xref: /openbmc/linux/drivers/acpi/device_pm.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * drivers/acpi/device_pm.c - ACPI device power management routines.
3  *
4  * Copyright (C) 2012, Intel Corp.
5  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License version 2 as published
11  *  by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19  */
20 
21 #include <linux/acpi.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_domain.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/suspend.h>
28 
29 #include "internal.h"
30 
31 #define _COMPONENT	ACPI_POWER_COMPONENT
32 ACPI_MODULE_NAME("device_pm");
33 
34 /**
35  * acpi_power_state_string - String representation of ACPI device power state.
36  * @state: ACPI device power state to return the string representation of.
37  */
38 const char *acpi_power_state_string(int state)
39 {
40 	switch (state) {
41 	case ACPI_STATE_D0:
42 		return "D0";
43 	case ACPI_STATE_D1:
44 		return "D1";
45 	case ACPI_STATE_D2:
46 		return "D2";
47 	case ACPI_STATE_D3_HOT:
48 		return "D3hot";
49 	case ACPI_STATE_D3_COLD:
50 		return "D3cold";
51 	default:
52 		return "(unknown)";
53 	}
54 }
55 
56 /**
57  * acpi_device_get_power - Get power state of an ACPI device.
58  * @device: Device to get the power state of.
59  * @state: Place to store the power state of the device.
60  *
61  * This function does not update the device's power.state field, but it may
62  * update its parent's power.state field (when the parent's power state is
63  * unknown and the device's power state turns out to be D0).
64  */
65 int acpi_device_get_power(struct acpi_device *device, int *state)
66 {
67 	int result = ACPI_STATE_UNKNOWN;
68 
69 	if (!device || !state)
70 		return -EINVAL;
71 
72 	if (!device->flags.power_manageable) {
73 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
74 		*state = device->parent ?
75 			device->parent->power.state : ACPI_STATE_D0;
76 		goto out;
77 	}
78 
79 	/*
80 	 * Get the device's power state from power resources settings and _PSC,
81 	 * if available.
82 	 */
83 	if (device->power.flags.power_resources) {
84 		int error = acpi_power_get_inferred_state(device, &result);
85 		if (error)
86 			return error;
87 	}
88 	if (device->power.flags.explicit_get) {
89 		acpi_handle handle = device->handle;
90 		unsigned long long psc;
91 		acpi_status status;
92 
93 		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
94 		if (ACPI_FAILURE(status))
95 			return -ENODEV;
96 
97 		/*
98 		 * The power resources settings may indicate a power state
99 		 * shallower than the actual power state of the device, because
100 		 * the same power resources may be referenced by other devices.
101 		 *
102 		 * For systems predating ACPI 4.0 we assume that D3hot is the
103 		 * deepest state that can be supported.
104 		 */
105 		if (psc > result && psc < ACPI_STATE_D3_COLD)
106 			result = psc;
107 		else if (result == ACPI_STATE_UNKNOWN)
108 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
109 	}
110 
111 	/*
112 	 * If we were unsure about the device parent's power state up to this
113 	 * point, the fact that the device is in D0 implies that the parent has
114 	 * to be in D0 too, except if ignore_parent is set.
115 	 */
116 	if (!device->power.flags.ignore_parent && device->parent
117 	    && device->parent->power.state == ACPI_STATE_UNKNOWN
118 	    && result == ACPI_STATE_D0)
119 		device->parent->power.state = ACPI_STATE_D0;
120 
121 	*state = result;
122 
123  out:
124 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
125 			  device->pnp.bus_id, acpi_power_state_string(*state)));
126 
127 	return 0;
128 }
129 EXPORT_SYMBOL(acpi_device_get_power);
130 
131 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
132 {
133 	if (adev->power.states[state].flags.explicit_set) {
134 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
135 		acpi_status status;
136 
137 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
138 		if (ACPI_FAILURE(status))
139 			return -ENODEV;
140 	}
141 	return 0;
142 }
143 
144 /**
145  * acpi_device_set_power - Set power state of an ACPI device.
146  * @device: Device to set the power state of.
147  * @state: New power state to set.
148  *
149  * Callers must ensure that the device is power manageable before using this
150  * function.
151  */
152 int acpi_device_set_power(struct acpi_device *device, int state)
153 {
154 	int target_state = state;
155 	int result = 0;
156 
157 	if (!device || !device->flags.power_manageable
158 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
159 		return -EINVAL;
160 
161 	/* Make sure this is a valid target state */
162 
163 	if (state == device->power.state) {
164 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
165 				  device->pnp.bus_id,
166 				  acpi_power_state_string(state)));
167 		return 0;
168 	}
169 
170 	if (state == ACPI_STATE_D3_COLD) {
171 		/*
172 		 * For transitions to D3cold we need to execute _PS3 and then
173 		 * possibly drop references to the power resources in use.
174 		 */
175 		state = ACPI_STATE_D3_HOT;
176 		/* If _PR3 is not available, use D3hot as the target state. */
177 		if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
178 			target_state = state;
179 	} else if (!device->power.states[state].flags.valid) {
180 		dev_warn(&device->dev, "Power state %s not supported\n",
181 			 acpi_power_state_string(state));
182 		return -ENODEV;
183 	}
184 
185 	if (!device->power.flags.ignore_parent &&
186 	    device->parent && (state < device->parent->power.state)) {
187 		dev_warn(&device->dev,
188 			 "Cannot transition to power state %s for parent in %s\n",
189 			 acpi_power_state_string(state),
190 			 acpi_power_state_string(device->parent->power.state));
191 		return -ENODEV;
192 	}
193 
194 	/*
195 	 * Transition Power
196 	 * ----------------
197 	 * In accordance with ACPI 6, _PSx is executed before manipulating power
198 	 * resources, unless the target state is D0, in which case _PS0 is
199 	 * supposed to be executed after turning the power resources on.
200 	 */
201 	if (state > ACPI_STATE_D0) {
202 		/*
203 		 * According to ACPI 6, devices cannot go from lower-power
204 		 * (deeper) states to higher-power (shallower) states.
205 		 */
206 		if (state < device->power.state) {
207 			dev_warn(&device->dev, "Cannot transition from %s to %s\n",
208 				 acpi_power_state_string(device->power.state),
209 				 acpi_power_state_string(state));
210 			return -ENODEV;
211 		}
212 
213 		result = acpi_dev_pm_explicit_set(device, state);
214 		if (result)
215 			goto end;
216 
217 		if (device->power.flags.power_resources)
218 			result = acpi_power_transition(device, target_state);
219 	} else {
220 		if (device->power.flags.power_resources) {
221 			result = acpi_power_transition(device, ACPI_STATE_D0);
222 			if (result)
223 				goto end;
224 		}
225 		result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
226 	}
227 
228  end:
229 	if (result) {
230 		dev_warn(&device->dev, "Failed to change power state to %s\n",
231 			 acpi_power_state_string(state));
232 	} else {
233 		device->power.state = target_state;
234 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
235 				  "Device [%s] transitioned to %s\n",
236 				  device->pnp.bus_id,
237 				  acpi_power_state_string(state)));
238 	}
239 
240 	return result;
241 }
242 EXPORT_SYMBOL(acpi_device_set_power);
243 
244 int acpi_bus_set_power(acpi_handle handle, int state)
245 {
246 	struct acpi_device *device;
247 	int result;
248 
249 	result = acpi_bus_get_device(handle, &device);
250 	if (result)
251 		return result;
252 
253 	return acpi_device_set_power(device, state);
254 }
255 EXPORT_SYMBOL(acpi_bus_set_power);
256 
257 int acpi_bus_init_power(struct acpi_device *device)
258 {
259 	int state;
260 	int result;
261 
262 	if (!device)
263 		return -EINVAL;
264 
265 	device->power.state = ACPI_STATE_UNKNOWN;
266 	if (!acpi_device_is_present(device)) {
267 		device->flags.initialized = false;
268 		return -ENXIO;
269 	}
270 
271 	result = acpi_device_get_power(device, &state);
272 	if (result)
273 		return result;
274 
275 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
276 		/* Reference count the power resources. */
277 		result = acpi_power_on_resources(device, state);
278 		if (result)
279 			return result;
280 
281 		if (state == ACPI_STATE_D0) {
282 			/*
283 			 * If _PSC is not present and the state inferred from
284 			 * power resources appears to be D0, it still may be
285 			 * necessary to execute _PS0 at this point, because
286 			 * another device using the same power resources may
287 			 * have been put into D0 previously and that's why we
288 			 * see D0 here.
289 			 */
290 			result = acpi_dev_pm_explicit_set(device, state);
291 			if (result)
292 				return result;
293 		}
294 	} else if (state == ACPI_STATE_UNKNOWN) {
295 		/*
296 		 * No power resources and missing _PSC?  Cross fingers and make
297 		 * it D0 in hope that this is what the BIOS put the device into.
298 		 * [We tried to force D0 here by executing _PS0, but that broke
299 		 * Toshiba P870-303 in a nasty way.]
300 		 */
301 		state = ACPI_STATE_D0;
302 	}
303 	device->power.state = state;
304 	return 0;
305 }
306 
307 /**
308  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
309  * @device: Device object whose power state is to be fixed up.
310  *
311  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
312  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
313  * not be the case and this function should be used then.
314  */
315 int acpi_device_fix_up_power(struct acpi_device *device)
316 {
317 	int ret = 0;
318 
319 	if (!device->power.flags.power_resources
320 	    && !device->power.flags.explicit_get
321 	    && device->power.state == ACPI_STATE_D0)
322 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
323 
324 	return ret;
325 }
326 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
327 
328 int acpi_device_update_power(struct acpi_device *device, int *state_p)
329 {
330 	int state;
331 	int result;
332 
333 	if (device->power.state == ACPI_STATE_UNKNOWN) {
334 		result = acpi_bus_init_power(device);
335 		if (!result && state_p)
336 			*state_p = device->power.state;
337 
338 		return result;
339 	}
340 
341 	result = acpi_device_get_power(device, &state);
342 	if (result)
343 		return result;
344 
345 	if (state == ACPI_STATE_UNKNOWN) {
346 		state = ACPI_STATE_D0;
347 		result = acpi_device_set_power(device, state);
348 		if (result)
349 			return result;
350 	} else {
351 		if (device->power.flags.power_resources) {
352 			/*
353 			 * We don't need to really switch the state, bu we need
354 			 * to update the power resources' reference counters.
355 			 */
356 			result = acpi_power_transition(device, state);
357 			if (result)
358 				return result;
359 		}
360 		device->power.state = state;
361 	}
362 	if (state_p)
363 		*state_p = state;
364 
365 	return 0;
366 }
367 EXPORT_SYMBOL_GPL(acpi_device_update_power);
368 
369 int acpi_bus_update_power(acpi_handle handle, int *state_p)
370 {
371 	struct acpi_device *device;
372 	int result;
373 
374 	result = acpi_bus_get_device(handle, &device);
375 	return result ? result : acpi_device_update_power(device, state_p);
376 }
377 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
378 
379 bool acpi_bus_power_manageable(acpi_handle handle)
380 {
381 	struct acpi_device *device;
382 	int result;
383 
384 	result = acpi_bus_get_device(handle, &device);
385 	return result ? false : device->flags.power_manageable;
386 }
387 EXPORT_SYMBOL(acpi_bus_power_manageable);
388 
389 #ifdef CONFIG_PM
390 static DEFINE_MUTEX(acpi_pm_notifier_lock);
391 static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
392 
393 void acpi_pm_wakeup_event(struct device *dev)
394 {
395 	pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
396 }
397 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
398 
399 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
400 {
401 	struct acpi_device *adev;
402 
403 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
404 		return;
405 
406 	acpi_handle_debug(handle, "Wake notify\n");
407 
408 	adev = acpi_bus_get_acpi_device(handle);
409 	if (!adev)
410 		return;
411 
412 	mutex_lock(&acpi_pm_notifier_lock);
413 
414 	if (adev->wakeup.flags.notifier_present) {
415 		pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
416 		if (adev->wakeup.context.func) {
417 			acpi_handle_debug(handle, "Running %pF for %s\n",
418 					  adev->wakeup.context.func,
419 					  dev_name(adev->wakeup.context.dev));
420 			adev->wakeup.context.func(&adev->wakeup.context);
421 		}
422 	}
423 
424 	mutex_unlock(&acpi_pm_notifier_lock);
425 
426 	acpi_bus_put_acpi_device(adev);
427 }
428 
429 /**
430  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
431  * @adev: ACPI device to add the notify handler for.
432  * @dev: Device to generate a wakeup event for while handling the notification.
433  * @func: Work function to execute when handling the notification.
434  *
435  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
436  * PM wakeup events.  For example, wakeup events may be generated for bridges
437  * if one of the devices below the bridge is signaling wakeup, even if the
438  * bridge itself doesn't have a wakeup GPE associated with it.
439  */
440 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
441 			void (*func)(struct acpi_device_wakeup_context *context))
442 {
443 	acpi_status status = AE_ALREADY_EXISTS;
444 
445 	if (!dev && !func)
446 		return AE_BAD_PARAMETER;
447 
448 	mutex_lock(&acpi_pm_notifier_install_lock);
449 
450 	if (adev->wakeup.flags.notifier_present)
451 		goto out;
452 
453 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
454 					     acpi_pm_notify_handler, NULL);
455 	if (ACPI_FAILURE(status))
456 		goto out;
457 
458 	mutex_lock(&acpi_pm_notifier_lock);
459 	adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
460 	adev->wakeup.context.dev = dev;
461 	adev->wakeup.context.func = func;
462 	adev->wakeup.flags.notifier_present = true;
463 	mutex_unlock(&acpi_pm_notifier_lock);
464 
465  out:
466 	mutex_unlock(&acpi_pm_notifier_install_lock);
467 	return status;
468 }
469 
470 /**
471  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
472  * @adev: ACPI device to remove the notifier from.
473  */
474 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
475 {
476 	acpi_status status = AE_BAD_PARAMETER;
477 
478 	mutex_lock(&acpi_pm_notifier_install_lock);
479 
480 	if (!adev->wakeup.flags.notifier_present)
481 		goto out;
482 
483 	status = acpi_remove_notify_handler(adev->handle,
484 					    ACPI_SYSTEM_NOTIFY,
485 					    acpi_pm_notify_handler);
486 	if (ACPI_FAILURE(status))
487 		goto out;
488 
489 	mutex_lock(&acpi_pm_notifier_lock);
490 	adev->wakeup.context.func = NULL;
491 	adev->wakeup.context.dev = NULL;
492 	wakeup_source_unregister(adev->wakeup.ws);
493 	adev->wakeup.flags.notifier_present = false;
494 	mutex_unlock(&acpi_pm_notifier_lock);
495 
496  out:
497 	mutex_unlock(&acpi_pm_notifier_install_lock);
498 	return status;
499 }
500 
501 bool acpi_bus_can_wakeup(acpi_handle handle)
502 {
503 	struct acpi_device *device;
504 	int result;
505 
506 	result = acpi_bus_get_device(handle, &device);
507 	return result ? false : device->wakeup.flags.valid;
508 }
509 EXPORT_SYMBOL(acpi_bus_can_wakeup);
510 
511 bool acpi_pm_device_can_wakeup(struct device *dev)
512 {
513 	struct acpi_device *adev = ACPI_COMPANION(dev);
514 
515 	return adev ? acpi_device_can_wakeup(adev) : false;
516 }
517 
518 /**
519  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
520  * @dev: Device whose preferred target power state to return.
521  * @adev: ACPI device node corresponding to @dev.
522  * @target_state: System state to match the resultant device state.
523  * @d_min_p: Location to store the highest power state available to the device.
524  * @d_max_p: Location to store the lowest power state available to the device.
525  *
526  * Find the lowest power (highest number) and highest power (lowest number) ACPI
527  * device power states that the device can be in while the system is in the
528  * state represented by @target_state.  Store the integer numbers representing
529  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
530  * respectively.
531  *
532  * Callers must ensure that @dev and @adev are valid pointers and that @adev
533  * actually corresponds to @dev before using this function.
534  *
535  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
536  * returns a value that doesn't make sense.  The memory locations pointed to by
537  * @d_max_p and @d_min_p are only modified on success.
538  */
539 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
540 				 u32 target_state, int *d_min_p, int *d_max_p)
541 {
542 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
543 	acpi_handle handle = adev->handle;
544 	unsigned long long ret;
545 	int d_min, d_max;
546 	bool wakeup = false;
547 	bool has_sxd = false;
548 	acpi_status status;
549 
550 	/*
551 	 * If the system state is S0, the lowest power state the device can be
552 	 * in is D3cold, unless the device has _S0W and is supposed to signal
553 	 * wakeup, in which case the return value of _S0W has to be used as the
554 	 * lowest power state available to the device.
555 	 */
556 	d_min = ACPI_STATE_D0;
557 	d_max = ACPI_STATE_D3_COLD;
558 
559 	/*
560 	 * If present, _SxD methods return the minimum D-state (highest power
561 	 * state) we can use for the corresponding S-states.  Otherwise, the
562 	 * minimum D-state is D0 (ACPI 3.x).
563 	 */
564 	if (target_state > ACPI_STATE_S0) {
565 		/*
566 		 * We rely on acpi_evaluate_integer() not clobbering the integer
567 		 * provided if AE_NOT_FOUND is returned.
568 		 */
569 		ret = d_min;
570 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
571 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
572 		    || ret > ACPI_STATE_D3_COLD)
573 			return -ENODATA;
574 
575 		/*
576 		 * We need to handle legacy systems where D3hot and D3cold are
577 		 * the same and 3 is returned in both cases, so fall back to
578 		 * D3cold if D3hot is not a valid state.
579 		 */
580 		if (!adev->power.states[ret].flags.valid) {
581 			if (ret == ACPI_STATE_D3_HOT)
582 				ret = ACPI_STATE_D3_COLD;
583 			else
584 				return -ENODATA;
585 		}
586 
587 		if (status == AE_OK)
588 			has_sxd = true;
589 
590 		d_min = ret;
591 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
592 			&& adev->wakeup.sleep_state >= target_state;
593 	} else {
594 		wakeup = adev->wakeup.flags.valid;
595 	}
596 
597 	/*
598 	 * If _PRW says we can wake up the system from the target sleep state,
599 	 * the D-state returned by _SxD is sufficient for that (we assume a
600 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
601 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
602 	 * can wake the system.  _S0W may be valid, too.
603 	 */
604 	if (wakeup) {
605 		method[3] = 'W';
606 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
607 		if (status == AE_NOT_FOUND) {
608 			/* No _SxW. In this case, the ACPI spec says that we
609 			 * must not go into any power state deeper than the
610 			 * value returned from _SxD.
611 			 */
612 			if (has_sxd && target_state > ACPI_STATE_S0)
613 				d_max = d_min;
614 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
615 			/* Fall back to D3cold if ret is not a valid state. */
616 			if (!adev->power.states[ret].flags.valid)
617 				ret = ACPI_STATE_D3_COLD;
618 
619 			d_max = ret > d_min ? ret : d_min;
620 		} else {
621 			return -ENODATA;
622 		}
623 	}
624 
625 	if (d_min_p)
626 		*d_min_p = d_min;
627 
628 	if (d_max_p)
629 		*d_max_p = d_max;
630 
631 	return 0;
632 }
633 
634 /**
635  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
636  * @dev: Device whose preferred target power state to return.
637  * @d_min_p: Location to store the upper limit of the allowed states range.
638  * @d_max_in: Deepest low-power state to take into consideration.
639  * Return value: Preferred power state of the device on success, -ENODEV
640  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
641  * incorrect, or -ENODATA on ACPI method failure.
642  *
643  * The caller must ensure that @dev is valid before using this function.
644  */
645 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
646 {
647 	struct acpi_device *adev;
648 	int ret, d_min, d_max;
649 
650 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
651 		return -EINVAL;
652 
653 	if (d_max_in > ACPI_STATE_D2) {
654 		enum pm_qos_flags_status stat;
655 
656 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
657 		if (stat == PM_QOS_FLAGS_ALL)
658 			d_max_in = ACPI_STATE_D2;
659 	}
660 
661 	adev = ACPI_COMPANION(dev);
662 	if (!adev) {
663 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
664 		return -ENODEV;
665 	}
666 
667 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
668 				    &d_min, &d_max);
669 	if (ret)
670 		return ret;
671 
672 	if (d_max_in < d_min)
673 		return -EINVAL;
674 
675 	if (d_max > d_max_in) {
676 		for (d_max = d_max_in; d_max > d_min; d_max--) {
677 			if (adev->power.states[d_max].flags.valid)
678 				break;
679 		}
680 	}
681 
682 	if (d_min_p)
683 		*d_min_p = d_min;
684 
685 	return d_max;
686 }
687 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
688 
689 /**
690  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
691  * @context: Device wakeup context.
692  */
693 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
694 {
695 	struct device *dev = context->dev;
696 
697 	if (dev) {
698 		pm_wakeup_event(dev, 0);
699 		pm_request_resume(dev);
700 	}
701 }
702 
703 static DEFINE_MUTEX(acpi_wakeup_lock);
704 
705 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
706 				       u32 target_state, int max_count)
707 {
708 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
709 	acpi_status status;
710 	int error = 0;
711 
712 	mutex_lock(&acpi_wakeup_lock);
713 
714 	if (wakeup->enable_count >= max_count)
715 		goto out;
716 
717 	if (wakeup->enable_count > 0)
718 		goto inc;
719 
720 	error = acpi_enable_wakeup_device_power(adev, target_state);
721 	if (error)
722 		goto out;
723 
724 	status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
725 	if (ACPI_FAILURE(status)) {
726 		acpi_disable_wakeup_device_power(adev);
727 		error = -EIO;
728 		goto out;
729 	}
730 
731 inc:
732 	wakeup->enable_count++;
733 
734 out:
735 	mutex_unlock(&acpi_wakeup_lock);
736 	return error;
737 }
738 
739 /**
740  * acpi_device_wakeup_enable - Enable wakeup functionality for device.
741  * @adev: ACPI device to enable wakeup functionality for.
742  * @target_state: State the system is transitioning into.
743  *
744  * Enable the GPE associated with @adev so that it can generate wakeup signals
745  * for the device in response to external (remote) events and enable wakeup
746  * power for it.
747  *
748  * Callers must ensure that @adev is a valid ACPI device node before executing
749  * this function.
750  */
751 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
752 {
753 	return __acpi_device_wakeup_enable(adev, target_state, 1);
754 }
755 
756 /**
757  * acpi_device_wakeup_disable - Disable wakeup functionality for device.
758  * @adev: ACPI device to disable wakeup functionality for.
759  *
760  * Disable the GPE associated with @adev and disable wakeup power for it.
761  *
762  * Callers must ensure that @adev is a valid ACPI device node before executing
763  * this function.
764  */
765 static void acpi_device_wakeup_disable(struct acpi_device *adev)
766 {
767 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
768 
769 	mutex_lock(&acpi_wakeup_lock);
770 
771 	if (!wakeup->enable_count)
772 		goto out;
773 
774 	acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
775 	acpi_disable_wakeup_device_power(adev);
776 
777 	wakeup->enable_count--;
778 
779 out:
780 	mutex_unlock(&acpi_wakeup_lock);
781 }
782 
783 static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable,
784 				       int max_count)
785 {
786 	struct acpi_device *adev;
787 	int error;
788 
789 	adev = ACPI_COMPANION(dev);
790 	if (!adev) {
791 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
792 		return -ENODEV;
793 	}
794 
795 	if (!acpi_device_can_wakeup(adev))
796 		return -EINVAL;
797 
798 	if (!enable) {
799 		acpi_device_wakeup_disable(adev);
800 		dev_dbg(dev, "Wakeup disabled by ACPI\n");
801 		return 0;
802 	}
803 
804 	error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(),
805 					    max_count);
806 	if (!error)
807 		dev_dbg(dev, "Wakeup enabled by ACPI\n");
808 
809 	return error;
810 }
811 
812 /**
813  * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
814  * @dev: Device to enable/disable to generate wakeup events.
815  * @enable: Whether to enable or disable the wakeup functionality.
816  */
817 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
818 {
819 	return __acpi_pm_set_device_wakeup(dev, enable, 1);
820 }
821 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
822 
823 /**
824  * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge.
825  * @dev: Bridge device to enable/disable to generate wakeup events.
826  * @enable: Whether to enable or disable the wakeup functionality.
827  */
828 int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable)
829 {
830 	return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX);
831 }
832 EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup);
833 
834 /**
835  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
836  * @dev: Device to put into a low-power state.
837  * @adev: ACPI device node corresponding to @dev.
838  * @system_state: System state to choose the device state for.
839  */
840 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
841 				 u32 system_state)
842 {
843 	int ret, state;
844 
845 	if (!acpi_device_power_manageable(adev))
846 		return 0;
847 
848 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
849 	return ret ? ret : acpi_device_set_power(adev, state);
850 }
851 
852 /**
853  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
854  * @adev: ACPI device node to put into the full-power state.
855  */
856 static int acpi_dev_pm_full_power(struct acpi_device *adev)
857 {
858 	return acpi_device_power_manageable(adev) ?
859 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
860 }
861 
862 /**
863  * acpi_dev_suspend - Put device into a low-power state using ACPI.
864  * @dev: Device to put into a low-power state.
865  * @wakeup: Whether or not to enable wakeup for the device.
866  *
867  * Put the given device into a low-power state using the standard ACPI
868  * mechanism.  Set up remote wakeup if desired, choose the state to put the
869  * device into (this checks if remote wakeup is expected to work too), and set
870  * the power state of the device.
871  */
872 int acpi_dev_suspend(struct device *dev, bool wakeup)
873 {
874 	struct acpi_device *adev = ACPI_COMPANION(dev);
875 	u32 target_state = acpi_target_system_state();
876 	int error;
877 
878 	if (!adev)
879 		return 0;
880 
881 	if (wakeup && acpi_device_can_wakeup(adev)) {
882 		error = acpi_device_wakeup_enable(adev, target_state);
883 		if (error)
884 			return -EAGAIN;
885 	} else {
886 		wakeup = false;
887 	}
888 
889 	error = acpi_dev_pm_low_power(dev, adev, target_state);
890 	if (error && wakeup)
891 		acpi_device_wakeup_disable(adev);
892 
893 	return error;
894 }
895 EXPORT_SYMBOL_GPL(acpi_dev_suspend);
896 
897 /**
898  * acpi_dev_resume - Put device into the full-power state using ACPI.
899  * @dev: Device to put into the full-power state.
900  *
901  * Put the given device into the full-power state using the standard ACPI
902  * mechanism.  Set the power state of the device to ACPI D0 and disable wakeup.
903  */
904 int acpi_dev_resume(struct device *dev)
905 {
906 	struct acpi_device *adev = ACPI_COMPANION(dev);
907 	int error;
908 
909 	if (!adev)
910 		return 0;
911 
912 	error = acpi_dev_pm_full_power(adev);
913 	acpi_device_wakeup_disable(adev);
914 	return error;
915 }
916 EXPORT_SYMBOL_GPL(acpi_dev_resume);
917 
918 /**
919  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
920  * @dev: Device to suspend.
921  *
922  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
923  * it into a runtime low-power state.
924  */
925 int acpi_subsys_runtime_suspend(struct device *dev)
926 {
927 	int ret = pm_generic_runtime_suspend(dev);
928 	return ret ? ret : acpi_dev_suspend(dev, true);
929 }
930 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
931 
932 /**
933  * acpi_subsys_runtime_resume - Resume device using ACPI.
934  * @dev: Device to Resume.
935  *
936  * Use ACPI to put the given device into the full-power state and carry out the
937  * generic runtime resume procedure for it.
938  */
939 int acpi_subsys_runtime_resume(struct device *dev)
940 {
941 	int ret = acpi_dev_resume(dev);
942 	return ret ? ret : pm_generic_runtime_resume(dev);
943 }
944 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
945 
946 #ifdef CONFIG_PM_SLEEP
947 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
948 {
949 	u32 sys_target = acpi_target_system_state();
950 	int ret, state;
951 
952 	if (!pm_runtime_suspended(dev) || !adev ||
953 	    device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
954 		return true;
955 
956 	if (sys_target == ACPI_STATE_S0)
957 		return false;
958 
959 	if (adev->power.flags.dsw_present)
960 		return true;
961 
962 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
963 	if (ret)
964 		return true;
965 
966 	return state != adev->power.state;
967 }
968 
969 /**
970  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
971  * @dev: Device to prepare.
972  */
973 int acpi_subsys_prepare(struct device *dev)
974 {
975 	struct acpi_device *adev = ACPI_COMPANION(dev);
976 
977 	if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
978 		int ret = dev->driver->pm->prepare(dev);
979 
980 		if (ret < 0)
981 			return ret;
982 
983 		if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
984 			return 0;
985 	}
986 
987 	return !acpi_dev_needs_resume(dev, adev);
988 }
989 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
990 
991 /**
992  * acpi_subsys_complete - Finalize device's resume during system resume.
993  * @dev: Device to handle.
994  */
995 void acpi_subsys_complete(struct device *dev)
996 {
997 	pm_generic_complete(dev);
998 	/*
999 	 * If the device had been runtime-suspended before the system went into
1000 	 * the sleep state it is going out of and it has never been resumed till
1001 	 * now, resume it in case the firmware powered it up.
1002 	 */
1003 	if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1004 		pm_request_resume(dev);
1005 }
1006 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1007 
1008 /**
1009  * acpi_subsys_suspend - Run the device driver's suspend callback.
1010  * @dev: Device to handle.
1011  *
1012  * Follow PCI and resume devices from runtime suspend before running their
1013  * system suspend callbacks, unless the driver can cope with runtime-suspended
1014  * devices during system suspend and there are no ACPI-specific reasons for
1015  * resuming them.
1016  */
1017 int acpi_subsys_suspend(struct device *dev)
1018 {
1019 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1020 	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1021 		pm_runtime_resume(dev);
1022 
1023 	return pm_generic_suspend(dev);
1024 }
1025 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1026 
1027 /**
1028  * acpi_subsys_suspend_late - Suspend device using ACPI.
1029  * @dev: Device to suspend.
1030  *
1031  * Carry out the generic late suspend procedure for @dev and use ACPI to put
1032  * it into a low-power state during system transition into a sleep state.
1033  */
1034 int acpi_subsys_suspend_late(struct device *dev)
1035 {
1036 	int ret;
1037 
1038 	if (dev_pm_smart_suspend_and_suspended(dev))
1039 		return 0;
1040 
1041 	ret = pm_generic_suspend_late(dev);
1042 	return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1043 }
1044 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1045 
1046 /**
1047  * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1048  * @dev: Device to suspend.
1049  */
1050 int acpi_subsys_suspend_noirq(struct device *dev)
1051 {
1052 	int ret;
1053 
1054 	if (dev_pm_smart_suspend_and_suspended(dev)) {
1055 		dev->power.may_skip_resume = true;
1056 		return 0;
1057 	}
1058 
1059 	ret = pm_generic_suspend_noirq(dev);
1060 	if (ret)
1061 		return ret;
1062 
1063 	/*
1064 	 * If the target system sleep state is suspend-to-idle, it is sufficient
1065 	 * to check whether or not the device's wakeup settings are good for
1066 	 * runtime PM.  Otherwise, the pm_resume_via_firmware() check will cause
1067 	 * acpi_subsys_complete() to take care of fixing up the device's state
1068 	 * anyway, if need be.
1069 	 */
1070 	dev->power.may_skip_resume = device_may_wakeup(dev) ||
1071 					!device_can_wakeup(dev);
1072 
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1076 
1077 /**
1078  * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1079  * @dev: Device to handle.
1080  */
1081 int acpi_subsys_resume_noirq(struct device *dev)
1082 {
1083 	if (dev_pm_may_skip_resume(dev))
1084 		return 0;
1085 
1086 	/*
1087 	 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend
1088 	 * during system suspend, so update their runtime PM status to "active"
1089 	 * as they will be put into D0 going forward.
1090 	 */
1091 	if (dev_pm_smart_suspend_and_suspended(dev))
1092 		pm_runtime_set_active(dev);
1093 
1094 	return pm_generic_resume_noirq(dev);
1095 }
1096 EXPORT_SYMBOL_GPL(acpi_subsys_resume_noirq);
1097 
1098 /**
1099  * acpi_subsys_resume_early - Resume device using ACPI.
1100  * @dev: Device to Resume.
1101  *
1102  * Use ACPI to put the given device into the full-power state and carry out the
1103  * generic early resume procedure for it during system transition into the
1104  * working state.
1105  */
1106 int acpi_subsys_resume_early(struct device *dev)
1107 {
1108 	int ret = acpi_dev_resume(dev);
1109 	return ret ? ret : pm_generic_resume_early(dev);
1110 }
1111 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1112 
1113 /**
1114  * acpi_subsys_freeze - Run the device driver's freeze callback.
1115  * @dev: Device to handle.
1116  */
1117 int acpi_subsys_freeze(struct device *dev)
1118 {
1119 	/*
1120 	 * This used to be done in acpi_subsys_prepare() for all devices and
1121 	 * some drivers may depend on it, so do it here.  Ideally, however,
1122 	 * runtime-suspended devices should not be touched during freeze/thaw
1123 	 * transitions.
1124 	 */
1125 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND))
1126 		pm_runtime_resume(dev);
1127 
1128 	return pm_generic_freeze(dev);
1129 }
1130 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1131 
1132 /**
1133  * acpi_subsys_freeze_late - Run the device driver's "late" freeze callback.
1134  * @dev: Device to handle.
1135  */
1136 int acpi_subsys_freeze_late(struct device *dev)
1137 {
1138 
1139 	if (dev_pm_smart_suspend_and_suspended(dev))
1140 		return 0;
1141 
1142 	return pm_generic_freeze_late(dev);
1143 }
1144 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_late);
1145 
1146 /**
1147  * acpi_subsys_freeze_noirq - Run the device driver's "noirq" freeze callback.
1148  * @dev: Device to handle.
1149  */
1150 int acpi_subsys_freeze_noirq(struct device *dev)
1151 {
1152 
1153 	if (dev_pm_smart_suspend_and_suspended(dev))
1154 		return 0;
1155 
1156 	return pm_generic_freeze_noirq(dev);
1157 }
1158 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_noirq);
1159 
1160 /**
1161  * acpi_subsys_thaw_noirq - Run the device driver's "noirq" thaw callback.
1162  * @dev: Device to handle.
1163  */
1164 int acpi_subsys_thaw_noirq(struct device *dev)
1165 {
1166 	/*
1167 	 * If the device is in runtime suspend, the "thaw" code may not work
1168 	 * correctly with it, so skip the driver callback and make the PM core
1169 	 * skip all of the subsequent "thaw" callbacks for the device.
1170 	 */
1171 	if (dev_pm_smart_suspend_and_suspended(dev)) {
1172 		dev_pm_skip_next_resume_phases(dev);
1173 		return 0;
1174 	}
1175 
1176 	return pm_generic_thaw_noirq(dev);
1177 }
1178 EXPORT_SYMBOL_GPL(acpi_subsys_thaw_noirq);
1179 #endif /* CONFIG_PM_SLEEP */
1180 
1181 static struct dev_pm_domain acpi_general_pm_domain = {
1182 	.ops = {
1183 		.runtime_suspend = acpi_subsys_runtime_suspend,
1184 		.runtime_resume = acpi_subsys_runtime_resume,
1185 #ifdef CONFIG_PM_SLEEP
1186 		.prepare = acpi_subsys_prepare,
1187 		.complete = acpi_subsys_complete,
1188 		.suspend = acpi_subsys_suspend,
1189 		.suspend_late = acpi_subsys_suspend_late,
1190 		.suspend_noirq = acpi_subsys_suspend_noirq,
1191 		.resume_noirq = acpi_subsys_resume_noirq,
1192 		.resume_early = acpi_subsys_resume_early,
1193 		.freeze = acpi_subsys_freeze,
1194 		.freeze_late = acpi_subsys_freeze_late,
1195 		.freeze_noirq = acpi_subsys_freeze_noirq,
1196 		.thaw_noirq = acpi_subsys_thaw_noirq,
1197 		.poweroff = acpi_subsys_suspend,
1198 		.poweroff_late = acpi_subsys_suspend_late,
1199 		.poweroff_noirq = acpi_subsys_suspend_noirq,
1200 		.restore_noirq = acpi_subsys_resume_noirq,
1201 		.restore_early = acpi_subsys_resume_early,
1202 #endif
1203 	},
1204 };
1205 
1206 /**
1207  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1208  * @dev: Device to take care of.
1209  * @power_off: Whether or not to try to remove power from the device.
1210  *
1211  * Remove the device from the general ACPI PM domain and remove its wakeup
1212  * notifier.  If @power_off is set, additionally remove power from the device if
1213  * possible.
1214  *
1215  * Callers must ensure proper synchronization of this function with power
1216  * management callbacks.
1217  */
1218 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1219 {
1220 	struct acpi_device *adev = ACPI_COMPANION(dev);
1221 
1222 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1223 		dev_pm_domain_set(dev, NULL);
1224 		acpi_remove_pm_notifier(adev);
1225 		if (power_off) {
1226 			/*
1227 			 * If the device's PM QoS resume latency limit or flags
1228 			 * have been exposed to user space, they have to be
1229 			 * hidden at this point, so that they don't affect the
1230 			 * choice of the low-power state to put the device into.
1231 			 */
1232 			dev_pm_qos_hide_latency_limit(dev);
1233 			dev_pm_qos_hide_flags(dev);
1234 			acpi_device_wakeup_disable(adev);
1235 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1236 		}
1237 	}
1238 }
1239 
1240 /**
1241  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1242  * @dev: Device to prepare.
1243  * @power_on: Whether or not to power on the device.
1244  *
1245  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1246  * attached to it, install a wakeup notification handler for the device and
1247  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1248  * be put into the ACPI D0 state before the function returns.
1249  *
1250  * This assumes that the @dev's bus type uses generic power management callbacks
1251  * (or doesn't use any power management callbacks at all).
1252  *
1253  * Callers must ensure proper synchronization of this function with power
1254  * management callbacks.
1255  */
1256 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1257 {
1258 	struct acpi_device *adev = ACPI_COMPANION(dev);
1259 
1260 	if (!adev)
1261 		return 0;
1262 
1263 	/*
1264 	 * Only attach the power domain to the first device if the
1265 	 * companion is shared by multiple. This is to prevent doing power
1266 	 * management twice.
1267 	 */
1268 	if (!acpi_device_is_first_physical_node(adev, dev))
1269 		return 0;
1270 
1271 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1272 	dev_pm_domain_set(dev, &acpi_general_pm_domain);
1273 	if (power_on) {
1274 		acpi_dev_pm_full_power(adev);
1275 		acpi_device_wakeup_disable(adev);
1276 	}
1277 
1278 	dev->pm_domain->detach = acpi_dev_pm_detach;
1279 	return 1;
1280 }
1281 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1282 #endif /* CONFIG_PM */
1283