xref: /openbmc/linux/drivers/acpi/device_pm.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/acpi/device_pm.c - ACPI device power management routines.
4  *
5  * Copyright (C) 2012, Intel Corp.
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  */
12 
13 #define pr_fmt(fmt) "ACPI: PM: " fmt
14 
15 #include <linux/acpi.h>
16 #include <linux/export.h>
17 #include <linux/mutex.h>
18 #include <linux/pm_qos.h>
19 #include <linux/pm_domain.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 
23 #include "fan.h"
24 #include "internal.h"
25 
26 /**
27  * acpi_power_state_string - String representation of ACPI device power state.
28  * @state: ACPI device power state to return the string representation of.
29  */
30 const char *acpi_power_state_string(int state)
31 {
32 	switch (state) {
33 	case ACPI_STATE_D0:
34 		return "D0";
35 	case ACPI_STATE_D1:
36 		return "D1";
37 	case ACPI_STATE_D2:
38 		return "D2";
39 	case ACPI_STATE_D3_HOT:
40 		return "D3hot";
41 	case ACPI_STATE_D3_COLD:
42 		return "D3cold";
43 	default:
44 		return "(unknown)";
45 	}
46 }
47 
48 static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
49 {
50 	unsigned long long psc;
51 	acpi_status status;
52 
53 	status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
54 	if (ACPI_FAILURE(status))
55 		return -ENODEV;
56 
57 	*state = psc;
58 	return 0;
59 }
60 
61 /**
62  * acpi_device_get_power - Get power state of an ACPI device.
63  * @device: Device to get the power state of.
64  * @state: Place to store the power state of the device.
65  *
66  * This function does not update the device's power.state field, but it may
67  * update its parent's power.state field (when the parent's power state is
68  * unknown and the device's power state turns out to be D0).
69  *
70  * Also, it does not update power resource reference counters to ensure that
71  * the power state returned by it will be persistent and it may return a power
72  * state shallower than previously set by acpi_device_set_power() for @device
73  * (if that power state depends on any power resources).
74  */
75 int acpi_device_get_power(struct acpi_device *device, int *state)
76 {
77 	int result = ACPI_STATE_UNKNOWN;
78 	int error;
79 
80 	if (!device || !state)
81 		return -EINVAL;
82 
83 	if (!device->flags.power_manageable) {
84 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
85 		*state = device->parent ?
86 			device->parent->power.state : ACPI_STATE_D0;
87 		goto out;
88 	}
89 
90 	/*
91 	 * Get the device's power state from power resources settings and _PSC,
92 	 * if available.
93 	 */
94 	if (device->power.flags.power_resources) {
95 		error = acpi_power_get_inferred_state(device, &result);
96 		if (error)
97 			return error;
98 	}
99 	if (device->power.flags.explicit_get) {
100 		int psc;
101 
102 		error = acpi_dev_pm_explicit_get(device, &psc);
103 		if (error)
104 			return error;
105 
106 		/*
107 		 * The power resources settings may indicate a power state
108 		 * shallower than the actual power state of the device, because
109 		 * the same power resources may be referenced by other devices.
110 		 *
111 		 * For systems predating ACPI 4.0 we assume that D3hot is the
112 		 * deepest state that can be supported.
113 		 */
114 		if (psc > result && psc < ACPI_STATE_D3_COLD)
115 			result = psc;
116 		else if (result == ACPI_STATE_UNKNOWN)
117 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
118 	}
119 
120 	/*
121 	 * If we were unsure about the device parent's power state up to this
122 	 * point, the fact that the device is in D0 implies that the parent has
123 	 * to be in D0 too, except if ignore_parent is set.
124 	 */
125 	if (!device->power.flags.ignore_parent && device->parent
126 	    && device->parent->power.state == ACPI_STATE_UNKNOWN
127 	    && result == ACPI_STATE_D0)
128 		device->parent->power.state = ACPI_STATE_D0;
129 
130 	*state = result;
131 
132  out:
133 	dev_dbg(&device->dev, "Device power state is %s\n",
134 		acpi_power_state_string(*state));
135 
136 	return 0;
137 }
138 
139 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
140 {
141 	if (adev->power.states[state].flags.explicit_set) {
142 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
143 		acpi_status status;
144 
145 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
146 		if (ACPI_FAILURE(status))
147 			return -ENODEV;
148 	}
149 	return 0;
150 }
151 
152 /**
153  * acpi_device_set_power - Set power state of an ACPI device.
154  * @device: Device to set the power state of.
155  * @state: New power state to set.
156  *
157  * Callers must ensure that the device is power manageable before using this
158  * function.
159  */
160 int acpi_device_set_power(struct acpi_device *device, int state)
161 {
162 	int target_state = state;
163 	int result = 0;
164 
165 	if (!device || !device->flags.power_manageable
166 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
167 		return -EINVAL;
168 
169 	acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
170 			  acpi_power_state_string(device->power.state),
171 			  acpi_power_state_string(state));
172 
173 	/* Make sure this is a valid target state */
174 
175 	/* There is a special case for D0 addressed below. */
176 	if (state > ACPI_STATE_D0 && state == device->power.state) {
177 		dev_dbg(&device->dev, "Device already in %s\n",
178 			acpi_power_state_string(state));
179 		return 0;
180 	}
181 
182 	if (state == ACPI_STATE_D3_COLD) {
183 		/*
184 		 * For transitions to D3cold we need to execute _PS3 and then
185 		 * possibly drop references to the power resources in use.
186 		 */
187 		state = ACPI_STATE_D3_HOT;
188 		/* If D3cold is not supported, use D3hot as the target state. */
189 		if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
190 			target_state = state;
191 	} else if (!device->power.states[state].flags.valid) {
192 		dev_warn(&device->dev, "Power state %s not supported\n",
193 			 acpi_power_state_string(state));
194 		return -ENODEV;
195 	}
196 
197 	if (!device->power.flags.ignore_parent &&
198 	    device->parent && (state < device->parent->power.state)) {
199 		dev_warn(&device->dev,
200 			 "Cannot transition to power state %s for parent in %s\n",
201 			 acpi_power_state_string(state),
202 			 acpi_power_state_string(device->parent->power.state));
203 		return -ENODEV;
204 	}
205 
206 	/*
207 	 * Transition Power
208 	 * ----------------
209 	 * In accordance with ACPI 6, _PSx is executed before manipulating power
210 	 * resources, unless the target state is D0, in which case _PS0 is
211 	 * supposed to be executed after turning the power resources on.
212 	 */
213 	if (state > ACPI_STATE_D0) {
214 		/*
215 		 * According to ACPI 6, devices cannot go from lower-power
216 		 * (deeper) states to higher-power (shallower) states.
217 		 */
218 		if (state < device->power.state) {
219 			dev_warn(&device->dev, "Cannot transition from %s to %s\n",
220 				 acpi_power_state_string(device->power.state),
221 				 acpi_power_state_string(state));
222 			return -ENODEV;
223 		}
224 
225 		/*
226 		 * If the device goes from D3hot to D3cold, _PS3 has been
227 		 * evaluated for it already, so skip it in that case.
228 		 */
229 		if (device->power.state < ACPI_STATE_D3_HOT) {
230 			result = acpi_dev_pm_explicit_set(device, state);
231 			if (result)
232 				goto end;
233 		}
234 
235 		if (device->power.flags.power_resources)
236 			result = acpi_power_transition(device, target_state);
237 	} else {
238 		int cur_state = device->power.state;
239 
240 		if (device->power.flags.power_resources) {
241 			result = acpi_power_transition(device, ACPI_STATE_D0);
242 			if (result)
243 				goto end;
244 		}
245 
246 		if (cur_state == ACPI_STATE_D0) {
247 			int psc;
248 
249 			/* Nothing to do here if _PSC is not present. */
250 			if (!device->power.flags.explicit_get)
251 				return 0;
252 
253 			/*
254 			 * The power state of the device was set to D0 last
255 			 * time, but that might have happened before a
256 			 * system-wide transition involving the platform
257 			 * firmware, so it may be necessary to evaluate _PS0
258 			 * for the device here.  However, use extra care here
259 			 * and evaluate _PSC to check the device's current power
260 			 * state, and only invoke _PS0 if the evaluation of _PSC
261 			 * is successful and it returns a power state different
262 			 * from D0.
263 			 */
264 			result = acpi_dev_pm_explicit_get(device, &psc);
265 			if (result || psc == ACPI_STATE_D0)
266 				return 0;
267 		}
268 
269 		result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
270 	}
271 
272  end:
273 	if (result) {
274 		dev_warn(&device->dev, "Failed to change power state to %s\n",
275 			 acpi_power_state_string(target_state));
276 	} else {
277 		device->power.state = target_state;
278 		dev_dbg(&device->dev, "Power state changed to %s\n",
279 			acpi_power_state_string(target_state));
280 	}
281 
282 	return result;
283 }
284 EXPORT_SYMBOL(acpi_device_set_power);
285 
286 int acpi_bus_set_power(acpi_handle handle, int state)
287 {
288 	struct acpi_device *device;
289 	int result;
290 
291 	result = acpi_bus_get_device(handle, &device);
292 	if (result)
293 		return result;
294 
295 	return acpi_device_set_power(device, state);
296 }
297 EXPORT_SYMBOL(acpi_bus_set_power);
298 
299 int acpi_bus_init_power(struct acpi_device *device)
300 {
301 	int state;
302 	int result;
303 
304 	if (!device)
305 		return -EINVAL;
306 
307 	device->power.state = ACPI_STATE_UNKNOWN;
308 	if (!acpi_device_is_present(device)) {
309 		device->flags.initialized = false;
310 		return -ENXIO;
311 	}
312 
313 	result = acpi_device_get_power(device, &state);
314 	if (result)
315 		return result;
316 
317 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
318 		/* Reference count the power resources. */
319 		result = acpi_power_on_resources(device, state);
320 		if (result)
321 			return result;
322 
323 		if (state == ACPI_STATE_D0) {
324 			/*
325 			 * If _PSC is not present and the state inferred from
326 			 * power resources appears to be D0, it still may be
327 			 * necessary to execute _PS0 at this point, because
328 			 * another device using the same power resources may
329 			 * have been put into D0 previously and that's why we
330 			 * see D0 here.
331 			 */
332 			result = acpi_dev_pm_explicit_set(device, state);
333 			if (result)
334 				return result;
335 		}
336 	} else if (state == ACPI_STATE_UNKNOWN) {
337 		/*
338 		 * No power resources and missing _PSC?  Cross fingers and make
339 		 * it D0 in hope that this is what the BIOS put the device into.
340 		 * [We tried to force D0 here by executing _PS0, but that broke
341 		 * Toshiba P870-303 in a nasty way.]
342 		 */
343 		state = ACPI_STATE_D0;
344 	}
345 	device->power.state = state;
346 	return 0;
347 }
348 
349 /**
350  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
351  * @device: Device object whose power state is to be fixed up.
352  *
353  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
354  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
355  * not be the case and this function should be used then.
356  */
357 int acpi_device_fix_up_power(struct acpi_device *device)
358 {
359 	int ret = 0;
360 
361 	if (!device->power.flags.power_resources
362 	    && !device->power.flags.explicit_get
363 	    && device->power.state == ACPI_STATE_D0)
364 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
365 
366 	return ret;
367 }
368 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
369 
370 int acpi_device_update_power(struct acpi_device *device, int *state_p)
371 {
372 	int state;
373 	int result;
374 
375 	if (device->power.state == ACPI_STATE_UNKNOWN) {
376 		result = acpi_bus_init_power(device);
377 		if (!result && state_p)
378 			*state_p = device->power.state;
379 
380 		return result;
381 	}
382 
383 	result = acpi_device_get_power(device, &state);
384 	if (result)
385 		return result;
386 
387 	if (state == ACPI_STATE_UNKNOWN) {
388 		state = ACPI_STATE_D0;
389 		result = acpi_device_set_power(device, state);
390 		if (result)
391 			return result;
392 	} else {
393 		if (device->power.flags.power_resources) {
394 			/*
395 			 * We don't need to really switch the state, bu we need
396 			 * to update the power resources' reference counters.
397 			 */
398 			result = acpi_power_transition(device, state);
399 			if (result)
400 				return result;
401 		}
402 		device->power.state = state;
403 	}
404 	if (state_p)
405 		*state_p = state;
406 
407 	return 0;
408 }
409 EXPORT_SYMBOL_GPL(acpi_device_update_power);
410 
411 int acpi_bus_update_power(acpi_handle handle, int *state_p)
412 {
413 	struct acpi_device *device;
414 	int result;
415 
416 	result = acpi_bus_get_device(handle, &device);
417 	return result ? result : acpi_device_update_power(device, state_p);
418 }
419 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
420 
421 bool acpi_bus_power_manageable(acpi_handle handle)
422 {
423 	struct acpi_device *device;
424 	int result;
425 
426 	result = acpi_bus_get_device(handle, &device);
427 	return result ? false : device->flags.power_manageable;
428 }
429 EXPORT_SYMBOL(acpi_bus_power_manageable);
430 
431 #ifdef CONFIG_PM
432 static DEFINE_MUTEX(acpi_pm_notifier_lock);
433 static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
434 
435 void acpi_pm_wakeup_event(struct device *dev)
436 {
437 	pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
438 }
439 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
440 
441 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
442 {
443 	struct acpi_device *adev;
444 
445 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
446 		return;
447 
448 	acpi_handle_debug(handle, "Wake notify\n");
449 
450 	adev = acpi_bus_get_acpi_device(handle);
451 	if (!adev)
452 		return;
453 
454 	mutex_lock(&acpi_pm_notifier_lock);
455 
456 	if (adev->wakeup.flags.notifier_present) {
457 		pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
458 		if (adev->wakeup.context.func) {
459 			acpi_handle_debug(handle, "Running %pS for %s\n",
460 					  adev->wakeup.context.func,
461 					  dev_name(adev->wakeup.context.dev));
462 			adev->wakeup.context.func(&adev->wakeup.context);
463 		}
464 	}
465 
466 	mutex_unlock(&acpi_pm_notifier_lock);
467 
468 	acpi_bus_put_acpi_device(adev);
469 }
470 
471 /**
472  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
473  * @adev: ACPI device to add the notify handler for.
474  * @dev: Device to generate a wakeup event for while handling the notification.
475  * @func: Work function to execute when handling the notification.
476  *
477  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
478  * PM wakeup events.  For example, wakeup events may be generated for bridges
479  * if one of the devices below the bridge is signaling wakeup, even if the
480  * bridge itself doesn't have a wakeup GPE associated with it.
481  */
482 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
483 			void (*func)(struct acpi_device_wakeup_context *context))
484 {
485 	acpi_status status = AE_ALREADY_EXISTS;
486 
487 	if (!dev && !func)
488 		return AE_BAD_PARAMETER;
489 
490 	mutex_lock(&acpi_pm_notifier_install_lock);
491 
492 	if (adev->wakeup.flags.notifier_present)
493 		goto out;
494 
495 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
496 					     acpi_pm_notify_handler, NULL);
497 	if (ACPI_FAILURE(status))
498 		goto out;
499 
500 	mutex_lock(&acpi_pm_notifier_lock);
501 	adev->wakeup.ws = wakeup_source_register(&adev->dev,
502 						 dev_name(&adev->dev));
503 	adev->wakeup.context.dev = dev;
504 	adev->wakeup.context.func = func;
505 	adev->wakeup.flags.notifier_present = true;
506 	mutex_unlock(&acpi_pm_notifier_lock);
507 
508  out:
509 	mutex_unlock(&acpi_pm_notifier_install_lock);
510 	return status;
511 }
512 
513 /**
514  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
515  * @adev: ACPI device to remove the notifier from.
516  */
517 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
518 {
519 	acpi_status status = AE_BAD_PARAMETER;
520 
521 	mutex_lock(&acpi_pm_notifier_install_lock);
522 
523 	if (!adev->wakeup.flags.notifier_present)
524 		goto out;
525 
526 	status = acpi_remove_notify_handler(adev->handle,
527 					    ACPI_SYSTEM_NOTIFY,
528 					    acpi_pm_notify_handler);
529 	if (ACPI_FAILURE(status))
530 		goto out;
531 
532 	mutex_lock(&acpi_pm_notifier_lock);
533 	adev->wakeup.context.func = NULL;
534 	adev->wakeup.context.dev = NULL;
535 	wakeup_source_unregister(adev->wakeup.ws);
536 	adev->wakeup.flags.notifier_present = false;
537 	mutex_unlock(&acpi_pm_notifier_lock);
538 
539  out:
540 	mutex_unlock(&acpi_pm_notifier_install_lock);
541 	return status;
542 }
543 
544 bool acpi_bus_can_wakeup(acpi_handle handle)
545 {
546 	struct acpi_device *device;
547 	int result;
548 
549 	result = acpi_bus_get_device(handle, &device);
550 	return result ? false : device->wakeup.flags.valid;
551 }
552 EXPORT_SYMBOL(acpi_bus_can_wakeup);
553 
554 bool acpi_pm_device_can_wakeup(struct device *dev)
555 {
556 	struct acpi_device *adev = ACPI_COMPANION(dev);
557 
558 	return adev ? acpi_device_can_wakeup(adev) : false;
559 }
560 
561 /**
562  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
563  * @dev: Device whose preferred target power state to return.
564  * @adev: ACPI device node corresponding to @dev.
565  * @target_state: System state to match the resultant device state.
566  * @d_min_p: Location to store the highest power state available to the device.
567  * @d_max_p: Location to store the lowest power state available to the device.
568  *
569  * Find the lowest power (highest number) and highest power (lowest number) ACPI
570  * device power states that the device can be in while the system is in the
571  * state represented by @target_state.  Store the integer numbers representing
572  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
573  * respectively.
574  *
575  * Callers must ensure that @dev and @adev are valid pointers and that @adev
576  * actually corresponds to @dev before using this function.
577  *
578  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
579  * returns a value that doesn't make sense.  The memory locations pointed to by
580  * @d_max_p and @d_min_p are only modified on success.
581  */
582 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
583 				 u32 target_state, int *d_min_p, int *d_max_p)
584 {
585 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
586 	acpi_handle handle = adev->handle;
587 	unsigned long long ret;
588 	int d_min, d_max;
589 	bool wakeup = false;
590 	bool has_sxd = false;
591 	acpi_status status;
592 
593 	/*
594 	 * If the system state is S0, the lowest power state the device can be
595 	 * in is D3cold, unless the device has _S0W and is supposed to signal
596 	 * wakeup, in which case the return value of _S0W has to be used as the
597 	 * lowest power state available to the device.
598 	 */
599 	d_min = ACPI_STATE_D0;
600 	d_max = ACPI_STATE_D3_COLD;
601 
602 	/*
603 	 * If present, _SxD methods return the minimum D-state (highest power
604 	 * state) we can use for the corresponding S-states.  Otherwise, the
605 	 * minimum D-state is D0 (ACPI 3.x).
606 	 */
607 	if (target_state > ACPI_STATE_S0) {
608 		/*
609 		 * We rely on acpi_evaluate_integer() not clobbering the integer
610 		 * provided if AE_NOT_FOUND is returned.
611 		 */
612 		ret = d_min;
613 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
614 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
615 		    || ret > ACPI_STATE_D3_COLD)
616 			return -ENODATA;
617 
618 		/*
619 		 * We need to handle legacy systems where D3hot and D3cold are
620 		 * the same and 3 is returned in both cases, so fall back to
621 		 * D3cold if D3hot is not a valid state.
622 		 */
623 		if (!adev->power.states[ret].flags.valid) {
624 			if (ret == ACPI_STATE_D3_HOT)
625 				ret = ACPI_STATE_D3_COLD;
626 			else
627 				return -ENODATA;
628 		}
629 
630 		if (status == AE_OK)
631 			has_sxd = true;
632 
633 		d_min = ret;
634 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
635 			&& adev->wakeup.sleep_state >= target_state;
636 	} else {
637 		wakeup = adev->wakeup.flags.valid;
638 	}
639 
640 	/*
641 	 * If _PRW says we can wake up the system from the target sleep state,
642 	 * the D-state returned by _SxD is sufficient for that (we assume a
643 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
644 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
645 	 * can wake the system.  _S0W may be valid, too.
646 	 */
647 	if (wakeup) {
648 		method[3] = 'W';
649 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
650 		if (status == AE_NOT_FOUND) {
651 			/* No _SxW. In this case, the ACPI spec says that we
652 			 * must not go into any power state deeper than the
653 			 * value returned from _SxD.
654 			 */
655 			if (has_sxd && target_state > ACPI_STATE_S0)
656 				d_max = d_min;
657 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
658 			/* Fall back to D3cold if ret is not a valid state. */
659 			if (!adev->power.states[ret].flags.valid)
660 				ret = ACPI_STATE_D3_COLD;
661 
662 			d_max = ret > d_min ? ret : d_min;
663 		} else {
664 			return -ENODATA;
665 		}
666 	}
667 
668 	if (d_min_p)
669 		*d_min_p = d_min;
670 
671 	if (d_max_p)
672 		*d_max_p = d_max;
673 
674 	return 0;
675 }
676 
677 /**
678  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
679  * @dev: Device whose preferred target power state to return.
680  * @d_min_p: Location to store the upper limit of the allowed states range.
681  * @d_max_in: Deepest low-power state to take into consideration.
682  * Return value: Preferred power state of the device on success, -ENODEV
683  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
684  * incorrect, or -ENODATA on ACPI method failure.
685  *
686  * The caller must ensure that @dev is valid before using this function.
687  */
688 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
689 {
690 	struct acpi_device *adev;
691 	int ret, d_min, d_max;
692 
693 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
694 		return -EINVAL;
695 
696 	if (d_max_in > ACPI_STATE_D2) {
697 		enum pm_qos_flags_status stat;
698 
699 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
700 		if (stat == PM_QOS_FLAGS_ALL)
701 			d_max_in = ACPI_STATE_D2;
702 	}
703 
704 	adev = ACPI_COMPANION(dev);
705 	if (!adev) {
706 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
707 		return -ENODEV;
708 	}
709 
710 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
711 				    &d_min, &d_max);
712 	if (ret)
713 		return ret;
714 
715 	if (d_max_in < d_min)
716 		return -EINVAL;
717 
718 	if (d_max > d_max_in) {
719 		for (d_max = d_max_in; d_max > d_min; d_max--) {
720 			if (adev->power.states[d_max].flags.valid)
721 				break;
722 		}
723 	}
724 
725 	if (d_min_p)
726 		*d_min_p = d_min;
727 
728 	return d_max;
729 }
730 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
731 
732 /**
733  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
734  * @context: Device wakeup context.
735  */
736 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
737 {
738 	struct device *dev = context->dev;
739 
740 	if (dev) {
741 		pm_wakeup_event(dev, 0);
742 		pm_request_resume(dev);
743 	}
744 }
745 
746 static DEFINE_MUTEX(acpi_wakeup_lock);
747 
748 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
749 				       u32 target_state)
750 {
751 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
752 	acpi_status status;
753 	int error = 0;
754 
755 	mutex_lock(&acpi_wakeup_lock);
756 
757 	/*
758 	 * If the device wakeup power is already enabled, disable it and enable
759 	 * it again in case it depends on the configuration of subordinate
760 	 * devices and the conditions have changed since it was enabled last
761 	 * time.
762 	 */
763 	if (wakeup->enable_count > 0)
764 		acpi_disable_wakeup_device_power(adev);
765 
766 	error = acpi_enable_wakeup_device_power(adev, target_state);
767 	if (error) {
768 		if (wakeup->enable_count > 0) {
769 			acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
770 			wakeup->enable_count = 0;
771 		}
772 		goto out;
773 	}
774 
775 	if (wakeup->enable_count > 0)
776 		goto inc;
777 
778 	status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
779 	if (ACPI_FAILURE(status)) {
780 		acpi_disable_wakeup_device_power(adev);
781 		error = -EIO;
782 		goto out;
783 	}
784 
785 	acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
786 			  (unsigned int)wakeup->gpe_number);
787 
788 inc:
789 	if (wakeup->enable_count < INT_MAX)
790 		wakeup->enable_count++;
791 	else
792 		acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n");
793 
794 out:
795 	mutex_unlock(&acpi_wakeup_lock);
796 	return error;
797 }
798 
799 /**
800  * acpi_device_wakeup_enable - Enable wakeup functionality for device.
801  * @adev: ACPI device to enable wakeup functionality for.
802  * @target_state: State the system is transitioning into.
803  *
804  * Enable the GPE associated with @adev so that it can generate wakeup signals
805  * for the device in response to external (remote) events and enable wakeup
806  * power for it.
807  *
808  * Callers must ensure that @adev is a valid ACPI device node before executing
809  * this function.
810  */
811 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
812 {
813 	return __acpi_device_wakeup_enable(adev, target_state);
814 }
815 
816 /**
817  * acpi_device_wakeup_disable - Disable wakeup functionality for device.
818  * @adev: ACPI device to disable wakeup functionality for.
819  *
820  * Disable the GPE associated with @adev and disable wakeup power for it.
821  *
822  * Callers must ensure that @adev is a valid ACPI device node before executing
823  * this function.
824  */
825 static void acpi_device_wakeup_disable(struct acpi_device *adev)
826 {
827 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
828 
829 	mutex_lock(&acpi_wakeup_lock);
830 
831 	if (!wakeup->enable_count)
832 		goto out;
833 
834 	acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
835 	acpi_disable_wakeup_device_power(adev);
836 
837 	wakeup->enable_count--;
838 
839 out:
840 	mutex_unlock(&acpi_wakeup_lock);
841 }
842 
843 /**
844  * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
845  * @dev: Device to enable/disable to generate wakeup events.
846  * @enable: Whether to enable or disable the wakeup functionality.
847  */
848 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
849 {
850 	struct acpi_device *adev;
851 	int error;
852 
853 	adev = ACPI_COMPANION(dev);
854 	if (!adev) {
855 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
856 		return -ENODEV;
857 	}
858 
859 	if (!acpi_device_can_wakeup(adev))
860 		return -EINVAL;
861 
862 	if (!enable) {
863 		acpi_device_wakeup_disable(adev);
864 		dev_dbg(dev, "Wakeup disabled by ACPI\n");
865 		return 0;
866 	}
867 
868 	error = __acpi_device_wakeup_enable(adev, acpi_target_system_state());
869 	if (!error)
870 		dev_dbg(dev, "Wakeup enabled by ACPI\n");
871 
872 	return error;
873 }
874 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
875 
876 /**
877  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
878  * @dev: Device to put into a low-power state.
879  * @adev: ACPI device node corresponding to @dev.
880  * @system_state: System state to choose the device state for.
881  */
882 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
883 				 u32 system_state)
884 {
885 	int ret, state;
886 
887 	if (!acpi_device_power_manageable(adev))
888 		return 0;
889 
890 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
891 	return ret ? ret : acpi_device_set_power(adev, state);
892 }
893 
894 /**
895  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
896  * @adev: ACPI device node to put into the full-power state.
897  */
898 static int acpi_dev_pm_full_power(struct acpi_device *adev)
899 {
900 	return acpi_device_power_manageable(adev) ?
901 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
902 }
903 
904 /**
905  * acpi_dev_suspend - Put device into a low-power state using ACPI.
906  * @dev: Device to put into a low-power state.
907  * @wakeup: Whether or not to enable wakeup for the device.
908  *
909  * Put the given device into a low-power state using the standard ACPI
910  * mechanism.  Set up remote wakeup if desired, choose the state to put the
911  * device into (this checks if remote wakeup is expected to work too), and set
912  * the power state of the device.
913  */
914 int acpi_dev_suspend(struct device *dev, bool wakeup)
915 {
916 	struct acpi_device *adev = ACPI_COMPANION(dev);
917 	u32 target_state = acpi_target_system_state();
918 	int error;
919 
920 	if (!adev)
921 		return 0;
922 
923 	if (wakeup && acpi_device_can_wakeup(adev)) {
924 		error = acpi_device_wakeup_enable(adev, target_state);
925 		if (error)
926 			return -EAGAIN;
927 	} else {
928 		wakeup = false;
929 	}
930 
931 	error = acpi_dev_pm_low_power(dev, adev, target_state);
932 	if (error && wakeup)
933 		acpi_device_wakeup_disable(adev);
934 
935 	return error;
936 }
937 EXPORT_SYMBOL_GPL(acpi_dev_suspend);
938 
939 /**
940  * acpi_dev_resume - Put device into the full-power state using ACPI.
941  * @dev: Device to put into the full-power state.
942  *
943  * Put the given device into the full-power state using the standard ACPI
944  * mechanism.  Set the power state of the device to ACPI D0 and disable wakeup.
945  */
946 int acpi_dev_resume(struct device *dev)
947 {
948 	struct acpi_device *adev = ACPI_COMPANION(dev);
949 	int error;
950 
951 	if (!adev)
952 		return 0;
953 
954 	error = acpi_dev_pm_full_power(adev);
955 	acpi_device_wakeup_disable(adev);
956 	return error;
957 }
958 EXPORT_SYMBOL_GPL(acpi_dev_resume);
959 
960 /**
961  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
962  * @dev: Device to suspend.
963  *
964  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
965  * it into a runtime low-power state.
966  */
967 int acpi_subsys_runtime_suspend(struct device *dev)
968 {
969 	int ret = pm_generic_runtime_suspend(dev);
970 
971 	return ret ? ret : acpi_dev_suspend(dev, true);
972 }
973 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
974 
975 /**
976  * acpi_subsys_runtime_resume - Resume device using ACPI.
977  * @dev: Device to Resume.
978  *
979  * Use ACPI to put the given device into the full-power state and carry out the
980  * generic runtime resume procedure for it.
981  */
982 int acpi_subsys_runtime_resume(struct device *dev)
983 {
984 	int ret = acpi_dev_resume(dev);
985 
986 	return ret ? ret : pm_generic_runtime_resume(dev);
987 }
988 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
989 
990 #ifdef CONFIG_PM_SLEEP
991 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
992 {
993 	u32 sys_target = acpi_target_system_state();
994 	int ret, state;
995 
996 	if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
997 	    device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
998 		return true;
999 
1000 	if (sys_target == ACPI_STATE_S0)
1001 		return false;
1002 
1003 	if (adev->power.flags.dsw_present)
1004 		return true;
1005 
1006 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
1007 	if (ret)
1008 		return true;
1009 
1010 	return state != adev->power.state;
1011 }
1012 
1013 /**
1014  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
1015  * @dev: Device to prepare.
1016  */
1017 int acpi_subsys_prepare(struct device *dev)
1018 {
1019 	struct acpi_device *adev = ACPI_COMPANION(dev);
1020 
1021 	if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
1022 		int ret = dev->driver->pm->prepare(dev);
1023 
1024 		if (ret < 0)
1025 			return ret;
1026 
1027 		if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
1028 			return 0;
1029 	}
1030 
1031 	return !acpi_dev_needs_resume(dev, adev);
1032 }
1033 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1034 
1035 /**
1036  * acpi_subsys_complete - Finalize device's resume during system resume.
1037  * @dev: Device to handle.
1038  */
1039 void acpi_subsys_complete(struct device *dev)
1040 {
1041 	pm_generic_complete(dev);
1042 	/*
1043 	 * If the device had been runtime-suspended before the system went into
1044 	 * the sleep state it is going out of and it has never been resumed till
1045 	 * now, resume it in case the firmware powered it up.
1046 	 */
1047 	if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1048 		pm_request_resume(dev);
1049 }
1050 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1051 
1052 /**
1053  * acpi_subsys_suspend - Run the device driver's suspend callback.
1054  * @dev: Device to handle.
1055  *
1056  * Follow PCI and resume devices from runtime suspend before running their
1057  * system suspend callbacks, unless the driver can cope with runtime-suspended
1058  * devices during system suspend and there are no ACPI-specific reasons for
1059  * resuming them.
1060  */
1061 int acpi_subsys_suspend(struct device *dev)
1062 {
1063 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1064 	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1065 		pm_runtime_resume(dev);
1066 
1067 	return pm_generic_suspend(dev);
1068 }
1069 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1070 
1071 /**
1072  * acpi_subsys_suspend_late - Suspend device using ACPI.
1073  * @dev: Device to suspend.
1074  *
1075  * Carry out the generic late suspend procedure for @dev and use ACPI to put
1076  * it into a low-power state during system transition into a sleep state.
1077  */
1078 int acpi_subsys_suspend_late(struct device *dev)
1079 {
1080 	int ret;
1081 
1082 	if (dev_pm_skip_suspend(dev))
1083 		return 0;
1084 
1085 	ret = pm_generic_suspend_late(dev);
1086 	return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1087 }
1088 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1089 
1090 /**
1091  * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1092  * @dev: Device to suspend.
1093  */
1094 int acpi_subsys_suspend_noirq(struct device *dev)
1095 {
1096 	int ret;
1097 
1098 	if (dev_pm_skip_suspend(dev))
1099 		return 0;
1100 
1101 	ret = pm_generic_suspend_noirq(dev);
1102 	if (ret)
1103 		return ret;
1104 
1105 	/*
1106 	 * If the target system sleep state is suspend-to-idle, it is sufficient
1107 	 * to check whether or not the device's wakeup settings are good for
1108 	 * runtime PM.  Otherwise, the pm_resume_via_firmware() check will cause
1109 	 * acpi_subsys_complete() to take care of fixing up the device's state
1110 	 * anyway, if need be.
1111 	 */
1112 	if (device_can_wakeup(dev) && !device_may_wakeup(dev))
1113 		dev->power.may_skip_resume = false;
1114 
1115 	return 0;
1116 }
1117 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1118 
1119 /**
1120  * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1121  * @dev: Device to handle.
1122  */
1123 static int acpi_subsys_resume_noirq(struct device *dev)
1124 {
1125 	if (dev_pm_skip_resume(dev))
1126 		return 0;
1127 
1128 	return pm_generic_resume_noirq(dev);
1129 }
1130 
1131 /**
1132  * acpi_subsys_resume_early - Resume device using ACPI.
1133  * @dev: Device to Resume.
1134  *
1135  * Use ACPI to put the given device into the full-power state and carry out the
1136  * generic early resume procedure for it during system transition into the
1137  * working state, but only do that if device either defines early resume
1138  * handler, or does not define power operations at all. Otherwise powering up
1139  * of the device is postponed to the normal resume phase.
1140  */
1141 static int acpi_subsys_resume_early(struct device *dev)
1142 {
1143 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1144 	int ret;
1145 
1146 	if (dev_pm_skip_resume(dev))
1147 		return 0;
1148 
1149 	if (pm && !pm->resume_early) {
1150 		dev_dbg(dev, "postponing D0 transition to normal resume stage\n");
1151 		return 0;
1152 	}
1153 
1154 	ret = acpi_dev_resume(dev);
1155 	return ret ? ret : pm_generic_resume_early(dev);
1156 }
1157 
1158 /**
1159  * acpi_subsys_resume - Resume device using ACPI.
1160  * @dev: Device to Resume.
1161  *
1162  * Use ACPI to put the given device into the full-power state if it has not been
1163  * powered up during early resume phase, and carry out the generic resume
1164  * procedure for it during system transition into the working state.
1165  */
1166 static int acpi_subsys_resume(struct device *dev)
1167 {
1168 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1169 	int ret = 0;
1170 
1171 	if (!dev_pm_skip_resume(dev) && pm && !pm->resume_early) {
1172 		dev_dbg(dev, "executing postponed D0 transition\n");
1173 		ret = acpi_dev_resume(dev);
1174 	}
1175 
1176 	return ret ? ret : pm_generic_resume(dev);
1177 }
1178 
1179 /**
1180  * acpi_subsys_freeze - Run the device driver's freeze callback.
1181  * @dev: Device to handle.
1182  */
1183 int acpi_subsys_freeze(struct device *dev)
1184 {
1185 	/*
1186 	 * Resume all runtime-suspended devices before creating a snapshot
1187 	 * image of system memory, because the restore kernel generally cannot
1188 	 * be expected to always handle them consistently and they need to be
1189 	 * put into the runtime-active metastate during system resume anyway,
1190 	 * so it is better to ensure that the state saved in the image will be
1191 	 * always consistent with that.
1192 	 */
1193 	pm_runtime_resume(dev);
1194 
1195 	return pm_generic_freeze(dev);
1196 }
1197 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1198 
1199 /**
1200  * acpi_subsys_restore_early - Restore device using ACPI.
1201  * @dev: Device to restore.
1202  */
1203 int acpi_subsys_restore_early(struct device *dev)
1204 {
1205 	int ret = acpi_dev_resume(dev);
1206 
1207 	return ret ? ret : pm_generic_restore_early(dev);
1208 }
1209 EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
1210 
1211 /**
1212  * acpi_subsys_poweroff - Run the device driver's poweroff callback.
1213  * @dev: Device to handle.
1214  *
1215  * Follow PCI and resume devices from runtime suspend before running their
1216  * system poweroff callbacks, unless the driver can cope with runtime-suspended
1217  * devices during system suspend and there are no ACPI-specific reasons for
1218  * resuming them.
1219  */
1220 int acpi_subsys_poweroff(struct device *dev)
1221 {
1222 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1223 	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1224 		pm_runtime_resume(dev);
1225 
1226 	return pm_generic_poweroff(dev);
1227 }
1228 EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
1229 
1230 /**
1231  * acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
1232  * @dev: Device to handle.
1233  *
1234  * Carry out the generic late poweroff procedure for @dev and use ACPI to put
1235  * it into a low-power state during system transition into a sleep state.
1236  */
1237 static int acpi_subsys_poweroff_late(struct device *dev)
1238 {
1239 	int ret;
1240 
1241 	if (dev_pm_skip_suspend(dev))
1242 		return 0;
1243 
1244 	ret = pm_generic_poweroff_late(dev);
1245 	if (ret)
1246 		return ret;
1247 
1248 	return acpi_dev_suspend(dev, device_may_wakeup(dev));
1249 }
1250 
1251 /**
1252  * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
1253  * @dev: Device to suspend.
1254  */
1255 static int acpi_subsys_poweroff_noirq(struct device *dev)
1256 {
1257 	if (dev_pm_skip_suspend(dev))
1258 		return 0;
1259 
1260 	return pm_generic_poweroff_noirq(dev);
1261 }
1262 #endif /* CONFIG_PM_SLEEP */
1263 
1264 static struct dev_pm_domain acpi_general_pm_domain = {
1265 	.ops = {
1266 		.runtime_suspend = acpi_subsys_runtime_suspend,
1267 		.runtime_resume = acpi_subsys_runtime_resume,
1268 #ifdef CONFIG_PM_SLEEP
1269 		.prepare = acpi_subsys_prepare,
1270 		.complete = acpi_subsys_complete,
1271 		.suspend = acpi_subsys_suspend,
1272 		.resume = acpi_subsys_resume,
1273 		.suspend_late = acpi_subsys_suspend_late,
1274 		.suspend_noirq = acpi_subsys_suspend_noirq,
1275 		.resume_noirq = acpi_subsys_resume_noirq,
1276 		.resume_early = acpi_subsys_resume_early,
1277 		.freeze = acpi_subsys_freeze,
1278 		.poweroff = acpi_subsys_poweroff,
1279 		.poweroff_late = acpi_subsys_poweroff_late,
1280 		.poweroff_noirq = acpi_subsys_poweroff_noirq,
1281 		.restore_early = acpi_subsys_restore_early,
1282 #endif
1283 	},
1284 };
1285 
1286 /**
1287  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1288  * @dev: Device to take care of.
1289  * @power_off: Whether or not to try to remove power from the device.
1290  *
1291  * Remove the device from the general ACPI PM domain and remove its wakeup
1292  * notifier.  If @power_off is set, additionally remove power from the device if
1293  * possible.
1294  *
1295  * Callers must ensure proper synchronization of this function with power
1296  * management callbacks.
1297  */
1298 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1299 {
1300 	struct acpi_device *adev = ACPI_COMPANION(dev);
1301 
1302 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1303 		dev_pm_domain_set(dev, NULL);
1304 		acpi_remove_pm_notifier(adev);
1305 		if (power_off) {
1306 			/*
1307 			 * If the device's PM QoS resume latency limit or flags
1308 			 * have been exposed to user space, they have to be
1309 			 * hidden at this point, so that they don't affect the
1310 			 * choice of the low-power state to put the device into.
1311 			 */
1312 			dev_pm_qos_hide_latency_limit(dev);
1313 			dev_pm_qos_hide_flags(dev);
1314 			acpi_device_wakeup_disable(adev);
1315 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1316 		}
1317 	}
1318 }
1319 
1320 /**
1321  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1322  * @dev: Device to prepare.
1323  * @power_on: Whether or not to power on the device.
1324  *
1325  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1326  * attached to it, install a wakeup notification handler for the device and
1327  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1328  * be put into the ACPI D0 state before the function returns.
1329  *
1330  * This assumes that the @dev's bus type uses generic power management callbacks
1331  * (or doesn't use any power management callbacks at all).
1332  *
1333  * Callers must ensure proper synchronization of this function with power
1334  * management callbacks.
1335  */
1336 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1337 {
1338 	/*
1339 	 * Skip devices whose ACPI companions match the device IDs below,
1340 	 * because they require special power management handling incompatible
1341 	 * with the generic ACPI PM domain.
1342 	 */
1343 	static const struct acpi_device_id special_pm_ids[] = {
1344 		ACPI_FAN_DEVICE_IDS,
1345 		{}
1346 	};
1347 	struct acpi_device *adev = ACPI_COMPANION(dev);
1348 
1349 	if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
1350 		return 0;
1351 
1352 	/*
1353 	 * Only attach the power domain to the first device if the
1354 	 * companion is shared by multiple. This is to prevent doing power
1355 	 * management twice.
1356 	 */
1357 	if (!acpi_device_is_first_physical_node(adev, dev))
1358 		return 0;
1359 
1360 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1361 	dev_pm_domain_set(dev, &acpi_general_pm_domain);
1362 	if (power_on) {
1363 		acpi_dev_pm_full_power(adev);
1364 		acpi_device_wakeup_disable(adev);
1365 	}
1366 
1367 	dev->pm_domain->detach = acpi_dev_pm_detach;
1368 	return 1;
1369 }
1370 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1371 
1372 /**
1373  * acpi_storage_d3 - Check if D3 should be used in the suspend path
1374  * @dev: Device to check
1375  *
1376  * Return %true if the platform firmware wants @dev to be programmed
1377  * into D3hot or D3cold (if supported) in the suspend path, or %false
1378  * when there is no specific preference. On some platforms, if this
1379  * hint is ignored, @dev may remain unresponsive after suspending the
1380  * platform as a whole.
1381  *
1382  * Although the property has storage in the name it actually is
1383  * applied to the PCIe slot and plugging in a non-storage device the
1384  * same platform restrictions will likely apply.
1385  */
1386 bool acpi_storage_d3(struct device *dev)
1387 {
1388 	struct acpi_device *adev = ACPI_COMPANION(dev);
1389 	u8 val;
1390 
1391 	if (force_storage_d3())
1392 		return true;
1393 
1394 	if (!adev)
1395 		return false;
1396 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
1397 			&val))
1398 		return false;
1399 	return val == 1;
1400 }
1401 EXPORT_SYMBOL_GPL(acpi_storage_d3);
1402 
1403 /**
1404  * acpi_dev_state_d0 - Tell if the device is in D0 power state
1405  * @dev: Physical device the ACPI power state of which to check
1406  *
1407  * On a system without ACPI, return true. On a system with ACPI, return true if
1408  * the current ACPI power state of the device is D0, or false otherwise.
1409  *
1410  * Note that the power state of a device is not well-defined after it has been
1411  * passed to acpi_device_set_power() and before that function returns, so it is
1412  * not valid to ask for the ACPI power state of the device in that time frame.
1413  *
1414  * This function is intended to be used in a driver's probe or remove
1415  * function. See Documentation/firmware-guide/acpi/low-power-probe.rst for
1416  * more information.
1417  */
1418 bool acpi_dev_state_d0(struct device *dev)
1419 {
1420 	struct acpi_device *adev = ACPI_COMPANION(dev);
1421 
1422 	if (!adev)
1423 		return true;
1424 
1425 	return adev->power.state == ACPI_STATE_D0;
1426 }
1427 EXPORT_SYMBOL_GPL(acpi_dev_state_d0);
1428 
1429 #endif /* CONFIG_PM */
1430