xref: /openbmc/linux/drivers/acpi/device_pm.c (revision 5a244f48)
1 /*
2  * drivers/acpi/device_pm.c - ACPI device power management routines.
3  *
4  * Copyright (C) 2012, Intel Corp.
5  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License version 2 as published
11  *  by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19  */
20 
21 #include <linux/acpi.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_domain.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/suspend.h>
28 
29 #include "internal.h"
30 
31 #define _COMPONENT	ACPI_POWER_COMPONENT
32 ACPI_MODULE_NAME("device_pm");
33 
34 /**
35  * acpi_power_state_string - String representation of ACPI device power state.
36  * @state: ACPI device power state to return the string representation of.
37  */
38 const char *acpi_power_state_string(int state)
39 {
40 	switch (state) {
41 	case ACPI_STATE_D0:
42 		return "D0";
43 	case ACPI_STATE_D1:
44 		return "D1";
45 	case ACPI_STATE_D2:
46 		return "D2";
47 	case ACPI_STATE_D3_HOT:
48 		return "D3hot";
49 	case ACPI_STATE_D3_COLD:
50 		return "D3cold";
51 	default:
52 		return "(unknown)";
53 	}
54 }
55 
56 /**
57  * acpi_device_get_power - Get power state of an ACPI device.
58  * @device: Device to get the power state of.
59  * @state: Place to store the power state of the device.
60  *
61  * This function does not update the device's power.state field, but it may
62  * update its parent's power.state field (when the parent's power state is
63  * unknown and the device's power state turns out to be D0).
64  */
65 int acpi_device_get_power(struct acpi_device *device, int *state)
66 {
67 	int result = ACPI_STATE_UNKNOWN;
68 
69 	if (!device || !state)
70 		return -EINVAL;
71 
72 	if (!device->flags.power_manageable) {
73 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
74 		*state = device->parent ?
75 			device->parent->power.state : ACPI_STATE_D0;
76 		goto out;
77 	}
78 
79 	/*
80 	 * Get the device's power state from power resources settings and _PSC,
81 	 * if available.
82 	 */
83 	if (device->power.flags.power_resources) {
84 		int error = acpi_power_get_inferred_state(device, &result);
85 		if (error)
86 			return error;
87 	}
88 	if (device->power.flags.explicit_get) {
89 		acpi_handle handle = device->handle;
90 		unsigned long long psc;
91 		acpi_status status;
92 
93 		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
94 		if (ACPI_FAILURE(status))
95 			return -ENODEV;
96 
97 		/*
98 		 * The power resources settings may indicate a power state
99 		 * shallower than the actual power state of the device, because
100 		 * the same power resources may be referenced by other devices.
101 		 *
102 		 * For systems predating ACPI 4.0 we assume that D3hot is the
103 		 * deepest state that can be supported.
104 		 */
105 		if (psc > result && psc < ACPI_STATE_D3_COLD)
106 			result = psc;
107 		else if (result == ACPI_STATE_UNKNOWN)
108 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
109 	}
110 
111 	/*
112 	 * If we were unsure about the device parent's power state up to this
113 	 * point, the fact that the device is in D0 implies that the parent has
114 	 * to be in D0 too, except if ignore_parent is set.
115 	 */
116 	if (!device->power.flags.ignore_parent && device->parent
117 	    && device->parent->power.state == ACPI_STATE_UNKNOWN
118 	    && result == ACPI_STATE_D0)
119 		device->parent->power.state = ACPI_STATE_D0;
120 
121 	*state = result;
122 
123  out:
124 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
125 			  device->pnp.bus_id, acpi_power_state_string(*state)));
126 
127 	return 0;
128 }
129 
130 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
131 {
132 	if (adev->power.states[state].flags.explicit_set) {
133 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
134 		acpi_status status;
135 
136 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
137 		if (ACPI_FAILURE(status))
138 			return -ENODEV;
139 	}
140 	return 0;
141 }
142 
143 /**
144  * acpi_device_set_power - Set power state of an ACPI device.
145  * @device: Device to set the power state of.
146  * @state: New power state to set.
147  *
148  * Callers must ensure that the device is power manageable before using this
149  * function.
150  */
151 int acpi_device_set_power(struct acpi_device *device, int state)
152 {
153 	int target_state = state;
154 	int result = 0;
155 
156 	if (!device || !device->flags.power_manageable
157 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
158 		return -EINVAL;
159 
160 	/* Make sure this is a valid target state */
161 
162 	if (state == device->power.state) {
163 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
164 				  device->pnp.bus_id,
165 				  acpi_power_state_string(state)));
166 		return 0;
167 	}
168 
169 	if (state == ACPI_STATE_D3_COLD) {
170 		/*
171 		 * For transitions to D3cold we need to execute _PS3 and then
172 		 * possibly drop references to the power resources in use.
173 		 */
174 		state = ACPI_STATE_D3_HOT;
175 		/* If _PR3 is not available, use D3hot as the target state. */
176 		if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
177 			target_state = state;
178 	} else if (!device->power.states[state].flags.valid) {
179 		dev_warn(&device->dev, "Power state %s not supported\n",
180 			 acpi_power_state_string(state));
181 		return -ENODEV;
182 	}
183 
184 	if (!device->power.flags.ignore_parent &&
185 	    device->parent && (state < device->parent->power.state)) {
186 		dev_warn(&device->dev,
187 			 "Cannot transition to power state %s for parent in %s\n",
188 			 acpi_power_state_string(state),
189 			 acpi_power_state_string(device->parent->power.state));
190 		return -ENODEV;
191 	}
192 
193 	/*
194 	 * Transition Power
195 	 * ----------------
196 	 * In accordance with ACPI 6, _PSx is executed before manipulating power
197 	 * resources, unless the target state is D0, in which case _PS0 is
198 	 * supposed to be executed after turning the power resources on.
199 	 */
200 	if (state > ACPI_STATE_D0) {
201 		/*
202 		 * According to ACPI 6, devices cannot go from lower-power
203 		 * (deeper) states to higher-power (shallower) states.
204 		 */
205 		if (state < device->power.state) {
206 			dev_warn(&device->dev, "Cannot transition from %s to %s\n",
207 				 acpi_power_state_string(device->power.state),
208 				 acpi_power_state_string(state));
209 			return -ENODEV;
210 		}
211 
212 		result = acpi_dev_pm_explicit_set(device, state);
213 		if (result)
214 			goto end;
215 
216 		if (device->power.flags.power_resources)
217 			result = acpi_power_transition(device, target_state);
218 	} else {
219 		if (device->power.flags.power_resources) {
220 			result = acpi_power_transition(device, ACPI_STATE_D0);
221 			if (result)
222 				goto end;
223 		}
224 		result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
225 	}
226 
227  end:
228 	if (result) {
229 		dev_warn(&device->dev, "Failed to change power state to %s\n",
230 			 acpi_power_state_string(state));
231 	} else {
232 		device->power.state = target_state;
233 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
234 				  "Device [%s] transitioned to %s\n",
235 				  device->pnp.bus_id,
236 				  acpi_power_state_string(state)));
237 	}
238 
239 	return result;
240 }
241 EXPORT_SYMBOL(acpi_device_set_power);
242 
243 int acpi_bus_set_power(acpi_handle handle, int state)
244 {
245 	struct acpi_device *device;
246 	int result;
247 
248 	result = acpi_bus_get_device(handle, &device);
249 	if (result)
250 		return result;
251 
252 	return acpi_device_set_power(device, state);
253 }
254 EXPORT_SYMBOL(acpi_bus_set_power);
255 
256 int acpi_bus_init_power(struct acpi_device *device)
257 {
258 	int state;
259 	int result;
260 
261 	if (!device)
262 		return -EINVAL;
263 
264 	device->power.state = ACPI_STATE_UNKNOWN;
265 	if (!acpi_device_is_present(device)) {
266 		device->flags.initialized = false;
267 		return -ENXIO;
268 	}
269 
270 	result = acpi_device_get_power(device, &state);
271 	if (result)
272 		return result;
273 
274 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
275 		/* Reference count the power resources. */
276 		result = acpi_power_on_resources(device, state);
277 		if (result)
278 			return result;
279 
280 		if (state == ACPI_STATE_D0) {
281 			/*
282 			 * If _PSC is not present and the state inferred from
283 			 * power resources appears to be D0, it still may be
284 			 * necessary to execute _PS0 at this point, because
285 			 * another device using the same power resources may
286 			 * have been put into D0 previously and that's why we
287 			 * see D0 here.
288 			 */
289 			result = acpi_dev_pm_explicit_set(device, state);
290 			if (result)
291 				return result;
292 		}
293 	} else if (state == ACPI_STATE_UNKNOWN) {
294 		/*
295 		 * No power resources and missing _PSC?  Cross fingers and make
296 		 * it D0 in hope that this is what the BIOS put the device into.
297 		 * [We tried to force D0 here by executing _PS0, but that broke
298 		 * Toshiba P870-303 in a nasty way.]
299 		 */
300 		state = ACPI_STATE_D0;
301 	}
302 	device->power.state = state;
303 	return 0;
304 }
305 
306 /**
307  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
308  * @device: Device object whose power state is to be fixed up.
309  *
310  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
311  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
312  * not be the case and this function should be used then.
313  */
314 int acpi_device_fix_up_power(struct acpi_device *device)
315 {
316 	int ret = 0;
317 
318 	if (!device->power.flags.power_resources
319 	    && !device->power.flags.explicit_get
320 	    && device->power.state == ACPI_STATE_D0)
321 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
322 
323 	return ret;
324 }
325 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
326 
327 int acpi_device_update_power(struct acpi_device *device, int *state_p)
328 {
329 	int state;
330 	int result;
331 
332 	if (device->power.state == ACPI_STATE_UNKNOWN) {
333 		result = acpi_bus_init_power(device);
334 		if (!result && state_p)
335 			*state_p = device->power.state;
336 
337 		return result;
338 	}
339 
340 	result = acpi_device_get_power(device, &state);
341 	if (result)
342 		return result;
343 
344 	if (state == ACPI_STATE_UNKNOWN) {
345 		state = ACPI_STATE_D0;
346 		result = acpi_device_set_power(device, state);
347 		if (result)
348 			return result;
349 	} else {
350 		if (device->power.flags.power_resources) {
351 			/*
352 			 * We don't need to really switch the state, bu we need
353 			 * to update the power resources' reference counters.
354 			 */
355 			result = acpi_power_transition(device, state);
356 			if (result)
357 				return result;
358 		}
359 		device->power.state = state;
360 	}
361 	if (state_p)
362 		*state_p = state;
363 
364 	return 0;
365 }
366 EXPORT_SYMBOL_GPL(acpi_device_update_power);
367 
368 int acpi_bus_update_power(acpi_handle handle, int *state_p)
369 {
370 	struct acpi_device *device;
371 	int result;
372 
373 	result = acpi_bus_get_device(handle, &device);
374 	return result ? result : acpi_device_update_power(device, state_p);
375 }
376 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
377 
378 bool acpi_bus_power_manageable(acpi_handle handle)
379 {
380 	struct acpi_device *device;
381 	int result;
382 
383 	result = acpi_bus_get_device(handle, &device);
384 	return result ? false : device->flags.power_manageable;
385 }
386 EXPORT_SYMBOL(acpi_bus_power_manageable);
387 
388 #ifdef CONFIG_PM
389 static DEFINE_MUTEX(acpi_pm_notifier_lock);
390 
391 void acpi_pm_wakeup_event(struct device *dev)
392 {
393 	pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
394 }
395 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
396 
397 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
398 {
399 	struct acpi_device *adev;
400 
401 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
402 		return;
403 
404 	acpi_handle_debug(handle, "Wake notify\n");
405 
406 	adev = acpi_bus_get_acpi_device(handle);
407 	if (!adev)
408 		return;
409 
410 	mutex_lock(&acpi_pm_notifier_lock);
411 
412 	if (adev->wakeup.flags.notifier_present) {
413 		pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
414 		if (adev->wakeup.context.func) {
415 			acpi_handle_debug(handle, "Running %pF for %s\n",
416 					  adev->wakeup.context.func,
417 					  dev_name(adev->wakeup.context.dev));
418 			adev->wakeup.context.func(&adev->wakeup.context);
419 		}
420 	}
421 
422 	mutex_unlock(&acpi_pm_notifier_lock);
423 
424 	acpi_bus_put_acpi_device(adev);
425 }
426 
427 /**
428  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
429  * @adev: ACPI device to add the notify handler for.
430  * @dev: Device to generate a wakeup event for while handling the notification.
431  * @func: Work function to execute when handling the notification.
432  *
433  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
434  * PM wakeup events.  For example, wakeup events may be generated for bridges
435  * if one of the devices below the bridge is signaling wakeup, even if the
436  * bridge itself doesn't have a wakeup GPE associated with it.
437  */
438 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
439 			void (*func)(struct acpi_device_wakeup_context *context))
440 {
441 	acpi_status status = AE_ALREADY_EXISTS;
442 
443 	if (!dev && !func)
444 		return AE_BAD_PARAMETER;
445 
446 	mutex_lock(&acpi_pm_notifier_lock);
447 
448 	if (adev->wakeup.flags.notifier_present)
449 		goto out;
450 
451 	adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
452 	adev->wakeup.context.dev = dev;
453 	adev->wakeup.context.func = func;
454 
455 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
456 					     acpi_pm_notify_handler, NULL);
457 	if (ACPI_FAILURE(status))
458 		goto out;
459 
460 	adev->wakeup.flags.notifier_present = true;
461 
462  out:
463 	mutex_unlock(&acpi_pm_notifier_lock);
464 	return status;
465 }
466 
467 /**
468  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
469  * @adev: ACPI device to remove the notifier from.
470  */
471 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
472 {
473 	acpi_status status = AE_BAD_PARAMETER;
474 
475 	mutex_lock(&acpi_pm_notifier_lock);
476 
477 	if (!adev->wakeup.flags.notifier_present)
478 		goto out;
479 
480 	status = acpi_remove_notify_handler(adev->handle,
481 					    ACPI_SYSTEM_NOTIFY,
482 					    acpi_pm_notify_handler);
483 	if (ACPI_FAILURE(status))
484 		goto out;
485 
486 	adev->wakeup.context.func = NULL;
487 	adev->wakeup.context.dev = NULL;
488 	wakeup_source_unregister(adev->wakeup.ws);
489 
490 	adev->wakeup.flags.notifier_present = false;
491 
492  out:
493 	mutex_unlock(&acpi_pm_notifier_lock);
494 	return status;
495 }
496 
497 bool acpi_bus_can_wakeup(acpi_handle handle)
498 {
499 	struct acpi_device *device;
500 	int result;
501 
502 	result = acpi_bus_get_device(handle, &device);
503 	return result ? false : device->wakeup.flags.valid;
504 }
505 EXPORT_SYMBOL(acpi_bus_can_wakeup);
506 
507 bool acpi_pm_device_can_wakeup(struct device *dev)
508 {
509 	struct acpi_device *adev = ACPI_COMPANION(dev);
510 
511 	return adev ? acpi_device_can_wakeup(adev) : false;
512 }
513 
514 /**
515  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
516  * @dev: Device whose preferred target power state to return.
517  * @adev: ACPI device node corresponding to @dev.
518  * @target_state: System state to match the resultant device state.
519  * @d_min_p: Location to store the highest power state available to the device.
520  * @d_max_p: Location to store the lowest power state available to the device.
521  *
522  * Find the lowest power (highest number) and highest power (lowest number) ACPI
523  * device power states that the device can be in while the system is in the
524  * state represented by @target_state.  Store the integer numbers representing
525  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
526  * respectively.
527  *
528  * Callers must ensure that @dev and @adev are valid pointers and that @adev
529  * actually corresponds to @dev before using this function.
530  *
531  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
532  * returns a value that doesn't make sense.  The memory locations pointed to by
533  * @d_max_p and @d_min_p are only modified on success.
534  */
535 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
536 				 u32 target_state, int *d_min_p, int *d_max_p)
537 {
538 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
539 	acpi_handle handle = adev->handle;
540 	unsigned long long ret;
541 	int d_min, d_max;
542 	bool wakeup = false;
543 	acpi_status status;
544 
545 	/*
546 	 * If the system state is S0, the lowest power state the device can be
547 	 * in is D3cold, unless the device has _S0W and is supposed to signal
548 	 * wakeup, in which case the return value of _S0W has to be used as the
549 	 * lowest power state available to the device.
550 	 */
551 	d_min = ACPI_STATE_D0;
552 	d_max = ACPI_STATE_D3_COLD;
553 
554 	/*
555 	 * If present, _SxD methods return the minimum D-state (highest power
556 	 * state) we can use for the corresponding S-states.  Otherwise, the
557 	 * minimum D-state is D0 (ACPI 3.x).
558 	 */
559 	if (target_state > ACPI_STATE_S0) {
560 		/*
561 		 * We rely on acpi_evaluate_integer() not clobbering the integer
562 		 * provided if AE_NOT_FOUND is returned.
563 		 */
564 		ret = d_min;
565 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
566 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
567 		    || ret > ACPI_STATE_D3_COLD)
568 			return -ENODATA;
569 
570 		/*
571 		 * We need to handle legacy systems where D3hot and D3cold are
572 		 * the same and 3 is returned in both cases, so fall back to
573 		 * D3cold if D3hot is not a valid state.
574 		 */
575 		if (!adev->power.states[ret].flags.valid) {
576 			if (ret == ACPI_STATE_D3_HOT)
577 				ret = ACPI_STATE_D3_COLD;
578 			else
579 				return -ENODATA;
580 		}
581 		d_min = ret;
582 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
583 			&& adev->wakeup.sleep_state >= target_state;
584 	} else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) !=
585 			PM_QOS_FLAGS_NONE) {
586 		wakeup = adev->wakeup.flags.valid;
587 	}
588 
589 	/*
590 	 * If _PRW says we can wake up the system from the target sleep state,
591 	 * the D-state returned by _SxD is sufficient for that (we assume a
592 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
593 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
594 	 * can wake the system.  _S0W may be valid, too.
595 	 */
596 	if (wakeup) {
597 		method[3] = 'W';
598 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
599 		if (status == AE_NOT_FOUND) {
600 			if (target_state > ACPI_STATE_S0)
601 				d_max = d_min;
602 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
603 			/* Fall back to D3cold if ret is not a valid state. */
604 			if (!adev->power.states[ret].flags.valid)
605 				ret = ACPI_STATE_D3_COLD;
606 
607 			d_max = ret > d_min ? ret : d_min;
608 		} else {
609 			return -ENODATA;
610 		}
611 	}
612 
613 	if (d_min_p)
614 		*d_min_p = d_min;
615 
616 	if (d_max_p)
617 		*d_max_p = d_max;
618 
619 	return 0;
620 }
621 
622 /**
623  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
624  * @dev: Device whose preferred target power state to return.
625  * @d_min_p: Location to store the upper limit of the allowed states range.
626  * @d_max_in: Deepest low-power state to take into consideration.
627  * Return value: Preferred power state of the device on success, -ENODEV
628  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
629  * incorrect, or -ENODATA on ACPI method failure.
630  *
631  * The caller must ensure that @dev is valid before using this function.
632  */
633 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
634 {
635 	struct acpi_device *adev;
636 	int ret, d_min, d_max;
637 
638 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
639 		return -EINVAL;
640 
641 	if (d_max_in > ACPI_STATE_D2) {
642 		enum pm_qos_flags_status stat;
643 
644 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
645 		if (stat == PM_QOS_FLAGS_ALL)
646 			d_max_in = ACPI_STATE_D2;
647 	}
648 
649 	adev = ACPI_COMPANION(dev);
650 	if (!adev) {
651 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
652 		return -ENODEV;
653 	}
654 
655 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
656 				    &d_min, &d_max);
657 	if (ret)
658 		return ret;
659 
660 	if (d_max_in < d_min)
661 		return -EINVAL;
662 
663 	if (d_max > d_max_in) {
664 		for (d_max = d_max_in; d_max > d_min; d_max--) {
665 			if (adev->power.states[d_max].flags.valid)
666 				break;
667 		}
668 	}
669 
670 	if (d_min_p)
671 		*d_min_p = d_min;
672 
673 	return d_max;
674 }
675 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
676 
677 /**
678  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
679  * @context: Device wakeup context.
680  */
681 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
682 {
683 	struct device *dev = context->dev;
684 
685 	if (dev) {
686 		pm_wakeup_event(dev, 0);
687 		pm_request_resume(dev);
688 	}
689 }
690 
691 static DEFINE_MUTEX(acpi_wakeup_lock);
692 
693 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
694 				       u32 target_state, int max_count)
695 {
696 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
697 	acpi_status status;
698 	int error = 0;
699 
700 	mutex_lock(&acpi_wakeup_lock);
701 
702 	if (wakeup->enable_count >= max_count)
703 		goto out;
704 
705 	if (wakeup->enable_count > 0)
706 		goto inc;
707 
708 	error = acpi_enable_wakeup_device_power(adev, target_state);
709 	if (error)
710 		goto out;
711 
712 	status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
713 	if (ACPI_FAILURE(status)) {
714 		acpi_disable_wakeup_device_power(adev);
715 		error = -EIO;
716 		goto out;
717 	}
718 
719 inc:
720 	wakeup->enable_count++;
721 
722 out:
723 	mutex_unlock(&acpi_wakeup_lock);
724 	return error;
725 }
726 
727 /**
728  * acpi_device_wakeup_enable - Enable wakeup functionality for device.
729  * @adev: ACPI device to enable wakeup functionality for.
730  * @target_state: State the system is transitioning into.
731  *
732  * Enable the GPE associated with @adev so that it can generate wakeup signals
733  * for the device in response to external (remote) events and enable wakeup
734  * power for it.
735  *
736  * Callers must ensure that @adev is a valid ACPI device node before executing
737  * this function.
738  */
739 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
740 {
741 	return __acpi_device_wakeup_enable(adev, target_state, 1);
742 }
743 
744 /**
745  * acpi_device_wakeup_disable - Disable wakeup functionality for device.
746  * @adev: ACPI device to disable wakeup functionality for.
747  *
748  * Disable the GPE associated with @adev and disable wakeup power for it.
749  *
750  * Callers must ensure that @adev is a valid ACPI device node before executing
751  * this function.
752  */
753 static void acpi_device_wakeup_disable(struct acpi_device *adev)
754 {
755 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
756 
757 	mutex_lock(&acpi_wakeup_lock);
758 
759 	if (!wakeup->enable_count)
760 		goto out;
761 
762 	acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
763 	acpi_disable_wakeup_device_power(adev);
764 
765 	wakeup->enable_count--;
766 
767 out:
768 	mutex_unlock(&acpi_wakeup_lock);
769 }
770 
771 static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable,
772 				       int max_count)
773 {
774 	struct acpi_device *adev;
775 	int error;
776 
777 	adev = ACPI_COMPANION(dev);
778 	if (!adev) {
779 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
780 		return -ENODEV;
781 	}
782 
783 	if (!acpi_device_can_wakeup(adev))
784 		return -EINVAL;
785 
786 	if (!enable) {
787 		acpi_device_wakeup_disable(adev);
788 		dev_dbg(dev, "Wakeup disabled by ACPI\n");
789 		return 0;
790 	}
791 
792 	error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(),
793 					    max_count);
794 	if (!error)
795 		dev_dbg(dev, "Wakeup enabled by ACPI\n");
796 
797 	return error;
798 }
799 
800 /**
801  * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
802  * @dev: Device to enable/disable to generate wakeup events.
803  * @enable: Whether to enable or disable the wakeup functionality.
804  */
805 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
806 {
807 	return __acpi_pm_set_device_wakeup(dev, enable, 1);
808 }
809 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
810 
811 /**
812  * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge.
813  * @dev: Bridge device to enable/disable to generate wakeup events.
814  * @enable: Whether to enable or disable the wakeup functionality.
815  */
816 int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable)
817 {
818 	return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX);
819 }
820 EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup);
821 
822 /**
823  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
824  * @dev: Device to put into a low-power state.
825  * @adev: ACPI device node corresponding to @dev.
826  * @system_state: System state to choose the device state for.
827  */
828 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
829 				 u32 system_state)
830 {
831 	int ret, state;
832 
833 	if (!acpi_device_power_manageable(adev))
834 		return 0;
835 
836 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
837 	return ret ? ret : acpi_device_set_power(adev, state);
838 }
839 
840 /**
841  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
842  * @adev: ACPI device node to put into the full-power state.
843  */
844 static int acpi_dev_pm_full_power(struct acpi_device *adev)
845 {
846 	return acpi_device_power_manageable(adev) ?
847 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
848 }
849 
850 /**
851  * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI.
852  * @dev: Device to put into a low-power state.
853  *
854  * Put the given device into a runtime low-power state using the standard ACPI
855  * mechanism.  Set up remote wakeup if desired, choose the state to put the
856  * device into (this checks if remote wakeup is expected to work too), and set
857  * the power state of the device.
858  */
859 int acpi_dev_runtime_suspend(struct device *dev)
860 {
861 	struct acpi_device *adev = ACPI_COMPANION(dev);
862 	bool remote_wakeup;
863 	int error;
864 
865 	if (!adev)
866 		return 0;
867 
868 	remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) >
869 				PM_QOS_FLAGS_NONE;
870 	if (remote_wakeup) {
871 		error = acpi_device_wakeup_enable(adev, ACPI_STATE_S0);
872 		if (error)
873 			return -EAGAIN;
874 	}
875 
876 	error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
877 	if (error && remote_wakeup)
878 		acpi_device_wakeup_disable(adev);
879 
880 	return error;
881 }
882 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend);
883 
884 /**
885  * acpi_dev_runtime_resume - Put device into the full-power state using ACPI.
886  * @dev: Device to put into the full-power state.
887  *
888  * Put the given device into the full-power state using the standard ACPI
889  * mechanism at run time.  Set the power state of the device to ACPI D0 and
890  * disable remote wakeup.
891  */
892 int acpi_dev_runtime_resume(struct device *dev)
893 {
894 	struct acpi_device *adev = ACPI_COMPANION(dev);
895 	int error;
896 
897 	if (!adev)
898 		return 0;
899 
900 	error = acpi_dev_pm_full_power(adev);
901 	acpi_device_wakeup_disable(adev);
902 	return error;
903 }
904 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume);
905 
906 /**
907  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
908  * @dev: Device to suspend.
909  *
910  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
911  * it into a runtime low-power state.
912  */
913 int acpi_subsys_runtime_suspend(struct device *dev)
914 {
915 	int ret = pm_generic_runtime_suspend(dev);
916 	return ret ? ret : acpi_dev_runtime_suspend(dev);
917 }
918 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
919 
920 /**
921  * acpi_subsys_runtime_resume - Resume device using ACPI.
922  * @dev: Device to Resume.
923  *
924  * Use ACPI to put the given device into the full-power state and carry out the
925  * generic runtime resume procedure for it.
926  */
927 int acpi_subsys_runtime_resume(struct device *dev)
928 {
929 	int ret = acpi_dev_runtime_resume(dev);
930 	return ret ? ret : pm_generic_runtime_resume(dev);
931 }
932 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
933 
934 #ifdef CONFIG_PM_SLEEP
935 /**
936  * acpi_dev_suspend_late - Put device into a low-power state using ACPI.
937  * @dev: Device to put into a low-power state.
938  *
939  * Put the given device into a low-power state during system transition to a
940  * sleep state using the standard ACPI mechanism.  Set up system wakeup if
941  * desired, choose the state to put the device into (this checks if system
942  * wakeup is expected to work too), and set the power state of the device.
943  */
944 int acpi_dev_suspend_late(struct device *dev)
945 {
946 	struct acpi_device *adev = ACPI_COMPANION(dev);
947 	u32 target_state;
948 	bool wakeup;
949 	int error;
950 
951 	if (!adev)
952 		return 0;
953 
954 	target_state = acpi_target_system_state();
955 	wakeup = device_may_wakeup(dev) && acpi_device_can_wakeup(adev);
956 	if (wakeup) {
957 		error = acpi_device_wakeup_enable(adev, target_state);
958 		if (error)
959 			return error;
960 	}
961 
962 	error = acpi_dev_pm_low_power(dev, adev, target_state);
963 	if (error && wakeup)
964 		acpi_device_wakeup_disable(adev);
965 
966 	return error;
967 }
968 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late);
969 
970 /**
971  * acpi_dev_resume_early - Put device into the full-power state using ACPI.
972  * @dev: Device to put into the full-power state.
973  *
974  * Put the given device into the full-power state using the standard ACPI
975  * mechanism during system transition to the working state.  Set the power
976  * state of the device to ACPI D0 and disable remote wakeup.
977  */
978 int acpi_dev_resume_early(struct device *dev)
979 {
980 	struct acpi_device *adev = ACPI_COMPANION(dev);
981 	int error;
982 
983 	if (!adev)
984 		return 0;
985 
986 	error = acpi_dev_pm_full_power(adev);
987 	acpi_device_wakeup_disable(adev);
988 	return error;
989 }
990 EXPORT_SYMBOL_GPL(acpi_dev_resume_early);
991 
992 /**
993  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
994  * @dev: Device to prepare.
995  */
996 int acpi_subsys_prepare(struct device *dev)
997 {
998 	struct acpi_device *adev = ACPI_COMPANION(dev);
999 	u32 sys_target;
1000 	int ret, state;
1001 
1002 	ret = pm_generic_prepare(dev);
1003 	if (ret < 0)
1004 		return ret;
1005 
1006 	if (!adev || !pm_runtime_suspended(dev)
1007 	    || device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
1008 		return 0;
1009 
1010 	sys_target = acpi_target_system_state();
1011 	if (sys_target == ACPI_STATE_S0)
1012 		return 1;
1013 
1014 	if (adev->power.flags.dsw_present)
1015 		return 0;
1016 
1017 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
1018 	return !ret && state == adev->power.state;
1019 }
1020 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1021 
1022 /**
1023  * acpi_subsys_suspend - Run the device driver's suspend callback.
1024  * @dev: Device to handle.
1025  *
1026  * Follow PCI and resume devices suspended at run time before running their
1027  * system suspend callbacks.
1028  */
1029 int acpi_subsys_suspend(struct device *dev)
1030 {
1031 	pm_runtime_resume(dev);
1032 	return pm_generic_suspend(dev);
1033 }
1034 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1035 
1036 /**
1037  * acpi_subsys_suspend_late - Suspend device using ACPI.
1038  * @dev: Device to suspend.
1039  *
1040  * Carry out the generic late suspend procedure for @dev and use ACPI to put
1041  * it into a low-power state during system transition into a sleep state.
1042  */
1043 int acpi_subsys_suspend_late(struct device *dev)
1044 {
1045 	int ret = pm_generic_suspend_late(dev);
1046 	return ret ? ret : acpi_dev_suspend_late(dev);
1047 }
1048 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1049 
1050 /**
1051  * acpi_subsys_resume_early - Resume device using ACPI.
1052  * @dev: Device to Resume.
1053  *
1054  * Use ACPI to put the given device into the full-power state and carry out the
1055  * generic early resume procedure for it during system transition into the
1056  * working state.
1057  */
1058 int acpi_subsys_resume_early(struct device *dev)
1059 {
1060 	int ret = acpi_dev_resume_early(dev);
1061 	return ret ? ret : pm_generic_resume_early(dev);
1062 }
1063 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1064 
1065 /**
1066  * acpi_subsys_freeze - Run the device driver's freeze callback.
1067  * @dev: Device to handle.
1068  */
1069 int acpi_subsys_freeze(struct device *dev)
1070 {
1071 	/*
1072 	 * This used to be done in acpi_subsys_prepare() for all devices and
1073 	 * some drivers may depend on it, so do it here.  Ideally, however,
1074 	 * runtime-suspended devices should not be touched during freeze/thaw
1075 	 * transitions.
1076 	 */
1077 	pm_runtime_resume(dev);
1078 	return pm_generic_freeze(dev);
1079 }
1080 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1081 
1082 #endif /* CONFIG_PM_SLEEP */
1083 
1084 static struct dev_pm_domain acpi_general_pm_domain = {
1085 	.ops = {
1086 		.runtime_suspend = acpi_subsys_runtime_suspend,
1087 		.runtime_resume = acpi_subsys_runtime_resume,
1088 #ifdef CONFIG_PM_SLEEP
1089 		.prepare = acpi_subsys_prepare,
1090 		.complete = pm_complete_with_resume_check,
1091 		.suspend = acpi_subsys_suspend,
1092 		.suspend_late = acpi_subsys_suspend_late,
1093 		.resume_early = acpi_subsys_resume_early,
1094 		.freeze = acpi_subsys_freeze,
1095 		.poweroff = acpi_subsys_suspend,
1096 		.poweroff_late = acpi_subsys_suspend_late,
1097 		.restore_early = acpi_subsys_resume_early,
1098 #endif
1099 	},
1100 };
1101 
1102 /**
1103  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1104  * @dev: Device to take care of.
1105  * @power_off: Whether or not to try to remove power from the device.
1106  *
1107  * Remove the device from the general ACPI PM domain and remove its wakeup
1108  * notifier.  If @power_off is set, additionally remove power from the device if
1109  * possible.
1110  *
1111  * Callers must ensure proper synchronization of this function with power
1112  * management callbacks.
1113  */
1114 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1115 {
1116 	struct acpi_device *adev = ACPI_COMPANION(dev);
1117 
1118 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1119 		dev_pm_domain_set(dev, NULL);
1120 		acpi_remove_pm_notifier(adev);
1121 		if (power_off) {
1122 			/*
1123 			 * If the device's PM QoS resume latency limit or flags
1124 			 * have been exposed to user space, they have to be
1125 			 * hidden at this point, so that they don't affect the
1126 			 * choice of the low-power state to put the device into.
1127 			 */
1128 			dev_pm_qos_hide_latency_limit(dev);
1129 			dev_pm_qos_hide_flags(dev);
1130 			acpi_device_wakeup_disable(adev);
1131 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1132 		}
1133 	}
1134 }
1135 
1136 /**
1137  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1138  * @dev: Device to prepare.
1139  * @power_on: Whether or not to power on the device.
1140  *
1141  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1142  * attached to it, install a wakeup notification handler for the device and
1143  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1144  * be put into the ACPI D0 state before the function returns.
1145  *
1146  * This assumes that the @dev's bus type uses generic power management callbacks
1147  * (or doesn't use any power management callbacks at all).
1148  *
1149  * Callers must ensure proper synchronization of this function with power
1150  * management callbacks.
1151  */
1152 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1153 {
1154 	struct acpi_device *adev = ACPI_COMPANION(dev);
1155 
1156 	if (!adev)
1157 		return -ENODEV;
1158 
1159 	if (dev->pm_domain)
1160 		return -EEXIST;
1161 
1162 	/*
1163 	 * Only attach the power domain to the first device if the
1164 	 * companion is shared by multiple. This is to prevent doing power
1165 	 * management twice.
1166 	 */
1167 	if (!acpi_device_is_first_physical_node(adev, dev))
1168 		return -EBUSY;
1169 
1170 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1171 	dev_pm_domain_set(dev, &acpi_general_pm_domain);
1172 	if (power_on) {
1173 		acpi_dev_pm_full_power(adev);
1174 		acpi_device_wakeup_disable(adev);
1175 	}
1176 
1177 	dev->pm_domain->detach = acpi_dev_pm_detach;
1178 	return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1181 #endif /* CONFIG_PM */
1182