1 /* 2 * drivers/acpi/device_pm.c - ACPI device power management routines. 3 * 4 * Copyright (C) 2012, Intel Corp. 5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as published 11 * by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, write to the Free Software Foundation, Inc., 20 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 21 * 22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 23 */ 24 25 #include <linux/acpi.h> 26 #include <linux/export.h> 27 #include <linux/mutex.h> 28 #include <linux/pm_qos.h> 29 #include <linux/pm_runtime.h> 30 31 #include "internal.h" 32 33 #define _COMPONENT ACPI_POWER_COMPONENT 34 ACPI_MODULE_NAME("device_pm"); 35 36 /** 37 * acpi_power_state_string - String representation of ACPI device power state. 38 * @state: ACPI device power state to return the string representation of. 39 */ 40 const char *acpi_power_state_string(int state) 41 { 42 switch (state) { 43 case ACPI_STATE_D0: 44 return "D0"; 45 case ACPI_STATE_D1: 46 return "D1"; 47 case ACPI_STATE_D2: 48 return "D2"; 49 case ACPI_STATE_D3_HOT: 50 return "D3hot"; 51 case ACPI_STATE_D3_COLD: 52 return "D3cold"; 53 default: 54 return "(unknown)"; 55 } 56 } 57 58 /** 59 * acpi_device_get_power - Get power state of an ACPI device. 60 * @device: Device to get the power state of. 61 * @state: Place to store the power state of the device. 62 * 63 * This function does not update the device's power.state field, but it may 64 * update its parent's power.state field (when the parent's power state is 65 * unknown and the device's power state turns out to be D0). 66 */ 67 int acpi_device_get_power(struct acpi_device *device, int *state) 68 { 69 int result = ACPI_STATE_UNKNOWN; 70 71 if (!device || !state) 72 return -EINVAL; 73 74 if (!device->flags.power_manageable) { 75 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 76 *state = device->parent ? 77 device->parent->power.state : ACPI_STATE_D0; 78 goto out; 79 } 80 81 /* 82 * Get the device's power state from power resources settings and _PSC, 83 * if available. 84 */ 85 if (device->power.flags.power_resources) { 86 int error = acpi_power_get_inferred_state(device, &result); 87 if (error) 88 return error; 89 } 90 if (device->power.flags.explicit_get) { 91 acpi_handle handle = device->handle; 92 unsigned long long psc; 93 acpi_status status; 94 95 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc); 96 if (ACPI_FAILURE(status)) 97 return -ENODEV; 98 99 /* 100 * The power resources settings may indicate a power state 101 * shallower than the actual power state of the device. 102 * 103 * Moreover, on systems predating ACPI 4.0, if the device 104 * doesn't depend on any power resources and _PSC returns 3, 105 * that means "power off". We need to maintain compatibility 106 * with those systems. 107 */ 108 if (psc > result && psc < ACPI_STATE_D3_COLD) 109 result = psc; 110 else if (result == ACPI_STATE_UNKNOWN) 111 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc; 112 } 113 114 /* 115 * If we were unsure about the device parent's power state up to this 116 * point, the fact that the device is in D0 implies that the parent has 117 * to be in D0 too, except if ignore_parent is set. 118 */ 119 if (!device->power.flags.ignore_parent && device->parent 120 && device->parent->power.state == ACPI_STATE_UNKNOWN 121 && result == ACPI_STATE_D0) 122 device->parent->power.state = ACPI_STATE_D0; 123 124 *state = result; 125 126 out: 127 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n", 128 device->pnp.bus_id, acpi_power_state_string(*state))); 129 130 return 0; 131 } 132 133 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 134 { 135 if (adev->power.states[state].flags.explicit_set) { 136 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 137 acpi_status status; 138 139 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 140 if (ACPI_FAILURE(status)) 141 return -ENODEV; 142 } 143 return 0; 144 } 145 146 /** 147 * acpi_device_set_power - Set power state of an ACPI device. 148 * @device: Device to set the power state of. 149 * @state: New power state to set. 150 * 151 * Callers must ensure that the device is power manageable before using this 152 * function. 153 */ 154 int acpi_device_set_power(struct acpi_device *device, int state) 155 { 156 int result = 0; 157 bool cut_power = false; 158 159 if (!device || !device->flags.power_manageable 160 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 161 return -EINVAL; 162 163 /* Make sure this is a valid target state */ 164 165 if (state == device->power.state) { 166 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n", 167 device->pnp.bus_id, 168 acpi_power_state_string(state))); 169 return 0; 170 } 171 172 if (!device->power.states[state].flags.valid) { 173 dev_warn(&device->dev, "Power state %s not supported\n", 174 acpi_power_state_string(state)); 175 return -ENODEV; 176 } 177 if (!device->power.flags.ignore_parent && 178 device->parent && (state < device->parent->power.state)) { 179 dev_warn(&device->dev, 180 "Cannot transition to power state %s for parent in %s\n", 181 acpi_power_state_string(state), 182 acpi_power_state_string(device->parent->power.state)); 183 return -ENODEV; 184 } 185 186 /* For D3cold we should first transition into D3hot. */ 187 if (state == ACPI_STATE_D3_COLD 188 && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) { 189 state = ACPI_STATE_D3_HOT; 190 cut_power = true; 191 } 192 193 if (state < device->power.state && state != ACPI_STATE_D0 194 && device->power.state >= ACPI_STATE_D3_HOT) { 195 dev_warn(&device->dev, 196 "Cannot transition to non-D0 state from D3\n"); 197 return -ENODEV; 198 } 199 200 /* 201 * Transition Power 202 * ---------------- 203 * In accordance with the ACPI specification first apply power (via 204 * power resources) and then evalute _PSx. 205 */ 206 if (device->power.flags.power_resources) { 207 result = acpi_power_transition(device, state); 208 if (result) 209 goto end; 210 } 211 result = acpi_dev_pm_explicit_set(device, state); 212 if (result) 213 goto end; 214 215 if (cut_power) { 216 device->power.state = state; 217 state = ACPI_STATE_D3_COLD; 218 result = acpi_power_transition(device, state); 219 } 220 221 end: 222 if (result) { 223 dev_warn(&device->dev, "Failed to change power state to %s\n", 224 acpi_power_state_string(state)); 225 } else { 226 device->power.state = state; 227 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 228 "Device [%s] transitioned to %s\n", 229 device->pnp.bus_id, 230 acpi_power_state_string(state))); 231 } 232 233 return result; 234 } 235 EXPORT_SYMBOL(acpi_device_set_power); 236 237 int acpi_bus_set_power(acpi_handle handle, int state) 238 { 239 struct acpi_device *device; 240 int result; 241 242 result = acpi_bus_get_device(handle, &device); 243 if (result) 244 return result; 245 246 return acpi_device_set_power(device, state); 247 } 248 EXPORT_SYMBOL(acpi_bus_set_power); 249 250 int acpi_bus_init_power(struct acpi_device *device) 251 { 252 int state; 253 int result; 254 255 if (!device) 256 return -EINVAL; 257 258 device->power.state = ACPI_STATE_UNKNOWN; 259 260 result = acpi_device_get_power(device, &state); 261 if (result) 262 return result; 263 264 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 265 result = acpi_power_on_resources(device, state); 266 if (result) 267 return result; 268 269 result = acpi_dev_pm_explicit_set(device, state); 270 if (result) 271 return result; 272 } else if (state == ACPI_STATE_UNKNOWN) { 273 /* 274 * No power resources and missing _PSC? Cross fingers and make 275 * it D0 in hope that this is what the BIOS put the device into. 276 * [We tried to force D0 here by executing _PS0, but that broke 277 * Toshiba P870-303 in a nasty way.] 278 */ 279 state = ACPI_STATE_D0; 280 } 281 device->power.state = state; 282 return 0; 283 } 284 285 /** 286 * acpi_device_fix_up_power - Force device with missing _PSC into D0. 287 * @device: Device object whose power state is to be fixed up. 288 * 289 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined, 290 * are assumed to be put into D0 by the BIOS. However, in some cases that may 291 * not be the case and this function should be used then. 292 */ 293 int acpi_device_fix_up_power(struct acpi_device *device) 294 { 295 int ret = 0; 296 297 if (!device->power.flags.power_resources 298 && !device->power.flags.explicit_get 299 && device->power.state == ACPI_STATE_D0) 300 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 301 302 return ret; 303 } 304 305 int acpi_bus_update_power(acpi_handle handle, int *state_p) 306 { 307 struct acpi_device *device; 308 int state; 309 int result; 310 311 result = acpi_bus_get_device(handle, &device); 312 if (result) 313 return result; 314 315 result = acpi_device_get_power(device, &state); 316 if (result) 317 return result; 318 319 if (state == ACPI_STATE_UNKNOWN) { 320 state = ACPI_STATE_D0; 321 result = acpi_device_set_power(device, state); 322 if (result) 323 return result; 324 } else { 325 if (device->power.flags.power_resources) { 326 /* 327 * We don't need to really switch the state, bu we need 328 * to update the power resources' reference counters. 329 */ 330 result = acpi_power_transition(device, state); 331 if (result) 332 return result; 333 } 334 device->power.state = state; 335 } 336 if (state_p) 337 *state_p = state; 338 339 return 0; 340 } 341 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 342 343 bool acpi_bus_power_manageable(acpi_handle handle) 344 { 345 struct acpi_device *device; 346 int result; 347 348 result = acpi_bus_get_device(handle, &device); 349 return result ? false : device->flags.power_manageable; 350 } 351 EXPORT_SYMBOL(acpi_bus_power_manageable); 352 353 #ifdef CONFIG_PM 354 static DEFINE_MUTEX(acpi_pm_notifier_lock); 355 356 /** 357 * acpi_add_pm_notifier - Register PM notifier for given ACPI device. 358 * @adev: ACPI device to add the notifier for. 359 * @context: Context information to pass to the notifier routine. 360 * 361 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 362 * PM wakeup events. For example, wakeup events may be generated for bridges 363 * if one of the devices below the bridge is signaling wakeup, even if the 364 * bridge itself doesn't have a wakeup GPE associated with it. 365 */ 366 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, 367 acpi_notify_handler handler, void *context) 368 { 369 acpi_status status = AE_ALREADY_EXISTS; 370 371 mutex_lock(&acpi_pm_notifier_lock); 372 373 if (adev->wakeup.flags.notifier_present) 374 goto out; 375 376 status = acpi_install_notify_handler(adev->handle, 377 ACPI_SYSTEM_NOTIFY, 378 handler, context); 379 if (ACPI_FAILURE(status)) 380 goto out; 381 382 adev->wakeup.flags.notifier_present = true; 383 384 out: 385 mutex_unlock(&acpi_pm_notifier_lock); 386 return status; 387 } 388 389 /** 390 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 391 * @adev: ACPI device to remove the notifier from. 392 */ 393 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev, 394 acpi_notify_handler handler) 395 { 396 acpi_status status = AE_BAD_PARAMETER; 397 398 mutex_lock(&acpi_pm_notifier_lock); 399 400 if (!adev->wakeup.flags.notifier_present) 401 goto out; 402 403 status = acpi_remove_notify_handler(adev->handle, 404 ACPI_SYSTEM_NOTIFY, 405 handler); 406 if (ACPI_FAILURE(status)) 407 goto out; 408 409 adev->wakeup.flags.notifier_present = false; 410 411 out: 412 mutex_unlock(&acpi_pm_notifier_lock); 413 return status; 414 } 415 416 bool acpi_bus_can_wakeup(acpi_handle handle) 417 { 418 struct acpi_device *device; 419 int result; 420 421 result = acpi_bus_get_device(handle, &device); 422 return result ? false : device->wakeup.flags.valid; 423 } 424 EXPORT_SYMBOL(acpi_bus_can_wakeup); 425 426 /** 427 * acpi_dev_pm_get_state - Get preferred power state of ACPI device. 428 * @dev: Device whose preferred target power state to return. 429 * @adev: ACPI device node corresponding to @dev. 430 * @target_state: System state to match the resultant device state. 431 * @d_min_p: Location to store the highest power state available to the device. 432 * @d_max_p: Location to store the lowest power state available to the device. 433 * 434 * Find the lowest power (highest number) and highest power (lowest number) ACPI 435 * device power states that the device can be in while the system is in the 436 * state represented by @target_state. Store the integer numbers representing 437 * those stats in the memory locations pointed to by @d_max_p and @d_min_p, 438 * respectively. 439 * 440 * Callers must ensure that @dev and @adev are valid pointers and that @adev 441 * actually corresponds to @dev before using this function. 442 * 443 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or 444 * returns a value that doesn't make sense. The memory locations pointed to by 445 * @d_max_p and @d_min_p are only modified on success. 446 */ 447 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev, 448 u32 target_state, int *d_min_p, int *d_max_p) 449 { 450 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' }; 451 acpi_handle handle = adev->handle; 452 unsigned long long ret; 453 int d_min, d_max; 454 bool wakeup = false; 455 acpi_status status; 456 457 /* 458 * If the system state is S0, the lowest power state the device can be 459 * in is D3cold, unless the device has _S0W and is supposed to signal 460 * wakeup, in which case the return value of _S0W has to be used as the 461 * lowest power state available to the device. 462 */ 463 d_min = ACPI_STATE_D0; 464 d_max = ACPI_STATE_D3_COLD; 465 466 /* 467 * If present, _SxD methods return the minimum D-state (highest power 468 * state) we can use for the corresponding S-states. Otherwise, the 469 * minimum D-state is D0 (ACPI 3.x). 470 */ 471 if (target_state > ACPI_STATE_S0) { 472 /* 473 * We rely on acpi_evaluate_integer() not clobbering the integer 474 * provided if AE_NOT_FOUND is returned. 475 */ 476 ret = d_min; 477 status = acpi_evaluate_integer(handle, method, NULL, &ret); 478 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND) 479 || ret > ACPI_STATE_D3_COLD) 480 return -ENODATA; 481 482 /* 483 * We need to handle legacy systems where D3hot and D3cold are 484 * the same and 3 is returned in both cases, so fall back to 485 * D3cold if D3hot is not a valid state. 486 */ 487 if (!adev->power.states[ret].flags.valid) { 488 if (ret == ACPI_STATE_D3_HOT) 489 ret = ACPI_STATE_D3_COLD; 490 else 491 return -ENODATA; 492 } 493 d_min = ret; 494 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 495 && adev->wakeup.sleep_state >= target_state; 496 } else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) != 497 PM_QOS_FLAGS_NONE) { 498 wakeup = adev->wakeup.flags.valid; 499 } 500 501 /* 502 * If _PRW says we can wake up the system from the target sleep state, 503 * the D-state returned by _SxD is sufficient for that (we assume a 504 * wakeup-aware driver if wake is set). Still, if _SxW exists 505 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 506 * can wake the system. _S0W may be valid, too. 507 */ 508 if (wakeup) { 509 method[3] = 'W'; 510 status = acpi_evaluate_integer(handle, method, NULL, &ret); 511 if (status == AE_NOT_FOUND) { 512 if (target_state > ACPI_STATE_S0) 513 d_max = d_min; 514 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) { 515 /* Fall back to D3cold if ret is not a valid state. */ 516 if (!adev->power.states[ret].flags.valid) 517 ret = ACPI_STATE_D3_COLD; 518 519 d_max = ret > d_min ? ret : d_min; 520 } else { 521 return -ENODATA; 522 } 523 } 524 525 if (d_min_p) 526 *d_min_p = d_min; 527 528 if (d_max_p) 529 *d_max_p = d_max; 530 531 return 0; 532 } 533 534 /** 535 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 536 * @dev: Device whose preferred target power state to return. 537 * @d_min_p: Location to store the upper limit of the allowed states range. 538 * @d_max_in: Deepest low-power state to take into consideration. 539 * Return value: Preferred power state of the device on success, -ENODEV 540 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is 541 * incorrect, or -ENODATA on ACPI method failure. 542 * 543 * The caller must ensure that @dev is valid before using this function. 544 */ 545 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 546 { 547 acpi_handle handle = ACPI_HANDLE(dev); 548 struct acpi_device *adev; 549 int ret, d_min, d_max; 550 551 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD) 552 return -EINVAL; 553 554 if (d_max_in > ACPI_STATE_D3_HOT) { 555 enum pm_qos_flags_status stat; 556 557 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 558 if (stat == PM_QOS_FLAGS_ALL) 559 d_max_in = ACPI_STATE_D3_HOT; 560 } 561 562 if (!handle || acpi_bus_get_device(handle, &adev)) { 563 dev_dbg(dev, "ACPI handle without context in %s!\n", __func__); 564 return -ENODEV; 565 } 566 567 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(), 568 &d_min, &d_max); 569 if (ret) 570 return ret; 571 572 if (d_max_in < d_min) 573 return -EINVAL; 574 575 if (d_max > d_max_in) { 576 for (d_max = d_max_in; d_max > d_min; d_max--) { 577 if (adev->power.states[d_max].flags.valid) 578 break; 579 } 580 } 581 582 if (d_min_p) 583 *d_min_p = d_min; 584 585 return d_max; 586 } 587 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 588 589 #ifdef CONFIG_PM_RUNTIME 590 /** 591 * acpi_wakeup_device - Wakeup notification handler for ACPI devices. 592 * @handle: ACPI handle of the device the notification is for. 593 * @event: Type of the signaled event. 594 * @context: Device corresponding to @handle. 595 */ 596 static void acpi_wakeup_device(acpi_handle handle, u32 event, void *context) 597 { 598 struct device *dev = context; 599 600 if (event == ACPI_NOTIFY_DEVICE_WAKE && dev) { 601 pm_wakeup_event(dev, 0); 602 pm_runtime_resume(dev); 603 } 604 } 605 606 /** 607 * __acpi_device_run_wake - Enable/disable runtime remote wakeup for device. 608 * @adev: ACPI device to enable/disable the remote wakeup for. 609 * @enable: Whether to enable or disable the wakeup functionality. 610 * 611 * Enable/disable the GPE associated with @adev so that it can generate 612 * wakeup signals for the device in response to external (remote) events and 613 * enable/disable device wakeup power. 614 * 615 * Callers must ensure that @adev is a valid ACPI device node before executing 616 * this function. 617 */ 618 int __acpi_device_run_wake(struct acpi_device *adev, bool enable) 619 { 620 struct acpi_device_wakeup *wakeup = &adev->wakeup; 621 622 if (enable) { 623 acpi_status res; 624 int error; 625 626 error = acpi_enable_wakeup_device_power(adev, ACPI_STATE_S0); 627 if (error) 628 return error; 629 630 res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 631 if (ACPI_FAILURE(res)) { 632 acpi_disable_wakeup_device_power(adev); 633 return -EIO; 634 } 635 } else { 636 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 637 acpi_disable_wakeup_device_power(adev); 638 } 639 return 0; 640 } 641 642 /** 643 * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device. 644 * @dev: Device to enable/disable the platform to wake up. 645 * @enable: Whether to enable or disable the wakeup functionality. 646 */ 647 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable) 648 { 649 struct acpi_device *adev; 650 acpi_handle handle; 651 652 if (!device_run_wake(phys_dev)) 653 return -EINVAL; 654 655 handle = ACPI_HANDLE(phys_dev); 656 if (!handle || acpi_bus_get_device(handle, &adev)) { 657 dev_dbg(phys_dev, "ACPI handle without context in %s!\n", 658 __func__); 659 return -ENODEV; 660 } 661 662 return __acpi_device_run_wake(adev, enable); 663 } 664 EXPORT_SYMBOL(acpi_pm_device_run_wake); 665 #else 666 static inline void acpi_wakeup_device(acpi_handle handle, u32 event, 667 void *context) {} 668 #endif /* CONFIG_PM_RUNTIME */ 669 670 #ifdef CONFIG_PM_SLEEP 671 /** 672 * __acpi_device_sleep_wake - Enable or disable device to wake up the system. 673 * @dev: Device to enable/desible to wake up the system. 674 * @target_state: System state the device is supposed to wake up from. 675 * @enable: Whether to enable or disable @dev to wake up the system. 676 */ 677 int __acpi_device_sleep_wake(struct acpi_device *adev, u32 target_state, 678 bool enable) 679 { 680 return enable ? 681 acpi_enable_wakeup_device_power(adev, target_state) : 682 acpi_disable_wakeup_device_power(adev); 683 } 684 685 /** 686 * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system. 687 * @dev: Device to enable/desible to wake up the system from sleep states. 688 * @enable: Whether to enable or disable @dev to wake up the system. 689 */ 690 int acpi_pm_device_sleep_wake(struct device *dev, bool enable) 691 { 692 acpi_handle handle; 693 struct acpi_device *adev; 694 int error; 695 696 if (!device_can_wakeup(dev)) 697 return -EINVAL; 698 699 handle = ACPI_HANDLE(dev); 700 if (!handle || acpi_bus_get_device(handle, &adev)) { 701 dev_dbg(dev, "ACPI handle without context in %s!\n", __func__); 702 return -ENODEV; 703 } 704 705 error = __acpi_device_sleep_wake(adev, acpi_target_system_state(), 706 enable); 707 if (!error) 708 dev_info(dev, "System wakeup %s by ACPI\n", 709 enable ? "enabled" : "disabled"); 710 711 return error; 712 } 713 #endif /* CONFIG_PM_SLEEP */ 714 715 /** 716 * acpi_dev_pm_get_node - Get ACPI device node for the given physical device. 717 * @dev: Device to get the ACPI node for. 718 */ 719 struct acpi_device *acpi_dev_pm_get_node(struct device *dev) 720 { 721 acpi_handle handle = ACPI_HANDLE(dev); 722 struct acpi_device *adev; 723 724 return handle && !acpi_bus_get_device(handle, &adev) ? adev : NULL; 725 } 726 727 /** 728 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 729 * @dev: Device to put into a low-power state. 730 * @adev: ACPI device node corresponding to @dev. 731 * @system_state: System state to choose the device state for. 732 */ 733 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 734 u32 system_state) 735 { 736 int ret, state; 737 738 if (!acpi_device_power_manageable(adev)) 739 return 0; 740 741 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state); 742 return ret ? ret : acpi_device_set_power(adev, state); 743 } 744 745 /** 746 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 747 * @adev: ACPI device node to put into the full-power state. 748 */ 749 static int acpi_dev_pm_full_power(struct acpi_device *adev) 750 { 751 return acpi_device_power_manageable(adev) ? 752 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 753 } 754 755 #ifdef CONFIG_PM_RUNTIME 756 /** 757 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI. 758 * @dev: Device to put into a low-power state. 759 * 760 * Put the given device into a runtime low-power state using the standard ACPI 761 * mechanism. Set up remote wakeup if desired, choose the state to put the 762 * device into (this checks if remote wakeup is expected to work too), and set 763 * the power state of the device. 764 */ 765 int acpi_dev_runtime_suspend(struct device *dev) 766 { 767 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 768 bool remote_wakeup; 769 int error; 770 771 if (!adev) 772 return 0; 773 774 remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) > 775 PM_QOS_FLAGS_NONE; 776 error = __acpi_device_run_wake(adev, remote_wakeup); 777 if (remote_wakeup && error) 778 return -EAGAIN; 779 780 error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 781 if (error) 782 __acpi_device_run_wake(adev, false); 783 784 return error; 785 } 786 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend); 787 788 /** 789 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI. 790 * @dev: Device to put into the full-power state. 791 * 792 * Put the given device into the full-power state using the standard ACPI 793 * mechanism at run time. Set the power state of the device to ACPI D0 and 794 * disable remote wakeup. 795 */ 796 int acpi_dev_runtime_resume(struct device *dev) 797 { 798 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 799 int error; 800 801 if (!adev) 802 return 0; 803 804 error = acpi_dev_pm_full_power(adev); 805 __acpi_device_run_wake(adev, false); 806 return error; 807 } 808 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume); 809 810 /** 811 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 812 * @dev: Device to suspend. 813 * 814 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 815 * it into a runtime low-power state. 816 */ 817 int acpi_subsys_runtime_suspend(struct device *dev) 818 { 819 int ret = pm_generic_runtime_suspend(dev); 820 return ret ? ret : acpi_dev_runtime_suspend(dev); 821 } 822 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 823 824 /** 825 * acpi_subsys_runtime_resume - Resume device using ACPI. 826 * @dev: Device to Resume. 827 * 828 * Use ACPI to put the given device into the full-power state and carry out the 829 * generic runtime resume procedure for it. 830 */ 831 int acpi_subsys_runtime_resume(struct device *dev) 832 { 833 int ret = acpi_dev_runtime_resume(dev); 834 return ret ? ret : pm_generic_runtime_resume(dev); 835 } 836 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 837 #endif /* CONFIG_PM_RUNTIME */ 838 839 #ifdef CONFIG_PM_SLEEP 840 /** 841 * acpi_dev_suspend_late - Put device into a low-power state using ACPI. 842 * @dev: Device to put into a low-power state. 843 * 844 * Put the given device into a low-power state during system transition to a 845 * sleep state using the standard ACPI mechanism. Set up system wakeup if 846 * desired, choose the state to put the device into (this checks if system 847 * wakeup is expected to work too), and set the power state of the device. 848 */ 849 int acpi_dev_suspend_late(struct device *dev) 850 { 851 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 852 u32 target_state; 853 bool wakeup; 854 int error; 855 856 if (!adev) 857 return 0; 858 859 target_state = acpi_target_system_state(); 860 wakeup = device_may_wakeup(dev); 861 error = __acpi_device_sleep_wake(adev, target_state, wakeup); 862 if (wakeup && error) 863 return error; 864 865 error = acpi_dev_pm_low_power(dev, adev, target_state); 866 if (error) 867 __acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false); 868 869 return error; 870 } 871 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late); 872 873 /** 874 * acpi_dev_resume_early - Put device into the full-power state using ACPI. 875 * @dev: Device to put into the full-power state. 876 * 877 * Put the given device into the full-power state using the standard ACPI 878 * mechanism during system transition to the working state. Set the power 879 * state of the device to ACPI D0 and disable remote wakeup. 880 */ 881 int acpi_dev_resume_early(struct device *dev) 882 { 883 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 884 int error; 885 886 if (!adev) 887 return 0; 888 889 error = acpi_dev_pm_full_power(adev); 890 __acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false); 891 return error; 892 } 893 EXPORT_SYMBOL_GPL(acpi_dev_resume_early); 894 895 /** 896 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 897 * @dev: Device to prepare. 898 */ 899 int acpi_subsys_prepare(struct device *dev) 900 { 901 /* 902 * Follow PCI and resume devices suspended at run time before running 903 * their system suspend callbacks. 904 */ 905 pm_runtime_resume(dev); 906 return pm_generic_prepare(dev); 907 } 908 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 909 910 /** 911 * acpi_subsys_suspend_late - Suspend device using ACPI. 912 * @dev: Device to suspend. 913 * 914 * Carry out the generic late suspend procedure for @dev and use ACPI to put 915 * it into a low-power state during system transition into a sleep state. 916 */ 917 int acpi_subsys_suspend_late(struct device *dev) 918 { 919 int ret = pm_generic_suspend_late(dev); 920 return ret ? ret : acpi_dev_suspend_late(dev); 921 } 922 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 923 924 /** 925 * acpi_subsys_resume_early - Resume device using ACPI. 926 * @dev: Device to Resume. 927 * 928 * Use ACPI to put the given device into the full-power state and carry out the 929 * generic early resume procedure for it during system transition into the 930 * working state. 931 */ 932 int acpi_subsys_resume_early(struct device *dev) 933 { 934 int ret = acpi_dev_resume_early(dev); 935 return ret ? ret : pm_generic_resume_early(dev); 936 } 937 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early); 938 #endif /* CONFIG_PM_SLEEP */ 939 940 static struct dev_pm_domain acpi_general_pm_domain = { 941 .ops = { 942 #ifdef CONFIG_PM_RUNTIME 943 .runtime_suspend = acpi_subsys_runtime_suspend, 944 .runtime_resume = acpi_subsys_runtime_resume, 945 #endif 946 #ifdef CONFIG_PM_SLEEP 947 .prepare = acpi_subsys_prepare, 948 .suspend_late = acpi_subsys_suspend_late, 949 .resume_early = acpi_subsys_resume_early, 950 .poweroff_late = acpi_subsys_suspend_late, 951 .restore_early = acpi_subsys_resume_early, 952 #endif 953 }, 954 }; 955 956 /** 957 * acpi_dev_pm_attach - Prepare device for ACPI power management. 958 * @dev: Device to prepare. 959 * @power_on: Whether or not to power on the device. 960 * 961 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 962 * attached to it, install a wakeup notification handler for the device and 963 * add it to the general ACPI PM domain. If @power_on is set, the device will 964 * be put into the ACPI D0 state before the function returns. 965 * 966 * This assumes that the @dev's bus type uses generic power management callbacks 967 * (or doesn't use any power management callbacks at all). 968 * 969 * Callers must ensure proper synchronization of this function with power 970 * management callbacks. 971 */ 972 int acpi_dev_pm_attach(struct device *dev, bool power_on) 973 { 974 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 975 976 if (!adev) 977 return -ENODEV; 978 979 if (dev->pm_domain) 980 return -EEXIST; 981 982 acpi_add_pm_notifier(adev, acpi_wakeup_device, dev); 983 dev->pm_domain = &acpi_general_pm_domain; 984 if (power_on) { 985 acpi_dev_pm_full_power(adev); 986 __acpi_device_run_wake(adev, false); 987 } 988 return 0; 989 } 990 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 991 992 /** 993 * acpi_dev_pm_detach - Remove ACPI power management from the device. 994 * @dev: Device to take care of. 995 * @power_off: Whether or not to try to remove power from the device. 996 * 997 * Remove the device from the general ACPI PM domain and remove its wakeup 998 * notifier. If @power_off is set, additionally remove power from the device if 999 * possible. 1000 * 1001 * Callers must ensure proper synchronization of this function with power 1002 * management callbacks. 1003 */ 1004 void acpi_dev_pm_detach(struct device *dev, bool power_off) 1005 { 1006 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 1007 1008 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 1009 dev->pm_domain = NULL; 1010 acpi_remove_pm_notifier(adev, acpi_wakeup_device); 1011 if (power_off) { 1012 /* 1013 * If the device's PM QoS resume latency limit or flags 1014 * have been exposed to user space, they have to be 1015 * hidden at this point, so that they don't affect the 1016 * choice of the low-power state to put the device into. 1017 */ 1018 dev_pm_qos_hide_latency_limit(dev); 1019 dev_pm_qos_hide_flags(dev); 1020 __acpi_device_run_wake(adev, false); 1021 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 1022 } 1023 } 1024 } 1025 EXPORT_SYMBOL_GPL(acpi_dev_pm_detach); 1026 #endif /* CONFIG_PM */ 1027