xref: /openbmc/linux/drivers/acpi/device_pm.c (revision d623f60d)
1 /*
2  * drivers/acpi/device_pm.c - ACPI device power management routines.
3  *
4  * Copyright (C) 2012, Intel Corp.
5  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License version 2 as published
11  *  by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19  */
20 
21 #include <linux/acpi.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_domain.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/suspend.h>
28 
29 #include "internal.h"
30 
31 #define _COMPONENT	ACPI_POWER_COMPONENT
32 ACPI_MODULE_NAME("device_pm");
33 
34 /**
35  * acpi_power_state_string - String representation of ACPI device power state.
36  * @state: ACPI device power state to return the string representation of.
37  */
38 const char *acpi_power_state_string(int state)
39 {
40 	switch (state) {
41 	case ACPI_STATE_D0:
42 		return "D0";
43 	case ACPI_STATE_D1:
44 		return "D1";
45 	case ACPI_STATE_D2:
46 		return "D2";
47 	case ACPI_STATE_D3_HOT:
48 		return "D3hot";
49 	case ACPI_STATE_D3_COLD:
50 		return "D3cold";
51 	default:
52 		return "(unknown)";
53 	}
54 }
55 
56 /**
57  * acpi_device_get_power - Get power state of an ACPI device.
58  * @device: Device to get the power state of.
59  * @state: Place to store the power state of the device.
60  *
61  * This function does not update the device's power.state field, but it may
62  * update its parent's power.state field (when the parent's power state is
63  * unknown and the device's power state turns out to be D0).
64  */
65 int acpi_device_get_power(struct acpi_device *device, int *state)
66 {
67 	int result = ACPI_STATE_UNKNOWN;
68 
69 	if (!device || !state)
70 		return -EINVAL;
71 
72 	if (!device->flags.power_manageable) {
73 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
74 		*state = device->parent ?
75 			device->parent->power.state : ACPI_STATE_D0;
76 		goto out;
77 	}
78 
79 	/*
80 	 * Get the device's power state from power resources settings and _PSC,
81 	 * if available.
82 	 */
83 	if (device->power.flags.power_resources) {
84 		int error = acpi_power_get_inferred_state(device, &result);
85 		if (error)
86 			return error;
87 	}
88 	if (device->power.flags.explicit_get) {
89 		acpi_handle handle = device->handle;
90 		unsigned long long psc;
91 		acpi_status status;
92 
93 		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
94 		if (ACPI_FAILURE(status))
95 			return -ENODEV;
96 
97 		/*
98 		 * The power resources settings may indicate a power state
99 		 * shallower than the actual power state of the device, because
100 		 * the same power resources may be referenced by other devices.
101 		 *
102 		 * For systems predating ACPI 4.0 we assume that D3hot is the
103 		 * deepest state that can be supported.
104 		 */
105 		if (psc > result && psc < ACPI_STATE_D3_COLD)
106 			result = psc;
107 		else if (result == ACPI_STATE_UNKNOWN)
108 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
109 	}
110 
111 	/*
112 	 * If we were unsure about the device parent's power state up to this
113 	 * point, the fact that the device is in D0 implies that the parent has
114 	 * to be in D0 too, except if ignore_parent is set.
115 	 */
116 	if (!device->power.flags.ignore_parent && device->parent
117 	    && device->parent->power.state == ACPI_STATE_UNKNOWN
118 	    && result == ACPI_STATE_D0)
119 		device->parent->power.state = ACPI_STATE_D0;
120 
121 	*state = result;
122 
123  out:
124 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
125 			  device->pnp.bus_id, acpi_power_state_string(*state)));
126 
127 	return 0;
128 }
129 
130 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
131 {
132 	if (adev->power.states[state].flags.explicit_set) {
133 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
134 		acpi_status status;
135 
136 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
137 		if (ACPI_FAILURE(status))
138 			return -ENODEV;
139 	}
140 	return 0;
141 }
142 
143 /**
144  * acpi_device_set_power - Set power state of an ACPI device.
145  * @device: Device to set the power state of.
146  * @state: New power state to set.
147  *
148  * Callers must ensure that the device is power manageable before using this
149  * function.
150  */
151 int acpi_device_set_power(struct acpi_device *device, int state)
152 {
153 	int target_state = state;
154 	int result = 0;
155 
156 	if (!device || !device->flags.power_manageable
157 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
158 		return -EINVAL;
159 
160 	/* Make sure this is a valid target state */
161 
162 	if (state == device->power.state) {
163 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
164 				  device->pnp.bus_id,
165 				  acpi_power_state_string(state)));
166 		return 0;
167 	}
168 
169 	if (state == ACPI_STATE_D3_COLD) {
170 		/*
171 		 * For transitions to D3cold we need to execute _PS3 and then
172 		 * possibly drop references to the power resources in use.
173 		 */
174 		state = ACPI_STATE_D3_HOT;
175 		/* If _PR3 is not available, use D3hot as the target state. */
176 		if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
177 			target_state = state;
178 	} else if (!device->power.states[state].flags.valid) {
179 		dev_warn(&device->dev, "Power state %s not supported\n",
180 			 acpi_power_state_string(state));
181 		return -ENODEV;
182 	}
183 
184 	if (!device->power.flags.ignore_parent &&
185 	    device->parent && (state < device->parent->power.state)) {
186 		dev_warn(&device->dev,
187 			 "Cannot transition to power state %s for parent in %s\n",
188 			 acpi_power_state_string(state),
189 			 acpi_power_state_string(device->parent->power.state));
190 		return -ENODEV;
191 	}
192 
193 	/*
194 	 * Transition Power
195 	 * ----------------
196 	 * In accordance with ACPI 6, _PSx is executed before manipulating power
197 	 * resources, unless the target state is D0, in which case _PS0 is
198 	 * supposed to be executed after turning the power resources on.
199 	 */
200 	if (state > ACPI_STATE_D0) {
201 		/*
202 		 * According to ACPI 6, devices cannot go from lower-power
203 		 * (deeper) states to higher-power (shallower) states.
204 		 */
205 		if (state < device->power.state) {
206 			dev_warn(&device->dev, "Cannot transition from %s to %s\n",
207 				 acpi_power_state_string(device->power.state),
208 				 acpi_power_state_string(state));
209 			return -ENODEV;
210 		}
211 
212 		result = acpi_dev_pm_explicit_set(device, state);
213 		if (result)
214 			goto end;
215 
216 		if (device->power.flags.power_resources)
217 			result = acpi_power_transition(device, target_state);
218 	} else {
219 		if (device->power.flags.power_resources) {
220 			result = acpi_power_transition(device, ACPI_STATE_D0);
221 			if (result)
222 				goto end;
223 		}
224 		result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
225 	}
226 
227  end:
228 	if (result) {
229 		dev_warn(&device->dev, "Failed to change power state to %s\n",
230 			 acpi_power_state_string(state));
231 	} else {
232 		device->power.state = target_state;
233 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
234 				  "Device [%s] transitioned to %s\n",
235 				  device->pnp.bus_id,
236 				  acpi_power_state_string(state)));
237 	}
238 
239 	return result;
240 }
241 EXPORT_SYMBOL(acpi_device_set_power);
242 
243 int acpi_bus_set_power(acpi_handle handle, int state)
244 {
245 	struct acpi_device *device;
246 	int result;
247 
248 	result = acpi_bus_get_device(handle, &device);
249 	if (result)
250 		return result;
251 
252 	return acpi_device_set_power(device, state);
253 }
254 EXPORT_SYMBOL(acpi_bus_set_power);
255 
256 int acpi_bus_init_power(struct acpi_device *device)
257 {
258 	int state;
259 	int result;
260 
261 	if (!device)
262 		return -EINVAL;
263 
264 	device->power.state = ACPI_STATE_UNKNOWN;
265 	if (!acpi_device_is_present(device)) {
266 		device->flags.initialized = false;
267 		return -ENXIO;
268 	}
269 
270 	result = acpi_device_get_power(device, &state);
271 	if (result)
272 		return result;
273 
274 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
275 		/* Reference count the power resources. */
276 		result = acpi_power_on_resources(device, state);
277 		if (result)
278 			return result;
279 
280 		if (state == ACPI_STATE_D0) {
281 			/*
282 			 * If _PSC is not present and the state inferred from
283 			 * power resources appears to be D0, it still may be
284 			 * necessary to execute _PS0 at this point, because
285 			 * another device using the same power resources may
286 			 * have been put into D0 previously and that's why we
287 			 * see D0 here.
288 			 */
289 			result = acpi_dev_pm_explicit_set(device, state);
290 			if (result)
291 				return result;
292 		}
293 	} else if (state == ACPI_STATE_UNKNOWN) {
294 		/*
295 		 * No power resources and missing _PSC?  Cross fingers and make
296 		 * it D0 in hope that this is what the BIOS put the device into.
297 		 * [We tried to force D0 here by executing _PS0, but that broke
298 		 * Toshiba P870-303 in a nasty way.]
299 		 */
300 		state = ACPI_STATE_D0;
301 	}
302 	device->power.state = state;
303 	return 0;
304 }
305 
306 /**
307  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
308  * @device: Device object whose power state is to be fixed up.
309  *
310  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
311  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
312  * not be the case and this function should be used then.
313  */
314 int acpi_device_fix_up_power(struct acpi_device *device)
315 {
316 	int ret = 0;
317 
318 	if (!device->power.flags.power_resources
319 	    && !device->power.flags.explicit_get
320 	    && device->power.state == ACPI_STATE_D0)
321 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
322 
323 	return ret;
324 }
325 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
326 
327 int acpi_device_update_power(struct acpi_device *device, int *state_p)
328 {
329 	int state;
330 	int result;
331 
332 	if (device->power.state == ACPI_STATE_UNKNOWN) {
333 		result = acpi_bus_init_power(device);
334 		if (!result && state_p)
335 			*state_p = device->power.state;
336 
337 		return result;
338 	}
339 
340 	result = acpi_device_get_power(device, &state);
341 	if (result)
342 		return result;
343 
344 	if (state == ACPI_STATE_UNKNOWN) {
345 		state = ACPI_STATE_D0;
346 		result = acpi_device_set_power(device, state);
347 		if (result)
348 			return result;
349 	} else {
350 		if (device->power.flags.power_resources) {
351 			/*
352 			 * We don't need to really switch the state, bu we need
353 			 * to update the power resources' reference counters.
354 			 */
355 			result = acpi_power_transition(device, state);
356 			if (result)
357 				return result;
358 		}
359 		device->power.state = state;
360 	}
361 	if (state_p)
362 		*state_p = state;
363 
364 	return 0;
365 }
366 EXPORT_SYMBOL_GPL(acpi_device_update_power);
367 
368 int acpi_bus_update_power(acpi_handle handle, int *state_p)
369 {
370 	struct acpi_device *device;
371 	int result;
372 
373 	result = acpi_bus_get_device(handle, &device);
374 	return result ? result : acpi_device_update_power(device, state_p);
375 }
376 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
377 
378 bool acpi_bus_power_manageable(acpi_handle handle)
379 {
380 	struct acpi_device *device;
381 	int result;
382 
383 	result = acpi_bus_get_device(handle, &device);
384 	return result ? false : device->flags.power_manageable;
385 }
386 EXPORT_SYMBOL(acpi_bus_power_manageable);
387 
388 #ifdef CONFIG_PM
389 static DEFINE_MUTEX(acpi_pm_notifier_lock);
390 static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
391 
392 void acpi_pm_wakeup_event(struct device *dev)
393 {
394 	pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
395 }
396 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
397 
398 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
399 {
400 	struct acpi_device *adev;
401 
402 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
403 		return;
404 
405 	acpi_handle_debug(handle, "Wake notify\n");
406 
407 	adev = acpi_bus_get_acpi_device(handle);
408 	if (!adev)
409 		return;
410 
411 	mutex_lock(&acpi_pm_notifier_lock);
412 
413 	if (adev->wakeup.flags.notifier_present) {
414 		pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
415 		if (adev->wakeup.context.func) {
416 			acpi_handle_debug(handle, "Running %pF for %s\n",
417 					  adev->wakeup.context.func,
418 					  dev_name(adev->wakeup.context.dev));
419 			adev->wakeup.context.func(&adev->wakeup.context);
420 		}
421 	}
422 
423 	mutex_unlock(&acpi_pm_notifier_lock);
424 
425 	acpi_bus_put_acpi_device(adev);
426 }
427 
428 /**
429  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
430  * @adev: ACPI device to add the notify handler for.
431  * @dev: Device to generate a wakeup event for while handling the notification.
432  * @func: Work function to execute when handling the notification.
433  *
434  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
435  * PM wakeup events.  For example, wakeup events may be generated for bridges
436  * if one of the devices below the bridge is signaling wakeup, even if the
437  * bridge itself doesn't have a wakeup GPE associated with it.
438  */
439 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
440 			void (*func)(struct acpi_device_wakeup_context *context))
441 {
442 	acpi_status status = AE_ALREADY_EXISTS;
443 
444 	if (!dev && !func)
445 		return AE_BAD_PARAMETER;
446 
447 	mutex_lock(&acpi_pm_notifier_install_lock);
448 
449 	if (adev->wakeup.flags.notifier_present)
450 		goto out;
451 
452 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
453 					     acpi_pm_notify_handler, NULL);
454 	if (ACPI_FAILURE(status))
455 		goto out;
456 
457 	mutex_lock(&acpi_pm_notifier_lock);
458 	adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
459 	adev->wakeup.context.dev = dev;
460 	adev->wakeup.context.func = func;
461 	adev->wakeup.flags.notifier_present = true;
462 	mutex_unlock(&acpi_pm_notifier_lock);
463 
464  out:
465 	mutex_unlock(&acpi_pm_notifier_install_lock);
466 	return status;
467 }
468 
469 /**
470  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
471  * @adev: ACPI device to remove the notifier from.
472  */
473 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
474 {
475 	acpi_status status = AE_BAD_PARAMETER;
476 
477 	mutex_lock(&acpi_pm_notifier_install_lock);
478 
479 	if (!adev->wakeup.flags.notifier_present)
480 		goto out;
481 
482 	status = acpi_remove_notify_handler(adev->handle,
483 					    ACPI_SYSTEM_NOTIFY,
484 					    acpi_pm_notify_handler);
485 	if (ACPI_FAILURE(status))
486 		goto out;
487 
488 	mutex_lock(&acpi_pm_notifier_lock);
489 	adev->wakeup.context.func = NULL;
490 	adev->wakeup.context.dev = NULL;
491 	wakeup_source_unregister(adev->wakeup.ws);
492 	adev->wakeup.flags.notifier_present = false;
493 	mutex_unlock(&acpi_pm_notifier_lock);
494 
495  out:
496 	mutex_unlock(&acpi_pm_notifier_install_lock);
497 	return status;
498 }
499 
500 bool acpi_bus_can_wakeup(acpi_handle handle)
501 {
502 	struct acpi_device *device;
503 	int result;
504 
505 	result = acpi_bus_get_device(handle, &device);
506 	return result ? false : device->wakeup.flags.valid;
507 }
508 EXPORT_SYMBOL(acpi_bus_can_wakeup);
509 
510 bool acpi_pm_device_can_wakeup(struct device *dev)
511 {
512 	struct acpi_device *adev = ACPI_COMPANION(dev);
513 
514 	return adev ? acpi_device_can_wakeup(adev) : false;
515 }
516 
517 /**
518  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
519  * @dev: Device whose preferred target power state to return.
520  * @adev: ACPI device node corresponding to @dev.
521  * @target_state: System state to match the resultant device state.
522  * @d_min_p: Location to store the highest power state available to the device.
523  * @d_max_p: Location to store the lowest power state available to the device.
524  *
525  * Find the lowest power (highest number) and highest power (lowest number) ACPI
526  * device power states that the device can be in while the system is in the
527  * state represented by @target_state.  Store the integer numbers representing
528  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
529  * respectively.
530  *
531  * Callers must ensure that @dev and @adev are valid pointers and that @adev
532  * actually corresponds to @dev before using this function.
533  *
534  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
535  * returns a value that doesn't make sense.  The memory locations pointed to by
536  * @d_max_p and @d_min_p are only modified on success.
537  */
538 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
539 				 u32 target_state, int *d_min_p, int *d_max_p)
540 {
541 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
542 	acpi_handle handle = adev->handle;
543 	unsigned long long ret;
544 	int d_min, d_max;
545 	bool wakeup = false;
546 	bool has_sxd = false;
547 	acpi_status status;
548 
549 	/*
550 	 * If the system state is S0, the lowest power state the device can be
551 	 * in is D3cold, unless the device has _S0W and is supposed to signal
552 	 * wakeup, in which case the return value of _S0W has to be used as the
553 	 * lowest power state available to the device.
554 	 */
555 	d_min = ACPI_STATE_D0;
556 	d_max = ACPI_STATE_D3_COLD;
557 
558 	/*
559 	 * If present, _SxD methods return the minimum D-state (highest power
560 	 * state) we can use for the corresponding S-states.  Otherwise, the
561 	 * minimum D-state is D0 (ACPI 3.x).
562 	 */
563 	if (target_state > ACPI_STATE_S0) {
564 		/*
565 		 * We rely on acpi_evaluate_integer() not clobbering the integer
566 		 * provided if AE_NOT_FOUND is returned.
567 		 */
568 		ret = d_min;
569 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
570 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
571 		    || ret > ACPI_STATE_D3_COLD)
572 			return -ENODATA;
573 
574 		/*
575 		 * We need to handle legacy systems where D3hot and D3cold are
576 		 * the same and 3 is returned in both cases, so fall back to
577 		 * D3cold if D3hot is not a valid state.
578 		 */
579 		if (!adev->power.states[ret].flags.valid) {
580 			if (ret == ACPI_STATE_D3_HOT)
581 				ret = ACPI_STATE_D3_COLD;
582 			else
583 				return -ENODATA;
584 		}
585 
586 		if (status == AE_OK)
587 			has_sxd = true;
588 
589 		d_min = ret;
590 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
591 			&& adev->wakeup.sleep_state >= target_state;
592 	} else {
593 		wakeup = adev->wakeup.flags.valid;
594 	}
595 
596 	/*
597 	 * If _PRW says we can wake up the system from the target sleep state,
598 	 * the D-state returned by _SxD is sufficient for that (we assume a
599 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
600 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
601 	 * can wake the system.  _S0W may be valid, too.
602 	 */
603 	if (wakeup) {
604 		method[3] = 'W';
605 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
606 		if (status == AE_NOT_FOUND) {
607 			/* No _SxW. In this case, the ACPI spec says that we
608 			 * must not go into any power state deeper than the
609 			 * value returned from _SxD.
610 			 */
611 			if (has_sxd && target_state > ACPI_STATE_S0)
612 				d_max = d_min;
613 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
614 			/* Fall back to D3cold if ret is not a valid state. */
615 			if (!adev->power.states[ret].flags.valid)
616 				ret = ACPI_STATE_D3_COLD;
617 
618 			d_max = ret > d_min ? ret : d_min;
619 		} else {
620 			return -ENODATA;
621 		}
622 	}
623 
624 	if (d_min_p)
625 		*d_min_p = d_min;
626 
627 	if (d_max_p)
628 		*d_max_p = d_max;
629 
630 	return 0;
631 }
632 
633 /**
634  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
635  * @dev: Device whose preferred target power state to return.
636  * @d_min_p: Location to store the upper limit of the allowed states range.
637  * @d_max_in: Deepest low-power state to take into consideration.
638  * Return value: Preferred power state of the device on success, -ENODEV
639  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
640  * incorrect, or -ENODATA on ACPI method failure.
641  *
642  * The caller must ensure that @dev is valid before using this function.
643  */
644 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
645 {
646 	struct acpi_device *adev;
647 	int ret, d_min, d_max;
648 
649 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
650 		return -EINVAL;
651 
652 	if (d_max_in > ACPI_STATE_D2) {
653 		enum pm_qos_flags_status stat;
654 
655 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
656 		if (stat == PM_QOS_FLAGS_ALL)
657 			d_max_in = ACPI_STATE_D2;
658 	}
659 
660 	adev = ACPI_COMPANION(dev);
661 	if (!adev) {
662 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
663 		return -ENODEV;
664 	}
665 
666 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
667 				    &d_min, &d_max);
668 	if (ret)
669 		return ret;
670 
671 	if (d_max_in < d_min)
672 		return -EINVAL;
673 
674 	if (d_max > d_max_in) {
675 		for (d_max = d_max_in; d_max > d_min; d_max--) {
676 			if (adev->power.states[d_max].flags.valid)
677 				break;
678 		}
679 	}
680 
681 	if (d_min_p)
682 		*d_min_p = d_min;
683 
684 	return d_max;
685 }
686 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
687 
688 /**
689  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
690  * @context: Device wakeup context.
691  */
692 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
693 {
694 	struct device *dev = context->dev;
695 
696 	if (dev) {
697 		pm_wakeup_event(dev, 0);
698 		pm_request_resume(dev);
699 	}
700 }
701 
702 static DEFINE_MUTEX(acpi_wakeup_lock);
703 
704 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
705 				       u32 target_state, int max_count)
706 {
707 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
708 	acpi_status status;
709 	int error = 0;
710 
711 	mutex_lock(&acpi_wakeup_lock);
712 
713 	if (wakeup->enable_count >= max_count)
714 		goto out;
715 
716 	if (wakeup->enable_count > 0)
717 		goto inc;
718 
719 	error = acpi_enable_wakeup_device_power(adev, target_state);
720 	if (error)
721 		goto out;
722 
723 	status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
724 	if (ACPI_FAILURE(status)) {
725 		acpi_disable_wakeup_device_power(adev);
726 		error = -EIO;
727 		goto out;
728 	}
729 
730 inc:
731 	wakeup->enable_count++;
732 
733 out:
734 	mutex_unlock(&acpi_wakeup_lock);
735 	return error;
736 }
737 
738 /**
739  * acpi_device_wakeup_enable - Enable wakeup functionality for device.
740  * @adev: ACPI device to enable wakeup functionality for.
741  * @target_state: State the system is transitioning into.
742  *
743  * Enable the GPE associated with @adev so that it can generate wakeup signals
744  * for the device in response to external (remote) events and enable wakeup
745  * power for it.
746  *
747  * Callers must ensure that @adev is a valid ACPI device node before executing
748  * this function.
749  */
750 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
751 {
752 	return __acpi_device_wakeup_enable(adev, target_state, 1);
753 }
754 
755 /**
756  * acpi_device_wakeup_disable - Disable wakeup functionality for device.
757  * @adev: ACPI device to disable wakeup functionality for.
758  *
759  * Disable the GPE associated with @adev and disable wakeup power for it.
760  *
761  * Callers must ensure that @adev is a valid ACPI device node before executing
762  * this function.
763  */
764 static void acpi_device_wakeup_disable(struct acpi_device *adev)
765 {
766 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
767 
768 	mutex_lock(&acpi_wakeup_lock);
769 
770 	if (!wakeup->enable_count)
771 		goto out;
772 
773 	acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
774 	acpi_disable_wakeup_device_power(adev);
775 
776 	wakeup->enable_count--;
777 
778 out:
779 	mutex_unlock(&acpi_wakeup_lock);
780 }
781 
782 static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable,
783 				       int max_count)
784 {
785 	struct acpi_device *adev;
786 	int error;
787 
788 	adev = ACPI_COMPANION(dev);
789 	if (!adev) {
790 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
791 		return -ENODEV;
792 	}
793 
794 	if (!acpi_device_can_wakeup(adev))
795 		return -EINVAL;
796 
797 	if (!enable) {
798 		acpi_device_wakeup_disable(adev);
799 		dev_dbg(dev, "Wakeup disabled by ACPI\n");
800 		return 0;
801 	}
802 
803 	error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(),
804 					    max_count);
805 	if (!error)
806 		dev_dbg(dev, "Wakeup enabled by ACPI\n");
807 
808 	return error;
809 }
810 
811 /**
812  * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
813  * @dev: Device to enable/disable to generate wakeup events.
814  * @enable: Whether to enable or disable the wakeup functionality.
815  */
816 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
817 {
818 	return __acpi_pm_set_device_wakeup(dev, enable, 1);
819 }
820 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
821 
822 /**
823  * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge.
824  * @dev: Bridge device to enable/disable to generate wakeup events.
825  * @enable: Whether to enable or disable the wakeup functionality.
826  */
827 int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable)
828 {
829 	return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX);
830 }
831 EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup);
832 
833 /**
834  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
835  * @dev: Device to put into a low-power state.
836  * @adev: ACPI device node corresponding to @dev.
837  * @system_state: System state to choose the device state for.
838  */
839 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
840 				 u32 system_state)
841 {
842 	int ret, state;
843 
844 	if (!acpi_device_power_manageable(adev))
845 		return 0;
846 
847 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
848 	return ret ? ret : acpi_device_set_power(adev, state);
849 }
850 
851 /**
852  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
853  * @adev: ACPI device node to put into the full-power state.
854  */
855 static int acpi_dev_pm_full_power(struct acpi_device *adev)
856 {
857 	return acpi_device_power_manageable(adev) ?
858 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
859 }
860 
861 /**
862  * acpi_dev_suspend - Put device into a low-power state using ACPI.
863  * @dev: Device to put into a low-power state.
864  * @wakeup: Whether or not to enable wakeup for the device.
865  *
866  * Put the given device into a low-power state using the standard ACPI
867  * mechanism.  Set up remote wakeup if desired, choose the state to put the
868  * device into (this checks if remote wakeup is expected to work too), and set
869  * the power state of the device.
870  */
871 int acpi_dev_suspend(struct device *dev, bool wakeup)
872 {
873 	struct acpi_device *adev = ACPI_COMPANION(dev);
874 	u32 target_state = acpi_target_system_state();
875 	int error;
876 
877 	if (!adev)
878 		return 0;
879 
880 	if (wakeup && acpi_device_can_wakeup(adev)) {
881 		error = acpi_device_wakeup_enable(adev, target_state);
882 		if (error)
883 			return -EAGAIN;
884 	} else {
885 		wakeup = false;
886 	}
887 
888 	error = acpi_dev_pm_low_power(dev, adev, target_state);
889 	if (error && wakeup)
890 		acpi_device_wakeup_disable(adev);
891 
892 	return error;
893 }
894 EXPORT_SYMBOL_GPL(acpi_dev_suspend);
895 
896 /**
897  * acpi_dev_resume - Put device into the full-power state using ACPI.
898  * @dev: Device to put into the full-power state.
899  *
900  * Put the given device into the full-power state using the standard ACPI
901  * mechanism.  Set the power state of the device to ACPI D0 and disable wakeup.
902  */
903 int acpi_dev_resume(struct device *dev)
904 {
905 	struct acpi_device *adev = ACPI_COMPANION(dev);
906 	int error;
907 
908 	if (!adev)
909 		return 0;
910 
911 	error = acpi_dev_pm_full_power(adev);
912 	acpi_device_wakeup_disable(adev);
913 	return error;
914 }
915 EXPORT_SYMBOL_GPL(acpi_dev_resume);
916 
917 /**
918  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
919  * @dev: Device to suspend.
920  *
921  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
922  * it into a runtime low-power state.
923  */
924 int acpi_subsys_runtime_suspend(struct device *dev)
925 {
926 	int ret = pm_generic_runtime_suspend(dev);
927 	return ret ? ret : acpi_dev_suspend(dev, true);
928 }
929 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
930 
931 /**
932  * acpi_subsys_runtime_resume - Resume device using ACPI.
933  * @dev: Device to Resume.
934  *
935  * Use ACPI to put the given device into the full-power state and carry out the
936  * generic runtime resume procedure for it.
937  */
938 int acpi_subsys_runtime_resume(struct device *dev)
939 {
940 	int ret = acpi_dev_resume(dev);
941 	return ret ? ret : pm_generic_runtime_resume(dev);
942 }
943 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
944 
945 #ifdef CONFIG_PM_SLEEP
946 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
947 {
948 	u32 sys_target = acpi_target_system_state();
949 	int ret, state;
950 
951 	if (!pm_runtime_suspended(dev) || !adev ||
952 	    device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
953 		return true;
954 
955 	if (sys_target == ACPI_STATE_S0)
956 		return false;
957 
958 	if (adev->power.flags.dsw_present)
959 		return true;
960 
961 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
962 	if (ret)
963 		return true;
964 
965 	return state != adev->power.state;
966 }
967 
968 /**
969  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
970  * @dev: Device to prepare.
971  */
972 int acpi_subsys_prepare(struct device *dev)
973 {
974 	struct acpi_device *adev = ACPI_COMPANION(dev);
975 
976 	if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
977 		int ret = dev->driver->pm->prepare(dev);
978 
979 		if (ret < 0)
980 			return ret;
981 
982 		if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
983 			return 0;
984 	}
985 
986 	return !acpi_dev_needs_resume(dev, adev);
987 }
988 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
989 
990 /**
991  * acpi_subsys_complete - Finalize device's resume during system resume.
992  * @dev: Device to handle.
993  */
994 void acpi_subsys_complete(struct device *dev)
995 {
996 	pm_generic_complete(dev);
997 	/*
998 	 * If the device had been runtime-suspended before the system went into
999 	 * the sleep state it is going out of and it has never been resumed till
1000 	 * now, resume it in case the firmware powered it up.
1001 	 */
1002 	if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1003 		pm_request_resume(dev);
1004 }
1005 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1006 
1007 /**
1008  * acpi_subsys_suspend - Run the device driver's suspend callback.
1009  * @dev: Device to handle.
1010  *
1011  * Follow PCI and resume devices from runtime suspend before running their
1012  * system suspend callbacks, unless the driver can cope with runtime-suspended
1013  * devices during system suspend and there are no ACPI-specific reasons for
1014  * resuming them.
1015  */
1016 int acpi_subsys_suspend(struct device *dev)
1017 {
1018 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1019 	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1020 		pm_runtime_resume(dev);
1021 
1022 	return pm_generic_suspend(dev);
1023 }
1024 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1025 
1026 /**
1027  * acpi_subsys_suspend_late - Suspend device using ACPI.
1028  * @dev: Device to suspend.
1029  *
1030  * Carry out the generic late suspend procedure for @dev and use ACPI to put
1031  * it into a low-power state during system transition into a sleep state.
1032  */
1033 int acpi_subsys_suspend_late(struct device *dev)
1034 {
1035 	int ret;
1036 
1037 	if (dev_pm_smart_suspend_and_suspended(dev))
1038 		return 0;
1039 
1040 	ret = pm_generic_suspend_late(dev);
1041 	return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1042 }
1043 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1044 
1045 /**
1046  * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1047  * @dev: Device to suspend.
1048  */
1049 int acpi_subsys_suspend_noirq(struct device *dev)
1050 {
1051 	int ret;
1052 
1053 	if (dev_pm_smart_suspend_and_suspended(dev)) {
1054 		dev->power.may_skip_resume = true;
1055 		return 0;
1056 	}
1057 
1058 	ret = pm_generic_suspend_noirq(dev);
1059 	if (ret)
1060 		return ret;
1061 
1062 	/*
1063 	 * If the target system sleep state is suspend-to-idle, it is sufficient
1064 	 * to check whether or not the device's wakeup settings are good for
1065 	 * runtime PM.  Otherwise, the pm_resume_via_firmware() check will cause
1066 	 * acpi_subsys_complete() to take care of fixing up the device's state
1067 	 * anyway, if need be.
1068 	 */
1069 	dev->power.may_skip_resume = device_may_wakeup(dev) ||
1070 					!device_can_wakeup(dev);
1071 
1072 	return 0;
1073 }
1074 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1075 
1076 /**
1077  * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1078  * @dev: Device to handle.
1079  */
1080 int acpi_subsys_resume_noirq(struct device *dev)
1081 {
1082 	if (dev_pm_may_skip_resume(dev))
1083 		return 0;
1084 
1085 	/*
1086 	 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend
1087 	 * during system suspend, so update their runtime PM status to "active"
1088 	 * as they will be put into D0 going forward.
1089 	 */
1090 	if (dev_pm_smart_suspend_and_suspended(dev))
1091 		pm_runtime_set_active(dev);
1092 
1093 	return pm_generic_resume_noirq(dev);
1094 }
1095 EXPORT_SYMBOL_GPL(acpi_subsys_resume_noirq);
1096 
1097 /**
1098  * acpi_subsys_resume_early - Resume device using ACPI.
1099  * @dev: Device to Resume.
1100  *
1101  * Use ACPI to put the given device into the full-power state and carry out the
1102  * generic early resume procedure for it during system transition into the
1103  * working state.
1104  */
1105 int acpi_subsys_resume_early(struct device *dev)
1106 {
1107 	int ret = acpi_dev_resume(dev);
1108 	return ret ? ret : pm_generic_resume_early(dev);
1109 }
1110 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1111 
1112 /**
1113  * acpi_subsys_freeze - Run the device driver's freeze callback.
1114  * @dev: Device to handle.
1115  */
1116 int acpi_subsys_freeze(struct device *dev)
1117 {
1118 	/*
1119 	 * This used to be done in acpi_subsys_prepare() for all devices and
1120 	 * some drivers may depend on it, so do it here.  Ideally, however,
1121 	 * runtime-suspended devices should not be touched during freeze/thaw
1122 	 * transitions.
1123 	 */
1124 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND))
1125 		pm_runtime_resume(dev);
1126 
1127 	return pm_generic_freeze(dev);
1128 }
1129 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1130 
1131 /**
1132  * acpi_subsys_freeze_late - Run the device driver's "late" freeze callback.
1133  * @dev: Device to handle.
1134  */
1135 int acpi_subsys_freeze_late(struct device *dev)
1136 {
1137 
1138 	if (dev_pm_smart_suspend_and_suspended(dev))
1139 		return 0;
1140 
1141 	return pm_generic_freeze_late(dev);
1142 }
1143 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_late);
1144 
1145 /**
1146  * acpi_subsys_freeze_noirq - Run the device driver's "noirq" freeze callback.
1147  * @dev: Device to handle.
1148  */
1149 int acpi_subsys_freeze_noirq(struct device *dev)
1150 {
1151 
1152 	if (dev_pm_smart_suspend_and_suspended(dev))
1153 		return 0;
1154 
1155 	return pm_generic_freeze_noirq(dev);
1156 }
1157 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_noirq);
1158 
1159 /**
1160  * acpi_subsys_thaw_noirq - Run the device driver's "noirq" thaw callback.
1161  * @dev: Device to handle.
1162  */
1163 int acpi_subsys_thaw_noirq(struct device *dev)
1164 {
1165 	/*
1166 	 * If the device is in runtime suspend, the "thaw" code may not work
1167 	 * correctly with it, so skip the driver callback and make the PM core
1168 	 * skip all of the subsequent "thaw" callbacks for the device.
1169 	 */
1170 	if (dev_pm_smart_suspend_and_suspended(dev)) {
1171 		dev_pm_skip_next_resume_phases(dev);
1172 		return 0;
1173 	}
1174 
1175 	return pm_generic_thaw_noirq(dev);
1176 }
1177 EXPORT_SYMBOL_GPL(acpi_subsys_thaw_noirq);
1178 #endif /* CONFIG_PM_SLEEP */
1179 
1180 static struct dev_pm_domain acpi_general_pm_domain = {
1181 	.ops = {
1182 		.runtime_suspend = acpi_subsys_runtime_suspend,
1183 		.runtime_resume = acpi_subsys_runtime_resume,
1184 #ifdef CONFIG_PM_SLEEP
1185 		.prepare = acpi_subsys_prepare,
1186 		.complete = acpi_subsys_complete,
1187 		.suspend = acpi_subsys_suspend,
1188 		.suspend_late = acpi_subsys_suspend_late,
1189 		.suspend_noirq = acpi_subsys_suspend_noirq,
1190 		.resume_noirq = acpi_subsys_resume_noirq,
1191 		.resume_early = acpi_subsys_resume_early,
1192 		.freeze = acpi_subsys_freeze,
1193 		.freeze_late = acpi_subsys_freeze_late,
1194 		.freeze_noirq = acpi_subsys_freeze_noirq,
1195 		.thaw_noirq = acpi_subsys_thaw_noirq,
1196 		.poweroff = acpi_subsys_suspend,
1197 		.poweroff_late = acpi_subsys_suspend_late,
1198 		.poweroff_noirq = acpi_subsys_suspend_noirq,
1199 		.restore_noirq = acpi_subsys_resume_noirq,
1200 		.restore_early = acpi_subsys_resume_early,
1201 #endif
1202 	},
1203 };
1204 
1205 /**
1206  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1207  * @dev: Device to take care of.
1208  * @power_off: Whether or not to try to remove power from the device.
1209  *
1210  * Remove the device from the general ACPI PM domain and remove its wakeup
1211  * notifier.  If @power_off is set, additionally remove power from the device if
1212  * possible.
1213  *
1214  * Callers must ensure proper synchronization of this function with power
1215  * management callbacks.
1216  */
1217 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1218 {
1219 	struct acpi_device *adev = ACPI_COMPANION(dev);
1220 
1221 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1222 		dev_pm_domain_set(dev, NULL);
1223 		acpi_remove_pm_notifier(adev);
1224 		if (power_off) {
1225 			/*
1226 			 * If the device's PM QoS resume latency limit or flags
1227 			 * have been exposed to user space, they have to be
1228 			 * hidden at this point, so that they don't affect the
1229 			 * choice of the low-power state to put the device into.
1230 			 */
1231 			dev_pm_qos_hide_latency_limit(dev);
1232 			dev_pm_qos_hide_flags(dev);
1233 			acpi_device_wakeup_disable(adev);
1234 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1235 		}
1236 	}
1237 }
1238 
1239 /**
1240  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1241  * @dev: Device to prepare.
1242  * @power_on: Whether or not to power on the device.
1243  *
1244  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1245  * attached to it, install a wakeup notification handler for the device and
1246  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1247  * be put into the ACPI D0 state before the function returns.
1248  *
1249  * This assumes that the @dev's bus type uses generic power management callbacks
1250  * (or doesn't use any power management callbacks at all).
1251  *
1252  * Callers must ensure proper synchronization of this function with power
1253  * management callbacks.
1254  */
1255 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1256 {
1257 	struct acpi_device *adev = ACPI_COMPANION(dev);
1258 
1259 	if (!adev)
1260 		return 0;
1261 
1262 	/*
1263 	 * Only attach the power domain to the first device if the
1264 	 * companion is shared by multiple. This is to prevent doing power
1265 	 * management twice.
1266 	 */
1267 	if (!acpi_device_is_first_physical_node(adev, dev))
1268 		return 0;
1269 
1270 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1271 	dev_pm_domain_set(dev, &acpi_general_pm_domain);
1272 	if (power_on) {
1273 		acpi_dev_pm_full_power(adev);
1274 		acpi_device_wakeup_disable(adev);
1275 	}
1276 
1277 	dev->pm_domain->detach = acpi_dev_pm_detach;
1278 	return 1;
1279 }
1280 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1281 #endif /* CONFIG_PM */
1282