1 /* 2 * drivers/acpi/device_pm.c - ACPI device power management routines. 3 * 4 * Copyright (C) 2012, Intel Corp. 5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as published 11 * by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 19 */ 20 21 #include <linux/acpi.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm_qos.h> 25 #include <linux/pm_domain.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/suspend.h> 28 29 #include "internal.h" 30 31 #define _COMPONENT ACPI_POWER_COMPONENT 32 ACPI_MODULE_NAME("device_pm"); 33 34 /** 35 * acpi_power_state_string - String representation of ACPI device power state. 36 * @state: ACPI device power state to return the string representation of. 37 */ 38 const char *acpi_power_state_string(int state) 39 { 40 switch (state) { 41 case ACPI_STATE_D0: 42 return "D0"; 43 case ACPI_STATE_D1: 44 return "D1"; 45 case ACPI_STATE_D2: 46 return "D2"; 47 case ACPI_STATE_D3_HOT: 48 return "D3hot"; 49 case ACPI_STATE_D3_COLD: 50 return "D3cold"; 51 default: 52 return "(unknown)"; 53 } 54 } 55 56 /** 57 * acpi_device_get_power - Get power state of an ACPI device. 58 * @device: Device to get the power state of. 59 * @state: Place to store the power state of the device. 60 * 61 * This function does not update the device's power.state field, but it may 62 * update its parent's power.state field (when the parent's power state is 63 * unknown and the device's power state turns out to be D0). 64 */ 65 int acpi_device_get_power(struct acpi_device *device, int *state) 66 { 67 int result = ACPI_STATE_UNKNOWN; 68 69 if (!device || !state) 70 return -EINVAL; 71 72 if (!device->flags.power_manageable) { 73 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 74 *state = device->parent ? 75 device->parent->power.state : ACPI_STATE_D0; 76 goto out; 77 } 78 79 /* 80 * Get the device's power state from power resources settings and _PSC, 81 * if available. 82 */ 83 if (device->power.flags.power_resources) { 84 int error = acpi_power_get_inferred_state(device, &result); 85 if (error) 86 return error; 87 } 88 if (device->power.flags.explicit_get) { 89 acpi_handle handle = device->handle; 90 unsigned long long psc; 91 acpi_status status; 92 93 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc); 94 if (ACPI_FAILURE(status)) 95 return -ENODEV; 96 97 /* 98 * The power resources settings may indicate a power state 99 * shallower than the actual power state of the device, because 100 * the same power resources may be referenced by other devices. 101 * 102 * For systems predating ACPI 4.0 we assume that D3hot is the 103 * deepest state that can be supported. 104 */ 105 if (psc > result && psc < ACPI_STATE_D3_COLD) 106 result = psc; 107 else if (result == ACPI_STATE_UNKNOWN) 108 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc; 109 } 110 111 /* 112 * If we were unsure about the device parent's power state up to this 113 * point, the fact that the device is in D0 implies that the parent has 114 * to be in D0 too, except if ignore_parent is set. 115 */ 116 if (!device->power.flags.ignore_parent && device->parent 117 && device->parent->power.state == ACPI_STATE_UNKNOWN 118 && result == ACPI_STATE_D0) 119 device->parent->power.state = ACPI_STATE_D0; 120 121 *state = result; 122 123 out: 124 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n", 125 device->pnp.bus_id, acpi_power_state_string(*state))); 126 127 return 0; 128 } 129 130 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 131 { 132 if (adev->power.states[state].flags.explicit_set) { 133 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 134 acpi_status status; 135 136 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 137 if (ACPI_FAILURE(status)) 138 return -ENODEV; 139 } 140 return 0; 141 } 142 143 /** 144 * acpi_device_set_power - Set power state of an ACPI device. 145 * @device: Device to set the power state of. 146 * @state: New power state to set. 147 * 148 * Callers must ensure that the device is power manageable before using this 149 * function. 150 */ 151 int acpi_device_set_power(struct acpi_device *device, int state) 152 { 153 int target_state = state; 154 int result = 0; 155 156 if (!device || !device->flags.power_manageable 157 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 158 return -EINVAL; 159 160 /* Make sure this is a valid target state */ 161 162 if (state == device->power.state) { 163 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n", 164 device->pnp.bus_id, 165 acpi_power_state_string(state))); 166 return 0; 167 } 168 169 if (state == ACPI_STATE_D3_COLD) { 170 /* 171 * For transitions to D3cold we need to execute _PS3 and then 172 * possibly drop references to the power resources in use. 173 */ 174 state = ACPI_STATE_D3_HOT; 175 /* If _PR3 is not available, use D3hot as the target state. */ 176 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid) 177 target_state = state; 178 } else if (!device->power.states[state].flags.valid) { 179 dev_warn(&device->dev, "Power state %s not supported\n", 180 acpi_power_state_string(state)); 181 return -ENODEV; 182 } 183 184 if (!device->power.flags.ignore_parent && 185 device->parent && (state < device->parent->power.state)) { 186 dev_warn(&device->dev, 187 "Cannot transition to power state %s for parent in %s\n", 188 acpi_power_state_string(state), 189 acpi_power_state_string(device->parent->power.state)); 190 return -ENODEV; 191 } 192 193 /* 194 * Transition Power 195 * ---------------- 196 * In accordance with ACPI 6, _PSx is executed before manipulating power 197 * resources, unless the target state is D0, in which case _PS0 is 198 * supposed to be executed after turning the power resources on. 199 */ 200 if (state > ACPI_STATE_D0) { 201 /* 202 * According to ACPI 6, devices cannot go from lower-power 203 * (deeper) states to higher-power (shallower) states. 204 */ 205 if (state < device->power.state) { 206 dev_warn(&device->dev, "Cannot transition from %s to %s\n", 207 acpi_power_state_string(device->power.state), 208 acpi_power_state_string(state)); 209 return -ENODEV; 210 } 211 212 result = acpi_dev_pm_explicit_set(device, state); 213 if (result) 214 goto end; 215 216 if (device->power.flags.power_resources) 217 result = acpi_power_transition(device, target_state); 218 } else { 219 if (device->power.flags.power_resources) { 220 result = acpi_power_transition(device, ACPI_STATE_D0); 221 if (result) 222 goto end; 223 } 224 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 225 } 226 227 end: 228 if (result) { 229 dev_warn(&device->dev, "Failed to change power state to %s\n", 230 acpi_power_state_string(state)); 231 } else { 232 device->power.state = target_state; 233 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 234 "Device [%s] transitioned to %s\n", 235 device->pnp.bus_id, 236 acpi_power_state_string(state))); 237 } 238 239 return result; 240 } 241 EXPORT_SYMBOL(acpi_device_set_power); 242 243 int acpi_bus_set_power(acpi_handle handle, int state) 244 { 245 struct acpi_device *device; 246 int result; 247 248 result = acpi_bus_get_device(handle, &device); 249 if (result) 250 return result; 251 252 return acpi_device_set_power(device, state); 253 } 254 EXPORT_SYMBOL(acpi_bus_set_power); 255 256 int acpi_bus_init_power(struct acpi_device *device) 257 { 258 int state; 259 int result; 260 261 if (!device) 262 return -EINVAL; 263 264 device->power.state = ACPI_STATE_UNKNOWN; 265 if (!acpi_device_is_present(device)) { 266 device->flags.initialized = false; 267 return -ENXIO; 268 } 269 270 result = acpi_device_get_power(device, &state); 271 if (result) 272 return result; 273 274 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 275 /* Reference count the power resources. */ 276 result = acpi_power_on_resources(device, state); 277 if (result) 278 return result; 279 280 if (state == ACPI_STATE_D0) { 281 /* 282 * If _PSC is not present and the state inferred from 283 * power resources appears to be D0, it still may be 284 * necessary to execute _PS0 at this point, because 285 * another device using the same power resources may 286 * have been put into D0 previously and that's why we 287 * see D0 here. 288 */ 289 result = acpi_dev_pm_explicit_set(device, state); 290 if (result) 291 return result; 292 } 293 } else if (state == ACPI_STATE_UNKNOWN) { 294 /* 295 * No power resources and missing _PSC? Cross fingers and make 296 * it D0 in hope that this is what the BIOS put the device into. 297 * [We tried to force D0 here by executing _PS0, but that broke 298 * Toshiba P870-303 in a nasty way.] 299 */ 300 state = ACPI_STATE_D0; 301 } 302 device->power.state = state; 303 return 0; 304 } 305 306 /** 307 * acpi_device_fix_up_power - Force device with missing _PSC into D0. 308 * @device: Device object whose power state is to be fixed up. 309 * 310 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined, 311 * are assumed to be put into D0 by the BIOS. However, in some cases that may 312 * not be the case and this function should be used then. 313 */ 314 int acpi_device_fix_up_power(struct acpi_device *device) 315 { 316 int ret = 0; 317 318 if (!device->power.flags.power_resources 319 && !device->power.flags.explicit_get 320 && device->power.state == ACPI_STATE_D0) 321 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 322 323 return ret; 324 } 325 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power); 326 327 int acpi_device_update_power(struct acpi_device *device, int *state_p) 328 { 329 int state; 330 int result; 331 332 if (device->power.state == ACPI_STATE_UNKNOWN) { 333 result = acpi_bus_init_power(device); 334 if (!result && state_p) 335 *state_p = device->power.state; 336 337 return result; 338 } 339 340 result = acpi_device_get_power(device, &state); 341 if (result) 342 return result; 343 344 if (state == ACPI_STATE_UNKNOWN) { 345 state = ACPI_STATE_D0; 346 result = acpi_device_set_power(device, state); 347 if (result) 348 return result; 349 } else { 350 if (device->power.flags.power_resources) { 351 /* 352 * We don't need to really switch the state, bu we need 353 * to update the power resources' reference counters. 354 */ 355 result = acpi_power_transition(device, state); 356 if (result) 357 return result; 358 } 359 device->power.state = state; 360 } 361 if (state_p) 362 *state_p = state; 363 364 return 0; 365 } 366 EXPORT_SYMBOL_GPL(acpi_device_update_power); 367 368 int acpi_bus_update_power(acpi_handle handle, int *state_p) 369 { 370 struct acpi_device *device; 371 int result; 372 373 result = acpi_bus_get_device(handle, &device); 374 return result ? result : acpi_device_update_power(device, state_p); 375 } 376 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 377 378 bool acpi_bus_power_manageable(acpi_handle handle) 379 { 380 struct acpi_device *device; 381 int result; 382 383 result = acpi_bus_get_device(handle, &device); 384 return result ? false : device->flags.power_manageable; 385 } 386 EXPORT_SYMBOL(acpi_bus_power_manageable); 387 388 #ifdef CONFIG_PM 389 static DEFINE_MUTEX(acpi_pm_notifier_lock); 390 391 void acpi_pm_wakeup_event(struct device *dev) 392 { 393 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup()); 394 } 395 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event); 396 397 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used) 398 { 399 struct acpi_device *adev; 400 401 if (val != ACPI_NOTIFY_DEVICE_WAKE) 402 return; 403 404 acpi_handle_debug(handle, "Wake notify\n"); 405 406 adev = acpi_bus_get_acpi_device(handle); 407 if (!adev) 408 return; 409 410 mutex_lock(&acpi_pm_notifier_lock); 411 412 if (adev->wakeup.flags.notifier_present) { 413 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup()); 414 if (adev->wakeup.context.func) { 415 acpi_handle_debug(handle, "Running %pF for %s\n", 416 adev->wakeup.context.func, 417 dev_name(adev->wakeup.context.dev)); 418 adev->wakeup.context.func(&adev->wakeup.context); 419 } 420 } 421 422 mutex_unlock(&acpi_pm_notifier_lock); 423 424 acpi_bus_put_acpi_device(adev); 425 } 426 427 /** 428 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device. 429 * @adev: ACPI device to add the notify handler for. 430 * @dev: Device to generate a wakeup event for while handling the notification. 431 * @func: Work function to execute when handling the notification. 432 * 433 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 434 * PM wakeup events. For example, wakeup events may be generated for bridges 435 * if one of the devices below the bridge is signaling wakeup, even if the 436 * bridge itself doesn't have a wakeup GPE associated with it. 437 */ 438 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, 439 void (*func)(struct acpi_device_wakeup_context *context)) 440 { 441 acpi_status status = AE_ALREADY_EXISTS; 442 443 if (!dev && !func) 444 return AE_BAD_PARAMETER; 445 446 mutex_lock(&acpi_pm_notifier_lock); 447 448 if (adev->wakeup.flags.notifier_present) 449 goto out; 450 451 adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev)); 452 adev->wakeup.context.dev = dev; 453 adev->wakeup.context.func = func; 454 455 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY, 456 acpi_pm_notify_handler, NULL); 457 if (ACPI_FAILURE(status)) 458 goto out; 459 460 adev->wakeup.flags.notifier_present = true; 461 462 out: 463 mutex_unlock(&acpi_pm_notifier_lock); 464 return status; 465 } 466 467 /** 468 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 469 * @adev: ACPI device to remove the notifier from. 470 */ 471 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) 472 { 473 acpi_status status = AE_BAD_PARAMETER; 474 475 mutex_lock(&acpi_pm_notifier_lock); 476 477 if (!adev->wakeup.flags.notifier_present) 478 goto out; 479 480 status = acpi_remove_notify_handler(adev->handle, 481 ACPI_SYSTEM_NOTIFY, 482 acpi_pm_notify_handler); 483 if (ACPI_FAILURE(status)) 484 goto out; 485 486 adev->wakeup.context.func = NULL; 487 adev->wakeup.context.dev = NULL; 488 wakeup_source_unregister(adev->wakeup.ws); 489 490 adev->wakeup.flags.notifier_present = false; 491 492 out: 493 mutex_unlock(&acpi_pm_notifier_lock); 494 return status; 495 } 496 497 bool acpi_bus_can_wakeup(acpi_handle handle) 498 { 499 struct acpi_device *device; 500 int result; 501 502 result = acpi_bus_get_device(handle, &device); 503 return result ? false : device->wakeup.flags.valid; 504 } 505 EXPORT_SYMBOL(acpi_bus_can_wakeup); 506 507 bool acpi_pm_device_can_wakeup(struct device *dev) 508 { 509 struct acpi_device *adev = ACPI_COMPANION(dev); 510 511 return adev ? acpi_device_can_wakeup(adev) : false; 512 } 513 514 /** 515 * acpi_dev_pm_get_state - Get preferred power state of ACPI device. 516 * @dev: Device whose preferred target power state to return. 517 * @adev: ACPI device node corresponding to @dev. 518 * @target_state: System state to match the resultant device state. 519 * @d_min_p: Location to store the highest power state available to the device. 520 * @d_max_p: Location to store the lowest power state available to the device. 521 * 522 * Find the lowest power (highest number) and highest power (lowest number) ACPI 523 * device power states that the device can be in while the system is in the 524 * state represented by @target_state. Store the integer numbers representing 525 * those stats in the memory locations pointed to by @d_max_p and @d_min_p, 526 * respectively. 527 * 528 * Callers must ensure that @dev and @adev are valid pointers and that @adev 529 * actually corresponds to @dev before using this function. 530 * 531 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or 532 * returns a value that doesn't make sense. The memory locations pointed to by 533 * @d_max_p and @d_min_p are only modified on success. 534 */ 535 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev, 536 u32 target_state, int *d_min_p, int *d_max_p) 537 { 538 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' }; 539 acpi_handle handle = adev->handle; 540 unsigned long long ret; 541 int d_min, d_max; 542 bool wakeup = false; 543 acpi_status status; 544 545 /* 546 * If the system state is S0, the lowest power state the device can be 547 * in is D3cold, unless the device has _S0W and is supposed to signal 548 * wakeup, in which case the return value of _S0W has to be used as the 549 * lowest power state available to the device. 550 */ 551 d_min = ACPI_STATE_D0; 552 d_max = ACPI_STATE_D3_COLD; 553 554 /* 555 * If present, _SxD methods return the minimum D-state (highest power 556 * state) we can use for the corresponding S-states. Otherwise, the 557 * minimum D-state is D0 (ACPI 3.x). 558 */ 559 if (target_state > ACPI_STATE_S0) { 560 /* 561 * We rely on acpi_evaluate_integer() not clobbering the integer 562 * provided if AE_NOT_FOUND is returned. 563 */ 564 ret = d_min; 565 status = acpi_evaluate_integer(handle, method, NULL, &ret); 566 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND) 567 || ret > ACPI_STATE_D3_COLD) 568 return -ENODATA; 569 570 /* 571 * We need to handle legacy systems where D3hot and D3cold are 572 * the same and 3 is returned in both cases, so fall back to 573 * D3cold if D3hot is not a valid state. 574 */ 575 if (!adev->power.states[ret].flags.valid) { 576 if (ret == ACPI_STATE_D3_HOT) 577 ret = ACPI_STATE_D3_COLD; 578 else 579 return -ENODATA; 580 } 581 d_min = ret; 582 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 583 && adev->wakeup.sleep_state >= target_state; 584 } else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) != 585 PM_QOS_FLAGS_NONE) { 586 wakeup = adev->wakeup.flags.valid; 587 } 588 589 /* 590 * If _PRW says we can wake up the system from the target sleep state, 591 * the D-state returned by _SxD is sufficient for that (we assume a 592 * wakeup-aware driver if wake is set). Still, if _SxW exists 593 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 594 * can wake the system. _S0W may be valid, too. 595 */ 596 if (wakeup) { 597 method[3] = 'W'; 598 status = acpi_evaluate_integer(handle, method, NULL, &ret); 599 if (status == AE_NOT_FOUND) { 600 if (target_state > ACPI_STATE_S0) 601 d_max = d_min; 602 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) { 603 /* Fall back to D3cold if ret is not a valid state. */ 604 if (!adev->power.states[ret].flags.valid) 605 ret = ACPI_STATE_D3_COLD; 606 607 d_max = ret > d_min ? ret : d_min; 608 } else { 609 return -ENODATA; 610 } 611 } 612 613 if (d_min_p) 614 *d_min_p = d_min; 615 616 if (d_max_p) 617 *d_max_p = d_max; 618 619 return 0; 620 } 621 622 /** 623 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 624 * @dev: Device whose preferred target power state to return. 625 * @d_min_p: Location to store the upper limit of the allowed states range. 626 * @d_max_in: Deepest low-power state to take into consideration. 627 * Return value: Preferred power state of the device on success, -ENODEV 628 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is 629 * incorrect, or -ENODATA on ACPI method failure. 630 * 631 * The caller must ensure that @dev is valid before using this function. 632 */ 633 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 634 { 635 struct acpi_device *adev; 636 int ret, d_min, d_max; 637 638 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD) 639 return -EINVAL; 640 641 if (d_max_in > ACPI_STATE_D2) { 642 enum pm_qos_flags_status stat; 643 644 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 645 if (stat == PM_QOS_FLAGS_ALL) 646 d_max_in = ACPI_STATE_D2; 647 } 648 649 adev = ACPI_COMPANION(dev); 650 if (!adev) { 651 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 652 return -ENODEV; 653 } 654 655 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(), 656 &d_min, &d_max); 657 if (ret) 658 return ret; 659 660 if (d_max_in < d_min) 661 return -EINVAL; 662 663 if (d_max > d_max_in) { 664 for (d_max = d_max_in; d_max > d_min; d_max--) { 665 if (adev->power.states[d_max].flags.valid) 666 break; 667 } 668 } 669 670 if (d_min_p) 671 *d_min_p = d_min; 672 673 return d_max; 674 } 675 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 676 677 /** 678 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function. 679 * @context: Device wakeup context. 680 */ 681 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context) 682 { 683 struct device *dev = context->dev; 684 685 if (dev) { 686 pm_wakeup_event(dev, 0); 687 pm_request_resume(dev); 688 } 689 } 690 691 static DEFINE_MUTEX(acpi_wakeup_lock); 692 693 static int __acpi_device_wakeup_enable(struct acpi_device *adev, 694 u32 target_state, int max_count) 695 { 696 struct acpi_device_wakeup *wakeup = &adev->wakeup; 697 acpi_status status; 698 int error = 0; 699 700 mutex_lock(&acpi_wakeup_lock); 701 702 if (wakeup->enable_count >= max_count) 703 goto out; 704 705 if (wakeup->enable_count > 0) 706 goto inc; 707 708 error = acpi_enable_wakeup_device_power(adev, target_state); 709 if (error) 710 goto out; 711 712 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 713 if (ACPI_FAILURE(status)) { 714 acpi_disable_wakeup_device_power(adev); 715 error = -EIO; 716 goto out; 717 } 718 719 inc: 720 wakeup->enable_count++; 721 722 out: 723 mutex_unlock(&acpi_wakeup_lock); 724 return error; 725 } 726 727 /** 728 * acpi_device_wakeup_enable - Enable wakeup functionality for device. 729 * @adev: ACPI device to enable wakeup functionality for. 730 * @target_state: State the system is transitioning into. 731 * 732 * Enable the GPE associated with @adev so that it can generate wakeup signals 733 * for the device in response to external (remote) events and enable wakeup 734 * power for it. 735 * 736 * Callers must ensure that @adev is a valid ACPI device node before executing 737 * this function. 738 */ 739 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state) 740 { 741 return __acpi_device_wakeup_enable(adev, target_state, 1); 742 } 743 744 /** 745 * acpi_device_wakeup_disable - Disable wakeup functionality for device. 746 * @adev: ACPI device to disable wakeup functionality for. 747 * 748 * Disable the GPE associated with @adev and disable wakeup power for it. 749 * 750 * Callers must ensure that @adev is a valid ACPI device node before executing 751 * this function. 752 */ 753 static void acpi_device_wakeup_disable(struct acpi_device *adev) 754 { 755 struct acpi_device_wakeup *wakeup = &adev->wakeup; 756 757 mutex_lock(&acpi_wakeup_lock); 758 759 if (!wakeup->enable_count) 760 goto out; 761 762 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 763 acpi_disable_wakeup_device_power(adev); 764 765 wakeup->enable_count--; 766 767 out: 768 mutex_unlock(&acpi_wakeup_lock); 769 } 770 771 static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable, 772 int max_count) 773 { 774 struct acpi_device *adev; 775 int error; 776 777 adev = ACPI_COMPANION(dev); 778 if (!adev) { 779 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 780 return -ENODEV; 781 } 782 783 if (!acpi_device_can_wakeup(adev)) 784 return -EINVAL; 785 786 if (!enable) { 787 acpi_device_wakeup_disable(adev); 788 dev_dbg(dev, "Wakeup disabled by ACPI\n"); 789 return 0; 790 } 791 792 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(), 793 max_count); 794 if (!error) 795 dev_dbg(dev, "Wakeup enabled by ACPI\n"); 796 797 return error; 798 } 799 800 /** 801 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device. 802 * @dev: Device to enable/disable to generate wakeup events. 803 * @enable: Whether to enable or disable the wakeup functionality. 804 */ 805 int acpi_pm_set_device_wakeup(struct device *dev, bool enable) 806 { 807 return __acpi_pm_set_device_wakeup(dev, enable, 1); 808 } 809 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup); 810 811 /** 812 * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge. 813 * @dev: Bridge device to enable/disable to generate wakeup events. 814 * @enable: Whether to enable or disable the wakeup functionality. 815 */ 816 int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable) 817 { 818 return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX); 819 } 820 EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup); 821 822 /** 823 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 824 * @dev: Device to put into a low-power state. 825 * @adev: ACPI device node corresponding to @dev. 826 * @system_state: System state to choose the device state for. 827 */ 828 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 829 u32 system_state) 830 { 831 int ret, state; 832 833 if (!acpi_device_power_manageable(adev)) 834 return 0; 835 836 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state); 837 return ret ? ret : acpi_device_set_power(adev, state); 838 } 839 840 /** 841 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 842 * @adev: ACPI device node to put into the full-power state. 843 */ 844 static int acpi_dev_pm_full_power(struct acpi_device *adev) 845 { 846 return acpi_device_power_manageable(adev) ? 847 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 848 } 849 850 /** 851 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI. 852 * @dev: Device to put into a low-power state. 853 * 854 * Put the given device into a runtime low-power state using the standard ACPI 855 * mechanism. Set up remote wakeup if desired, choose the state to put the 856 * device into (this checks if remote wakeup is expected to work too), and set 857 * the power state of the device. 858 */ 859 int acpi_dev_runtime_suspend(struct device *dev) 860 { 861 struct acpi_device *adev = ACPI_COMPANION(dev); 862 bool remote_wakeup; 863 int error; 864 865 if (!adev) 866 return 0; 867 868 remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) > 869 PM_QOS_FLAGS_NONE; 870 if (remote_wakeup) { 871 error = acpi_device_wakeup_enable(adev, ACPI_STATE_S0); 872 if (error) 873 return -EAGAIN; 874 } 875 876 error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 877 if (error && remote_wakeup) 878 acpi_device_wakeup_disable(adev); 879 880 return error; 881 } 882 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend); 883 884 /** 885 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI. 886 * @dev: Device to put into the full-power state. 887 * 888 * Put the given device into the full-power state using the standard ACPI 889 * mechanism at run time. Set the power state of the device to ACPI D0 and 890 * disable remote wakeup. 891 */ 892 int acpi_dev_runtime_resume(struct device *dev) 893 { 894 struct acpi_device *adev = ACPI_COMPANION(dev); 895 int error; 896 897 if (!adev) 898 return 0; 899 900 error = acpi_dev_pm_full_power(adev); 901 acpi_device_wakeup_disable(adev); 902 return error; 903 } 904 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume); 905 906 /** 907 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 908 * @dev: Device to suspend. 909 * 910 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 911 * it into a runtime low-power state. 912 */ 913 int acpi_subsys_runtime_suspend(struct device *dev) 914 { 915 int ret = pm_generic_runtime_suspend(dev); 916 return ret ? ret : acpi_dev_runtime_suspend(dev); 917 } 918 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 919 920 /** 921 * acpi_subsys_runtime_resume - Resume device using ACPI. 922 * @dev: Device to Resume. 923 * 924 * Use ACPI to put the given device into the full-power state and carry out the 925 * generic runtime resume procedure for it. 926 */ 927 int acpi_subsys_runtime_resume(struct device *dev) 928 { 929 int ret = acpi_dev_runtime_resume(dev); 930 return ret ? ret : pm_generic_runtime_resume(dev); 931 } 932 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 933 934 #ifdef CONFIG_PM_SLEEP 935 /** 936 * acpi_dev_suspend_late - Put device into a low-power state using ACPI. 937 * @dev: Device to put into a low-power state. 938 * 939 * Put the given device into a low-power state during system transition to a 940 * sleep state using the standard ACPI mechanism. Set up system wakeup if 941 * desired, choose the state to put the device into (this checks if system 942 * wakeup is expected to work too), and set the power state of the device. 943 */ 944 int acpi_dev_suspend_late(struct device *dev) 945 { 946 struct acpi_device *adev = ACPI_COMPANION(dev); 947 u32 target_state; 948 bool wakeup; 949 int error; 950 951 if (!adev) 952 return 0; 953 954 target_state = acpi_target_system_state(); 955 wakeup = device_may_wakeup(dev) && acpi_device_can_wakeup(adev); 956 if (wakeup) { 957 error = acpi_device_wakeup_enable(adev, target_state); 958 if (error) 959 return error; 960 } 961 962 error = acpi_dev_pm_low_power(dev, adev, target_state); 963 if (error && wakeup) 964 acpi_device_wakeup_disable(adev); 965 966 return error; 967 } 968 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late); 969 970 /** 971 * acpi_dev_resume_early - Put device into the full-power state using ACPI. 972 * @dev: Device to put into the full-power state. 973 * 974 * Put the given device into the full-power state using the standard ACPI 975 * mechanism during system transition to the working state. Set the power 976 * state of the device to ACPI D0 and disable remote wakeup. 977 */ 978 int acpi_dev_resume_early(struct device *dev) 979 { 980 struct acpi_device *adev = ACPI_COMPANION(dev); 981 int error; 982 983 if (!adev) 984 return 0; 985 986 error = acpi_dev_pm_full_power(adev); 987 acpi_device_wakeup_disable(adev); 988 return error; 989 } 990 EXPORT_SYMBOL_GPL(acpi_dev_resume_early); 991 992 /** 993 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 994 * @dev: Device to prepare. 995 */ 996 int acpi_subsys_prepare(struct device *dev) 997 { 998 struct acpi_device *adev = ACPI_COMPANION(dev); 999 u32 sys_target; 1000 int ret, state; 1001 1002 ret = pm_generic_prepare(dev); 1003 if (ret < 0) 1004 return ret; 1005 1006 if (!adev || !pm_runtime_suspended(dev) 1007 || device_may_wakeup(dev) != !!adev->wakeup.prepare_count) 1008 return 0; 1009 1010 sys_target = acpi_target_system_state(); 1011 if (sys_target == ACPI_STATE_S0) 1012 return 1; 1013 1014 if (adev->power.flags.dsw_present) 1015 return 0; 1016 1017 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state); 1018 return !ret && state == adev->power.state; 1019 } 1020 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 1021 1022 /** 1023 * acpi_subsys_suspend - Run the device driver's suspend callback. 1024 * @dev: Device to handle. 1025 * 1026 * Follow PCI and resume devices suspended at run time before running their 1027 * system suspend callbacks. 1028 */ 1029 int acpi_subsys_suspend(struct device *dev) 1030 { 1031 pm_runtime_resume(dev); 1032 return pm_generic_suspend(dev); 1033 } 1034 EXPORT_SYMBOL_GPL(acpi_subsys_suspend); 1035 1036 /** 1037 * acpi_subsys_suspend_late - Suspend device using ACPI. 1038 * @dev: Device to suspend. 1039 * 1040 * Carry out the generic late suspend procedure for @dev and use ACPI to put 1041 * it into a low-power state during system transition into a sleep state. 1042 */ 1043 int acpi_subsys_suspend_late(struct device *dev) 1044 { 1045 int ret = pm_generic_suspend_late(dev); 1046 return ret ? ret : acpi_dev_suspend_late(dev); 1047 } 1048 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 1049 1050 /** 1051 * acpi_subsys_resume_early - Resume device using ACPI. 1052 * @dev: Device to Resume. 1053 * 1054 * Use ACPI to put the given device into the full-power state and carry out the 1055 * generic early resume procedure for it during system transition into the 1056 * working state. 1057 */ 1058 int acpi_subsys_resume_early(struct device *dev) 1059 { 1060 int ret = acpi_dev_resume_early(dev); 1061 return ret ? ret : pm_generic_resume_early(dev); 1062 } 1063 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early); 1064 1065 /** 1066 * acpi_subsys_freeze - Run the device driver's freeze callback. 1067 * @dev: Device to handle. 1068 */ 1069 int acpi_subsys_freeze(struct device *dev) 1070 { 1071 /* 1072 * This used to be done in acpi_subsys_prepare() for all devices and 1073 * some drivers may depend on it, so do it here. Ideally, however, 1074 * runtime-suspended devices should not be touched during freeze/thaw 1075 * transitions. 1076 */ 1077 pm_runtime_resume(dev); 1078 return pm_generic_freeze(dev); 1079 } 1080 EXPORT_SYMBOL_GPL(acpi_subsys_freeze); 1081 1082 #endif /* CONFIG_PM_SLEEP */ 1083 1084 static struct dev_pm_domain acpi_general_pm_domain = { 1085 .ops = { 1086 .runtime_suspend = acpi_subsys_runtime_suspend, 1087 .runtime_resume = acpi_subsys_runtime_resume, 1088 #ifdef CONFIG_PM_SLEEP 1089 .prepare = acpi_subsys_prepare, 1090 .complete = pm_complete_with_resume_check, 1091 .suspend = acpi_subsys_suspend, 1092 .suspend_late = acpi_subsys_suspend_late, 1093 .resume_early = acpi_subsys_resume_early, 1094 .freeze = acpi_subsys_freeze, 1095 .poweroff = acpi_subsys_suspend, 1096 .poweroff_late = acpi_subsys_suspend_late, 1097 .restore_early = acpi_subsys_resume_early, 1098 #endif 1099 }, 1100 }; 1101 1102 /** 1103 * acpi_dev_pm_detach - Remove ACPI power management from the device. 1104 * @dev: Device to take care of. 1105 * @power_off: Whether or not to try to remove power from the device. 1106 * 1107 * Remove the device from the general ACPI PM domain and remove its wakeup 1108 * notifier. If @power_off is set, additionally remove power from the device if 1109 * possible. 1110 * 1111 * Callers must ensure proper synchronization of this function with power 1112 * management callbacks. 1113 */ 1114 static void acpi_dev_pm_detach(struct device *dev, bool power_off) 1115 { 1116 struct acpi_device *adev = ACPI_COMPANION(dev); 1117 1118 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 1119 dev_pm_domain_set(dev, NULL); 1120 acpi_remove_pm_notifier(adev); 1121 if (power_off) { 1122 /* 1123 * If the device's PM QoS resume latency limit or flags 1124 * have been exposed to user space, they have to be 1125 * hidden at this point, so that they don't affect the 1126 * choice of the low-power state to put the device into. 1127 */ 1128 dev_pm_qos_hide_latency_limit(dev); 1129 dev_pm_qos_hide_flags(dev); 1130 acpi_device_wakeup_disable(adev); 1131 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 1132 } 1133 } 1134 } 1135 1136 /** 1137 * acpi_dev_pm_attach - Prepare device for ACPI power management. 1138 * @dev: Device to prepare. 1139 * @power_on: Whether or not to power on the device. 1140 * 1141 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 1142 * attached to it, install a wakeup notification handler for the device and 1143 * add it to the general ACPI PM domain. If @power_on is set, the device will 1144 * be put into the ACPI D0 state before the function returns. 1145 * 1146 * This assumes that the @dev's bus type uses generic power management callbacks 1147 * (or doesn't use any power management callbacks at all). 1148 * 1149 * Callers must ensure proper synchronization of this function with power 1150 * management callbacks. 1151 */ 1152 int acpi_dev_pm_attach(struct device *dev, bool power_on) 1153 { 1154 struct acpi_device *adev = ACPI_COMPANION(dev); 1155 1156 if (!adev) 1157 return -ENODEV; 1158 1159 if (dev->pm_domain) 1160 return -EEXIST; 1161 1162 /* 1163 * Only attach the power domain to the first device if the 1164 * companion is shared by multiple. This is to prevent doing power 1165 * management twice. 1166 */ 1167 if (!acpi_device_is_first_physical_node(adev, dev)) 1168 return -EBUSY; 1169 1170 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func); 1171 dev_pm_domain_set(dev, &acpi_general_pm_domain); 1172 if (power_on) { 1173 acpi_dev_pm_full_power(adev); 1174 acpi_device_wakeup_disable(adev); 1175 } 1176 1177 dev->pm_domain->detach = acpi_dev_pm_detach; 1178 return 0; 1179 } 1180 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 1181 #endif /* CONFIG_PM */ 1182