1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/device_pm.c - ACPI device power management routines. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #include <linux/acpi.h> 14 #include <linux/export.h> 15 #include <linux/mutex.h> 16 #include <linux/pm_qos.h> 17 #include <linux/pm_domain.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/suspend.h> 20 21 #include "internal.h" 22 23 #define _COMPONENT ACPI_POWER_COMPONENT 24 ACPI_MODULE_NAME("device_pm"); 25 26 /** 27 * acpi_power_state_string - String representation of ACPI device power state. 28 * @state: ACPI device power state to return the string representation of. 29 */ 30 const char *acpi_power_state_string(int state) 31 { 32 switch (state) { 33 case ACPI_STATE_D0: 34 return "D0"; 35 case ACPI_STATE_D1: 36 return "D1"; 37 case ACPI_STATE_D2: 38 return "D2"; 39 case ACPI_STATE_D3_HOT: 40 return "D3hot"; 41 case ACPI_STATE_D3_COLD: 42 return "D3cold"; 43 default: 44 return "(unknown)"; 45 } 46 } 47 48 static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state) 49 { 50 unsigned long long psc; 51 acpi_status status; 52 53 status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc); 54 if (ACPI_FAILURE(status)) 55 return -ENODEV; 56 57 *state = psc; 58 return 0; 59 } 60 61 /** 62 * acpi_device_get_power - Get power state of an ACPI device. 63 * @device: Device to get the power state of. 64 * @state: Place to store the power state of the device. 65 * 66 * This function does not update the device's power.state field, but it may 67 * update its parent's power.state field (when the parent's power state is 68 * unknown and the device's power state turns out to be D0). 69 * 70 * Also, it does not update power resource reference counters to ensure that 71 * the power state returned by it will be persistent and it may return a power 72 * state shallower than previously set by acpi_device_set_power() for @device 73 * (if that power state depends on any power resources). 74 */ 75 int acpi_device_get_power(struct acpi_device *device, int *state) 76 { 77 int result = ACPI_STATE_UNKNOWN; 78 int error; 79 80 if (!device || !state) 81 return -EINVAL; 82 83 if (!device->flags.power_manageable) { 84 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 85 *state = device->parent ? 86 device->parent->power.state : ACPI_STATE_D0; 87 goto out; 88 } 89 90 /* 91 * Get the device's power state from power resources settings and _PSC, 92 * if available. 93 */ 94 if (device->power.flags.power_resources) { 95 error = acpi_power_get_inferred_state(device, &result); 96 if (error) 97 return error; 98 } 99 if (device->power.flags.explicit_get) { 100 int psc; 101 102 error = acpi_dev_pm_explicit_get(device, &psc); 103 if (error) 104 return error; 105 106 /* 107 * The power resources settings may indicate a power state 108 * shallower than the actual power state of the device, because 109 * the same power resources may be referenced by other devices. 110 * 111 * For systems predating ACPI 4.0 we assume that D3hot is the 112 * deepest state that can be supported. 113 */ 114 if (psc > result && psc < ACPI_STATE_D3_COLD) 115 result = psc; 116 else if (result == ACPI_STATE_UNKNOWN) 117 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc; 118 } 119 120 /* 121 * If we were unsure about the device parent's power state up to this 122 * point, the fact that the device is in D0 implies that the parent has 123 * to be in D0 too, except if ignore_parent is set. 124 */ 125 if (!device->power.flags.ignore_parent && device->parent 126 && device->parent->power.state == ACPI_STATE_UNKNOWN 127 && result == ACPI_STATE_D0) 128 device->parent->power.state = ACPI_STATE_D0; 129 130 *state = result; 131 132 out: 133 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n", 134 device->pnp.bus_id, acpi_power_state_string(*state))); 135 136 return 0; 137 } 138 139 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 140 { 141 if (adev->power.states[state].flags.explicit_set) { 142 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 143 acpi_status status; 144 145 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 146 if (ACPI_FAILURE(status)) 147 return -ENODEV; 148 } 149 return 0; 150 } 151 152 /** 153 * acpi_device_set_power - Set power state of an ACPI device. 154 * @device: Device to set the power state of. 155 * @state: New power state to set. 156 * 157 * Callers must ensure that the device is power manageable before using this 158 * function. 159 */ 160 int acpi_device_set_power(struct acpi_device *device, int state) 161 { 162 int target_state = state; 163 int result = 0; 164 165 if (!device || !device->flags.power_manageable 166 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 167 return -EINVAL; 168 169 /* Make sure this is a valid target state */ 170 171 /* There is a special case for D0 addressed below. */ 172 if (state > ACPI_STATE_D0 && state == device->power.state) { 173 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n", 174 device->pnp.bus_id, 175 acpi_power_state_string(state))); 176 return 0; 177 } 178 179 if (state == ACPI_STATE_D3_COLD) { 180 /* 181 * For transitions to D3cold we need to execute _PS3 and then 182 * possibly drop references to the power resources in use. 183 */ 184 state = ACPI_STATE_D3_HOT; 185 /* If _PR3 is not available, use D3hot as the target state. */ 186 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid) 187 target_state = state; 188 } else if (!device->power.states[state].flags.valid) { 189 dev_warn(&device->dev, "Power state %s not supported\n", 190 acpi_power_state_string(state)); 191 return -ENODEV; 192 } 193 194 if (!device->power.flags.ignore_parent && 195 device->parent && (state < device->parent->power.state)) { 196 dev_warn(&device->dev, 197 "Cannot transition to power state %s for parent in %s\n", 198 acpi_power_state_string(state), 199 acpi_power_state_string(device->parent->power.state)); 200 return -ENODEV; 201 } 202 203 /* 204 * Transition Power 205 * ---------------- 206 * In accordance with ACPI 6, _PSx is executed before manipulating power 207 * resources, unless the target state is D0, in which case _PS0 is 208 * supposed to be executed after turning the power resources on. 209 */ 210 if (state > ACPI_STATE_D0) { 211 /* 212 * According to ACPI 6, devices cannot go from lower-power 213 * (deeper) states to higher-power (shallower) states. 214 */ 215 if (state < device->power.state) { 216 dev_warn(&device->dev, "Cannot transition from %s to %s\n", 217 acpi_power_state_string(device->power.state), 218 acpi_power_state_string(state)); 219 return -ENODEV; 220 } 221 222 /* 223 * If the device goes from D3hot to D3cold, _PS3 has been 224 * evaluated for it already, so skip it in that case. 225 */ 226 if (device->power.state < ACPI_STATE_D3_HOT) { 227 result = acpi_dev_pm_explicit_set(device, state); 228 if (result) 229 goto end; 230 } 231 232 if (device->power.flags.power_resources) 233 result = acpi_power_transition(device, target_state); 234 } else { 235 int cur_state = device->power.state; 236 237 if (device->power.flags.power_resources) { 238 result = acpi_power_transition(device, ACPI_STATE_D0); 239 if (result) 240 goto end; 241 } 242 243 if (cur_state == ACPI_STATE_D0) { 244 int psc; 245 246 /* Nothing to do here if _PSC is not present. */ 247 if (!device->power.flags.explicit_get) 248 return 0; 249 250 /* 251 * The power state of the device was set to D0 last 252 * time, but that might have happened before a 253 * system-wide transition involving the platform 254 * firmware, so it may be necessary to evaluate _PS0 255 * for the device here. However, use extra care here 256 * and evaluate _PSC to check the device's current power 257 * state, and only invoke _PS0 if the evaluation of _PSC 258 * is successful and it returns a power state different 259 * from D0. 260 */ 261 result = acpi_dev_pm_explicit_get(device, &psc); 262 if (result || psc == ACPI_STATE_D0) 263 return 0; 264 } 265 266 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 267 } 268 269 end: 270 if (result) { 271 dev_warn(&device->dev, "Failed to change power state to %s\n", 272 acpi_power_state_string(state)); 273 } else { 274 device->power.state = target_state; 275 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 276 "Device [%s] transitioned to %s\n", 277 device->pnp.bus_id, 278 acpi_power_state_string(state))); 279 } 280 281 return result; 282 } 283 EXPORT_SYMBOL(acpi_device_set_power); 284 285 int acpi_bus_set_power(acpi_handle handle, int state) 286 { 287 struct acpi_device *device; 288 int result; 289 290 result = acpi_bus_get_device(handle, &device); 291 if (result) 292 return result; 293 294 return acpi_device_set_power(device, state); 295 } 296 EXPORT_SYMBOL(acpi_bus_set_power); 297 298 int acpi_bus_init_power(struct acpi_device *device) 299 { 300 int state; 301 int result; 302 303 if (!device) 304 return -EINVAL; 305 306 device->power.state = ACPI_STATE_UNKNOWN; 307 if (!acpi_device_is_present(device)) { 308 device->flags.initialized = false; 309 return -ENXIO; 310 } 311 312 result = acpi_device_get_power(device, &state); 313 if (result) 314 return result; 315 316 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 317 /* Reference count the power resources. */ 318 result = acpi_power_on_resources(device, state); 319 if (result) 320 return result; 321 322 if (state == ACPI_STATE_D0) { 323 /* 324 * If _PSC is not present and the state inferred from 325 * power resources appears to be D0, it still may be 326 * necessary to execute _PS0 at this point, because 327 * another device using the same power resources may 328 * have been put into D0 previously and that's why we 329 * see D0 here. 330 */ 331 result = acpi_dev_pm_explicit_set(device, state); 332 if (result) 333 return result; 334 } 335 } else if (state == ACPI_STATE_UNKNOWN) { 336 /* 337 * No power resources and missing _PSC? Cross fingers and make 338 * it D0 in hope that this is what the BIOS put the device into. 339 * [We tried to force D0 here by executing _PS0, but that broke 340 * Toshiba P870-303 in a nasty way.] 341 */ 342 state = ACPI_STATE_D0; 343 } 344 device->power.state = state; 345 return 0; 346 } 347 348 /** 349 * acpi_device_fix_up_power - Force device with missing _PSC into D0. 350 * @device: Device object whose power state is to be fixed up. 351 * 352 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined, 353 * are assumed to be put into D0 by the BIOS. However, in some cases that may 354 * not be the case and this function should be used then. 355 */ 356 int acpi_device_fix_up_power(struct acpi_device *device) 357 { 358 int ret = 0; 359 360 if (!device->power.flags.power_resources 361 && !device->power.flags.explicit_get 362 && device->power.state == ACPI_STATE_D0) 363 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 364 365 return ret; 366 } 367 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power); 368 369 int acpi_device_update_power(struct acpi_device *device, int *state_p) 370 { 371 int state; 372 int result; 373 374 if (device->power.state == ACPI_STATE_UNKNOWN) { 375 result = acpi_bus_init_power(device); 376 if (!result && state_p) 377 *state_p = device->power.state; 378 379 return result; 380 } 381 382 result = acpi_device_get_power(device, &state); 383 if (result) 384 return result; 385 386 if (state == ACPI_STATE_UNKNOWN) { 387 state = ACPI_STATE_D0; 388 result = acpi_device_set_power(device, state); 389 if (result) 390 return result; 391 } else { 392 if (device->power.flags.power_resources) { 393 /* 394 * We don't need to really switch the state, bu we need 395 * to update the power resources' reference counters. 396 */ 397 result = acpi_power_transition(device, state); 398 if (result) 399 return result; 400 } 401 device->power.state = state; 402 } 403 if (state_p) 404 *state_p = state; 405 406 return 0; 407 } 408 EXPORT_SYMBOL_GPL(acpi_device_update_power); 409 410 int acpi_bus_update_power(acpi_handle handle, int *state_p) 411 { 412 struct acpi_device *device; 413 int result; 414 415 result = acpi_bus_get_device(handle, &device); 416 return result ? result : acpi_device_update_power(device, state_p); 417 } 418 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 419 420 bool acpi_bus_power_manageable(acpi_handle handle) 421 { 422 struct acpi_device *device; 423 int result; 424 425 result = acpi_bus_get_device(handle, &device); 426 return result ? false : device->flags.power_manageable; 427 } 428 EXPORT_SYMBOL(acpi_bus_power_manageable); 429 430 #ifdef CONFIG_PM 431 static DEFINE_MUTEX(acpi_pm_notifier_lock); 432 static DEFINE_MUTEX(acpi_pm_notifier_install_lock); 433 434 void acpi_pm_wakeup_event(struct device *dev) 435 { 436 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup()); 437 } 438 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event); 439 440 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used) 441 { 442 struct acpi_device *adev; 443 444 if (val != ACPI_NOTIFY_DEVICE_WAKE) 445 return; 446 447 acpi_handle_debug(handle, "Wake notify\n"); 448 449 adev = acpi_bus_get_acpi_device(handle); 450 if (!adev) 451 return; 452 453 mutex_lock(&acpi_pm_notifier_lock); 454 455 if (adev->wakeup.flags.notifier_present) { 456 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup()); 457 if (adev->wakeup.context.func) { 458 acpi_handle_debug(handle, "Running %pS for %s\n", 459 adev->wakeup.context.func, 460 dev_name(adev->wakeup.context.dev)); 461 adev->wakeup.context.func(&adev->wakeup.context); 462 } 463 } 464 465 mutex_unlock(&acpi_pm_notifier_lock); 466 467 acpi_bus_put_acpi_device(adev); 468 } 469 470 /** 471 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device. 472 * @adev: ACPI device to add the notify handler for. 473 * @dev: Device to generate a wakeup event for while handling the notification. 474 * @func: Work function to execute when handling the notification. 475 * 476 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 477 * PM wakeup events. For example, wakeup events may be generated for bridges 478 * if one of the devices below the bridge is signaling wakeup, even if the 479 * bridge itself doesn't have a wakeup GPE associated with it. 480 */ 481 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, 482 void (*func)(struct acpi_device_wakeup_context *context)) 483 { 484 acpi_status status = AE_ALREADY_EXISTS; 485 486 if (!dev && !func) 487 return AE_BAD_PARAMETER; 488 489 mutex_lock(&acpi_pm_notifier_install_lock); 490 491 if (adev->wakeup.flags.notifier_present) 492 goto out; 493 494 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY, 495 acpi_pm_notify_handler, NULL); 496 if (ACPI_FAILURE(status)) 497 goto out; 498 499 mutex_lock(&acpi_pm_notifier_lock); 500 adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev)); 501 adev->wakeup.context.dev = dev; 502 adev->wakeup.context.func = func; 503 adev->wakeup.flags.notifier_present = true; 504 mutex_unlock(&acpi_pm_notifier_lock); 505 506 out: 507 mutex_unlock(&acpi_pm_notifier_install_lock); 508 return status; 509 } 510 511 /** 512 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 513 * @adev: ACPI device to remove the notifier from. 514 */ 515 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) 516 { 517 acpi_status status = AE_BAD_PARAMETER; 518 519 mutex_lock(&acpi_pm_notifier_install_lock); 520 521 if (!adev->wakeup.flags.notifier_present) 522 goto out; 523 524 status = acpi_remove_notify_handler(adev->handle, 525 ACPI_SYSTEM_NOTIFY, 526 acpi_pm_notify_handler); 527 if (ACPI_FAILURE(status)) 528 goto out; 529 530 mutex_lock(&acpi_pm_notifier_lock); 531 adev->wakeup.context.func = NULL; 532 adev->wakeup.context.dev = NULL; 533 wakeup_source_unregister(adev->wakeup.ws); 534 adev->wakeup.flags.notifier_present = false; 535 mutex_unlock(&acpi_pm_notifier_lock); 536 537 out: 538 mutex_unlock(&acpi_pm_notifier_install_lock); 539 return status; 540 } 541 542 bool acpi_bus_can_wakeup(acpi_handle handle) 543 { 544 struct acpi_device *device; 545 int result; 546 547 result = acpi_bus_get_device(handle, &device); 548 return result ? false : device->wakeup.flags.valid; 549 } 550 EXPORT_SYMBOL(acpi_bus_can_wakeup); 551 552 bool acpi_pm_device_can_wakeup(struct device *dev) 553 { 554 struct acpi_device *adev = ACPI_COMPANION(dev); 555 556 return adev ? acpi_device_can_wakeup(adev) : false; 557 } 558 559 /** 560 * acpi_dev_pm_get_state - Get preferred power state of ACPI device. 561 * @dev: Device whose preferred target power state to return. 562 * @adev: ACPI device node corresponding to @dev. 563 * @target_state: System state to match the resultant device state. 564 * @d_min_p: Location to store the highest power state available to the device. 565 * @d_max_p: Location to store the lowest power state available to the device. 566 * 567 * Find the lowest power (highest number) and highest power (lowest number) ACPI 568 * device power states that the device can be in while the system is in the 569 * state represented by @target_state. Store the integer numbers representing 570 * those stats in the memory locations pointed to by @d_max_p and @d_min_p, 571 * respectively. 572 * 573 * Callers must ensure that @dev and @adev are valid pointers and that @adev 574 * actually corresponds to @dev before using this function. 575 * 576 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or 577 * returns a value that doesn't make sense. The memory locations pointed to by 578 * @d_max_p and @d_min_p are only modified on success. 579 */ 580 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev, 581 u32 target_state, int *d_min_p, int *d_max_p) 582 { 583 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' }; 584 acpi_handle handle = adev->handle; 585 unsigned long long ret; 586 int d_min, d_max; 587 bool wakeup = false; 588 bool has_sxd = false; 589 acpi_status status; 590 591 /* 592 * If the system state is S0, the lowest power state the device can be 593 * in is D3cold, unless the device has _S0W and is supposed to signal 594 * wakeup, in which case the return value of _S0W has to be used as the 595 * lowest power state available to the device. 596 */ 597 d_min = ACPI_STATE_D0; 598 d_max = ACPI_STATE_D3_COLD; 599 600 /* 601 * If present, _SxD methods return the minimum D-state (highest power 602 * state) we can use for the corresponding S-states. Otherwise, the 603 * minimum D-state is D0 (ACPI 3.x). 604 */ 605 if (target_state > ACPI_STATE_S0) { 606 /* 607 * We rely on acpi_evaluate_integer() not clobbering the integer 608 * provided if AE_NOT_FOUND is returned. 609 */ 610 ret = d_min; 611 status = acpi_evaluate_integer(handle, method, NULL, &ret); 612 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND) 613 || ret > ACPI_STATE_D3_COLD) 614 return -ENODATA; 615 616 /* 617 * We need to handle legacy systems where D3hot and D3cold are 618 * the same and 3 is returned in both cases, so fall back to 619 * D3cold if D3hot is not a valid state. 620 */ 621 if (!adev->power.states[ret].flags.valid) { 622 if (ret == ACPI_STATE_D3_HOT) 623 ret = ACPI_STATE_D3_COLD; 624 else 625 return -ENODATA; 626 } 627 628 if (status == AE_OK) 629 has_sxd = true; 630 631 d_min = ret; 632 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 633 && adev->wakeup.sleep_state >= target_state; 634 } else { 635 wakeup = adev->wakeup.flags.valid; 636 } 637 638 /* 639 * If _PRW says we can wake up the system from the target sleep state, 640 * the D-state returned by _SxD is sufficient for that (we assume a 641 * wakeup-aware driver if wake is set). Still, if _SxW exists 642 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 643 * can wake the system. _S0W may be valid, too. 644 */ 645 if (wakeup) { 646 method[3] = 'W'; 647 status = acpi_evaluate_integer(handle, method, NULL, &ret); 648 if (status == AE_NOT_FOUND) { 649 /* No _SxW. In this case, the ACPI spec says that we 650 * must not go into any power state deeper than the 651 * value returned from _SxD. 652 */ 653 if (has_sxd && target_state > ACPI_STATE_S0) 654 d_max = d_min; 655 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) { 656 /* Fall back to D3cold if ret is not a valid state. */ 657 if (!adev->power.states[ret].flags.valid) 658 ret = ACPI_STATE_D3_COLD; 659 660 d_max = ret > d_min ? ret : d_min; 661 } else { 662 return -ENODATA; 663 } 664 } 665 666 if (d_min_p) 667 *d_min_p = d_min; 668 669 if (d_max_p) 670 *d_max_p = d_max; 671 672 return 0; 673 } 674 675 /** 676 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 677 * @dev: Device whose preferred target power state to return. 678 * @d_min_p: Location to store the upper limit of the allowed states range. 679 * @d_max_in: Deepest low-power state to take into consideration. 680 * Return value: Preferred power state of the device on success, -ENODEV 681 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is 682 * incorrect, or -ENODATA on ACPI method failure. 683 * 684 * The caller must ensure that @dev is valid before using this function. 685 */ 686 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 687 { 688 struct acpi_device *adev; 689 int ret, d_min, d_max; 690 691 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD) 692 return -EINVAL; 693 694 if (d_max_in > ACPI_STATE_D2) { 695 enum pm_qos_flags_status stat; 696 697 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 698 if (stat == PM_QOS_FLAGS_ALL) 699 d_max_in = ACPI_STATE_D2; 700 } 701 702 adev = ACPI_COMPANION(dev); 703 if (!adev) { 704 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 705 return -ENODEV; 706 } 707 708 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(), 709 &d_min, &d_max); 710 if (ret) 711 return ret; 712 713 if (d_max_in < d_min) 714 return -EINVAL; 715 716 if (d_max > d_max_in) { 717 for (d_max = d_max_in; d_max > d_min; d_max--) { 718 if (adev->power.states[d_max].flags.valid) 719 break; 720 } 721 } 722 723 if (d_min_p) 724 *d_min_p = d_min; 725 726 return d_max; 727 } 728 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 729 730 /** 731 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function. 732 * @context: Device wakeup context. 733 */ 734 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context) 735 { 736 struct device *dev = context->dev; 737 738 if (dev) { 739 pm_wakeup_event(dev, 0); 740 pm_request_resume(dev); 741 } 742 } 743 744 static DEFINE_MUTEX(acpi_wakeup_lock); 745 746 static int __acpi_device_wakeup_enable(struct acpi_device *adev, 747 u32 target_state, int max_count) 748 { 749 struct acpi_device_wakeup *wakeup = &adev->wakeup; 750 acpi_status status; 751 int error = 0; 752 753 mutex_lock(&acpi_wakeup_lock); 754 755 if (wakeup->enable_count >= max_count) 756 goto out; 757 758 if (wakeup->enable_count > 0) 759 goto inc; 760 761 error = acpi_enable_wakeup_device_power(adev, target_state); 762 if (error) 763 goto out; 764 765 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 766 if (ACPI_FAILURE(status)) { 767 acpi_disable_wakeup_device_power(adev); 768 error = -EIO; 769 goto out; 770 } 771 772 acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n", 773 (unsigned int)wakeup->gpe_number); 774 775 inc: 776 wakeup->enable_count++; 777 778 out: 779 mutex_unlock(&acpi_wakeup_lock); 780 return error; 781 } 782 783 /** 784 * acpi_device_wakeup_enable - Enable wakeup functionality for device. 785 * @adev: ACPI device to enable wakeup functionality for. 786 * @target_state: State the system is transitioning into. 787 * 788 * Enable the GPE associated with @adev so that it can generate wakeup signals 789 * for the device in response to external (remote) events and enable wakeup 790 * power for it. 791 * 792 * Callers must ensure that @adev is a valid ACPI device node before executing 793 * this function. 794 */ 795 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state) 796 { 797 return __acpi_device_wakeup_enable(adev, target_state, 1); 798 } 799 800 /** 801 * acpi_device_wakeup_disable - Disable wakeup functionality for device. 802 * @adev: ACPI device to disable wakeup functionality for. 803 * 804 * Disable the GPE associated with @adev and disable wakeup power for it. 805 * 806 * Callers must ensure that @adev is a valid ACPI device node before executing 807 * this function. 808 */ 809 static void acpi_device_wakeup_disable(struct acpi_device *adev) 810 { 811 struct acpi_device_wakeup *wakeup = &adev->wakeup; 812 813 mutex_lock(&acpi_wakeup_lock); 814 815 if (!wakeup->enable_count) 816 goto out; 817 818 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 819 acpi_disable_wakeup_device_power(adev); 820 821 wakeup->enable_count--; 822 823 out: 824 mutex_unlock(&acpi_wakeup_lock); 825 } 826 827 static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable, 828 int max_count) 829 { 830 struct acpi_device *adev; 831 int error; 832 833 adev = ACPI_COMPANION(dev); 834 if (!adev) { 835 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 836 return -ENODEV; 837 } 838 839 if (!acpi_device_can_wakeup(adev)) 840 return -EINVAL; 841 842 if (!enable) { 843 acpi_device_wakeup_disable(adev); 844 dev_dbg(dev, "Wakeup disabled by ACPI\n"); 845 return 0; 846 } 847 848 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(), 849 max_count); 850 if (!error) 851 dev_dbg(dev, "Wakeup enabled by ACPI\n"); 852 853 return error; 854 } 855 856 /** 857 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device. 858 * @dev: Device to enable/disable to generate wakeup events. 859 * @enable: Whether to enable or disable the wakeup functionality. 860 */ 861 int acpi_pm_set_device_wakeup(struct device *dev, bool enable) 862 { 863 return __acpi_pm_set_device_wakeup(dev, enable, 1); 864 } 865 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup); 866 867 /** 868 * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge. 869 * @dev: Bridge device to enable/disable to generate wakeup events. 870 * @enable: Whether to enable or disable the wakeup functionality. 871 */ 872 int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable) 873 { 874 return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX); 875 } 876 EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup); 877 878 /** 879 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 880 * @dev: Device to put into a low-power state. 881 * @adev: ACPI device node corresponding to @dev. 882 * @system_state: System state to choose the device state for. 883 */ 884 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 885 u32 system_state) 886 { 887 int ret, state; 888 889 if (!acpi_device_power_manageable(adev)) 890 return 0; 891 892 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state); 893 return ret ? ret : acpi_device_set_power(adev, state); 894 } 895 896 /** 897 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 898 * @adev: ACPI device node to put into the full-power state. 899 */ 900 static int acpi_dev_pm_full_power(struct acpi_device *adev) 901 { 902 return acpi_device_power_manageable(adev) ? 903 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 904 } 905 906 /** 907 * acpi_dev_suspend - Put device into a low-power state using ACPI. 908 * @dev: Device to put into a low-power state. 909 * @wakeup: Whether or not to enable wakeup for the device. 910 * 911 * Put the given device into a low-power state using the standard ACPI 912 * mechanism. Set up remote wakeup if desired, choose the state to put the 913 * device into (this checks if remote wakeup is expected to work too), and set 914 * the power state of the device. 915 */ 916 int acpi_dev_suspend(struct device *dev, bool wakeup) 917 { 918 struct acpi_device *adev = ACPI_COMPANION(dev); 919 u32 target_state = acpi_target_system_state(); 920 int error; 921 922 if (!adev) 923 return 0; 924 925 if (wakeup && acpi_device_can_wakeup(adev)) { 926 error = acpi_device_wakeup_enable(adev, target_state); 927 if (error) 928 return -EAGAIN; 929 } else { 930 wakeup = false; 931 } 932 933 error = acpi_dev_pm_low_power(dev, adev, target_state); 934 if (error && wakeup) 935 acpi_device_wakeup_disable(adev); 936 937 return error; 938 } 939 EXPORT_SYMBOL_GPL(acpi_dev_suspend); 940 941 /** 942 * acpi_dev_resume - Put device into the full-power state using ACPI. 943 * @dev: Device to put into the full-power state. 944 * 945 * Put the given device into the full-power state using the standard ACPI 946 * mechanism. Set the power state of the device to ACPI D0 and disable wakeup. 947 */ 948 int acpi_dev_resume(struct device *dev) 949 { 950 struct acpi_device *adev = ACPI_COMPANION(dev); 951 int error; 952 953 if (!adev) 954 return 0; 955 956 error = acpi_dev_pm_full_power(adev); 957 acpi_device_wakeup_disable(adev); 958 return error; 959 } 960 EXPORT_SYMBOL_GPL(acpi_dev_resume); 961 962 /** 963 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 964 * @dev: Device to suspend. 965 * 966 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 967 * it into a runtime low-power state. 968 */ 969 int acpi_subsys_runtime_suspend(struct device *dev) 970 { 971 int ret = pm_generic_runtime_suspend(dev); 972 return ret ? ret : acpi_dev_suspend(dev, true); 973 } 974 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 975 976 /** 977 * acpi_subsys_runtime_resume - Resume device using ACPI. 978 * @dev: Device to Resume. 979 * 980 * Use ACPI to put the given device into the full-power state and carry out the 981 * generic runtime resume procedure for it. 982 */ 983 int acpi_subsys_runtime_resume(struct device *dev) 984 { 985 int ret = acpi_dev_resume(dev); 986 return ret ? ret : pm_generic_runtime_resume(dev); 987 } 988 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 989 990 #ifdef CONFIG_PM_SLEEP 991 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev) 992 { 993 u32 sys_target = acpi_target_system_state(); 994 int ret, state; 995 996 if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid && 997 device_may_wakeup(dev) != !!adev->wakeup.prepare_count)) 998 return true; 999 1000 if (sys_target == ACPI_STATE_S0) 1001 return false; 1002 1003 if (adev->power.flags.dsw_present) 1004 return true; 1005 1006 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state); 1007 if (ret) 1008 return true; 1009 1010 return state != adev->power.state; 1011 } 1012 1013 /** 1014 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 1015 * @dev: Device to prepare. 1016 */ 1017 int acpi_subsys_prepare(struct device *dev) 1018 { 1019 struct acpi_device *adev = ACPI_COMPANION(dev); 1020 1021 if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) { 1022 int ret = dev->driver->pm->prepare(dev); 1023 1024 if (ret < 0) 1025 return ret; 1026 1027 if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) 1028 return 0; 1029 } 1030 1031 return !acpi_dev_needs_resume(dev, adev); 1032 } 1033 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 1034 1035 /** 1036 * acpi_subsys_complete - Finalize device's resume during system resume. 1037 * @dev: Device to handle. 1038 */ 1039 void acpi_subsys_complete(struct device *dev) 1040 { 1041 pm_generic_complete(dev); 1042 /* 1043 * If the device had been runtime-suspended before the system went into 1044 * the sleep state it is going out of and it has never been resumed till 1045 * now, resume it in case the firmware powered it up. 1046 */ 1047 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) 1048 pm_request_resume(dev); 1049 } 1050 EXPORT_SYMBOL_GPL(acpi_subsys_complete); 1051 1052 /** 1053 * acpi_subsys_suspend - Run the device driver's suspend callback. 1054 * @dev: Device to handle. 1055 * 1056 * Follow PCI and resume devices from runtime suspend before running their 1057 * system suspend callbacks, unless the driver can cope with runtime-suspended 1058 * devices during system suspend and there are no ACPI-specific reasons for 1059 * resuming them. 1060 */ 1061 int acpi_subsys_suspend(struct device *dev) 1062 { 1063 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1064 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev))) 1065 pm_runtime_resume(dev); 1066 1067 return pm_generic_suspend(dev); 1068 } 1069 EXPORT_SYMBOL_GPL(acpi_subsys_suspend); 1070 1071 /** 1072 * acpi_subsys_suspend_late - Suspend device using ACPI. 1073 * @dev: Device to suspend. 1074 * 1075 * Carry out the generic late suspend procedure for @dev and use ACPI to put 1076 * it into a low-power state during system transition into a sleep state. 1077 */ 1078 int acpi_subsys_suspend_late(struct device *dev) 1079 { 1080 int ret; 1081 1082 if (dev_pm_smart_suspend_and_suspended(dev)) 1083 return 0; 1084 1085 ret = pm_generic_suspend_late(dev); 1086 return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev)); 1087 } 1088 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 1089 1090 /** 1091 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback. 1092 * @dev: Device to suspend. 1093 */ 1094 int acpi_subsys_suspend_noirq(struct device *dev) 1095 { 1096 int ret; 1097 1098 if (dev_pm_smart_suspend_and_suspended(dev)) { 1099 dev->power.may_skip_resume = true; 1100 return 0; 1101 } 1102 1103 ret = pm_generic_suspend_noirq(dev); 1104 if (ret) 1105 return ret; 1106 1107 /* 1108 * If the target system sleep state is suspend-to-idle, it is sufficient 1109 * to check whether or not the device's wakeup settings are good for 1110 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause 1111 * acpi_subsys_complete() to take care of fixing up the device's state 1112 * anyway, if need be. 1113 */ 1114 dev->power.may_skip_resume = device_may_wakeup(dev) || 1115 !device_can_wakeup(dev); 1116 1117 return 0; 1118 } 1119 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq); 1120 1121 /** 1122 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback. 1123 * @dev: Device to handle. 1124 */ 1125 static int acpi_subsys_resume_noirq(struct device *dev) 1126 { 1127 if (dev_pm_may_skip_resume(dev)) 1128 return 0; 1129 1130 /* 1131 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend 1132 * during system suspend, so update their runtime PM status to "active" 1133 * as they will be put into D0 going forward. 1134 */ 1135 if (dev_pm_smart_suspend_and_suspended(dev)) 1136 pm_runtime_set_active(dev); 1137 1138 return pm_generic_resume_noirq(dev); 1139 } 1140 1141 /** 1142 * acpi_subsys_resume_early - Resume device using ACPI. 1143 * @dev: Device to Resume. 1144 * 1145 * Use ACPI to put the given device into the full-power state and carry out the 1146 * generic early resume procedure for it during system transition into the 1147 * working state. 1148 */ 1149 static int acpi_subsys_resume_early(struct device *dev) 1150 { 1151 int ret = acpi_dev_resume(dev); 1152 return ret ? ret : pm_generic_resume_early(dev); 1153 } 1154 1155 /** 1156 * acpi_subsys_freeze - Run the device driver's freeze callback. 1157 * @dev: Device to handle. 1158 */ 1159 int acpi_subsys_freeze(struct device *dev) 1160 { 1161 /* 1162 * Resume all runtime-suspended devices before creating a snapshot 1163 * image of system memory, because the restore kernel generally cannot 1164 * be expected to always handle them consistently and they need to be 1165 * put into the runtime-active metastate during system resume anyway, 1166 * so it is better to ensure that the state saved in the image will be 1167 * always consistent with that. 1168 */ 1169 pm_runtime_resume(dev); 1170 1171 return pm_generic_freeze(dev); 1172 } 1173 EXPORT_SYMBOL_GPL(acpi_subsys_freeze); 1174 1175 /** 1176 * acpi_subsys_restore_early - Restore device using ACPI. 1177 * @dev: Device to restore. 1178 */ 1179 int acpi_subsys_restore_early(struct device *dev) 1180 { 1181 int ret = acpi_dev_resume(dev); 1182 return ret ? ret : pm_generic_restore_early(dev); 1183 } 1184 EXPORT_SYMBOL_GPL(acpi_subsys_restore_early); 1185 1186 /** 1187 * acpi_subsys_poweroff - Run the device driver's poweroff callback. 1188 * @dev: Device to handle. 1189 * 1190 * Follow PCI and resume devices from runtime suspend before running their 1191 * system poweroff callbacks, unless the driver can cope with runtime-suspended 1192 * devices during system suspend and there are no ACPI-specific reasons for 1193 * resuming them. 1194 */ 1195 int acpi_subsys_poweroff(struct device *dev) 1196 { 1197 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1198 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev))) 1199 pm_runtime_resume(dev); 1200 1201 return pm_generic_poweroff(dev); 1202 } 1203 EXPORT_SYMBOL_GPL(acpi_subsys_poweroff); 1204 1205 /** 1206 * acpi_subsys_poweroff_late - Run the device driver's poweroff callback. 1207 * @dev: Device to handle. 1208 * 1209 * Carry out the generic late poweroff procedure for @dev and use ACPI to put 1210 * it into a low-power state during system transition into a sleep state. 1211 */ 1212 static int acpi_subsys_poweroff_late(struct device *dev) 1213 { 1214 int ret; 1215 1216 if (dev_pm_smart_suspend_and_suspended(dev)) 1217 return 0; 1218 1219 ret = pm_generic_poweroff_late(dev); 1220 if (ret) 1221 return ret; 1222 1223 return acpi_dev_suspend(dev, device_may_wakeup(dev)); 1224 } 1225 1226 /** 1227 * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback. 1228 * @dev: Device to suspend. 1229 */ 1230 static int acpi_subsys_poweroff_noirq(struct device *dev) 1231 { 1232 if (dev_pm_smart_suspend_and_suspended(dev)) 1233 return 0; 1234 1235 return pm_generic_poweroff_noirq(dev); 1236 } 1237 #endif /* CONFIG_PM_SLEEP */ 1238 1239 static struct dev_pm_domain acpi_general_pm_domain = { 1240 .ops = { 1241 .runtime_suspend = acpi_subsys_runtime_suspend, 1242 .runtime_resume = acpi_subsys_runtime_resume, 1243 #ifdef CONFIG_PM_SLEEP 1244 .prepare = acpi_subsys_prepare, 1245 .complete = acpi_subsys_complete, 1246 .suspend = acpi_subsys_suspend, 1247 .suspend_late = acpi_subsys_suspend_late, 1248 .suspend_noirq = acpi_subsys_suspend_noirq, 1249 .resume_noirq = acpi_subsys_resume_noirq, 1250 .resume_early = acpi_subsys_resume_early, 1251 .freeze = acpi_subsys_freeze, 1252 .poweroff = acpi_subsys_poweroff, 1253 .poweroff_late = acpi_subsys_poweroff_late, 1254 .poweroff_noirq = acpi_subsys_poweroff_noirq, 1255 .restore_early = acpi_subsys_restore_early, 1256 #endif 1257 }, 1258 }; 1259 1260 /** 1261 * acpi_dev_pm_detach - Remove ACPI power management from the device. 1262 * @dev: Device to take care of. 1263 * @power_off: Whether or not to try to remove power from the device. 1264 * 1265 * Remove the device from the general ACPI PM domain and remove its wakeup 1266 * notifier. If @power_off is set, additionally remove power from the device if 1267 * possible. 1268 * 1269 * Callers must ensure proper synchronization of this function with power 1270 * management callbacks. 1271 */ 1272 static void acpi_dev_pm_detach(struct device *dev, bool power_off) 1273 { 1274 struct acpi_device *adev = ACPI_COMPANION(dev); 1275 1276 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 1277 dev_pm_domain_set(dev, NULL); 1278 acpi_remove_pm_notifier(adev); 1279 if (power_off) { 1280 /* 1281 * If the device's PM QoS resume latency limit or flags 1282 * have been exposed to user space, they have to be 1283 * hidden at this point, so that they don't affect the 1284 * choice of the low-power state to put the device into. 1285 */ 1286 dev_pm_qos_hide_latency_limit(dev); 1287 dev_pm_qos_hide_flags(dev); 1288 acpi_device_wakeup_disable(adev); 1289 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 1290 } 1291 } 1292 } 1293 1294 /** 1295 * acpi_dev_pm_attach - Prepare device for ACPI power management. 1296 * @dev: Device to prepare. 1297 * @power_on: Whether or not to power on the device. 1298 * 1299 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 1300 * attached to it, install a wakeup notification handler for the device and 1301 * add it to the general ACPI PM domain. If @power_on is set, the device will 1302 * be put into the ACPI D0 state before the function returns. 1303 * 1304 * This assumes that the @dev's bus type uses generic power management callbacks 1305 * (or doesn't use any power management callbacks at all). 1306 * 1307 * Callers must ensure proper synchronization of this function with power 1308 * management callbacks. 1309 */ 1310 int acpi_dev_pm_attach(struct device *dev, bool power_on) 1311 { 1312 struct acpi_device *adev = ACPI_COMPANION(dev); 1313 1314 if (!adev) 1315 return 0; 1316 1317 /* 1318 * Only attach the power domain to the first device if the 1319 * companion is shared by multiple. This is to prevent doing power 1320 * management twice. 1321 */ 1322 if (!acpi_device_is_first_physical_node(adev, dev)) 1323 return 0; 1324 1325 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func); 1326 dev_pm_domain_set(dev, &acpi_general_pm_domain); 1327 if (power_on) { 1328 acpi_dev_pm_full_power(adev); 1329 acpi_device_wakeup_disable(adev); 1330 } 1331 1332 dev->pm_domain->detach = acpi_dev_pm_detach; 1333 return 1; 1334 } 1335 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 1336 #endif /* CONFIG_PM */ 1337