 2041 * are any wakeup ones in there. 2042 * 2043 * Note that if any non-EC GPEs are active at this point, the SCI will 2044 * retrigger after the rearming in acpi_s2idle_wake(), so no events 2045 * should be missed by canceling the wakeup here. 2046 */ 2047 pm_system_cancel_wakeup(); 2048 2049 /* 2050 * Dispatch the EC GPE in-band, but do not report wakeup in any case 2051 * to allow the caller to process events properly after that. 2052 */ 2053 spin_lock_irq(&first_ec->lock); 2054 2055 if (acpi_ec_gpe_status_set(first_ec)) { 2056 pm_pr_dbg("ACPI EC GPE status set\n"); 2057 2058 advance_transaction(first_ec, false); 2059 work_in_progress = acpi_ec_work_in_progress(first_ec); 2060 } 2061 2062 spin_unlock_irq(&first_ec->lock); 2063 2064 if (!work_in_progress) 2065 return false; 2066 2067 pm_pr_dbg("ACPI EC GPE dispatched\n"); 2068 2069 /* Drain EC work. */ 2070 do { 2071 acpi_ec_flush_work(); 2072 2073 pm_pr_dbg("ACPI EC work flushed\n"); 2074 2075 spin_lock_irq(&first_ec->lock); 2076 2077 work_in_progress = acpi_ec_work_in_progress(first_ec); 2078 2079 spin_unlock_irq(&first_ec->lock); 2080 } while (work_in_progress && !pm_wakeup_pending()); 2081 2082 return false; 2083 } 2084 #endif /* CONFIG_PM_SLEEP */ 2085 2086 static const struct dev_pm_ops acpi_ec_pm = { 2087 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq) 2088 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume) 2089 }; 2090 2091 static int param_set_event_clearing(const char *val, 2092 const struct kernel_param *kp) 2093 { 2094 int result = 0; 2095 2096 if (!strncmp(val, "status", sizeof("status") - 1)) { 2097 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; 2098 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n"); 2099 } else if (!strncmp(val, "query", sizeof("query") - 1)) { 2100 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY; 2101 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n"); 2102 } else if (!strncmp(val, "event", sizeof("event") - 1)) { 2103 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT; 2104 pr_info("Assuming SCI_EVT clearing on event reads\n"); 2105 } else 2106 result = -EINVAL; 2107 return result; 2108 } 2109 2110 static int param_get_event_clearing(char *buffer, 2111 const struct kernel_param *kp) 2112 { 2113 switch (ec_event_clearing) { 2114 case ACPI_EC_EVT_TIMING_STATUS: 2115 return sprintf(buffer, "status\n"); 2116 case ACPI_EC_EVT_TIMING_QUERY: 2117 return sprintf(buffer, "query\n"); 2118 case ACPI_EC_EVT_TIMING_EVENT: 2119 return sprintf(buffer, "event\n"); 2120 default: 2121 return sprintf(buffer, "invalid\n"); 2122 } 2123 return 0; 2124 } 2125 2126 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing, 2127 NULL, 0644); 2128 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing"); 2129 2130 static struct acpi_driver acpi_ec_driver = { 2131 .name = "ec", 2132 .class = ACPI_EC_CLASS, 2133 .ids = ec_device_ids, 2134 .ops = { 2135 .add = acpi_ec_add, 2136 .remove = acpi_ec_remove, 2137 }, 2138 .drv.pm = &acpi_ec_pm, 2139 }; 2140 2141 static void acpi_ec_destroy_workqueues(void) 2142 { 2143 if (ec_wq) { 2144 destroy_workqueue(ec_wq); 2145 ec_wq = NULL; 2146 } 2147 if (ec_query_wq) { 2148 destroy_workqueue(ec_query_wq); 2149 ec_query_wq = NULL; 2150 } 2151 } 2152 2153 static int acpi_ec_init_workqueues(void) 2154 { 2155 if (!ec_wq) 2156 ec_wq = alloc_ordered_workqueue("kec", 0); 2157 2158 if (!ec_query_wq) 2159 ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries); 2160 2161 if (!ec_wq || !ec_query_wq) { 2162 acpi_ec_destroy_workqueues(); 2163 return -ENODEV; 2164 } 2165 return 0; 2166 } 2167 2168 static const struct dmi_system_id acpi_ec_no_wakeup[] = { 2169 { 2170 .matches = { 2171 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2172 DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"), 2173 }, 2174 }, 2175 { 2176 .matches = { 2177 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2178 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"), 2179 }, 2180 }, 2181 { 2182 .matches = { 2183 DMI_MATCH(DMI_SYS_VENDOR, "HP"), 2184 DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"), 2185 }, 2186 }, 2187 { }, 2188 }; 2189 2190 void __init acpi_ec_init(void) 2191 { 2192 int result; 2193 2194 result = acpi_ec_init_workqueues(); 2195 if (result) 2196 return; 2197 2198 /* 2199 * Disable EC wakeup on following systems to prevent periodic 2200 * wakeup from EC GPE. 2201 */ 2202 if (dmi_check_system(acpi_ec_no_wakeup)) { 2203 ec_no_wakeup = true; 2204 pr_debug("Disabling EC wakeup on suspend-to-idle\n"); 2205 } 2206 2207 /* Driver must be registered after acpi_ec_init_workqueues(). */ 2208 acpi_bus_register_driver(&acpi_ec_driver); 2209 2210 acpi_ec_ecdt_start(); 2211 } 2212 2213 /* EC driver currently not unloadable */ 2214 #if 0 2215 static void __exit acpi_ec_exit(void) 2216 { 2217 2218 acpi_bus_unregister_driver(&acpi_ec_driver); 2219 acpi_ec_destroy_workqueues(); 2220 } 2221 #endif /* 0 */ 2222