1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ec.c - ACPI Embedded Controller Driver (v3) 4 * 5 * Copyright (C) 2001-2015 Intel Corporation 6 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com> 7 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com> 8 * 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 * 2004 Luming Yu <luming.yu@intel.com> 10 * 2001, 2002 Andy Grover <andrew.grover@intel.com> 11 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 12 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de> 13 */ 14 15 /* Uncomment next line to get verbose printout */ 16 /* #define DEBUG */ 17 #define pr_fmt(fmt) "ACPI: EC: " fmt 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/init.h> 22 #include <linux/types.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/list.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/acpi.h> 30 #include <linux/dmi.h> 31 #include <asm/io.h> 32 33 #include "internal.h" 34 35 #define ACPI_EC_CLASS "embedded_controller" 36 #define ACPI_EC_DEVICE_NAME "Embedded Controller" 37 #define ACPI_EC_FILE_INFO "info" 38 39 /* EC status register */ 40 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */ 41 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */ 42 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */ 43 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */ 44 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */ 45 46 /* 47 * The SCI_EVT clearing timing is not defined by the ACPI specification. 48 * This leads to lots of practical timing issues for the host EC driver. 49 * The following variations are defined (from the target EC firmware's 50 * perspective): 51 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the 52 * target can clear SCI_EVT at any time so long as the host can see 53 * the indication by reading the status register (EC_SC). So the 54 * host should re-check SCI_EVT after the first time the SCI_EVT 55 * indication is seen, which is the same time the query request 56 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set 57 * at any later time could indicate another event. Normally such 58 * kind of EC firmware has implemented an event queue and will 59 * return 0x00 to indicate "no outstanding event". 60 * QUERY: After seeing the query request (QR_EC) written to the command 61 * register (EC_CMD) by the host and having prepared the responding 62 * event value in the data register (EC_DATA), the target can safely 63 * clear SCI_EVT because the target can confirm that the current 64 * event is being handled by the host. The host then should check 65 * SCI_EVT right after reading the event response from the data 66 * register (EC_DATA). 67 * EVENT: After seeing the event response read from the data register 68 * (EC_DATA) by the host, the target can clear SCI_EVT. As the 69 * target requires time to notice the change in the data register 70 * (EC_DATA), the host may be required to wait additional guarding 71 * time before checking the SCI_EVT again. Such guarding may not be 72 * necessary if the host is notified via another IRQ. 73 */ 74 #define ACPI_EC_EVT_TIMING_STATUS 0x00 75 #define ACPI_EC_EVT_TIMING_QUERY 0x01 76 #define ACPI_EC_EVT_TIMING_EVENT 0x02 77 78 /* EC commands */ 79 enum ec_command { 80 ACPI_EC_COMMAND_READ = 0x80, 81 ACPI_EC_COMMAND_WRITE = 0x81, 82 ACPI_EC_BURST_ENABLE = 0x82, 83 ACPI_EC_BURST_DISABLE = 0x83, 84 ACPI_EC_COMMAND_QUERY = 0x84, 85 }; 86 87 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */ 88 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */ 89 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */ 90 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query 91 * when trying to clear the EC */ 92 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */ 93 94 enum { 95 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */ 96 EC_FLAGS_QUERY_PENDING, /* Query is pending */ 97 EC_FLAGS_QUERY_GUARDING, /* Guard for SCI_EVT check */ 98 EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */ 99 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */ 100 EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */ 101 EC_FLAGS_STARTED, /* Driver is started */ 102 EC_FLAGS_STOPPED, /* Driver is stopped */ 103 EC_FLAGS_EVENTS_MASKED, /* Events masked */ 104 }; 105 106 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */ 107 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */ 108 109 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */ 110 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY; 111 module_param(ec_delay, uint, 0644); 112 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes"); 113 114 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES; 115 module_param(ec_max_queries, uint, 0644); 116 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations"); 117 118 static bool ec_busy_polling __read_mostly; 119 module_param(ec_busy_polling, bool, 0644); 120 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction"); 121 122 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL; 123 module_param(ec_polling_guard, uint, 0644); 124 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes"); 125 126 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY; 127 128 /* 129 * If the number of false interrupts per one transaction exceeds 130 * this threshold, will think there is a GPE storm happened and 131 * will disable the GPE for normal transaction. 132 */ 133 static unsigned int ec_storm_threshold __read_mostly = 8; 134 module_param(ec_storm_threshold, uint, 0644); 135 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm"); 136 137 static bool ec_freeze_events __read_mostly = false; 138 module_param(ec_freeze_events, bool, 0644); 139 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume"); 140 141 static bool ec_no_wakeup __read_mostly; 142 module_param(ec_no_wakeup, bool, 0644); 143 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle"); 144 145 struct acpi_ec_query_handler { 146 struct list_head node; 147 acpi_ec_query_func func; 148 acpi_handle handle; 149 void *data; 150 u8 query_bit; 151 struct kref kref; 152 }; 153 154 struct transaction { 155 const u8 *wdata; 156 u8 *rdata; 157 unsigned short irq_count; 158 u8 command; 159 u8 wi; 160 u8 ri; 161 u8 wlen; 162 u8 rlen; 163 u8 flags; 164 }; 165 166 struct acpi_ec_query { 167 struct transaction transaction; 168 struct work_struct work; 169 struct acpi_ec_query_handler *handler; 170 }; 171 172 static int acpi_ec_query(struct acpi_ec *ec, u8 *data); 173 static void advance_transaction(struct acpi_ec *ec); 174 static void acpi_ec_event_handler(struct work_struct *work); 175 static void acpi_ec_event_processor(struct work_struct *work); 176 177 struct acpi_ec *first_ec; 178 EXPORT_SYMBOL(first_ec); 179 180 static struct acpi_ec *boot_ec; 181 static bool boot_ec_is_ecdt = false; 182 static struct workqueue_struct *ec_wq; 183 static struct workqueue_struct *ec_query_wq; 184 185 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */ 186 static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */ 187 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */ 188 189 /* -------------------------------------------------------------------------- 190 * Logging/Debugging 191 * -------------------------------------------------------------------------- */ 192 193 /* 194 * Splitters used by the developers to track the boundary of the EC 195 * handling processes. 196 */ 197 #ifdef DEBUG 198 #define EC_DBG_SEP " " 199 #define EC_DBG_DRV "+++++" 200 #define EC_DBG_STM "=====" 201 #define EC_DBG_REQ "*****" 202 #define EC_DBG_EVT "#####" 203 #else 204 #define EC_DBG_SEP "" 205 #define EC_DBG_DRV 206 #define EC_DBG_STM 207 #define EC_DBG_REQ 208 #define EC_DBG_EVT 209 #endif 210 211 #define ec_log_raw(fmt, ...) \ 212 pr_info(fmt "\n", ##__VA_ARGS__) 213 #define ec_dbg_raw(fmt, ...) \ 214 pr_debug(fmt "\n", ##__VA_ARGS__) 215 #define ec_log(filter, fmt, ...) \ 216 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) 217 #define ec_dbg(filter, fmt, ...) \ 218 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) 219 220 #define ec_log_drv(fmt, ...) \ 221 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__) 222 #define ec_dbg_drv(fmt, ...) \ 223 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__) 224 #define ec_dbg_stm(fmt, ...) \ 225 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__) 226 #define ec_dbg_req(fmt, ...) \ 227 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__) 228 #define ec_dbg_evt(fmt, ...) \ 229 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__) 230 #define ec_dbg_ref(ec, fmt, ...) \ 231 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__) 232 233 /* -------------------------------------------------------------------------- 234 * Device Flags 235 * -------------------------------------------------------------------------- */ 236 237 static bool acpi_ec_started(struct acpi_ec *ec) 238 { 239 return test_bit(EC_FLAGS_STARTED, &ec->flags) && 240 !test_bit(EC_FLAGS_STOPPED, &ec->flags); 241 } 242 243 static bool acpi_ec_event_enabled(struct acpi_ec *ec) 244 { 245 /* 246 * There is an OSPM early stage logic. During the early stages 247 * (boot/resume), OSPMs shouldn't enable the event handling, only 248 * the EC transactions are allowed to be performed. 249 */ 250 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 251 return false; 252 /* 253 * However, disabling the event handling is experimental for late 254 * stage (suspend), and is controlled by the boot parameter of 255 * "ec_freeze_events": 256 * 1. true: The EC event handling is disabled before entering 257 * the noirq stage. 258 * 2. false: The EC event handling is automatically disabled as 259 * soon as the EC driver is stopped. 260 */ 261 if (ec_freeze_events) 262 return acpi_ec_started(ec); 263 else 264 return test_bit(EC_FLAGS_STARTED, &ec->flags); 265 } 266 267 static bool acpi_ec_flushed(struct acpi_ec *ec) 268 { 269 return ec->reference_count == 1; 270 } 271 272 /* -------------------------------------------------------------------------- 273 * EC Registers 274 * -------------------------------------------------------------------------- */ 275 276 static inline u8 acpi_ec_read_status(struct acpi_ec *ec) 277 { 278 u8 x = inb(ec->command_addr); 279 280 ec_dbg_raw("EC_SC(R) = 0x%2.2x " 281 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d", 282 x, 283 !!(x & ACPI_EC_FLAG_SCI), 284 !!(x & ACPI_EC_FLAG_BURST), 285 !!(x & ACPI_EC_FLAG_CMD), 286 !!(x & ACPI_EC_FLAG_IBF), 287 !!(x & ACPI_EC_FLAG_OBF)); 288 return x; 289 } 290 291 static inline u8 acpi_ec_read_data(struct acpi_ec *ec) 292 { 293 u8 x = inb(ec->data_addr); 294 295 ec->timestamp = jiffies; 296 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x); 297 return x; 298 } 299 300 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command) 301 { 302 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command); 303 outb(command, ec->command_addr); 304 ec->timestamp = jiffies; 305 } 306 307 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data) 308 { 309 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data); 310 outb(data, ec->data_addr); 311 ec->timestamp = jiffies; 312 } 313 314 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 315 static const char *acpi_ec_cmd_string(u8 cmd) 316 { 317 switch (cmd) { 318 case 0x80: 319 return "RD_EC"; 320 case 0x81: 321 return "WR_EC"; 322 case 0x82: 323 return "BE_EC"; 324 case 0x83: 325 return "BD_EC"; 326 case 0x84: 327 return "QR_EC"; 328 } 329 return "UNKNOWN"; 330 } 331 #else 332 #define acpi_ec_cmd_string(cmd) "UNDEF" 333 #endif 334 335 /* -------------------------------------------------------------------------- 336 * GPE Registers 337 * -------------------------------------------------------------------------- */ 338 339 static inline bool acpi_ec_is_gpe_raised(struct acpi_ec *ec) 340 { 341 acpi_event_status gpe_status = 0; 342 343 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status); 344 return (gpe_status & ACPI_EVENT_FLAG_STATUS_SET) ? true : false; 345 } 346 347 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open) 348 { 349 if (open) 350 acpi_enable_gpe(NULL, ec->gpe); 351 else { 352 BUG_ON(ec->reference_count < 1); 353 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); 354 } 355 if (acpi_ec_is_gpe_raised(ec)) { 356 /* 357 * On some platforms, EN=1 writes cannot trigger GPE. So 358 * software need to manually trigger a pseudo GPE event on 359 * EN=1 writes. 360 */ 361 ec_dbg_raw("Polling quirk"); 362 advance_transaction(ec); 363 } 364 } 365 366 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close) 367 { 368 if (close) 369 acpi_disable_gpe(NULL, ec->gpe); 370 else { 371 BUG_ON(ec->reference_count < 1); 372 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); 373 } 374 } 375 376 static inline void acpi_ec_clear_gpe(struct acpi_ec *ec) 377 { 378 /* 379 * GPE STS is a W1C register, which means: 380 * 1. Software can clear it without worrying about clearing other 381 * GPEs' STS bits when the hardware sets them in parallel. 382 * 2. As long as software can ensure only clearing it when it is 383 * set, hardware won't set it in parallel. 384 * So software can clear GPE in any contexts. 385 * Warning: do not move the check into advance_transaction() as the 386 * EC commands will be sent without GPE raised. 387 */ 388 if (!acpi_ec_is_gpe_raised(ec)) 389 return; 390 acpi_clear_gpe(NULL, ec->gpe); 391 } 392 393 /* -------------------------------------------------------------------------- 394 * Transaction Management 395 * -------------------------------------------------------------------------- */ 396 397 static void acpi_ec_submit_request(struct acpi_ec *ec) 398 { 399 ec->reference_count++; 400 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && 401 ec->gpe >= 0 && ec->reference_count == 1) 402 acpi_ec_enable_gpe(ec, true); 403 } 404 405 static void acpi_ec_complete_request(struct acpi_ec *ec) 406 { 407 bool flushed = false; 408 409 ec->reference_count--; 410 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && 411 ec->gpe >= 0 && ec->reference_count == 0) 412 acpi_ec_disable_gpe(ec, true); 413 flushed = acpi_ec_flushed(ec); 414 if (flushed) 415 wake_up(&ec->wait); 416 } 417 418 static void acpi_ec_mask_events(struct acpi_ec *ec) 419 { 420 if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { 421 if (ec->gpe >= 0) 422 acpi_ec_disable_gpe(ec, false); 423 else 424 disable_irq_nosync(ec->irq); 425 426 ec_dbg_drv("Polling enabled"); 427 set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); 428 } 429 } 430 431 static void acpi_ec_unmask_events(struct acpi_ec *ec) 432 { 433 if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { 434 clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); 435 if (ec->gpe >= 0) 436 acpi_ec_enable_gpe(ec, false); 437 else 438 enable_irq(ec->irq); 439 440 ec_dbg_drv("Polling disabled"); 441 } 442 } 443 444 /* 445 * acpi_ec_submit_flushable_request() - Increase the reference count unless 446 * the flush operation is not in 447 * progress 448 * @ec: the EC device 449 * 450 * This function must be used before taking a new action that should hold 451 * the reference count. If this function returns false, then the action 452 * must be discarded or it will prevent the flush operation from being 453 * completed. 454 */ 455 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec) 456 { 457 if (!acpi_ec_started(ec)) 458 return false; 459 acpi_ec_submit_request(ec); 460 return true; 461 } 462 463 static void acpi_ec_submit_query(struct acpi_ec *ec) 464 { 465 acpi_ec_mask_events(ec); 466 if (!acpi_ec_event_enabled(ec)) 467 return; 468 if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) { 469 ec_dbg_evt("Command(%s) submitted/blocked", 470 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 471 ec->nr_pending_queries++; 472 queue_work(ec_wq, &ec->work); 473 } 474 } 475 476 static void acpi_ec_complete_query(struct acpi_ec *ec) 477 { 478 if (test_and_clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) 479 ec_dbg_evt("Command(%s) unblocked", 480 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 481 acpi_ec_unmask_events(ec); 482 } 483 484 static inline void __acpi_ec_enable_event(struct acpi_ec *ec) 485 { 486 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 487 ec_log_drv("event unblocked"); 488 /* 489 * Unconditionally invoke this once after enabling the event 490 * handling mechanism to detect the pending events. 491 */ 492 advance_transaction(ec); 493 } 494 495 static inline void __acpi_ec_disable_event(struct acpi_ec *ec) 496 { 497 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 498 ec_log_drv("event blocked"); 499 } 500 501 /* 502 * Process _Q events that might have accumulated in the EC. 503 * Run with locked ec mutex. 504 */ 505 static void acpi_ec_clear(struct acpi_ec *ec) 506 { 507 int i, status; 508 u8 value = 0; 509 510 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) { 511 status = acpi_ec_query(ec, &value); 512 if (status || !value) 513 break; 514 } 515 if (unlikely(i == ACPI_EC_CLEAR_MAX)) 516 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i); 517 else 518 pr_info("%d stale EC events cleared\n", i); 519 } 520 521 static void acpi_ec_enable_event(struct acpi_ec *ec) 522 { 523 unsigned long flags; 524 525 spin_lock_irqsave(&ec->lock, flags); 526 if (acpi_ec_started(ec)) 527 __acpi_ec_enable_event(ec); 528 spin_unlock_irqrestore(&ec->lock, flags); 529 530 /* Drain additional events if hardware requires that */ 531 if (EC_FLAGS_CLEAR_ON_RESUME) 532 acpi_ec_clear(ec); 533 } 534 535 #ifdef CONFIG_PM_SLEEP 536 static void __acpi_ec_flush_work(void) 537 { 538 drain_workqueue(ec_wq); /* flush ec->work */ 539 flush_workqueue(ec_query_wq); /* flush queries */ 540 } 541 542 static void acpi_ec_disable_event(struct acpi_ec *ec) 543 { 544 unsigned long flags; 545 546 spin_lock_irqsave(&ec->lock, flags); 547 __acpi_ec_disable_event(ec); 548 spin_unlock_irqrestore(&ec->lock, flags); 549 550 /* 551 * When ec_freeze_events is true, we need to flush events in 552 * the proper position before entering the noirq stage. 553 */ 554 __acpi_ec_flush_work(); 555 } 556 557 void acpi_ec_flush_work(void) 558 { 559 /* Without ec_wq there is nothing to flush. */ 560 if (!ec_wq) 561 return; 562 563 __acpi_ec_flush_work(); 564 } 565 #endif /* CONFIG_PM_SLEEP */ 566 567 static bool acpi_ec_guard_event(struct acpi_ec *ec) 568 { 569 bool guarded = true; 570 unsigned long flags; 571 572 spin_lock_irqsave(&ec->lock, flags); 573 /* 574 * If firmware SCI_EVT clearing timing is "event", we actually 575 * don't know when the SCI_EVT will be cleared by firmware after 576 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an 577 * acceptable period. 578 * 579 * The guarding period begins when EC_FLAGS_QUERY_PENDING is 580 * flagged, which means SCI_EVT check has just been performed. 581 * But if the current transaction is ACPI_EC_COMMAND_QUERY, the 582 * guarding should have already been performed (via 583 * EC_FLAGS_QUERY_GUARDING) and should not be applied so that the 584 * ACPI_EC_COMMAND_QUERY transaction can be transitioned into 585 * ACPI_EC_COMMAND_POLL state immediately. 586 */ 587 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS || 588 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY || 589 !test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags) || 590 (ec->curr && ec->curr->command == ACPI_EC_COMMAND_QUERY)) 591 guarded = false; 592 spin_unlock_irqrestore(&ec->lock, flags); 593 return guarded; 594 } 595 596 static int ec_transaction_polled(struct acpi_ec *ec) 597 { 598 unsigned long flags; 599 int ret = 0; 600 601 spin_lock_irqsave(&ec->lock, flags); 602 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL)) 603 ret = 1; 604 spin_unlock_irqrestore(&ec->lock, flags); 605 return ret; 606 } 607 608 static int ec_transaction_completed(struct acpi_ec *ec) 609 { 610 unsigned long flags; 611 int ret = 0; 612 613 spin_lock_irqsave(&ec->lock, flags); 614 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE)) 615 ret = 1; 616 spin_unlock_irqrestore(&ec->lock, flags); 617 return ret; 618 } 619 620 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag) 621 { 622 ec->curr->flags |= flag; 623 if (ec->curr->command == ACPI_EC_COMMAND_QUERY) { 624 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS && 625 flag == ACPI_EC_COMMAND_POLL) 626 acpi_ec_complete_query(ec); 627 if (ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY && 628 flag == ACPI_EC_COMMAND_COMPLETE) 629 acpi_ec_complete_query(ec); 630 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && 631 flag == ACPI_EC_COMMAND_COMPLETE) 632 set_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags); 633 } 634 } 635 636 static void advance_transaction(struct acpi_ec *ec) 637 { 638 struct transaction *t; 639 u8 status; 640 bool wakeup = false; 641 642 ec_dbg_stm("%s (%d)", in_interrupt() ? "IRQ" : "TASK", 643 smp_processor_id()); 644 /* 645 * By always clearing STS before handling all indications, we can 646 * ensure a hardware STS 0->1 change after this clearing can always 647 * trigger a GPE interrupt. 648 */ 649 if (ec->gpe >= 0) 650 acpi_ec_clear_gpe(ec); 651 652 status = acpi_ec_read_status(ec); 653 t = ec->curr; 654 /* 655 * Another IRQ or a guarded polling mode advancement is detected, 656 * the next QR_EC submission is then allowed. 657 */ 658 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) { 659 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && 660 (!ec->nr_pending_queries || 661 test_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags))) { 662 clear_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags); 663 acpi_ec_complete_query(ec); 664 } 665 } 666 if (!t) 667 goto err; 668 if (t->flags & ACPI_EC_COMMAND_POLL) { 669 if (t->wlen > t->wi) { 670 if ((status & ACPI_EC_FLAG_IBF) == 0) 671 acpi_ec_write_data(ec, t->wdata[t->wi++]); 672 else 673 goto err; 674 } else if (t->rlen > t->ri) { 675 if ((status & ACPI_EC_FLAG_OBF) == 1) { 676 t->rdata[t->ri++] = acpi_ec_read_data(ec); 677 if (t->rlen == t->ri) { 678 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); 679 if (t->command == ACPI_EC_COMMAND_QUERY) 680 ec_dbg_evt("Command(%s) completed by hardware", 681 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 682 wakeup = true; 683 } 684 } else 685 goto err; 686 } else if (t->wlen == t->wi && 687 (status & ACPI_EC_FLAG_IBF) == 0) { 688 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); 689 wakeup = true; 690 } 691 goto out; 692 } else if (!(status & ACPI_EC_FLAG_IBF)) { 693 acpi_ec_write_cmd(ec, t->command); 694 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL); 695 goto out; 696 } 697 err: 698 /* 699 * If SCI bit is set, then don't think it's a false IRQ 700 * otherwise will take a not handled IRQ as a false one. 701 */ 702 if (!(status & ACPI_EC_FLAG_SCI)) { 703 if (in_interrupt() && t) { 704 if (t->irq_count < ec_storm_threshold) 705 ++t->irq_count; 706 /* Allow triggering on 0 threshold */ 707 if (t->irq_count == ec_storm_threshold) 708 acpi_ec_mask_events(ec); 709 } 710 } 711 out: 712 if (status & ACPI_EC_FLAG_SCI) 713 acpi_ec_submit_query(ec); 714 if (wakeup && in_interrupt()) 715 wake_up(&ec->wait); 716 } 717 718 static void start_transaction(struct acpi_ec *ec) 719 { 720 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0; 721 ec->curr->flags = 0; 722 } 723 724 static int ec_guard(struct acpi_ec *ec) 725 { 726 unsigned long guard = usecs_to_jiffies(ec->polling_guard); 727 unsigned long timeout = ec->timestamp + guard; 728 729 /* Ensure guarding period before polling EC status */ 730 do { 731 if (ec->busy_polling) { 732 /* Perform busy polling */ 733 if (ec_transaction_completed(ec)) 734 return 0; 735 udelay(jiffies_to_usecs(guard)); 736 } else { 737 /* 738 * Perform wait polling 739 * 1. Wait the transaction to be completed by the 740 * GPE handler after the transaction enters 741 * ACPI_EC_COMMAND_POLL state. 742 * 2. A special guarding logic is also required 743 * for event clearing mode "event" before the 744 * transaction enters ACPI_EC_COMMAND_POLL 745 * state. 746 */ 747 if (!ec_transaction_polled(ec) && 748 !acpi_ec_guard_event(ec)) 749 break; 750 if (wait_event_timeout(ec->wait, 751 ec_transaction_completed(ec), 752 guard)) 753 return 0; 754 } 755 } while (time_before(jiffies, timeout)); 756 return -ETIME; 757 } 758 759 static int ec_poll(struct acpi_ec *ec) 760 { 761 unsigned long flags; 762 int repeat = 5; /* number of command restarts */ 763 764 while (repeat--) { 765 unsigned long delay = jiffies + 766 msecs_to_jiffies(ec_delay); 767 do { 768 if (!ec_guard(ec)) 769 return 0; 770 spin_lock_irqsave(&ec->lock, flags); 771 advance_transaction(ec); 772 spin_unlock_irqrestore(&ec->lock, flags); 773 } while (time_before(jiffies, delay)); 774 pr_debug("controller reset, restart transaction\n"); 775 spin_lock_irqsave(&ec->lock, flags); 776 start_transaction(ec); 777 spin_unlock_irqrestore(&ec->lock, flags); 778 } 779 return -ETIME; 780 } 781 782 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec, 783 struct transaction *t) 784 { 785 unsigned long tmp; 786 int ret = 0; 787 788 /* start transaction */ 789 spin_lock_irqsave(&ec->lock, tmp); 790 /* Enable GPE for command processing (IBF=0/OBF=1) */ 791 if (!acpi_ec_submit_flushable_request(ec)) { 792 ret = -EINVAL; 793 goto unlock; 794 } 795 ec_dbg_ref(ec, "Increase command"); 796 /* following two actions should be kept atomic */ 797 ec->curr = t; 798 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command)); 799 start_transaction(ec); 800 spin_unlock_irqrestore(&ec->lock, tmp); 801 802 ret = ec_poll(ec); 803 804 spin_lock_irqsave(&ec->lock, tmp); 805 if (t->irq_count == ec_storm_threshold) 806 acpi_ec_unmask_events(ec); 807 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command)); 808 ec->curr = NULL; 809 /* Disable GPE for command processing (IBF=0/OBF=1) */ 810 acpi_ec_complete_request(ec); 811 ec_dbg_ref(ec, "Decrease command"); 812 unlock: 813 spin_unlock_irqrestore(&ec->lock, tmp); 814 return ret; 815 } 816 817 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t) 818 { 819 int status; 820 u32 glk; 821 822 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata)) 823 return -EINVAL; 824 if (t->rdata) 825 memset(t->rdata, 0, t->rlen); 826 827 mutex_lock(&ec->mutex); 828 if (ec->global_lock) { 829 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); 830 if (ACPI_FAILURE(status)) { 831 status = -ENODEV; 832 goto unlock; 833 } 834 } 835 836 status = acpi_ec_transaction_unlocked(ec, t); 837 838 if (ec->global_lock) 839 acpi_release_global_lock(glk); 840 unlock: 841 mutex_unlock(&ec->mutex); 842 return status; 843 } 844 845 static int acpi_ec_burst_enable(struct acpi_ec *ec) 846 { 847 u8 d; 848 struct transaction t = {.command = ACPI_EC_BURST_ENABLE, 849 .wdata = NULL, .rdata = &d, 850 .wlen = 0, .rlen = 1}; 851 852 return acpi_ec_transaction(ec, &t); 853 } 854 855 static int acpi_ec_burst_disable(struct acpi_ec *ec) 856 { 857 struct transaction t = {.command = ACPI_EC_BURST_DISABLE, 858 .wdata = NULL, .rdata = NULL, 859 .wlen = 0, .rlen = 0}; 860 861 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ? 862 acpi_ec_transaction(ec, &t) : 0; 863 } 864 865 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data) 866 { 867 int result; 868 u8 d; 869 struct transaction t = {.command = ACPI_EC_COMMAND_READ, 870 .wdata = &address, .rdata = &d, 871 .wlen = 1, .rlen = 1}; 872 873 result = acpi_ec_transaction(ec, &t); 874 *data = d; 875 return result; 876 } 877 878 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data) 879 { 880 u8 wdata[2] = { address, data }; 881 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE, 882 .wdata = wdata, .rdata = NULL, 883 .wlen = 2, .rlen = 0}; 884 885 return acpi_ec_transaction(ec, &t); 886 } 887 888 int ec_read(u8 addr, u8 *val) 889 { 890 int err; 891 u8 temp_data; 892 893 if (!first_ec) 894 return -ENODEV; 895 896 err = acpi_ec_read(first_ec, addr, &temp_data); 897 898 if (!err) { 899 *val = temp_data; 900 return 0; 901 } 902 return err; 903 } 904 EXPORT_SYMBOL(ec_read); 905 906 int ec_write(u8 addr, u8 val) 907 { 908 int err; 909 910 if (!first_ec) 911 return -ENODEV; 912 913 err = acpi_ec_write(first_ec, addr, val); 914 915 return err; 916 } 917 EXPORT_SYMBOL(ec_write); 918 919 int ec_transaction(u8 command, 920 const u8 *wdata, unsigned wdata_len, 921 u8 *rdata, unsigned rdata_len) 922 { 923 struct transaction t = {.command = command, 924 .wdata = wdata, .rdata = rdata, 925 .wlen = wdata_len, .rlen = rdata_len}; 926 927 if (!first_ec) 928 return -ENODEV; 929 930 return acpi_ec_transaction(first_ec, &t); 931 } 932 EXPORT_SYMBOL(ec_transaction); 933 934 /* Get the handle to the EC device */ 935 acpi_handle ec_get_handle(void) 936 { 937 if (!first_ec) 938 return NULL; 939 return first_ec->handle; 940 } 941 EXPORT_SYMBOL(ec_get_handle); 942 943 static void acpi_ec_start(struct acpi_ec *ec, bool resuming) 944 { 945 unsigned long flags; 946 947 spin_lock_irqsave(&ec->lock, flags); 948 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) { 949 ec_dbg_drv("Starting EC"); 950 /* Enable GPE for event processing (SCI_EVT=1) */ 951 if (!resuming) { 952 acpi_ec_submit_request(ec); 953 ec_dbg_ref(ec, "Increase driver"); 954 } 955 ec_log_drv("EC started"); 956 } 957 spin_unlock_irqrestore(&ec->lock, flags); 958 } 959 960 static bool acpi_ec_stopped(struct acpi_ec *ec) 961 { 962 unsigned long flags; 963 bool flushed; 964 965 spin_lock_irqsave(&ec->lock, flags); 966 flushed = acpi_ec_flushed(ec); 967 spin_unlock_irqrestore(&ec->lock, flags); 968 return flushed; 969 } 970 971 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending) 972 { 973 unsigned long flags; 974 975 spin_lock_irqsave(&ec->lock, flags); 976 if (acpi_ec_started(ec)) { 977 ec_dbg_drv("Stopping EC"); 978 set_bit(EC_FLAGS_STOPPED, &ec->flags); 979 spin_unlock_irqrestore(&ec->lock, flags); 980 wait_event(ec->wait, acpi_ec_stopped(ec)); 981 spin_lock_irqsave(&ec->lock, flags); 982 /* Disable GPE for event processing (SCI_EVT=1) */ 983 if (!suspending) { 984 acpi_ec_complete_request(ec); 985 ec_dbg_ref(ec, "Decrease driver"); 986 } else if (!ec_freeze_events) 987 __acpi_ec_disable_event(ec); 988 clear_bit(EC_FLAGS_STARTED, &ec->flags); 989 clear_bit(EC_FLAGS_STOPPED, &ec->flags); 990 ec_log_drv("EC stopped"); 991 } 992 spin_unlock_irqrestore(&ec->lock, flags); 993 } 994 995 static void acpi_ec_enter_noirq(struct acpi_ec *ec) 996 { 997 unsigned long flags; 998 999 spin_lock_irqsave(&ec->lock, flags); 1000 ec->busy_polling = true; 1001 ec->polling_guard = 0; 1002 ec_log_drv("interrupt blocked"); 1003 spin_unlock_irqrestore(&ec->lock, flags); 1004 } 1005 1006 static void acpi_ec_leave_noirq(struct acpi_ec *ec) 1007 { 1008 unsigned long flags; 1009 1010 spin_lock_irqsave(&ec->lock, flags); 1011 ec->busy_polling = ec_busy_polling; 1012 ec->polling_guard = ec_polling_guard; 1013 ec_log_drv("interrupt unblocked"); 1014 spin_unlock_irqrestore(&ec->lock, flags); 1015 } 1016 1017 void acpi_ec_block_transactions(void) 1018 { 1019 struct acpi_ec *ec = first_ec; 1020 1021 if (!ec) 1022 return; 1023 1024 mutex_lock(&ec->mutex); 1025 /* Prevent transactions from being carried out */ 1026 acpi_ec_stop(ec, true); 1027 mutex_unlock(&ec->mutex); 1028 } 1029 1030 void acpi_ec_unblock_transactions(void) 1031 { 1032 /* 1033 * Allow transactions to happen again (this function is called from 1034 * atomic context during wakeup, so we don't need to acquire the mutex). 1035 */ 1036 if (first_ec) 1037 acpi_ec_start(first_ec, true); 1038 } 1039 1040 /* -------------------------------------------------------------------------- 1041 Event Management 1042 -------------------------------------------------------------------------- */ 1043 static struct acpi_ec_query_handler * 1044 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value) 1045 { 1046 struct acpi_ec_query_handler *handler; 1047 1048 mutex_lock(&ec->mutex); 1049 list_for_each_entry(handler, &ec->list, node) { 1050 if (value == handler->query_bit) { 1051 kref_get(&handler->kref); 1052 mutex_unlock(&ec->mutex); 1053 return handler; 1054 } 1055 } 1056 mutex_unlock(&ec->mutex); 1057 return NULL; 1058 } 1059 1060 static void acpi_ec_query_handler_release(struct kref *kref) 1061 { 1062 struct acpi_ec_query_handler *handler = 1063 container_of(kref, struct acpi_ec_query_handler, kref); 1064 1065 kfree(handler); 1066 } 1067 1068 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler) 1069 { 1070 kref_put(&handler->kref, acpi_ec_query_handler_release); 1071 } 1072 1073 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit, 1074 acpi_handle handle, acpi_ec_query_func func, 1075 void *data) 1076 { 1077 struct acpi_ec_query_handler *handler = 1078 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL); 1079 1080 if (!handler) 1081 return -ENOMEM; 1082 1083 handler->query_bit = query_bit; 1084 handler->handle = handle; 1085 handler->func = func; 1086 handler->data = data; 1087 mutex_lock(&ec->mutex); 1088 kref_init(&handler->kref); 1089 list_add(&handler->node, &ec->list); 1090 mutex_unlock(&ec->mutex); 1091 return 0; 1092 } 1093 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler); 1094 1095 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec, 1096 bool remove_all, u8 query_bit) 1097 { 1098 struct acpi_ec_query_handler *handler, *tmp; 1099 LIST_HEAD(free_list); 1100 1101 mutex_lock(&ec->mutex); 1102 list_for_each_entry_safe(handler, tmp, &ec->list, node) { 1103 if (remove_all || query_bit == handler->query_bit) { 1104 list_del_init(&handler->node); 1105 list_add(&handler->node, &free_list); 1106 } 1107 } 1108 mutex_unlock(&ec->mutex); 1109 list_for_each_entry_safe(handler, tmp, &free_list, node) 1110 acpi_ec_put_query_handler(handler); 1111 } 1112 1113 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit) 1114 { 1115 acpi_ec_remove_query_handlers(ec, false, query_bit); 1116 } 1117 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler); 1118 1119 static struct acpi_ec_query *acpi_ec_create_query(u8 *pval) 1120 { 1121 struct acpi_ec_query *q; 1122 struct transaction *t; 1123 1124 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL); 1125 if (!q) 1126 return NULL; 1127 INIT_WORK(&q->work, acpi_ec_event_processor); 1128 t = &q->transaction; 1129 t->command = ACPI_EC_COMMAND_QUERY; 1130 t->rdata = pval; 1131 t->rlen = 1; 1132 return q; 1133 } 1134 1135 static void acpi_ec_delete_query(struct acpi_ec_query *q) 1136 { 1137 if (q) { 1138 if (q->handler) 1139 acpi_ec_put_query_handler(q->handler); 1140 kfree(q); 1141 } 1142 } 1143 1144 static void acpi_ec_event_processor(struct work_struct *work) 1145 { 1146 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work); 1147 struct acpi_ec_query_handler *handler = q->handler; 1148 1149 ec_dbg_evt("Query(0x%02x) started", handler->query_bit); 1150 if (handler->func) 1151 handler->func(handler->data); 1152 else if (handler->handle) 1153 acpi_evaluate_object(handler->handle, NULL, NULL, NULL); 1154 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit); 1155 acpi_ec_delete_query(q); 1156 } 1157 1158 static int acpi_ec_query(struct acpi_ec *ec, u8 *data) 1159 { 1160 u8 value = 0; 1161 int result; 1162 struct acpi_ec_query *q; 1163 1164 q = acpi_ec_create_query(&value); 1165 if (!q) 1166 return -ENOMEM; 1167 1168 /* 1169 * Query the EC to find out which _Qxx method we need to evaluate. 1170 * Note that successful completion of the query causes the ACPI_EC_SCI 1171 * bit to be cleared (and thus clearing the interrupt source). 1172 */ 1173 result = acpi_ec_transaction(ec, &q->transaction); 1174 if (!value) 1175 result = -ENODATA; 1176 if (result) 1177 goto err_exit; 1178 1179 q->handler = acpi_ec_get_query_handler_by_value(ec, value); 1180 if (!q->handler) { 1181 result = -ENODATA; 1182 goto err_exit; 1183 } 1184 1185 /* 1186 * It is reported that _Qxx are evaluated in a parallel way on 1187 * Windows: 1188 * https://bugzilla.kernel.org/show_bug.cgi?id=94411 1189 * 1190 * Put this log entry before schedule_work() in order to make 1191 * it appearing before any other log entries occurred during the 1192 * work queue execution. 1193 */ 1194 ec_dbg_evt("Query(0x%02x) scheduled", value); 1195 if (!queue_work(ec_query_wq, &q->work)) { 1196 ec_dbg_evt("Query(0x%02x) overlapped", value); 1197 result = -EBUSY; 1198 } 1199 1200 err_exit: 1201 if (result) 1202 acpi_ec_delete_query(q); 1203 if (data) 1204 *data = value; 1205 return result; 1206 } 1207 1208 static void acpi_ec_check_event(struct acpi_ec *ec) 1209 { 1210 unsigned long flags; 1211 1212 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) { 1213 if (ec_guard(ec)) { 1214 spin_lock_irqsave(&ec->lock, flags); 1215 /* 1216 * Take care of the SCI_EVT unless no one else is 1217 * taking care of it. 1218 */ 1219 if (!ec->curr) 1220 advance_transaction(ec); 1221 spin_unlock_irqrestore(&ec->lock, flags); 1222 } 1223 } 1224 } 1225 1226 static void acpi_ec_event_handler(struct work_struct *work) 1227 { 1228 unsigned long flags; 1229 struct acpi_ec *ec = container_of(work, struct acpi_ec, work); 1230 1231 ec_dbg_evt("Event started"); 1232 1233 spin_lock_irqsave(&ec->lock, flags); 1234 while (ec->nr_pending_queries) { 1235 spin_unlock_irqrestore(&ec->lock, flags); 1236 (void)acpi_ec_query(ec, NULL); 1237 spin_lock_irqsave(&ec->lock, flags); 1238 ec->nr_pending_queries--; 1239 /* 1240 * Before exit, make sure that this work item can be 1241 * scheduled again. There might be QR_EC failures, leaving 1242 * EC_FLAGS_QUERY_PENDING uncleared and preventing this work 1243 * item from being scheduled again. 1244 */ 1245 if (!ec->nr_pending_queries) { 1246 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS || 1247 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY) 1248 acpi_ec_complete_query(ec); 1249 } 1250 } 1251 spin_unlock_irqrestore(&ec->lock, flags); 1252 1253 ec_dbg_evt("Event stopped"); 1254 1255 acpi_ec_check_event(ec); 1256 } 1257 1258 static void acpi_ec_handle_interrupt(struct acpi_ec *ec) 1259 { 1260 unsigned long flags; 1261 1262 spin_lock_irqsave(&ec->lock, flags); 1263 advance_transaction(ec); 1264 spin_unlock_irqrestore(&ec->lock, flags); 1265 } 1266 1267 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device, 1268 u32 gpe_number, void *data) 1269 { 1270 acpi_ec_handle_interrupt(data); 1271 return ACPI_INTERRUPT_HANDLED; 1272 } 1273 1274 static irqreturn_t acpi_ec_irq_handler(int irq, void *data) 1275 { 1276 acpi_ec_handle_interrupt(data); 1277 return IRQ_HANDLED; 1278 } 1279 1280 /* -------------------------------------------------------------------------- 1281 * Address Space Management 1282 * -------------------------------------------------------------------------- */ 1283 1284 static acpi_status 1285 acpi_ec_space_handler(u32 function, acpi_physical_address address, 1286 u32 bits, u64 *value64, 1287 void *handler_context, void *region_context) 1288 { 1289 struct acpi_ec *ec = handler_context; 1290 int result = 0, i, bytes = bits / 8; 1291 u8 *value = (u8 *)value64; 1292 1293 if ((address > 0xFF) || !value || !handler_context) 1294 return AE_BAD_PARAMETER; 1295 1296 if (function != ACPI_READ && function != ACPI_WRITE) 1297 return AE_BAD_PARAMETER; 1298 1299 if (ec->busy_polling || bits > 8) 1300 acpi_ec_burst_enable(ec); 1301 1302 for (i = 0; i < bytes; ++i, ++address, ++value) 1303 result = (function == ACPI_READ) ? 1304 acpi_ec_read(ec, address, value) : 1305 acpi_ec_write(ec, address, *value); 1306 1307 if (ec->busy_polling || bits > 8) 1308 acpi_ec_burst_disable(ec); 1309 1310 switch (result) { 1311 case -EINVAL: 1312 return AE_BAD_PARAMETER; 1313 case -ENODEV: 1314 return AE_NOT_FOUND; 1315 case -ETIME: 1316 return AE_TIME; 1317 default: 1318 return AE_OK; 1319 } 1320 } 1321 1322 /* -------------------------------------------------------------------------- 1323 * Driver Interface 1324 * -------------------------------------------------------------------------- */ 1325 1326 static acpi_status 1327 ec_parse_io_ports(struct acpi_resource *resource, void *context); 1328 1329 static void acpi_ec_free(struct acpi_ec *ec) 1330 { 1331 if (first_ec == ec) 1332 first_ec = NULL; 1333 if (boot_ec == ec) 1334 boot_ec = NULL; 1335 kfree(ec); 1336 } 1337 1338 static struct acpi_ec *acpi_ec_alloc(void) 1339 { 1340 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL); 1341 1342 if (!ec) 1343 return NULL; 1344 mutex_init(&ec->mutex); 1345 init_waitqueue_head(&ec->wait); 1346 INIT_LIST_HEAD(&ec->list); 1347 spin_lock_init(&ec->lock); 1348 INIT_WORK(&ec->work, acpi_ec_event_handler); 1349 ec->timestamp = jiffies; 1350 ec->busy_polling = true; 1351 ec->polling_guard = 0; 1352 ec->gpe = -1; 1353 ec->irq = -1; 1354 return ec; 1355 } 1356 1357 static acpi_status 1358 acpi_ec_register_query_methods(acpi_handle handle, u32 level, 1359 void *context, void **return_value) 1360 { 1361 char node_name[5]; 1362 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 1363 struct acpi_ec *ec = context; 1364 int value = 0; 1365 acpi_status status; 1366 1367 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 1368 1369 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1) 1370 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL); 1371 return AE_OK; 1372 } 1373 1374 static acpi_status 1375 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval) 1376 { 1377 acpi_status status; 1378 unsigned long long tmp = 0; 1379 struct acpi_ec *ec = context; 1380 1381 /* clear addr values, ec_parse_io_ports depend on it */ 1382 ec->command_addr = ec->data_addr = 0; 1383 1384 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1385 ec_parse_io_ports, ec); 1386 if (ACPI_FAILURE(status)) 1387 return status; 1388 if (ec->data_addr == 0 || ec->command_addr == 0) 1389 return AE_OK; 1390 1391 if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) { 1392 /* 1393 * Always inherit the GPE number setting from the ECDT 1394 * EC. 1395 */ 1396 ec->gpe = boot_ec->gpe; 1397 } else { 1398 /* Get GPE bit assignment (EC events). */ 1399 /* TODO: Add support for _GPE returning a package */ 1400 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 1401 if (ACPI_SUCCESS(status)) 1402 ec->gpe = tmp; 1403 1404 /* 1405 * Errors are non-fatal, allowing for ACPI Reduced Hardware 1406 * platforms which use GpioInt instead of GPE. 1407 */ 1408 } 1409 /* Use the global lock for all EC transactions? */ 1410 tmp = 0; 1411 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp); 1412 ec->global_lock = tmp; 1413 ec->handle = handle; 1414 return AE_CTRL_TERMINATE; 1415 } 1416 1417 static bool install_gpe_event_handler(struct acpi_ec *ec) 1418 { 1419 acpi_status status; 1420 1421 status = acpi_install_gpe_raw_handler(NULL, ec->gpe, 1422 ACPI_GPE_EDGE_TRIGGERED, 1423 &acpi_ec_gpe_handler, ec); 1424 if (ACPI_FAILURE(status)) 1425 return false; 1426 1427 if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1) 1428 acpi_ec_enable_gpe(ec, true); 1429 1430 return true; 1431 } 1432 1433 static bool install_gpio_irq_event_handler(struct acpi_ec *ec) 1434 { 1435 return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED, 1436 "ACPI EC", ec) >= 0; 1437 } 1438 1439 /** 1440 * ec_install_handlers - Install service callbacks and register query methods. 1441 * @ec: Target EC. 1442 * @device: ACPI device object corresponding to @ec. 1443 * 1444 * Install a handler for the EC address space type unless it has been installed 1445 * already. If @device is not NULL, also look for EC query methods in the 1446 * namespace and register them, and install an event (either GPE or GPIO IRQ) 1447 * handler for the EC, if possible. 1448 * 1449 * Return: 1450 * -ENODEV if the address space handler cannot be installed, which means 1451 * "unable to handle transactions", 1452 * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred, 1453 * or 0 (success) otherwise. 1454 */ 1455 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device) 1456 { 1457 acpi_status status; 1458 1459 acpi_ec_start(ec, false); 1460 1461 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { 1462 acpi_ec_enter_noirq(ec); 1463 status = acpi_install_address_space_handler(ec->handle, 1464 ACPI_ADR_SPACE_EC, 1465 &acpi_ec_space_handler, 1466 NULL, ec); 1467 if (ACPI_FAILURE(status)) { 1468 acpi_ec_stop(ec, false); 1469 return -ENODEV; 1470 } 1471 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); 1472 } 1473 1474 if (!device) 1475 return 0; 1476 1477 if (ec->gpe < 0) { 1478 /* ACPI reduced hardware platforms use a GpioInt from _CRS. */ 1479 int irq = acpi_dev_gpio_irq_get(device, 0); 1480 /* 1481 * Bail out right away for deferred probing or complete the 1482 * initialization regardless of any other errors. 1483 */ 1484 if (irq == -EPROBE_DEFER) 1485 return -EPROBE_DEFER; 1486 else if (irq >= 0) 1487 ec->irq = irq; 1488 } 1489 1490 if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { 1491 /* Find and register all query methods */ 1492 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1, 1493 acpi_ec_register_query_methods, 1494 NULL, ec, NULL); 1495 set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); 1496 } 1497 if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1498 bool ready = false; 1499 1500 if (ec->gpe >= 0) 1501 ready = install_gpe_event_handler(ec); 1502 else if (ec->irq >= 0) 1503 ready = install_gpio_irq_event_handler(ec); 1504 1505 if (ready) { 1506 set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); 1507 acpi_ec_leave_noirq(ec); 1508 } 1509 /* 1510 * Failures to install an event handler are not fatal, because 1511 * the EC can be polled for events. 1512 */ 1513 } 1514 /* EC is fully operational, allow queries */ 1515 acpi_ec_enable_event(ec); 1516 1517 return 0; 1518 } 1519 1520 static void ec_remove_handlers(struct acpi_ec *ec) 1521 { 1522 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { 1523 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle, 1524 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler))) 1525 pr_err("failed to remove space handler\n"); 1526 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); 1527 } 1528 1529 /* 1530 * Stops handling the EC transactions after removing the operation 1531 * region handler. This is required because _REG(DISCONNECT) 1532 * invoked during the removal can result in new EC transactions. 1533 * 1534 * Flushes the EC requests and thus disables the GPE before 1535 * removing the GPE handler. This is required by the current ACPICA 1536 * GPE core. ACPICA GPE core will automatically disable a GPE when 1537 * it is indicated but there is no way to handle it. So the drivers 1538 * must disable the GPEs prior to removing the GPE handlers. 1539 */ 1540 acpi_ec_stop(ec, false); 1541 1542 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1543 if (ec->gpe >= 0 && 1544 ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe, 1545 &acpi_ec_gpe_handler))) 1546 pr_err("failed to remove gpe handler\n"); 1547 1548 if (ec->irq >= 0) 1549 free_irq(ec->irq, ec); 1550 1551 clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); 1552 } 1553 if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { 1554 acpi_ec_remove_query_handlers(ec, true, 0); 1555 clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); 1556 } 1557 } 1558 1559 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device) 1560 { 1561 int ret; 1562 1563 ret = ec_install_handlers(ec, device); 1564 if (ret) 1565 return ret; 1566 1567 /* First EC capable of handling transactions */ 1568 if (!first_ec) 1569 first_ec = ec; 1570 1571 pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr, 1572 ec->data_addr); 1573 1574 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1575 if (ec->gpe >= 0) 1576 pr_info("GPE=0x%x\n", ec->gpe); 1577 else 1578 pr_info("IRQ=%d\n", ec->irq); 1579 } 1580 1581 return ret; 1582 } 1583 1584 static int acpi_ec_add(struct acpi_device *device) 1585 { 1586 struct acpi_ec *ec; 1587 int ret; 1588 1589 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); 1590 strcpy(acpi_device_class(device), ACPI_EC_CLASS); 1591 1592 if (boot_ec && (boot_ec->handle == device->handle || 1593 !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) { 1594 /* Fast path: this device corresponds to the boot EC. */ 1595 ec = boot_ec; 1596 } else { 1597 acpi_status status; 1598 1599 ec = acpi_ec_alloc(); 1600 if (!ec) 1601 return -ENOMEM; 1602 1603 status = ec_parse_device(device->handle, 0, ec, NULL); 1604 if (status != AE_CTRL_TERMINATE) { 1605 ret = -EINVAL; 1606 goto err; 1607 } 1608 1609 if (boot_ec && ec->command_addr == boot_ec->command_addr && 1610 ec->data_addr == boot_ec->data_addr) { 1611 /* 1612 * Trust PNP0C09 namespace location rather than 1613 * ECDT ID. But trust ECDT GPE rather than _GPE 1614 * because of ASUS quirks, so do not change 1615 * boot_ec->gpe to ec->gpe. 1616 */ 1617 boot_ec->handle = ec->handle; 1618 acpi_handle_debug(ec->handle, "duplicated.\n"); 1619 acpi_ec_free(ec); 1620 ec = boot_ec; 1621 } 1622 } 1623 1624 ret = acpi_ec_setup(ec, device); 1625 if (ret) 1626 goto err; 1627 1628 if (ec == boot_ec) 1629 acpi_handle_info(boot_ec->handle, 1630 "Boot %s EC initialization complete\n", 1631 boot_ec_is_ecdt ? "ECDT" : "DSDT"); 1632 1633 acpi_handle_info(ec->handle, 1634 "EC: Used to handle transactions and events\n"); 1635 1636 device->driver_data = ec; 1637 1638 ret = !!request_region(ec->data_addr, 1, "EC data"); 1639 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr); 1640 ret = !!request_region(ec->command_addr, 1, "EC cmd"); 1641 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr); 1642 1643 /* Reprobe devices depending on the EC */ 1644 acpi_walk_dep_device_list(ec->handle); 1645 1646 acpi_handle_debug(ec->handle, "enumerated.\n"); 1647 return 0; 1648 1649 err: 1650 if (ec != boot_ec) 1651 acpi_ec_free(ec); 1652 1653 return ret; 1654 } 1655 1656 static int acpi_ec_remove(struct acpi_device *device) 1657 { 1658 struct acpi_ec *ec; 1659 1660 if (!device) 1661 return -EINVAL; 1662 1663 ec = acpi_driver_data(device); 1664 release_region(ec->data_addr, 1); 1665 release_region(ec->command_addr, 1); 1666 device->driver_data = NULL; 1667 if (ec != boot_ec) { 1668 ec_remove_handlers(ec); 1669 acpi_ec_free(ec); 1670 } 1671 return 0; 1672 } 1673 1674 static acpi_status 1675 ec_parse_io_ports(struct acpi_resource *resource, void *context) 1676 { 1677 struct acpi_ec *ec = context; 1678 1679 if (resource->type != ACPI_RESOURCE_TYPE_IO) 1680 return AE_OK; 1681 1682 /* 1683 * The first address region returned is the data port, and 1684 * the second address region returned is the status/command 1685 * port. 1686 */ 1687 if (ec->data_addr == 0) 1688 ec->data_addr = resource->data.io.minimum; 1689 else if (ec->command_addr == 0) 1690 ec->command_addr = resource->data.io.minimum; 1691 else 1692 return AE_CTRL_TERMINATE; 1693 1694 return AE_OK; 1695 } 1696 1697 static const struct acpi_device_id ec_device_ids[] = { 1698 {"PNP0C09", 0}, 1699 {ACPI_ECDT_HID, 0}, 1700 {"", 0}, 1701 }; 1702 1703 /* 1704 * This function is not Windows-compatible as Windows never enumerates the 1705 * namespace EC before the main ACPI device enumeration process. It is 1706 * retained for historical reason and will be deprecated in the future. 1707 */ 1708 void __init acpi_ec_dsdt_probe(void) 1709 { 1710 struct acpi_ec *ec; 1711 acpi_status status; 1712 int ret; 1713 1714 /* 1715 * If a platform has ECDT, there is no need to proceed as the 1716 * following probe is not a part of the ACPI device enumeration, 1717 * executing _STA is not safe, and thus this probe may risk of 1718 * picking up an invalid EC device. 1719 */ 1720 if (boot_ec) 1721 return; 1722 1723 ec = acpi_ec_alloc(); 1724 if (!ec) 1725 return; 1726 1727 /* 1728 * At this point, the namespace is initialized, so start to find 1729 * the namespace objects. 1730 */ 1731 status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL); 1732 if (ACPI_FAILURE(status) || !ec->handle) { 1733 acpi_ec_free(ec); 1734 return; 1735 } 1736 1737 /* 1738 * When the DSDT EC is available, always re-configure boot EC to 1739 * have _REG evaluated. _REG can only be evaluated after the 1740 * namespace initialization. 1741 * At this point, the GPE is not fully initialized, so do not to 1742 * handle the events. 1743 */ 1744 ret = acpi_ec_setup(ec, NULL); 1745 if (ret) { 1746 acpi_ec_free(ec); 1747 return; 1748 } 1749 1750 boot_ec = ec; 1751 1752 acpi_handle_info(ec->handle, 1753 "Boot DSDT EC used to handle transactions\n"); 1754 } 1755 1756 /* 1757 * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization. 1758 * 1759 * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not 1760 * found a matching object in the namespace. 1761 * 1762 * Next, in case the DSDT EC is not functioning, it is still necessary to 1763 * provide a functional ECDT EC to handle events, so add an extra device object 1764 * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021). 1765 * 1766 * This is useful on platforms with valid ECDT and invalid DSDT EC settings, 1767 * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847). 1768 */ 1769 static void __init acpi_ec_ecdt_start(void) 1770 { 1771 struct acpi_table_ecdt *ecdt_ptr; 1772 acpi_handle handle; 1773 acpi_status status; 1774 1775 /* Bail out if a matching EC has been found in the namespace. */ 1776 if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT) 1777 return; 1778 1779 /* Look up the object pointed to from the ECDT in the namespace. */ 1780 status = acpi_get_table(ACPI_SIG_ECDT, 1, 1781 (struct acpi_table_header **)&ecdt_ptr); 1782 if (ACPI_FAILURE(status)) 1783 return; 1784 1785 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle); 1786 if (ACPI_FAILURE(status)) 1787 return; 1788 1789 boot_ec->handle = handle; 1790 1791 /* Add a special ACPI device object to represent the boot EC. */ 1792 acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC); 1793 } 1794 1795 /* 1796 * On some hardware it is necessary to clear events accumulated by the EC during 1797 * sleep. These ECs stop reporting GPEs until they are manually polled, if too 1798 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks) 1799 * 1800 * https://bugzilla.kernel.org/show_bug.cgi?id=44161 1801 * 1802 * Ideally, the EC should also be instructed NOT to accumulate events during 1803 * sleep (which Windows seems to do somehow), but the interface to control this 1804 * behaviour is not known at this time. 1805 * 1806 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx, 1807 * however it is very likely that other Samsung models are affected. 1808 * 1809 * On systems which don't accumulate _Q events during sleep, this extra check 1810 * should be harmless. 1811 */ 1812 static int ec_clear_on_resume(const struct dmi_system_id *id) 1813 { 1814 pr_debug("Detected system needing EC poll on resume.\n"); 1815 EC_FLAGS_CLEAR_ON_RESUME = 1; 1816 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; 1817 return 0; 1818 } 1819 1820 /* 1821 * Some ECDTs contain wrong register addresses. 1822 * MSI MS-171F 1823 * https://bugzilla.kernel.org/show_bug.cgi?id=12461 1824 */ 1825 static int ec_correct_ecdt(const struct dmi_system_id *id) 1826 { 1827 pr_debug("Detected system needing ECDT address correction.\n"); 1828 EC_FLAGS_CORRECT_ECDT = 1; 1829 return 0; 1830 } 1831 1832 /* 1833 * Some DSDTs contain wrong GPE setting. 1834 * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD 1835 * https://bugzilla.kernel.org/show_bug.cgi?id=195651 1836 */ 1837 static int ec_honor_ecdt_gpe(const struct dmi_system_id *id) 1838 { 1839 pr_debug("Detected system needing ignore DSDT GPE setting.\n"); 1840 EC_FLAGS_IGNORE_DSDT_GPE = 1; 1841 return 0; 1842 } 1843 1844 static const struct dmi_system_id ec_dmi_table[] __initconst = { 1845 { 1846 ec_correct_ecdt, "MSI MS-171F", { 1847 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"), 1848 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL}, 1849 { 1850 ec_honor_ecdt_gpe, "ASUS FX502VD", { 1851 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1852 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL}, 1853 { 1854 ec_honor_ecdt_gpe, "ASUS FX502VE", { 1855 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1856 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL}, 1857 { 1858 ec_honor_ecdt_gpe, "ASUS GL702VMK", { 1859 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1860 DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL}, 1861 { 1862 ec_honor_ecdt_gpe, "ASUS X550VXK", { 1863 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1864 DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL}, 1865 { 1866 ec_honor_ecdt_gpe, "ASUS X580VD", { 1867 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1868 DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL}, 1869 { 1870 ec_clear_on_resume, "Samsung hardware", { 1871 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL}, 1872 {}, 1873 }; 1874 1875 void __init acpi_ec_ecdt_probe(void) 1876 { 1877 struct acpi_table_ecdt *ecdt_ptr; 1878 struct acpi_ec *ec; 1879 acpi_status status; 1880 int ret; 1881 1882 /* Generate a boot ec context. */ 1883 dmi_check_system(ec_dmi_table); 1884 status = acpi_get_table(ACPI_SIG_ECDT, 1, 1885 (struct acpi_table_header **)&ecdt_ptr); 1886 if (ACPI_FAILURE(status)) 1887 return; 1888 1889 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) { 1890 /* 1891 * Asus X50GL: 1892 * https://bugzilla.kernel.org/show_bug.cgi?id=11880 1893 */ 1894 return; 1895 } 1896 1897 ec = acpi_ec_alloc(); 1898 if (!ec) 1899 return; 1900 1901 if (EC_FLAGS_CORRECT_ECDT) { 1902 ec->command_addr = ecdt_ptr->data.address; 1903 ec->data_addr = ecdt_ptr->control.address; 1904 } else { 1905 ec->command_addr = ecdt_ptr->control.address; 1906 ec->data_addr = ecdt_ptr->data.address; 1907 } 1908 1909 /* 1910 * Ignore the GPE value on Reduced Hardware platforms. 1911 * Some products have this set to an erroneous value. 1912 */ 1913 if (!acpi_gbl_reduced_hardware) 1914 ec->gpe = ecdt_ptr->gpe; 1915 1916 ec->handle = ACPI_ROOT_OBJECT; 1917 1918 /* 1919 * At this point, the namespace is not initialized, so do not find 1920 * the namespace objects, or handle the events. 1921 */ 1922 ret = acpi_ec_setup(ec, NULL); 1923 if (ret) { 1924 acpi_ec_free(ec); 1925 return; 1926 } 1927 1928 boot_ec = ec; 1929 boot_ec_is_ecdt = true; 1930 1931 pr_info("Boot ECDT EC used to handle transactions\n"); 1932 } 1933 1934 #ifdef CONFIG_PM_SLEEP 1935 static int acpi_ec_suspend(struct device *dev) 1936 { 1937 struct acpi_ec *ec = 1938 acpi_driver_data(to_acpi_device(dev)); 1939 1940 if (!pm_suspend_no_platform() && ec_freeze_events) 1941 acpi_ec_disable_event(ec); 1942 return 0; 1943 } 1944 1945 static int acpi_ec_suspend_noirq(struct device *dev) 1946 { 1947 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); 1948 1949 /* 1950 * The SCI handler doesn't run at this point, so the GPE can be 1951 * masked at the low level without side effects. 1952 */ 1953 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && 1954 ec->gpe >= 0 && ec->reference_count >= 1) 1955 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); 1956 1957 acpi_ec_enter_noirq(ec); 1958 1959 return 0; 1960 } 1961 1962 static int acpi_ec_resume_noirq(struct device *dev) 1963 { 1964 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); 1965 1966 acpi_ec_leave_noirq(ec); 1967 1968 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && 1969 ec->gpe >= 0 && ec->reference_count >= 1) 1970 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); 1971 1972 return 0; 1973 } 1974 1975 static int acpi_ec_resume(struct device *dev) 1976 { 1977 struct acpi_ec *ec = 1978 acpi_driver_data(to_acpi_device(dev)); 1979 1980 acpi_ec_enable_event(ec); 1981 return 0; 1982 } 1983 1984 void acpi_ec_mark_gpe_for_wake(void) 1985 { 1986 if (first_ec && !ec_no_wakeup) 1987 acpi_mark_gpe_for_wake(NULL, first_ec->gpe); 1988 } 1989 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake); 1990 1991 void acpi_ec_set_gpe_wake_mask(u8 action) 1992 { 1993 if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup) 1994 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action); 1995 } 1996 1997 bool acpi_ec_other_gpes_active(void) 1998 { 1999 return acpi_any_gpe_status_set(first_ec ? first_ec->gpe : U32_MAX); 2000 } 2001 2002 bool acpi_ec_dispatch_gpe(void) 2003 { 2004 u32 ret; 2005 2006 if (!first_ec) 2007 return false; 2008 2009 ret = acpi_dispatch_gpe(NULL, first_ec->gpe); 2010 if (ret == ACPI_INTERRUPT_HANDLED) { 2011 pm_pr_dbg("EC GPE dispatched\n"); 2012 return true; 2013 } 2014 return false; 2015 } 2016 #endif /* CONFIG_PM_SLEEP */ 2017 2018 static const struct dev_pm_ops acpi_ec_pm = { 2019 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq) 2020 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume) 2021 }; 2022 2023 static int param_set_event_clearing(const char *val, 2024 const struct kernel_param *kp) 2025 { 2026 int result = 0; 2027 2028 if (!strncmp(val, "status", sizeof("status") - 1)) { 2029 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; 2030 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n"); 2031 } else if (!strncmp(val, "query", sizeof("query") - 1)) { 2032 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY; 2033 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n"); 2034 } else if (!strncmp(val, "event", sizeof("event") - 1)) { 2035 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT; 2036 pr_info("Assuming SCI_EVT clearing on event reads\n"); 2037 } else 2038 result = -EINVAL; 2039 return result; 2040 } 2041 2042 static int param_get_event_clearing(char *buffer, 2043 const struct kernel_param *kp) 2044 { 2045 switch (ec_event_clearing) { 2046 case ACPI_EC_EVT_TIMING_STATUS: 2047 return sprintf(buffer, "status"); 2048 case ACPI_EC_EVT_TIMING_QUERY: 2049 return sprintf(buffer, "query"); 2050 case ACPI_EC_EVT_TIMING_EVENT: 2051 return sprintf(buffer, "event"); 2052 default: 2053 return sprintf(buffer, "invalid"); 2054 } 2055 return 0; 2056 } 2057 2058 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing, 2059 NULL, 0644); 2060 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing"); 2061 2062 static struct acpi_driver acpi_ec_driver = { 2063 .name = "ec", 2064 .class = ACPI_EC_CLASS, 2065 .ids = ec_device_ids, 2066 .ops = { 2067 .add = acpi_ec_add, 2068 .remove = acpi_ec_remove, 2069 }, 2070 .drv.pm = &acpi_ec_pm, 2071 }; 2072 2073 static void acpi_ec_destroy_workqueues(void) 2074 { 2075 if (ec_wq) { 2076 destroy_workqueue(ec_wq); 2077 ec_wq = NULL; 2078 } 2079 if (ec_query_wq) { 2080 destroy_workqueue(ec_query_wq); 2081 ec_query_wq = NULL; 2082 } 2083 } 2084 2085 static int acpi_ec_init_workqueues(void) 2086 { 2087 if (!ec_wq) 2088 ec_wq = alloc_ordered_workqueue("kec", 0); 2089 2090 if (!ec_query_wq) 2091 ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries); 2092 2093 if (!ec_wq || !ec_query_wq) { 2094 acpi_ec_destroy_workqueues(); 2095 return -ENODEV; 2096 } 2097 return 0; 2098 } 2099 2100 static const struct dmi_system_id acpi_ec_no_wakeup[] = { 2101 { 2102 .ident = "Thinkpad X1 Carbon 6th", 2103 .matches = { 2104 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2105 DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"), 2106 }, 2107 }, 2108 { 2109 .ident = "ThinkPad X1 Carbon 6th", 2110 .matches = { 2111 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2112 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Carbon 6th"), 2113 }, 2114 }, 2115 { 2116 .ident = "ThinkPad X1 Yoga 3rd", 2117 .matches = { 2118 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2119 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"), 2120 }, 2121 }, 2122 { }, 2123 }; 2124 2125 void __init acpi_ec_init(void) 2126 { 2127 int result; 2128 2129 result = acpi_ec_init_workqueues(); 2130 if (result) 2131 return; 2132 2133 /* 2134 * Disable EC wakeup on following systems to prevent periodic 2135 * wakeup from EC GPE. 2136 */ 2137 if (dmi_check_system(acpi_ec_no_wakeup)) { 2138 ec_no_wakeup = true; 2139 pr_debug("Disabling EC wakeup on suspend-to-idle\n"); 2140 } 2141 2142 /* Driver must be registered after acpi_ec_init_workqueues(). */ 2143 acpi_bus_register_driver(&acpi_ec_driver); 2144 2145 acpi_ec_ecdt_start(); 2146 } 2147 2148 /* EC driver currently not unloadable */ 2149 #if 0 2150 static void __exit acpi_ec_exit(void) 2151 { 2152 2153 acpi_bus_unregister_driver(&acpi_ec_driver); 2154 acpi_ec_destroy_workqueues(); 2155 } 2156 #endif /* 0 */ 2157