1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/device_pm.c - ACPI device power management routines. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/acpi.h> 16 #include <linux/export.h> 17 #include <linux/mutex.h> 18 #include <linux/pm_qos.h> 19 #include <linux/pm_domain.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 23 #include "fan.h" 24 #include "internal.h" 25 26 /** 27 * acpi_power_state_string - String representation of ACPI device power state. 28 * @state: ACPI device power state to return the string representation of. 29 */ 30 const char *acpi_power_state_string(int state) 31 { 32 switch (state) { 33 case ACPI_STATE_D0: 34 return "D0"; 35 case ACPI_STATE_D1: 36 return "D1"; 37 case ACPI_STATE_D2: 38 return "D2"; 39 case ACPI_STATE_D3_HOT: 40 return "D3hot"; 41 case ACPI_STATE_D3_COLD: 42 return "D3cold"; 43 default: 44 return "(unknown)"; 45 } 46 } 47 48 static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state) 49 { 50 unsigned long long psc; 51 acpi_status status; 52 53 status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc); 54 if (ACPI_FAILURE(status)) 55 return -ENODEV; 56 57 *state = psc; 58 return 0; 59 } 60 61 /** 62 * acpi_device_get_power - Get power state of an ACPI device. 63 * @device: Device to get the power state of. 64 * @state: Place to store the power state of the device. 65 * 66 * This function does not update the device's power.state field, but it may 67 * update its parent's power.state field (when the parent's power state is 68 * unknown and the device's power state turns out to be D0). 69 * 70 * Also, it does not update power resource reference counters to ensure that 71 * the power state returned by it will be persistent and it may return a power 72 * state shallower than previously set by acpi_device_set_power() for @device 73 * (if that power state depends on any power resources). 74 */ 75 int acpi_device_get_power(struct acpi_device *device, int *state) 76 { 77 int result = ACPI_STATE_UNKNOWN; 78 int error; 79 80 if (!device || !state) 81 return -EINVAL; 82 83 if (!device->flags.power_manageable) { 84 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 85 *state = device->parent ? 86 device->parent->power.state : ACPI_STATE_D0; 87 goto out; 88 } 89 90 /* 91 * Get the device's power state from power resources settings and _PSC, 92 * if available. 93 */ 94 if (device->power.flags.power_resources) { 95 error = acpi_power_get_inferred_state(device, &result); 96 if (error) 97 return error; 98 } 99 if (device->power.flags.explicit_get) { 100 int psc; 101 102 error = acpi_dev_pm_explicit_get(device, &psc); 103 if (error) 104 return error; 105 106 /* 107 * The power resources settings may indicate a power state 108 * shallower than the actual power state of the device, because 109 * the same power resources may be referenced by other devices. 110 * 111 * For systems predating ACPI 4.0 we assume that D3hot is the 112 * deepest state that can be supported. 113 */ 114 if (psc > result && psc < ACPI_STATE_D3_COLD) 115 result = psc; 116 else if (result == ACPI_STATE_UNKNOWN) 117 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc; 118 } 119 120 /* 121 * If we were unsure about the device parent's power state up to this 122 * point, the fact that the device is in D0 implies that the parent has 123 * to be in D0 too, except if ignore_parent is set. 124 */ 125 if (!device->power.flags.ignore_parent && device->parent 126 && device->parent->power.state == ACPI_STATE_UNKNOWN 127 && result == ACPI_STATE_D0) 128 device->parent->power.state = ACPI_STATE_D0; 129 130 *state = result; 131 132 out: 133 acpi_handle_debug(device->handle, "Power state: %s\n", 134 acpi_power_state_string(*state)); 135 136 return 0; 137 } 138 139 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 140 { 141 if (adev->power.states[state].flags.explicit_set) { 142 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 143 acpi_status status; 144 145 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 146 if (ACPI_FAILURE(status)) 147 return -ENODEV; 148 } 149 return 0; 150 } 151 152 /** 153 * acpi_device_set_power - Set power state of an ACPI device. 154 * @device: Device to set the power state of. 155 * @state: New power state to set. 156 * 157 * Callers must ensure that the device is power manageable before using this 158 * function. 159 */ 160 int acpi_device_set_power(struct acpi_device *device, int state) 161 { 162 int target_state = state; 163 int result = 0; 164 165 if (!device || !device->flags.power_manageable 166 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 167 return -EINVAL; 168 169 acpi_handle_debug(device->handle, "Power state change: %s -> %s\n", 170 acpi_power_state_string(device->power.state), 171 acpi_power_state_string(state)); 172 173 /* Make sure this is a valid target state */ 174 175 /* There is a special case for D0 addressed below. */ 176 if (state > ACPI_STATE_D0 && state == device->power.state) 177 goto no_change; 178 179 if (state == ACPI_STATE_D3_COLD) { 180 /* 181 * For transitions to D3cold we need to execute _PS3 and then 182 * possibly drop references to the power resources in use. 183 */ 184 state = ACPI_STATE_D3_HOT; 185 /* If D3cold is not supported, use D3hot as the target state. */ 186 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid) 187 target_state = state; 188 } else if (!device->power.states[state].flags.valid) { 189 acpi_handle_debug(device->handle, "Power state %s not supported\n", 190 acpi_power_state_string(state)); 191 return -ENODEV; 192 } 193 194 if (!device->power.flags.ignore_parent && device->parent && 195 state < device->parent->power.state) { 196 acpi_handle_debug(device->handle, 197 "Cannot transition to %s for parent in %s\n", 198 acpi_power_state_string(state), 199 acpi_power_state_string(device->parent->power.state)); 200 return -ENODEV; 201 } 202 203 /* 204 * Transition Power 205 * ---------------- 206 * In accordance with ACPI 6, _PSx is executed before manipulating power 207 * resources, unless the target state is D0, in which case _PS0 is 208 * supposed to be executed after turning the power resources on. 209 */ 210 if (state > ACPI_STATE_D0) { 211 /* 212 * According to ACPI 6, devices cannot go from lower-power 213 * (deeper) states to higher-power (shallower) states. 214 */ 215 if (state < device->power.state) { 216 acpi_handle_debug(device->handle, 217 "Cannot transition from %s to %s\n", 218 acpi_power_state_string(device->power.state), 219 acpi_power_state_string(state)); 220 return -ENODEV; 221 } 222 223 /* 224 * If the device goes from D3hot to D3cold, _PS3 has been 225 * evaluated for it already, so skip it in that case. 226 */ 227 if (device->power.state < ACPI_STATE_D3_HOT) { 228 result = acpi_dev_pm_explicit_set(device, state); 229 if (result) 230 goto end; 231 } 232 233 if (device->power.flags.power_resources) 234 result = acpi_power_transition(device, target_state); 235 } else { 236 int cur_state = device->power.state; 237 238 if (device->power.flags.power_resources) { 239 result = acpi_power_transition(device, ACPI_STATE_D0); 240 if (result) 241 goto end; 242 } 243 244 if (cur_state == ACPI_STATE_D0) { 245 int psc; 246 247 /* Nothing to do here if _PSC is not present. */ 248 if (!device->power.flags.explicit_get) 249 goto no_change; 250 251 /* 252 * The power state of the device was set to D0 last 253 * time, but that might have happened before a 254 * system-wide transition involving the platform 255 * firmware, so it may be necessary to evaluate _PS0 256 * for the device here. However, use extra care here 257 * and evaluate _PSC to check the device's current power 258 * state, and only invoke _PS0 if the evaluation of _PSC 259 * is successful and it returns a power state different 260 * from D0. 261 */ 262 result = acpi_dev_pm_explicit_get(device, &psc); 263 if (result || psc == ACPI_STATE_D0) 264 goto no_change; 265 } 266 267 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 268 } 269 270 end: 271 if (result) { 272 acpi_handle_debug(device->handle, 273 "Failed to change power state to %s\n", 274 acpi_power_state_string(target_state)); 275 } else { 276 device->power.state = target_state; 277 acpi_handle_debug(device->handle, "Power state changed to %s\n", 278 acpi_power_state_string(target_state)); 279 } 280 281 return result; 282 283 no_change: 284 acpi_handle_debug(device->handle, "Already in %s\n", 285 acpi_power_state_string(state)); 286 return 0; 287 } 288 EXPORT_SYMBOL(acpi_device_set_power); 289 290 int acpi_bus_set_power(acpi_handle handle, int state) 291 { 292 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 293 294 if (device) 295 return acpi_device_set_power(device, state); 296 297 return -ENODEV; 298 } 299 EXPORT_SYMBOL(acpi_bus_set_power); 300 301 int acpi_bus_init_power(struct acpi_device *device) 302 { 303 int state; 304 int result; 305 306 if (!device) 307 return -EINVAL; 308 309 device->power.state = ACPI_STATE_UNKNOWN; 310 if (!acpi_device_is_present(device)) { 311 device->flags.initialized = false; 312 return -ENXIO; 313 } 314 315 result = acpi_device_get_power(device, &state); 316 if (result) 317 return result; 318 319 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 320 /* Reference count the power resources. */ 321 result = acpi_power_on_resources(device, state); 322 if (result) 323 return result; 324 325 if (state == ACPI_STATE_D0) { 326 /* 327 * If _PSC is not present and the state inferred from 328 * power resources appears to be D0, it still may be 329 * necessary to execute _PS0 at this point, because 330 * another device using the same power resources may 331 * have been put into D0 previously and that's why we 332 * see D0 here. 333 */ 334 result = acpi_dev_pm_explicit_set(device, state); 335 if (result) 336 return result; 337 } 338 } else if (state == ACPI_STATE_UNKNOWN) { 339 /* 340 * No power resources and missing _PSC? Cross fingers and make 341 * it D0 in hope that this is what the BIOS put the device into. 342 * [We tried to force D0 here by executing _PS0, but that broke 343 * Toshiba P870-303 in a nasty way.] 344 */ 345 state = ACPI_STATE_D0; 346 } 347 device->power.state = state; 348 return 0; 349 } 350 351 /** 352 * acpi_device_fix_up_power - Force device with missing _PSC into D0. 353 * @device: Device object whose power state is to be fixed up. 354 * 355 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined, 356 * are assumed to be put into D0 by the BIOS. However, in some cases that may 357 * not be the case and this function should be used then. 358 */ 359 int acpi_device_fix_up_power(struct acpi_device *device) 360 { 361 int ret = 0; 362 363 if (!device->power.flags.power_resources 364 && !device->power.flags.explicit_get 365 && device->power.state == ACPI_STATE_D0) 366 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 367 368 return ret; 369 } 370 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power); 371 372 static int fix_up_power_if_applicable(struct acpi_device *adev, void *not_used) 373 { 374 if (adev->status.present && adev->status.enabled) 375 acpi_device_fix_up_power(adev); 376 377 return 0; 378 } 379 380 /** 381 * acpi_device_fix_up_power_extended - Force device and its children into D0. 382 * @adev: Parent device object whose power state is to be fixed up. 383 * 384 * Call acpi_device_fix_up_power() for @adev and its children so long as they 385 * are reported as present and enabled. 386 */ 387 void acpi_device_fix_up_power_extended(struct acpi_device *adev) 388 { 389 acpi_device_fix_up_power(adev); 390 acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL); 391 } 392 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_extended); 393 394 int acpi_device_update_power(struct acpi_device *device, int *state_p) 395 { 396 int state; 397 int result; 398 399 if (device->power.state == ACPI_STATE_UNKNOWN) { 400 result = acpi_bus_init_power(device); 401 if (!result && state_p) 402 *state_p = device->power.state; 403 404 return result; 405 } 406 407 result = acpi_device_get_power(device, &state); 408 if (result) 409 return result; 410 411 if (state == ACPI_STATE_UNKNOWN) { 412 state = ACPI_STATE_D0; 413 result = acpi_device_set_power(device, state); 414 if (result) 415 return result; 416 } else { 417 if (device->power.flags.power_resources) { 418 /* 419 * We don't need to really switch the state, bu we need 420 * to update the power resources' reference counters. 421 */ 422 result = acpi_power_transition(device, state); 423 if (result) 424 return result; 425 } 426 device->power.state = state; 427 } 428 if (state_p) 429 *state_p = state; 430 431 return 0; 432 } 433 EXPORT_SYMBOL_GPL(acpi_device_update_power); 434 435 int acpi_bus_update_power(acpi_handle handle, int *state_p) 436 { 437 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 438 439 if (device) 440 return acpi_device_update_power(device, state_p); 441 442 return -ENODEV; 443 } 444 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 445 446 bool acpi_bus_power_manageable(acpi_handle handle) 447 { 448 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 449 450 return device && device->flags.power_manageable; 451 } 452 EXPORT_SYMBOL(acpi_bus_power_manageable); 453 454 static int acpi_power_up_if_adr_present(struct acpi_device *adev, void *not_used) 455 { 456 if (!(adev->flags.power_manageable && adev->pnp.type.bus_address)) 457 return 0; 458 459 acpi_handle_debug(adev->handle, "Power state: %s\n", 460 acpi_power_state_string(adev->power.state)); 461 462 if (adev->power.state == ACPI_STATE_D3_COLD) 463 return acpi_device_set_power(adev, ACPI_STATE_D0); 464 465 return 0; 466 } 467 468 /** 469 * acpi_dev_power_up_children_with_adr - Power up childres with valid _ADR 470 * @adev: Parent ACPI device object. 471 * 472 * Change the power states of the direct children of @adev that are in D3cold 473 * and hold valid _ADR objects to D0 in order to allow bus (e.g. PCI) 474 * enumeration code to access them. 475 */ 476 void acpi_dev_power_up_children_with_adr(struct acpi_device *adev) 477 { 478 acpi_dev_for_each_child(adev, acpi_power_up_if_adr_present, NULL); 479 } 480 481 #ifdef CONFIG_PM 482 static DEFINE_MUTEX(acpi_pm_notifier_lock); 483 static DEFINE_MUTEX(acpi_pm_notifier_install_lock); 484 485 void acpi_pm_wakeup_event(struct device *dev) 486 { 487 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup()); 488 } 489 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event); 490 491 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used) 492 { 493 struct acpi_device *adev; 494 495 if (val != ACPI_NOTIFY_DEVICE_WAKE) 496 return; 497 498 acpi_handle_debug(handle, "Wake notify\n"); 499 500 adev = acpi_bus_get_acpi_device(handle); 501 if (!adev) 502 return; 503 504 mutex_lock(&acpi_pm_notifier_lock); 505 506 if (adev->wakeup.flags.notifier_present) { 507 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup()); 508 if (adev->wakeup.context.func) { 509 acpi_handle_debug(handle, "Running %pS for %s\n", 510 adev->wakeup.context.func, 511 dev_name(adev->wakeup.context.dev)); 512 adev->wakeup.context.func(&adev->wakeup.context); 513 } 514 } 515 516 mutex_unlock(&acpi_pm_notifier_lock); 517 518 acpi_bus_put_acpi_device(adev); 519 } 520 521 /** 522 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device. 523 * @adev: ACPI device to add the notify handler for. 524 * @dev: Device to generate a wakeup event for while handling the notification. 525 * @func: Work function to execute when handling the notification. 526 * 527 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 528 * PM wakeup events. For example, wakeup events may be generated for bridges 529 * if one of the devices below the bridge is signaling wakeup, even if the 530 * bridge itself doesn't have a wakeup GPE associated with it. 531 */ 532 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, 533 void (*func)(struct acpi_device_wakeup_context *context)) 534 { 535 acpi_status status = AE_ALREADY_EXISTS; 536 537 if (!dev && !func) 538 return AE_BAD_PARAMETER; 539 540 mutex_lock(&acpi_pm_notifier_install_lock); 541 542 if (adev->wakeup.flags.notifier_present) 543 goto out; 544 545 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY, 546 acpi_pm_notify_handler, NULL); 547 if (ACPI_FAILURE(status)) 548 goto out; 549 550 mutex_lock(&acpi_pm_notifier_lock); 551 adev->wakeup.ws = wakeup_source_register(&adev->dev, 552 dev_name(&adev->dev)); 553 adev->wakeup.context.dev = dev; 554 adev->wakeup.context.func = func; 555 adev->wakeup.flags.notifier_present = true; 556 mutex_unlock(&acpi_pm_notifier_lock); 557 558 out: 559 mutex_unlock(&acpi_pm_notifier_install_lock); 560 return status; 561 } 562 563 /** 564 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 565 * @adev: ACPI device to remove the notifier from. 566 */ 567 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) 568 { 569 acpi_status status = AE_BAD_PARAMETER; 570 571 mutex_lock(&acpi_pm_notifier_install_lock); 572 573 if (!adev->wakeup.flags.notifier_present) 574 goto out; 575 576 status = acpi_remove_notify_handler(adev->handle, 577 ACPI_SYSTEM_NOTIFY, 578 acpi_pm_notify_handler); 579 if (ACPI_FAILURE(status)) 580 goto out; 581 582 mutex_lock(&acpi_pm_notifier_lock); 583 adev->wakeup.context.func = NULL; 584 adev->wakeup.context.dev = NULL; 585 wakeup_source_unregister(adev->wakeup.ws); 586 adev->wakeup.flags.notifier_present = false; 587 mutex_unlock(&acpi_pm_notifier_lock); 588 589 out: 590 mutex_unlock(&acpi_pm_notifier_install_lock); 591 return status; 592 } 593 594 bool acpi_bus_can_wakeup(acpi_handle handle) 595 { 596 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 597 598 return device && device->wakeup.flags.valid; 599 } 600 EXPORT_SYMBOL(acpi_bus_can_wakeup); 601 602 bool acpi_pm_device_can_wakeup(struct device *dev) 603 { 604 struct acpi_device *adev = ACPI_COMPANION(dev); 605 606 return adev ? acpi_device_can_wakeup(adev) : false; 607 } 608 609 /** 610 * acpi_dev_pm_get_state - Get preferred power state of ACPI device. 611 * @dev: Device whose preferred target power state to return. 612 * @adev: ACPI device node corresponding to @dev. 613 * @target_state: System state to match the resultant device state. 614 * @d_min_p: Location to store the highest power state available to the device. 615 * @d_max_p: Location to store the lowest power state available to the device. 616 * 617 * Find the lowest power (highest number) and highest power (lowest number) ACPI 618 * device power states that the device can be in while the system is in the 619 * state represented by @target_state. Store the integer numbers representing 620 * those stats in the memory locations pointed to by @d_max_p and @d_min_p, 621 * respectively. 622 * 623 * Callers must ensure that @dev and @adev are valid pointers and that @adev 624 * actually corresponds to @dev before using this function. 625 * 626 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or 627 * returns a value that doesn't make sense. The memory locations pointed to by 628 * @d_max_p and @d_min_p are only modified on success. 629 */ 630 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev, 631 u32 target_state, int *d_min_p, int *d_max_p) 632 { 633 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' }; 634 acpi_handle handle = adev->handle; 635 unsigned long long ret; 636 int d_min, d_max; 637 bool wakeup = false; 638 bool has_sxd = false; 639 acpi_status status; 640 641 /* 642 * If the system state is S0, the lowest power state the device can be 643 * in is D3cold, unless the device has _S0W and is supposed to signal 644 * wakeup, in which case the return value of _S0W has to be used as the 645 * lowest power state available to the device. 646 */ 647 d_min = ACPI_STATE_D0; 648 d_max = ACPI_STATE_D3_COLD; 649 650 /* 651 * If present, _SxD methods return the minimum D-state (highest power 652 * state) we can use for the corresponding S-states. Otherwise, the 653 * minimum D-state is D0 (ACPI 3.x). 654 */ 655 if (target_state > ACPI_STATE_S0) { 656 /* 657 * We rely on acpi_evaluate_integer() not clobbering the integer 658 * provided if AE_NOT_FOUND is returned. 659 */ 660 ret = d_min; 661 status = acpi_evaluate_integer(handle, method, NULL, &ret); 662 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND) 663 || ret > ACPI_STATE_D3_COLD) 664 return -ENODATA; 665 666 /* 667 * We need to handle legacy systems where D3hot and D3cold are 668 * the same and 3 is returned in both cases, so fall back to 669 * D3cold if D3hot is not a valid state. 670 */ 671 if (!adev->power.states[ret].flags.valid) { 672 if (ret == ACPI_STATE_D3_HOT) 673 ret = ACPI_STATE_D3_COLD; 674 else 675 return -ENODATA; 676 } 677 678 if (status == AE_OK) 679 has_sxd = true; 680 681 d_min = ret; 682 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 683 && adev->wakeup.sleep_state >= target_state; 684 } else { 685 wakeup = adev->wakeup.flags.valid; 686 } 687 688 /* 689 * If _PRW says we can wake up the system from the target sleep state, 690 * the D-state returned by _SxD is sufficient for that (we assume a 691 * wakeup-aware driver if wake is set). Still, if _SxW exists 692 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 693 * can wake the system. _S0W may be valid, too. 694 */ 695 if (wakeup) { 696 method[3] = 'W'; 697 status = acpi_evaluate_integer(handle, method, NULL, &ret); 698 if (status == AE_NOT_FOUND) { 699 /* No _SxW. In this case, the ACPI spec says that we 700 * must not go into any power state deeper than the 701 * value returned from _SxD. 702 */ 703 if (has_sxd && target_state > ACPI_STATE_S0) 704 d_max = d_min; 705 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) { 706 /* Fall back to D3cold if ret is not a valid state. */ 707 if (!adev->power.states[ret].flags.valid) 708 ret = ACPI_STATE_D3_COLD; 709 710 d_max = ret > d_min ? ret : d_min; 711 } else { 712 return -ENODATA; 713 } 714 } 715 716 if (d_min_p) 717 *d_min_p = d_min; 718 719 if (d_max_p) 720 *d_max_p = d_max; 721 722 return 0; 723 } 724 725 /** 726 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 727 * @dev: Device whose preferred target power state to return. 728 * @d_min_p: Location to store the upper limit of the allowed states range. 729 * @d_max_in: Deepest low-power state to take into consideration. 730 * Return value: Preferred power state of the device on success, -ENODEV 731 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is 732 * incorrect, or -ENODATA on ACPI method failure. 733 * 734 * The caller must ensure that @dev is valid before using this function. 735 */ 736 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 737 { 738 struct acpi_device *adev; 739 int ret, d_min, d_max; 740 741 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD) 742 return -EINVAL; 743 744 if (d_max_in > ACPI_STATE_D2) { 745 enum pm_qos_flags_status stat; 746 747 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 748 if (stat == PM_QOS_FLAGS_ALL) 749 d_max_in = ACPI_STATE_D2; 750 } 751 752 adev = ACPI_COMPANION(dev); 753 if (!adev) { 754 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 755 return -ENODEV; 756 } 757 758 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(), 759 &d_min, &d_max); 760 if (ret) 761 return ret; 762 763 if (d_max_in < d_min) 764 return -EINVAL; 765 766 if (d_max > d_max_in) { 767 for (d_max = d_max_in; d_max > d_min; d_max--) { 768 if (adev->power.states[d_max].flags.valid) 769 break; 770 } 771 } 772 773 if (d_min_p) 774 *d_min_p = d_min; 775 776 return d_max; 777 } 778 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 779 780 /** 781 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function. 782 * @context: Device wakeup context. 783 */ 784 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context) 785 { 786 struct device *dev = context->dev; 787 788 if (dev) { 789 pm_wakeup_event(dev, 0); 790 pm_request_resume(dev); 791 } 792 } 793 794 static DEFINE_MUTEX(acpi_wakeup_lock); 795 796 static int __acpi_device_wakeup_enable(struct acpi_device *adev, 797 u32 target_state) 798 { 799 struct acpi_device_wakeup *wakeup = &adev->wakeup; 800 acpi_status status; 801 int error = 0; 802 803 mutex_lock(&acpi_wakeup_lock); 804 805 /* 806 * If the device wakeup power is already enabled, disable it and enable 807 * it again in case it depends on the configuration of subordinate 808 * devices and the conditions have changed since it was enabled last 809 * time. 810 */ 811 if (wakeup->enable_count > 0) 812 acpi_disable_wakeup_device_power(adev); 813 814 error = acpi_enable_wakeup_device_power(adev, target_state); 815 if (error) { 816 if (wakeup->enable_count > 0) { 817 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 818 wakeup->enable_count = 0; 819 } 820 goto out; 821 } 822 823 if (wakeup->enable_count > 0) 824 goto inc; 825 826 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 827 if (ACPI_FAILURE(status)) { 828 acpi_disable_wakeup_device_power(adev); 829 error = -EIO; 830 goto out; 831 } 832 833 acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n", 834 (unsigned int)wakeup->gpe_number); 835 836 inc: 837 if (wakeup->enable_count < INT_MAX) 838 wakeup->enable_count++; 839 else 840 acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n"); 841 842 out: 843 mutex_unlock(&acpi_wakeup_lock); 844 return error; 845 } 846 847 /** 848 * acpi_device_wakeup_enable - Enable wakeup functionality for device. 849 * @adev: ACPI device to enable wakeup functionality for. 850 * @target_state: State the system is transitioning into. 851 * 852 * Enable the GPE associated with @adev so that it can generate wakeup signals 853 * for the device in response to external (remote) events and enable wakeup 854 * power for it. 855 * 856 * Callers must ensure that @adev is a valid ACPI device node before executing 857 * this function. 858 */ 859 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state) 860 { 861 return __acpi_device_wakeup_enable(adev, target_state); 862 } 863 864 /** 865 * acpi_device_wakeup_disable - Disable wakeup functionality for device. 866 * @adev: ACPI device to disable wakeup functionality for. 867 * 868 * Disable the GPE associated with @adev and disable wakeup power for it. 869 * 870 * Callers must ensure that @adev is a valid ACPI device node before executing 871 * this function. 872 */ 873 static void acpi_device_wakeup_disable(struct acpi_device *adev) 874 { 875 struct acpi_device_wakeup *wakeup = &adev->wakeup; 876 877 mutex_lock(&acpi_wakeup_lock); 878 879 if (!wakeup->enable_count) 880 goto out; 881 882 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 883 acpi_disable_wakeup_device_power(adev); 884 885 wakeup->enable_count--; 886 887 out: 888 mutex_unlock(&acpi_wakeup_lock); 889 } 890 891 /** 892 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device. 893 * @dev: Device to enable/disable to generate wakeup events. 894 * @enable: Whether to enable or disable the wakeup functionality. 895 */ 896 int acpi_pm_set_device_wakeup(struct device *dev, bool enable) 897 { 898 struct acpi_device *adev; 899 int error; 900 901 adev = ACPI_COMPANION(dev); 902 if (!adev) { 903 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 904 return -ENODEV; 905 } 906 907 if (!acpi_device_can_wakeup(adev)) 908 return -EINVAL; 909 910 if (!enable) { 911 acpi_device_wakeup_disable(adev); 912 dev_dbg(dev, "Wakeup disabled by ACPI\n"); 913 return 0; 914 } 915 916 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state()); 917 if (!error) 918 dev_dbg(dev, "Wakeup enabled by ACPI\n"); 919 920 return error; 921 } 922 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup); 923 924 /** 925 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 926 * @dev: Device to put into a low-power state. 927 * @adev: ACPI device node corresponding to @dev. 928 * @system_state: System state to choose the device state for. 929 */ 930 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 931 u32 system_state) 932 { 933 int ret, state; 934 935 if (!acpi_device_power_manageable(adev)) 936 return 0; 937 938 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state); 939 return ret ? ret : acpi_device_set_power(adev, state); 940 } 941 942 /** 943 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 944 * @adev: ACPI device node to put into the full-power state. 945 */ 946 static int acpi_dev_pm_full_power(struct acpi_device *adev) 947 { 948 return acpi_device_power_manageable(adev) ? 949 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 950 } 951 952 /** 953 * acpi_dev_suspend - Put device into a low-power state using ACPI. 954 * @dev: Device to put into a low-power state. 955 * @wakeup: Whether or not to enable wakeup for the device. 956 * 957 * Put the given device into a low-power state using the standard ACPI 958 * mechanism. Set up remote wakeup if desired, choose the state to put the 959 * device into (this checks if remote wakeup is expected to work too), and set 960 * the power state of the device. 961 */ 962 int acpi_dev_suspend(struct device *dev, bool wakeup) 963 { 964 struct acpi_device *adev = ACPI_COMPANION(dev); 965 u32 target_state = acpi_target_system_state(); 966 int error; 967 968 if (!adev) 969 return 0; 970 971 if (wakeup && acpi_device_can_wakeup(adev)) { 972 error = acpi_device_wakeup_enable(adev, target_state); 973 if (error) 974 return -EAGAIN; 975 } else { 976 wakeup = false; 977 } 978 979 error = acpi_dev_pm_low_power(dev, adev, target_state); 980 if (error && wakeup) 981 acpi_device_wakeup_disable(adev); 982 983 return error; 984 } 985 EXPORT_SYMBOL_GPL(acpi_dev_suspend); 986 987 /** 988 * acpi_dev_resume - Put device into the full-power state using ACPI. 989 * @dev: Device to put into the full-power state. 990 * 991 * Put the given device into the full-power state using the standard ACPI 992 * mechanism. Set the power state of the device to ACPI D0 and disable wakeup. 993 */ 994 int acpi_dev_resume(struct device *dev) 995 { 996 struct acpi_device *adev = ACPI_COMPANION(dev); 997 int error; 998 999 if (!adev) 1000 return 0; 1001 1002 error = acpi_dev_pm_full_power(adev); 1003 acpi_device_wakeup_disable(adev); 1004 return error; 1005 } 1006 EXPORT_SYMBOL_GPL(acpi_dev_resume); 1007 1008 /** 1009 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 1010 * @dev: Device to suspend. 1011 * 1012 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 1013 * it into a runtime low-power state. 1014 */ 1015 int acpi_subsys_runtime_suspend(struct device *dev) 1016 { 1017 int ret = pm_generic_runtime_suspend(dev); 1018 1019 return ret ? ret : acpi_dev_suspend(dev, true); 1020 } 1021 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 1022 1023 /** 1024 * acpi_subsys_runtime_resume - Resume device using ACPI. 1025 * @dev: Device to Resume. 1026 * 1027 * Use ACPI to put the given device into the full-power state and carry out the 1028 * generic runtime resume procedure for it. 1029 */ 1030 int acpi_subsys_runtime_resume(struct device *dev) 1031 { 1032 int ret = acpi_dev_resume(dev); 1033 1034 return ret ? ret : pm_generic_runtime_resume(dev); 1035 } 1036 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 1037 1038 #ifdef CONFIG_PM_SLEEP 1039 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev) 1040 { 1041 u32 sys_target = acpi_target_system_state(); 1042 int ret, state; 1043 1044 if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid && 1045 device_may_wakeup(dev) != !!adev->wakeup.prepare_count)) 1046 return true; 1047 1048 if (sys_target == ACPI_STATE_S0) 1049 return false; 1050 1051 if (adev->power.flags.dsw_present) 1052 return true; 1053 1054 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state); 1055 if (ret) 1056 return true; 1057 1058 return state != adev->power.state; 1059 } 1060 1061 /** 1062 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 1063 * @dev: Device to prepare. 1064 */ 1065 int acpi_subsys_prepare(struct device *dev) 1066 { 1067 struct acpi_device *adev = ACPI_COMPANION(dev); 1068 1069 if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) { 1070 int ret = dev->driver->pm->prepare(dev); 1071 1072 if (ret < 0) 1073 return ret; 1074 1075 if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) 1076 return 0; 1077 } 1078 1079 return !acpi_dev_needs_resume(dev, adev); 1080 } 1081 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 1082 1083 /** 1084 * acpi_subsys_complete - Finalize device's resume during system resume. 1085 * @dev: Device to handle. 1086 */ 1087 void acpi_subsys_complete(struct device *dev) 1088 { 1089 pm_generic_complete(dev); 1090 /* 1091 * If the device had been runtime-suspended before the system went into 1092 * the sleep state it is going out of and it has never been resumed till 1093 * now, resume it in case the firmware powered it up. 1094 */ 1095 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) 1096 pm_request_resume(dev); 1097 } 1098 EXPORT_SYMBOL_GPL(acpi_subsys_complete); 1099 1100 /** 1101 * acpi_subsys_suspend - Run the device driver's suspend callback. 1102 * @dev: Device to handle. 1103 * 1104 * Follow PCI and resume devices from runtime suspend before running their 1105 * system suspend callbacks, unless the driver can cope with runtime-suspended 1106 * devices during system suspend and there are no ACPI-specific reasons for 1107 * resuming them. 1108 */ 1109 int acpi_subsys_suspend(struct device *dev) 1110 { 1111 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1112 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev))) 1113 pm_runtime_resume(dev); 1114 1115 return pm_generic_suspend(dev); 1116 } 1117 EXPORT_SYMBOL_GPL(acpi_subsys_suspend); 1118 1119 /** 1120 * acpi_subsys_suspend_late - Suspend device using ACPI. 1121 * @dev: Device to suspend. 1122 * 1123 * Carry out the generic late suspend procedure for @dev and use ACPI to put 1124 * it into a low-power state during system transition into a sleep state. 1125 */ 1126 int acpi_subsys_suspend_late(struct device *dev) 1127 { 1128 int ret; 1129 1130 if (dev_pm_skip_suspend(dev)) 1131 return 0; 1132 1133 ret = pm_generic_suspend_late(dev); 1134 return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev)); 1135 } 1136 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 1137 1138 /** 1139 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback. 1140 * @dev: Device to suspend. 1141 */ 1142 int acpi_subsys_suspend_noirq(struct device *dev) 1143 { 1144 int ret; 1145 1146 if (dev_pm_skip_suspend(dev)) 1147 return 0; 1148 1149 ret = pm_generic_suspend_noirq(dev); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * If the target system sleep state is suspend-to-idle, it is sufficient 1155 * to check whether or not the device's wakeup settings are good for 1156 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause 1157 * acpi_subsys_complete() to take care of fixing up the device's state 1158 * anyway, if need be. 1159 */ 1160 if (device_can_wakeup(dev) && !device_may_wakeup(dev)) 1161 dev->power.may_skip_resume = false; 1162 1163 return 0; 1164 } 1165 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq); 1166 1167 /** 1168 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback. 1169 * @dev: Device to handle. 1170 */ 1171 static int acpi_subsys_resume_noirq(struct device *dev) 1172 { 1173 if (dev_pm_skip_resume(dev)) 1174 return 0; 1175 1176 return pm_generic_resume_noirq(dev); 1177 } 1178 1179 /** 1180 * acpi_subsys_resume_early - Resume device using ACPI. 1181 * @dev: Device to Resume. 1182 * 1183 * Use ACPI to put the given device into the full-power state and carry out the 1184 * generic early resume procedure for it during system transition into the 1185 * working state, but only do that if device either defines early resume 1186 * handler, or does not define power operations at all. Otherwise powering up 1187 * of the device is postponed to the normal resume phase. 1188 */ 1189 static int acpi_subsys_resume_early(struct device *dev) 1190 { 1191 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1192 int ret; 1193 1194 if (dev_pm_skip_resume(dev)) 1195 return 0; 1196 1197 if (pm && !pm->resume_early) { 1198 dev_dbg(dev, "postponing D0 transition to normal resume stage\n"); 1199 return 0; 1200 } 1201 1202 ret = acpi_dev_resume(dev); 1203 return ret ? ret : pm_generic_resume_early(dev); 1204 } 1205 1206 /** 1207 * acpi_subsys_resume - Resume device using ACPI. 1208 * @dev: Device to Resume. 1209 * 1210 * Use ACPI to put the given device into the full-power state if it has not been 1211 * powered up during early resume phase, and carry out the generic resume 1212 * procedure for it during system transition into the working state. 1213 */ 1214 static int acpi_subsys_resume(struct device *dev) 1215 { 1216 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1217 int ret = 0; 1218 1219 if (!dev_pm_skip_resume(dev) && pm && !pm->resume_early) { 1220 dev_dbg(dev, "executing postponed D0 transition\n"); 1221 ret = acpi_dev_resume(dev); 1222 } 1223 1224 return ret ? ret : pm_generic_resume(dev); 1225 } 1226 1227 /** 1228 * acpi_subsys_freeze - Run the device driver's freeze callback. 1229 * @dev: Device to handle. 1230 */ 1231 int acpi_subsys_freeze(struct device *dev) 1232 { 1233 /* 1234 * Resume all runtime-suspended devices before creating a snapshot 1235 * image of system memory, because the restore kernel generally cannot 1236 * be expected to always handle them consistently and they need to be 1237 * put into the runtime-active metastate during system resume anyway, 1238 * so it is better to ensure that the state saved in the image will be 1239 * always consistent with that. 1240 */ 1241 pm_runtime_resume(dev); 1242 1243 return pm_generic_freeze(dev); 1244 } 1245 EXPORT_SYMBOL_GPL(acpi_subsys_freeze); 1246 1247 /** 1248 * acpi_subsys_restore_early - Restore device using ACPI. 1249 * @dev: Device to restore. 1250 */ 1251 int acpi_subsys_restore_early(struct device *dev) 1252 { 1253 int ret = acpi_dev_resume(dev); 1254 1255 return ret ? ret : pm_generic_restore_early(dev); 1256 } 1257 EXPORT_SYMBOL_GPL(acpi_subsys_restore_early); 1258 1259 /** 1260 * acpi_subsys_poweroff - Run the device driver's poweroff callback. 1261 * @dev: Device to handle. 1262 * 1263 * Follow PCI and resume devices from runtime suspend before running their 1264 * system poweroff callbacks, unless the driver can cope with runtime-suspended 1265 * devices during system suspend and there are no ACPI-specific reasons for 1266 * resuming them. 1267 */ 1268 int acpi_subsys_poweroff(struct device *dev) 1269 { 1270 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1271 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev))) 1272 pm_runtime_resume(dev); 1273 1274 return pm_generic_poweroff(dev); 1275 } 1276 EXPORT_SYMBOL_GPL(acpi_subsys_poweroff); 1277 1278 /** 1279 * acpi_subsys_poweroff_late - Run the device driver's poweroff callback. 1280 * @dev: Device to handle. 1281 * 1282 * Carry out the generic late poweroff procedure for @dev and use ACPI to put 1283 * it into a low-power state during system transition into a sleep state. 1284 */ 1285 static int acpi_subsys_poweroff_late(struct device *dev) 1286 { 1287 int ret; 1288 1289 if (dev_pm_skip_suspend(dev)) 1290 return 0; 1291 1292 ret = pm_generic_poweroff_late(dev); 1293 if (ret) 1294 return ret; 1295 1296 return acpi_dev_suspend(dev, device_may_wakeup(dev)); 1297 } 1298 1299 /** 1300 * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback. 1301 * @dev: Device to suspend. 1302 */ 1303 static int acpi_subsys_poweroff_noirq(struct device *dev) 1304 { 1305 if (dev_pm_skip_suspend(dev)) 1306 return 0; 1307 1308 return pm_generic_poweroff_noirq(dev); 1309 } 1310 #endif /* CONFIG_PM_SLEEP */ 1311 1312 static struct dev_pm_domain acpi_general_pm_domain = { 1313 .ops = { 1314 .runtime_suspend = acpi_subsys_runtime_suspend, 1315 .runtime_resume = acpi_subsys_runtime_resume, 1316 #ifdef CONFIG_PM_SLEEP 1317 .prepare = acpi_subsys_prepare, 1318 .complete = acpi_subsys_complete, 1319 .suspend = acpi_subsys_suspend, 1320 .resume = acpi_subsys_resume, 1321 .suspend_late = acpi_subsys_suspend_late, 1322 .suspend_noirq = acpi_subsys_suspend_noirq, 1323 .resume_noirq = acpi_subsys_resume_noirq, 1324 .resume_early = acpi_subsys_resume_early, 1325 .freeze = acpi_subsys_freeze, 1326 .poweroff = acpi_subsys_poweroff, 1327 .poweroff_late = acpi_subsys_poweroff_late, 1328 .poweroff_noirq = acpi_subsys_poweroff_noirq, 1329 .restore_early = acpi_subsys_restore_early, 1330 #endif 1331 }, 1332 }; 1333 1334 /** 1335 * acpi_dev_pm_detach - Remove ACPI power management from the device. 1336 * @dev: Device to take care of. 1337 * @power_off: Whether or not to try to remove power from the device. 1338 * 1339 * Remove the device from the general ACPI PM domain and remove its wakeup 1340 * notifier. If @power_off is set, additionally remove power from the device if 1341 * possible. 1342 * 1343 * Callers must ensure proper synchronization of this function with power 1344 * management callbacks. 1345 */ 1346 static void acpi_dev_pm_detach(struct device *dev, bool power_off) 1347 { 1348 struct acpi_device *adev = ACPI_COMPANION(dev); 1349 1350 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 1351 dev_pm_domain_set(dev, NULL); 1352 acpi_remove_pm_notifier(adev); 1353 if (power_off) { 1354 /* 1355 * If the device's PM QoS resume latency limit or flags 1356 * have been exposed to user space, they have to be 1357 * hidden at this point, so that they don't affect the 1358 * choice of the low-power state to put the device into. 1359 */ 1360 dev_pm_qos_hide_latency_limit(dev); 1361 dev_pm_qos_hide_flags(dev); 1362 acpi_device_wakeup_disable(adev); 1363 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 1364 } 1365 } 1366 } 1367 1368 /** 1369 * acpi_dev_pm_attach - Prepare device for ACPI power management. 1370 * @dev: Device to prepare. 1371 * @power_on: Whether or not to power on the device. 1372 * 1373 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 1374 * attached to it, install a wakeup notification handler for the device and 1375 * add it to the general ACPI PM domain. If @power_on is set, the device will 1376 * be put into the ACPI D0 state before the function returns. 1377 * 1378 * This assumes that the @dev's bus type uses generic power management callbacks 1379 * (or doesn't use any power management callbacks at all). 1380 * 1381 * Callers must ensure proper synchronization of this function with power 1382 * management callbacks. 1383 */ 1384 int acpi_dev_pm_attach(struct device *dev, bool power_on) 1385 { 1386 /* 1387 * Skip devices whose ACPI companions match the device IDs below, 1388 * because they require special power management handling incompatible 1389 * with the generic ACPI PM domain. 1390 */ 1391 static const struct acpi_device_id special_pm_ids[] = { 1392 ACPI_FAN_DEVICE_IDS, 1393 {} 1394 }; 1395 struct acpi_device *adev = ACPI_COMPANION(dev); 1396 1397 if (!adev || !acpi_match_device_ids(adev, special_pm_ids)) 1398 return 0; 1399 1400 /* 1401 * Only attach the power domain to the first device if the 1402 * companion is shared by multiple. This is to prevent doing power 1403 * management twice. 1404 */ 1405 if (!acpi_device_is_first_physical_node(adev, dev)) 1406 return 0; 1407 1408 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func); 1409 dev_pm_domain_set(dev, &acpi_general_pm_domain); 1410 if (power_on) { 1411 acpi_dev_pm_full_power(adev); 1412 acpi_device_wakeup_disable(adev); 1413 } 1414 1415 dev->pm_domain->detach = acpi_dev_pm_detach; 1416 return 1; 1417 } 1418 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 1419 1420 /** 1421 * acpi_storage_d3 - Check if D3 should be used in the suspend path 1422 * @dev: Device to check 1423 * 1424 * Return %true if the platform firmware wants @dev to be programmed 1425 * into D3hot or D3cold (if supported) in the suspend path, or %false 1426 * when there is no specific preference. On some platforms, if this 1427 * hint is ignored, @dev may remain unresponsive after suspending the 1428 * platform as a whole. 1429 * 1430 * Although the property has storage in the name it actually is 1431 * applied to the PCIe slot and plugging in a non-storage device the 1432 * same platform restrictions will likely apply. 1433 */ 1434 bool acpi_storage_d3(struct device *dev) 1435 { 1436 struct acpi_device *adev = ACPI_COMPANION(dev); 1437 u8 val; 1438 1439 if (force_storage_d3()) 1440 return true; 1441 1442 if (!adev) 1443 return false; 1444 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 1445 &val)) 1446 return false; 1447 return val == 1; 1448 } 1449 EXPORT_SYMBOL_GPL(acpi_storage_d3); 1450 1451 /** 1452 * acpi_dev_state_d0 - Tell if the device is in D0 power state 1453 * @dev: Physical device the ACPI power state of which to check 1454 * 1455 * On a system without ACPI, return true. On a system with ACPI, return true if 1456 * the current ACPI power state of the device is D0, or false otherwise. 1457 * 1458 * Note that the power state of a device is not well-defined after it has been 1459 * passed to acpi_device_set_power() and before that function returns, so it is 1460 * not valid to ask for the ACPI power state of the device in that time frame. 1461 * 1462 * This function is intended to be used in a driver's probe or remove 1463 * function. See Documentation/firmware-guide/acpi/low-power-probe.rst for 1464 * more information. 1465 */ 1466 bool acpi_dev_state_d0(struct device *dev) 1467 { 1468 struct acpi_device *adev = ACPI_COMPANION(dev); 1469 1470 if (!adev) 1471 return true; 1472 1473 return adev->power.state == ACPI_STATE_D0; 1474 } 1475 EXPORT_SYMBOL_GPL(acpi_dev_state_d0); 1476 1477 #endif /* CONFIG_PM */ 1478