xref: /openbmc/linux/drivers/acpi/device_pm.c (revision 68198dca)
1 /*
2  * drivers/acpi/device_pm.c - ACPI device power management routines.
3  *
4  * Copyright (C) 2012, Intel Corp.
5  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License version 2 as published
11  *  by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19  */
20 
21 #include <linux/acpi.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_domain.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/suspend.h>
28 
29 #include "internal.h"
30 
31 #define _COMPONENT	ACPI_POWER_COMPONENT
32 ACPI_MODULE_NAME("device_pm");
33 
34 /**
35  * acpi_power_state_string - String representation of ACPI device power state.
36  * @state: ACPI device power state to return the string representation of.
37  */
38 const char *acpi_power_state_string(int state)
39 {
40 	switch (state) {
41 	case ACPI_STATE_D0:
42 		return "D0";
43 	case ACPI_STATE_D1:
44 		return "D1";
45 	case ACPI_STATE_D2:
46 		return "D2";
47 	case ACPI_STATE_D3_HOT:
48 		return "D3hot";
49 	case ACPI_STATE_D3_COLD:
50 		return "D3cold";
51 	default:
52 		return "(unknown)";
53 	}
54 }
55 
56 /**
57  * acpi_device_get_power - Get power state of an ACPI device.
58  * @device: Device to get the power state of.
59  * @state: Place to store the power state of the device.
60  *
61  * This function does not update the device's power.state field, but it may
62  * update its parent's power.state field (when the parent's power state is
63  * unknown and the device's power state turns out to be D0).
64  */
65 int acpi_device_get_power(struct acpi_device *device, int *state)
66 {
67 	int result = ACPI_STATE_UNKNOWN;
68 
69 	if (!device || !state)
70 		return -EINVAL;
71 
72 	if (!device->flags.power_manageable) {
73 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
74 		*state = device->parent ?
75 			device->parent->power.state : ACPI_STATE_D0;
76 		goto out;
77 	}
78 
79 	/*
80 	 * Get the device's power state from power resources settings and _PSC,
81 	 * if available.
82 	 */
83 	if (device->power.flags.power_resources) {
84 		int error = acpi_power_get_inferred_state(device, &result);
85 		if (error)
86 			return error;
87 	}
88 	if (device->power.flags.explicit_get) {
89 		acpi_handle handle = device->handle;
90 		unsigned long long psc;
91 		acpi_status status;
92 
93 		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
94 		if (ACPI_FAILURE(status))
95 			return -ENODEV;
96 
97 		/*
98 		 * The power resources settings may indicate a power state
99 		 * shallower than the actual power state of the device, because
100 		 * the same power resources may be referenced by other devices.
101 		 *
102 		 * For systems predating ACPI 4.0 we assume that D3hot is the
103 		 * deepest state that can be supported.
104 		 */
105 		if (psc > result && psc < ACPI_STATE_D3_COLD)
106 			result = psc;
107 		else if (result == ACPI_STATE_UNKNOWN)
108 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
109 	}
110 
111 	/*
112 	 * If we were unsure about the device parent's power state up to this
113 	 * point, the fact that the device is in D0 implies that the parent has
114 	 * to be in D0 too, except if ignore_parent is set.
115 	 */
116 	if (!device->power.flags.ignore_parent && device->parent
117 	    && device->parent->power.state == ACPI_STATE_UNKNOWN
118 	    && result == ACPI_STATE_D0)
119 		device->parent->power.state = ACPI_STATE_D0;
120 
121 	*state = result;
122 
123  out:
124 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
125 			  device->pnp.bus_id, acpi_power_state_string(*state)));
126 
127 	return 0;
128 }
129 
130 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
131 {
132 	if (adev->power.states[state].flags.explicit_set) {
133 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
134 		acpi_status status;
135 
136 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
137 		if (ACPI_FAILURE(status))
138 			return -ENODEV;
139 	}
140 	return 0;
141 }
142 
143 /**
144  * acpi_device_set_power - Set power state of an ACPI device.
145  * @device: Device to set the power state of.
146  * @state: New power state to set.
147  *
148  * Callers must ensure that the device is power manageable before using this
149  * function.
150  */
151 int acpi_device_set_power(struct acpi_device *device, int state)
152 {
153 	int target_state = state;
154 	int result = 0;
155 
156 	if (!device || !device->flags.power_manageable
157 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
158 		return -EINVAL;
159 
160 	/* Make sure this is a valid target state */
161 
162 	if (state == device->power.state) {
163 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
164 				  device->pnp.bus_id,
165 				  acpi_power_state_string(state)));
166 		return 0;
167 	}
168 
169 	if (state == ACPI_STATE_D3_COLD) {
170 		/*
171 		 * For transitions to D3cold we need to execute _PS3 and then
172 		 * possibly drop references to the power resources in use.
173 		 */
174 		state = ACPI_STATE_D3_HOT;
175 		/* If _PR3 is not available, use D3hot as the target state. */
176 		if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
177 			target_state = state;
178 	} else if (!device->power.states[state].flags.valid) {
179 		dev_warn(&device->dev, "Power state %s not supported\n",
180 			 acpi_power_state_string(state));
181 		return -ENODEV;
182 	}
183 
184 	if (!device->power.flags.ignore_parent &&
185 	    device->parent && (state < device->parent->power.state)) {
186 		dev_warn(&device->dev,
187 			 "Cannot transition to power state %s for parent in %s\n",
188 			 acpi_power_state_string(state),
189 			 acpi_power_state_string(device->parent->power.state));
190 		return -ENODEV;
191 	}
192 
193 	/*
194 	 * Transition Power
195 	 * ----------------
196 	 * In accordance with ACPI 6, _PSx is executed before manipulating power
197 	 * resources, unless the target state is D0, in which case _PS0 is
198 	 * supposed to be executed after turning the power resources on.
199 	 */
200 	if (state > ACPI_STATE_D0) {
201 		/*
202 		 * According to ACPI 6, devices cannot go from lower-power
203 		 * (deeper) states to higher-power (shallower) states.
204 		 */
205 		if (state < device->power.state) {
206 			dev_warn(&device->dev, "Cannot transition from %s to %s\n",
207 				 acpi_power_state_string(device->power.state),
208 				 acpi_power_state_string(state));
209 			return -ENODEV;
210 		}
211 
212 		result = acpi_dev_pm_explicit_set(device, state);
213 		if (result)
214 			goto end;
215 
216 		if (device->power.flags.power_resources)
217 			result = acpi_power_transition(device, target_state);
218 	} else {
219 		if (device->power.flags.power_resources) {
220 			result = acpi_power_transition(device, ACPI_STATE_D0);
221 			if (result)
222 				goto end;
223 		}
224 		result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
225 	}
226 
227  end:
228 	if (result) {
229 		dev_warn(&device->dev, "Failed to change power state to %s\n",
230 			 acpi_power_state_string(state));
231 	} else {
232 		device->power.state = target_state;
233 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
234 				  "Device [%s] transitioned to %s\n",
235 				  device->pnp.bus_id,
236 				  acpi_power_state_string(state)));
237 	}
238 
239 	return result;
240 }
241 EXPORT_SYMBOL(acpi_device_set_power);
242 
243 int acpi_bus_set_power(acpi_handle handle, int state)
244 {
245 	struct acpi_device *device;
246 	int result;
247 
248 	result = acpi_bus_get_device(handle, &device);
249 	if (result)
250 		return result;
251 
252 	return acpi_device_set_power(device, state);
253 }
254 EXPORT_SYMBOL(acpi_bus_set_power);
255 
256 int acpi_bus_init_power(struct acpi_device *device)
257 {
258 	int state;
259 	int result;
260 
261 	if (!device)
262 		return -EINVAL;
263 
264 	device->power.state = ACPI_STATE_UNKNOWN;
265 	if (!acpi_device_is_present(device)) {
266 		device->flags.initialized = false;
267 		return -ENXIO;
268 	}
269 
270 	result = acpi_device_get_power(device, &state);
271 	if (result)
272 		return result;
273 
274 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
275 		/* Reference count the power resources. */
276 		result = acpi_power_on_resources(device, state);
277 		if (result)
278 			return result;
279 
280 		if (state == ACPI_STATE_D0) {
281 			/*
282 			 * If _PSC is not present and the state inferred from
283 			 * power resources appears to be D0, it still may be
284 			 * necessary to execute _PS0 at this point, because
285 			 * another device using the same power resources may
286 			 * have been put into D0 previously and that's why we
287 			 * see D0 here.
288 			 */
289 			result = acpi_dev_pm_explicit_set(device, state);
290 			if (result)
291 				return result;
292 		}
293 	} else if (state == ACPI_STATE_UNKNOWN) {
294 		/*
295 		 * No power resources and missing _PSC?  Cross fingers and make
296 		 * it D0 in hope that this is what the BIOS put the device into.
297 		 * [We tried to force D0 here by executing _PS0, but that broke
298 		 * Toshiba P870-303 in a nasty way.]
299 		 */
300 		state = ACPI_STATE_D0;
301 	}
302 	device->power.state = state;
303 	return 0;
304 }
305 
306 /**
307  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
308  * @device: Device object whose power state is to be fixed up.
309  *
310  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
311  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
312  * not be the case and this function should be used then.
313  */
314 int acpi_device_fix_up_power(struct acpi_device *device)
315 {
316 	int ret = 0;
317 
318 	if (!device->power.flags.power_resources
319 	    && !device->power.flags.explicit_get
320 	    && device->power.state == ACPI_STATE_D0)
321 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
322 
323 	return ret;
324 }
325 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
326 
327 int acpi_device_update_power(struct acpi_device *device, int *state_p)
328 {
329 	int state;
330 	int result;
331 
332 	if (device->power.state == ACPI_STATE_UNKNOWN) {
333 		result = acpi_bus_init_power(device);
334 		if (!result && state_p)
335 			*state_p = device->power.state;
336 
337 		return result;
338 	}
339 
340 	result = acpi_device_get_power(device, &state);
341 	if (result)
342 		return result;
343 
344 	if (state == ACPI_STATE_UNKNOWN) {
345 		state = ACPI_STATE_D0;
346 		result = acpi_device_set_power(device, state);
347 		if (result)
348 			return result;
349 	} else {
350 		if (device->power.flags.power_resources) {
351 			/*
352 			 * We don't need to really switch the state, bu we need
353 			 * to update the power resources' reference counters.
354 			 */
355 			result = acpi_power_transition(device, state);
356 			if (result)
357 				return result;
358 		}
359 		device->power.state = state;
360 	}
361 	if (state_p)
362 		*state_p = state;
363 
364 	return 0;
365 }
366 EXPORT_SYMBOL_GPL(acpi_device_update_power);
367 
368 int acpi_bus_update_power(acpi_handle handle, int *state_p)
369 {
370 	struct acpi_device *device;
371 	int result;
372 
373 	result = acpi_bus_get_device(handle, &device);
374 	return result ? result : acpi_device_update_power(device, state_p);
375 }
376 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
377 
378 bool acpi_bus_power_manageable(acpi_handle handle)
379 {
380 	struct acpi_device *device;
381 	int result;
382 
383 	result = acpi_bus_get_device(handle, &device);
384 	return result ? false : device->flags.power_manageable;
385 }
386 EXPORT_SYMBOL(acpi_bus_power_manageable);
387 
388 #ifdef CONFIG_PM
389 static DEFINE_MUTEX(acpi_pm_notifier_lock);
390 static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
391 
392 void acpi_pm_wakeup_event(struct device *dev)
393 {
394 	pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
395 }
396 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
397 
398 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
399 {
400 	struct acpi_device *adev;
401 
402 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
403 		return;
404 
405 	acpi_handle_debug(handle, "Wake notify\n");
406 
407 	adev = acpi_bus_get_acpi_device(handle);
408 	if (!adev)
409 		return;
410 
411 	mutex_lock(&acpi_pm_notifier_lock);
412 
413 	if (adev->wakeup.flags.notifier_present) {
414 		pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
415 		if (adev->wakeup.context.func) {
416 			acpi_handle_debug(handle, "Running %pF for %s\n",
417 					  adev->wakeup.context.func,
418 					  dev_name(adev->wakeup.context.dev));
419 			adev->wakeup.context.func(&adev->wakeup.context);
420 		}
421 	}
422 
423 	mutex_unlock(&acpi_pm_notifier_lock);
424 
425 	acpi_bus_put_acpi_device(adev);
426 }
427 
428 /**
429  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
430  * @adev: ACPI device to add the notify handler for.
431  * @dev: Device to generate a wakeup event for while handling the notification.
432  * @func: Work function to execute when handling the notification.
433  *
434  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
435  * PM wakeup events.  For example, wakeup events may be generated for bridges
436  * if one of the devices below the bridge is signaling wakeup, even if the
437  * bridge itself doesn't have a wakeup GPE associated with it.
438  */
439 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
440 			void (*func)(struct acpi_device_wakeup_context *context))
441 {
442 	acpi_status status = AE_ALREADY_EXISTS;
443 
444 	if (!dev && !func)
445 		return AE_BAD_PARAMETER;
446 
447 	mutex_lock(&acpi_pm_notifier_install_lock);
448 
449 	if (adev->wakeup.flags.notifier_present)
450 		goto out;
451 
452 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
453 					     acpi_pm_notify_handler, NULL);
454 	if (ACPI_FAILURE(status))
455 		goto out;
456 
457 	mutex_lock(&acpi_pm_notifier_lock);
458 	adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
459 	adev->wakeup.context.dev = dev;
460 	adev->wakeup.context.func = func;
461 	adev->wakeup.flags.notifier_present = true;
462 	mutex_unlock(&acpi_pm_notifier_lock);
463 
464  out:
465 	mutex_unlock(&acpi_pm_notifier_install_lock);
466 	return status;
467 }
468 
469 /**
470  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
471  * @adev: ACPI device to remove the notifier from.
472  */
473 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
474 {
475 	acpi_status status = AE_BAD_PARAMETER;
476 
477 	mutex_lock(&acpi_pm_notifier_install_lock);
478 
479 	if (!adev->wakeup.flags.notifier_present)
480 		goto out;
481 
482 	status = acpi_remove_notify_handler(adev->handle,
483 					    ACPI_SYSTEM_NOTIFY,
484 					    acpi_pm_notify_handler);
485 	if (ACPI_FAILURE(status))
486 		goto out;
487 
488 	mutex_lock(&acpi_pm_notifier_lock);
489 	adev->wakeup.context.func = NULL;
490 	adev->wakeup.context.dev = NULL;
491 	wakeup_source_unregister(adev->wakeup.ws);
492 	adev->wakeup.flags.notifier_present = false;
493 	mutex_unlock(&acpi_pm_notifier_lock);
494 
495  out:
496 	mutex_unlock(&acpi_pm_notifier_install_lock);
497 	return status;
498 }
499 
500 bool acpi_bus_can_wakeup(acpi_handle handle)
501 {
502 	struct acpi_device *device;
503 	int result;
504 
505 	result = acpi_bus_get_device(handle, &device);
506 	return result ? false : device->wakeup.flags.valid;
507 }
508 EXPORT_SYMBOL(acpi_bus_can_wakeup);
509 
510 bool acpi_pm_device_can_wakeup(struct device *dev)
511 {
512 	struct acpi_device *adev = ACPI_COMPANION(dev);
513 
514 	return adev ? acpi_device_can_wakeup(adev) : false;
515 }
516 
517 /**
518  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
519  * @dev: Device whose preferred target power state to return.
520  * @adev: ACPI device node corresponding to @dev.
521  * @target_state: System state to match the resultant device state.
522  * @d_min_p: Location to store the highest power state available to the device.
523  * @d_max_p: Location to store the lowest power state available to the device.
524  *
525  * Find the lowest power (highest number) and highest power (lowest number) ACPI
526  * device power states that the device can be in while the system is in the
527  * state represented by @target_state.  Store the integer numbers representing
528  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
529  * respectively.
530  *
531  * Callers must ensure that @dev and @adev are valid pointers and that @adev
532  * actually corresponds to @dev before using this function.
533  *
534  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
535  * returns a value that doesn't make sense.  The memory locations pointed to by
536  * @d_max_p and @d_min_p are only modified on success.
537  */
538 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
539 				 u32 target_state, int *d_min_p, int *d_max_p)
540 {
541 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
542 	acpi_handle handle = adev->handle;
543 	unsigned long long ret;
544 	int d_min, d_max;
545 	bool wakeup = false;
546 	acpi_status status;
547 
548 	/*
549 	 * If the system state is S0, the lowest power state the device can be
550 	 * in is D3cold, unless the device has _S0W and is supposed to signal
551 	 * wakeup, in which case the return value of _S0W has to be used as the
552 	 * lowest power state available to the device.
553 	 */
554 	d_min = ACPI_STATE_D0;
555 	d_max = ACPI_STATE_D3_COLD;
556 
557 	/*
558 	 * If present, _SxD methods return the minimum D-state (highest power
559 	 * state) we can use for the corresponding S-states.  Otherwise, the
560 	 * minimum D-state is D0 (ACPI 3.x).
561 	 */
562 	if (target_state > ACPI_STATE_S0) {
563 		/*
564 		 * We rely on acpi_evaluate_integer() not clobbering the integer
565 		 * provided if AE_NOT_FOUND is returned.
566 		 */
567 		ret = d_min;
568 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
569 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
570 		    || ret > ACPI_STATE_D3_COLD)
571 			return -ENODATA;
572 
573 		/*
574 		 * We need to handle legacy systems where D3hot and D3cold are
575 		 * the same and 3 is returned in both cases, so fall back to
576 		 * D3cold if D3hot is not a valid state.
577 		 */
578 		if (!adev->power.states[ret].flags.valid) {
579 			if (ret == ACPI_STATE_D3_HOT)
580 				ret = ACPI_STATE_D3_COLD;
581 			else
582 				return -ENODATA;
583 		}
584 		d_min = ret;
585 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
586 			&& adev->wakeup.sleep_state >= target_state;
587 	} else {
588 		wakeup = adev->wakeup.flags.valid;
589 	}
590 
591 	/*
592 	 * If _PRW says we can wake up the system from the target sleep state,
593 	 * the D-state returned by _SxD is sufficient for that (we assume a
594 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
595 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
596 	 * can wake the system.  _S0W may be valid, too.
597 	 */
598 	if (wakeup) {
599 		method[3] = 'W';
600 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
601 		if (status == AE_NOT_FOUND) {
602 			if (target_state > ACPI_STATE_S0)
603 				d_max = d_min;
604 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
605 			/* Fall back to D3cold if ret is not a valid state. */
606 			if (!adev->power.states[ret].flags.valid)
607 				ret = ACPI_STATE_D3_COLD;
608 
609 			d_max = ret > d_min ? ret : d_min;
610 		} else {
611 			return -ENODATA;
612 		}
613 	}
614 
615 	if (d_min_p)
616 		*d_min_p = d_min;
617 
618 	if (d_max_p)
619 		*d_max_p = d_max;
620 
621 	return 0;
622 }
623 
624 /**
625  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
626  * @dev: Device whose preferred target power state to return.
627  * @d_min_p: Location to store the upper limit of the allowed states range.
628  * @d_max_in: Deepest low-power state to take into consideration.
629  * Return value: Preferred power state of the device on success, -ENODEV
630  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
631  * incorrect, or -ENODATA on ACPI method failure.
632  *
633  * The caller must ensure that @dev is valid before using this function.
634  */
635 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
636 {
637 	struct acpi_device *adev;
638 	int ret, d_min, d_max;
639 
640 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
641 		return -EINVAL;
642 
643 	if (d_max_in > ACPI_STATE_D2) {
644 		enum pm_qos_flags_status stat;
645 
646 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
647 		if (stat == PM_QOS_FLAGS_ALL)
648 			d_max_in = ACPI_STATE_D2;
649 	}
650 
651 	adev = ACPI_COMPANION(dev);
652 	if (!adev) {
653 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
654 		return -ENODEV;
655 	}
656 
657 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
658 				    &d_min, &d_max);
659 	if (ret)
660 		return ret;
661 
662 	if (d_max_in < d_min)
663 		return -EINVAL;
664 
665 	if (d_max > d_max_in) {
666 		for (d_max = d_max_in; d_max > d_min; d_max--) {
667 			if (adev->power.states[d_max].flags.valid)
668 				break;
669 		}
670 	}
671 
672 	if (d_min_p)
673 		*d_min_p = d_min;
674 
675 	return d_max;
676 }
677 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
678 
679 /**
680  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
681  * @context: Device wakeup context.
682  */
683 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
684 {
685 	struct device *dev = context->dev;
686 
687 	if (dev) {
688 		pm_wakeup_event(dev, 0);
689 		pm_request_resume(dev);
690 	}
691 }
692 
693 static DEFINE_MUTEX(acpi_wakeup_lock);
694 
695 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
696 				       u32 target_state, int max_count)
697 {
698 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
699 	acpi_status status;
700 	int error = 0;
701 
702 	mutex_lock(&acpi_wakeup_lock);
703 
704 	if (wakeup->enable_count >= max_count)
705 		goto out;
706 
707 	if (wakeup->enable_count > 0)
708 		goto inc;
709 
710 	error = acpi_enable_wakeup_device_power(adev, target_state);
711 	if (error)
712 		goto out;
713 
714 	status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
715 	if (ACPI_FAILURE(status)) {
716 		acpi_disable_wakeup_device_power(adev);
717 		error = -EIO;
718 		goto out;
719 	}
720 
721 inc:
722 	wakeup->enable_count++;
723 
724 out:
725 	mutex_unlock(&acpi_wakeup_lock);
726 	return error;
727 }
728 
729 /**
730  * acpi_device_wakeup_enable - Enable wakeup functionality for device.
731  * @adev: ACPI device to enable wakeup functionality for.
732  * @target_state: State the system is transitioning into.
733  *
734  * Enable the GPE associated with @adev so that it can generate wakeup signals
735  * for the device in response to external (remote) events and enable wakeup
736  * power for it.
737  *
738  * Callers must ensure that @adev is a valid ACPI device node before executing
739  * this function.
740  */
741 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
742 {
743 	return __acpi_device_wakeup_enable(adev, target_state, 1);
744 }
745 
746 /**
747  * acpi_device_wakeup_disable - Disable wakeup functionality for device.
748  * @adev: ACPI device to disable wakeup functionality for.
749  *
750  * Disable the GPE associated with @adev and disable wakeup power for it.
751  *
752  * Callers must ensure that @adev is a valid ACPI device node before executing
753  * this function.
754  */
755 static void acpi_device_wakeup_disable(struct acpi_device *adev)
756 {
757 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
758 
759 	mutex_lock(&acpi_wakeup_lock);
760 
761 	if (!wakeup->enable_count)
762 		goto out;
763 
764 	acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
765 	acpi_disable_wakeup_device_power(adev);
766 
767 	wakeup->enable_count--;
768 
769 out:
770 	mutex_unlock(&acpi_wakeup_lock);
771 }
772 
773 static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable,
774 				       int max_count)
775 {
776 	struct acpi_device *adev;
777 	int error;
778 
779 	adev = ACPI_COMPANION(dev);
780 	if (!adev) {
781 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
782 		return -ENODEV;
783 	}
784 
785 	if (!acpi_device_can_wakeup(adev))
786 		return -EINVAL;
787 
788 	if (!enable) {
789 		acpi_device_wakeup_disable(adev);
790 		dev_dbg(dev, "Wakeup disabled by ACPI\n");
791 		return 0;
792 	}
793 
794 	error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(),
795 					    max_count);
796 	if (!error)
797 		dev_dbg(dev, "Wakeup enabled by ACPI\n");
798 
799 	return error;
800 }
801 
802 /**
803  * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
804  * @dev: Device to enable/disable to generate wakeup events.
805  * @enable: Whether to enable or disable the wakeup functionality.
806  */
807 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
808 {
809 	return __acpi_pm_set_device_wakeup(dev, enable, 1);
810 }
811 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
812 
813 /**
814  * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge.
815  * @dev: Bridge device to enable/disable to generate wakeup events.
816  * @enable: Whether to enable or disable the wakeup functionality.
817  */
818 int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable)
819 {
820 	return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX);
821 }
822 EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup);
823 
824 /**
825  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
826  * @dev: Device to put into a low-power state.
827  * @adev: ACPI device node corresponding to @dev.
828  * @system_state: System state to choose the device state for.
829  */
830 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
831 				 u32 system_state)
832 {
833 	int ret, state;
834 
835 	if (!acpi_device_power_manageable(adev))
836 		return 0;
837 
838 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
839 	return ret ? ret : acpi_device_set_power(adev, state);
840 }
841 
842 /**
843  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
844  * @adev: ACPI device node to put into the full-power state.
845  */
846 static int acpi_dev_pm_full_power(struct acpi_device *adev)
847 {
848 	return acpi_device_power_manageable(adev) ?
849 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
850 }
851 
852 /**
853  * acpi_dev_suspend - Put device into a low-power state using ACPI.
854  * @dev: Device to put into a low-power state.
855  * @wakeup: Whether or not to enable wakeup for the device.
856  *
857  * Put the given device into a low-power state using the standard ACPI
858  * mechanism.  Set up remote wakeup if desired, choose the state to put the
859  * device into (this checks if remote wakeup is expected to work too), and set
860  * the power state of the device.
861  */
862 int acpi_dev_suspend(struct device *dev, bool wakeup)
863 {
864 	struct acpi_device *adev = ACPI_COMPANION(dev);
865 	u32 target_state = acpi_target_system_state();
866 	int error;
867 
868 	if (!adev)
869 		return 0;
870 
871 	if (wakeup && acpi_device_can_wakeup(adev)) {
872 		error = acpi_device_wakeup_enable(adev, target_state);
873 		if (error)
874 			return -EAGAIN;
875 	} else {
876 		wakeup = false;
877 	}
878 
879 	error = acpi_dev_pm_low_power(dev, adev, target_state);
880 	if (error && wakeup)
881 		acpi_device_wakeup_disable(adev);
882 
883 	return error;
884 }
885 EXPORT_SYMBOL_GPL(acpi_dev_suspend);
886 
887 /**
888  * acpi_dev_resume - Put device into the full-power state using ACPI.
889  * @dev: Device to put into the full-power state.
890  *
891  * Put the given device into the full-power state using the standard ACPI
892  * mechanism.  Set the power state of the device to ACPI D0 and disable wakeup.
893  */
894 int acpi_dev_resume(struct device *dev)
895 {
896 	struct acpi_device *adev = ACPI_COMPANION(dev);
897 	int error;
898 
899 	if (!adev)
900 		return 0;
901 
902 	error = acpi_dev_pm_full_power(adev);
903 	acpi_device_wakeup_disable(adev);
904 	return error;
905 }
906 EXPORT_SYMBOL_GPL(acpi_dev_resume);
907 
908 /**
909  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
910  * @dev: Device to suspend.
911  *
912  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
913  * it into a runtime low-power state.
914  */
915 int acpi_subsys_runtime_suspend(struct device *dev)
916 {
917 	int ret = pm_generic_runtime_suspend(dev);
918 	return ret ? ret : acpi_dev_suspend(dev, true);
919 }
920 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
921 
922 /**
923  * acpi_subsys_runtime_resume - Resume device using ACPI.
924  * @dev: Device to Resume.
925  *
926  * Use ACPI to put the given device into the full-power state and carry out the
927  * generic runtime resume procedure for it.
928  */
929 int acpi_subsys_runtime_resume(struct device *dev)
930 {
931 	int ret = acpi_dev_resume(dev);
932 	return ret ? ret : pm_generic_runtime_resume(dev);
933 }
934 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
935 
936 #ifdef CONFIG_PM_SLEEP
937 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
938 {
939 	u32 sys_target = acpi_target_system_state();
940 	int ret, state;
941 
942 	if (!pm_runtime_suspended(dev) || !adev ||
943 	    device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
944 		return true;
945 
946 	if (sys_target == ACPI_STATE_S0)
947 		return false;
948 
949 	if (adev->power.flags.dsw_present)
950 		return true;
951 
952 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
953 	if (ret)
954 		return true;
955 
956 	return state != adev->power.state;
957 }
958 
959 /**
960  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
961  * @dev: Device to prepare.
962  */
963 int acpi_subsys_prepare(struct device *dev)
964 {
965 	struct acpi_device *adev = ACPI_COMPANION(dev);
966 
967 	if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
968 		int ret = dev->driver->pm->prepare(dev);
969 
970 		if (ret < 0)
971 			return ret;
972 
973 		if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
974 			return 0;
975 	}
976 
977 	return !acpi_dev_needs_resume(dev, adev);
978 }
979 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
980 
981 /**
982  * acpi_subsys_complete - Finalize device's resume during system resume.
983  * @dev: Device to handle.
984  */
985 void acpi_subsys_complete(struct device *dev)
986 {
987 	pm_generic_complete(dev);
988 	/*
989 	 * If the device had been runtime-suspended before the system went into
990 	 * the sleep state it is going out of and it has never been resumed till
991 	 * now, resume it in case the firmware powered it up.
992 	 */
993 	if (dev->power.direct_complete && pm_resume_via_firmware())
994 		pm_request_resume(dev);
995 }
996 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
997 
998 /**
999  * acpi_subsys_suspend - Run the device driver's suspend callback.
1000  * @dev: Device to handle.
1001  *
1002  * Follow PCI and resume devices from runtime suspend before running their
1003  * system suspend callbacks, unless the driver can cope with runtime-suspended
1004  * devices during system suspend and there are no ACPI-specific reasons for
1005  * resuming them.
1006  */
1007 int acpi_subsys_suspend(struct device *dev)
1008 {
1009 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1010 	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1011 		pm_runtime_resume(dev);
1012 
1013 	return pm_generic_suspend(dev);
1014 }
1015 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1016 
1017 /**
1018  * acpi_subsys_suspend_late - Suspend device using ACPI.
1019  * @dev: Device to suspend.
1020  *
1021  * Carry out the generic late suspend procedure for @dev and use ACPI to put
1022  * it into a low-power state during system transition into a sleep state.
1023  */
1024 int acpi_subsys_suspend_late(struct device *dev)
1025 {
1026 	int ret;
1027 
1028 	if (dev_pm_smart_suspend_and_suspended(dev))
1029 		return 0;
1030 
1031 	ret = pm_generic_suspend_late(dev);
1032 	return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1033 }
1034 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1035 
1036 /**
1037  * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1038  * @dev: Device to suspend.
1039  */
1040 int acpi_subsys_suspend_noirq(struct device *dev)
1041 {
1042 	if (dev_pm_smart_suspend_and_suspended(dev))
1043 		return 0;
1044 
1045 	return pm_generic_suspend_noirq(dev);
1046 }
1047 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1048 
1049 /**
1050  * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1051  * @dev: Device to handle.
1052  */
1053 int acpi_subsys_resume_noirq(struct device *dev)
1054 {
1055 	/*
1056 	 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend
1057 	 * during system suspend, so update their runtime PM status to "active"
1058 	 * as they will be put into D0 going forward.
1059 	 */
1060 	if (dev_pm_smart_suspend_and_suspended(dev))
1061 		pm_runtime_set_active(dev);
1062 
1063 	return pm_generic_resume_noirq(dev);
1064 }
1065 EXPORT_SYMBOL_GPL(acpi_subsys_resume_noirq);
1066 
1067 /**
1068  * acpi_subsys_resume_early - Resume device using ACPI.
1069  * @dev: Device to Resume.
1070  *
1071  * Use ACPI to put the given device into the full-power state and carry out the
1072  * generic early resume procedure for it during system transition into the
1073  * working state.
1074  */
1075 int acpi_subsys_resume_early(struct device *dev)
1076 {
1077 	int ret = acpi_dev_resume(dev);
1078 	return ret ? ret : pm_generic_resume_early(dev);
1079 }
1080 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1081 
1082 /**
1083  * acpi_subsys_freeze - Run the device driver's freeze callback.
1084  * @dev: Device to handle.
1085  */
1086 int acpi_subsys_freeze(struct device *dev)
1087 {
1088 	/*
1089 	 * This used to be done in acpi_subsys_prepare() for all devices and
1090 	 * some drivers may depend on it, so do it here.  Ideally, however,
1091 	 * runtime-suspended devices should not be touched during freeze/thaw
1092 	 * transitions.
1093 	 */
1094 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND))
1095 		pm_runtime_resume(dev);
1096 
1097 	return pm_generic_freeze(dev);
1098 }
1099 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1100 
1101 /**
1102  * acpi_subsys_freeze_late - Run the device driver's "late" freeze callback.
1103  * @dev: Device to handle.
1104  */
1105 int acpi_subsys_freeze_late(struct device *dev)
1106 {
1107 
1108 	if (dev_pm_smart_suspend_and_suspended(dev))
1109 		return 0;
1110 
1111 	return pm_generic_freeze_late(dev);
1112 }
1113 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_late);
1114 
1115 /**
1116  * acpi_subsys_freeze_noirq - Run the device driver's "noirq" freeze callback.
1117  * @dev: Device to handle.
1118  */
1119 int acpi_subsys_freeze_noirq(struct device *dev)
1120 {
1121 
1122 	if (dev_pm_smart_suspend_and_suspended(dev))
1123 		return 0;
1124 
1125 	return pm_generic_freeze_noirq(dev);
1126 }
1127 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_noirq);
1128 
1129 /**
1130  * acpi_subsys_thaw_noirq - Run the device driver's "noirq" thaw callback.
1131  * @dev: Device to handle.
1132  */
1133 int acpi_subsys_thaw_noirq(struct device *dev)
1134 {
1135 	/*
1136 	 * If the device is in runtime suspend, the "thaw" code may not work
1137 	 * correctly with it, so skip the driver callback and make the PM core
1138 	 * skip all of the subsequent "thaw" callbacks for the device.
1139 	 */
1140 	if (dev_pm_smart_suspend_and_suspended(dev)) {
1141 		dev_pm_skip_next_resume_phases(dev);
1142 		return 0;
1143 	}
1144 
1145 	return pm_generic_thaw_noirq(dev);
1146 }
1147 EXPORT_SYMBOL_GPL(acpi_subsys_thaw_noirq);
1148 #endif /* CONFIG_PM_SLEEP */
1149 
1150 static struct dev_pm_domain acpi_general_pm_domain = {
1151 	.ops = {
1152 		.runtime_suspend = acpi_subsys_runtime_suspend,
1153 		.runtime_resume = acpi_subsys_runtime_resume,
1154 #ifdef CONFIG_PM_SLEEP
1155 		.prepare = acpi_subsys_prepare,
1156 		.complete = acpi_subsys_complete,
1157 		.suspend = acpi_subsys_suspend,
1158 		.suspend_late = acpi_subsys_suspend_late,
1159 		.suspend_noirq = acpi_subsys_suspend_noirq,
1160 		.resume_noirq = acpi_subsys_resume_noirq,
1161 		.resume_early = acpi_subsys_resume_early,
1162 		.freeze = acpi_subsys_freeze,
1163 		.freeze_late = acpi_subsys_freeze_late,
1164 		.freeze_noirq = acpi_subsys_freeze_noirq,
1165 		.thaw_noirq = acpi_subsys_thaw_noirq,
1166 		.poweroff = acpi_subsys_suspend,
1167 		.poweroff_late = acpi_subsys_suspend_late,
1168 		.poweroff_noirq = acpi_subsys_suspend_noirq,
1169 		.restore_noirq = acpi_subsys_resume_noirq,
1170 		.restore_early = acpi_subsys_resume_early,
1171 #endif
1172 	},
1173 };
1174 
1175 /**
1176  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1177  * @dev: Device to take care of.
1178  * @power_off: Whether or not to try to remove power from the device.
1179  *
1180  * Remove the device from the general ACPI PM domain and remove its wakeup
1181  * notifier.  If @power_off is set, additionally remove power from the device if
1182  * possible.
1183  *
1184  * Callers must ensure proper synchronization of this function with power
1185  * management callbacks.
1186  */
1187 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1188 {
1189 	struct acpi_device *adev = ACPI_COMPANION(dev);
1190 
1191 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1192 		dev_pm_domain_set(dev, NULL);
1193 		acpi_remove_pm_notifier(adev);
1194 		if (power_off) {
1195 			/*
1196 			 * If the device's PM QoS resume latency limit or flags
1197 			 * have been exposed to user space, they have to be
1198 			 * hidden at this point, so that they don't affect the
1199 			 * choice of the low-power state to put the device into.
1200 			 */
1201 			dev_pm_qos_hide_latency_limit(dev);
1202 			dev_pm_qos_hide_flags(dev);
1203 			acpi_device_wakeup_disable(adev);
1204 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1205 		}
1206 	}
1207 }
1208 
1209 /**
1210  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1211  * @dev: Device to prepare.
1212  * @power_on: Whether or not to power on the device.
1213  *
1214  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1215  * attached to it, install a wakeup notification handler for the device and
1216  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1217  * be put into the ACPI D0 state before the function returns.
1218  *
1219  * This assumes that the @dev's bus type uses generic power management callbacks
1220  * (or doesn't use any power management callbacks at all).
1221  *
1222  * Callers must ensure proper synchronization of this function with power
1223  * management callbacks.
1224  */
1225 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1226 {
1227 	struct acpi_device *adev = ACPI_COMPANION(dev);
1228 
1229 	if (!adev)
1230 		return -ENODEV;
1231 
1232 	if (dev->pm_domain)
1233 		return -EEXIST;
1234 
1235 	/*
1236 	 * Only attach the power domain to the first device if the
1237 	 * companion is shared by multiple. This is to prevent doing power
1238 	 * management twice.
1239 	 */
1240 	if (!acpi_device_is_first_physical_node(adev, dev))
1241 		return -EBUSY;
1242 
1243 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1244 	dev_pm_domain_set(dev, &acpi_general_pm_domain);
1245 	if (power_on) {
1246 		acpi_dev_pm_full_power(adev);
1247 		acpi_device_wakeup_disable(adev);
1248 	}
1249 
1250 	dev->pm_domain->detach = acpi_dev_pm_detach;
1251 	return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1254 #endif /* CONFIG_PM */
1255