xref: /openbmc/linux/drivers/acpi/device_pm.c (revision 4161b450)
1 /*
2  * drivers/acpi/device_pm.c - ACPI device power management routines.
3  *
4  * Copyright (C) 2012, Intel Corp.
5  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License version 2 as published
11  *  by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License along
19  *  with this program; if not, write to the Free Software Foundation, Inc.,
20  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  */
24 
25 #include <linux/acpi.h>
26 #include <linux/export.h>
27 #include <linux/mutex.h>
28 #include <linux/pm_qos.h>
29 #include <linux/pm_runtime.h>
30 
31 #include "internal.h"
32 
33 #define _COMPONENT	ACPI_POWER_COMPONENT
34 ACPI_MODULE_NAME("device_pm");
35 
36 /**
37  * acpi_power_state_string - String representation of ACPI device power state.
38  * @state: ACPI device power state to return the string representation of.
39  */
40 const char *acpi_power_state_string(int state)
41 {
42 	switch (state) {
43 	case ACPI_STATE_D0:
44 		return "D0";
45 	case ACPI_STATE_D1:
46 		return "D1";
47 	case ACPI_STATE_D2:
48 		return "D2";
49 	case ACPI_STATE_D3_HOT:
50 		return "D3hot";
51 	case ACPI_STATE_D3_COLD:
52 		return "D3cold";
53 	default:
54 		return "(unknown)";
55 	}
56 }
57 
58 /**
59  * acpi_device_get_power - Get power state of an ACPI device.
60  * @device: Device to get the power state of.
61  * @state: Place to store the power state of the device.
62  *
63  * This function does not update the device's power.state field, but it may
64  * update its parent's power.state field (when the parent's power state is
65  * unknown and the device's power state turns out to be D0).
66  */
67 int acpi_device_get_power(struct acpi_device *device, int *state)
68 {
69 	int result = ACPI_STATE_UNKNOWN;
70 
71 	if (!device || !state)
72 		return -EINVAL;
73 
74 	if (!device->flags.power_manageable) {
75 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
76 		*state = device->parent ?
77 			device->parent->power.state : ACPI_STATE_D0;
78 		goto out;
79 	}
80 
81 	/*
82 	 * Get the device's power state from power resources settings and _PSC,
83 	 * if available.
84 	 */
85 	if (device->power.flags.power_resources) {
86 		int error = acpi_power_get_inferred_state(device, &result);
87 		if (error)
88 			return error;
89 	}
90 	if (device->power.flags.explicit_get) {
91 		acpi_handle handle = device->handle;
92 		unsigned long long psc;
93 		acpi_status status;
94 
95 		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
96 		if (ACPI_FAILURE(status))
97 			return -ENODEV;
98 
99 		/*
100 		 * The power resources settings may indicate a power state
101 		 * shallower than the actual power state of the device.
102 		 *
103 		 * Moreover, on systems predating ACPI 4.0, if the device
104 		 * doesn't depend on any power resources and _PSC returns 3,
105 		 * that means "power off".  We need to maintain compatibility
106 		 * with those systems.
107 		 */
108 		if (psc > result && psc < ACPI_STATE_D3_COLD)
109 			result = psc;
110 		else if (result == ACPI_STATE_UNKNOWN)
111 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc;
112 	}
113 
114 	/*
115 	 * If we were unsure about the device parent's power state up to this
116 	 * point, the fact that the device is in D0 implies that the parent has
117 	 * to be in D0 too, except if ignore_parent is set.
118 	 */
119 	if (!device->power.flags.ignore_parent && device->parent
120 	    && device->parent->power.state == ACPI_STATE_UNKNOWN
121 	    && result == ACPI_STATE_D0)
122 		device->parent->power.state = ACPI_STATE_D0;
123 
124 	*state = result;
125 
126  out:
127 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
128 			  device->pnp.bus_id, acpi_power_state_string(*state)));
129 
130 	return 0;
131 }
132 
133 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
134 {
135 	if (adev->power.states[state].flags.explicit_set) {
136 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
137 		acpi_status status;
138 
139 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
140 		if (ACPI_FAILURE(status))
141 			return -ENODEV;
142 	}
143 	return 0;
144 }
145 
146 /**
147  * acpi_device_set_power - Set power state of an ACPI device.
148  * @device: Device to set the power state of.
149  * @state: New power state to set.
150  *
151  * Callers must ensure that the device is power manageable before using this
152  * function.
153  */
154 int acpi_device_set_power(struct acpi_device *device, int state)
155 {
156 	int result = 0;
157 	bool cut_power = false;
158 
159 	if (!device || !device->flags.power_manageable
160 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
161 		return -EINVAL;
162 
163 	/* Make sure this is a valid target state */
164 
165 	if (state == device->power.state) {
166 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
167 				  device->pnp.bus_id,
168 				  acpi_power_state_string(state)));
169 		return 0;
170 	}
171 
172 	if (!device->power.states[state].flags.valid) {
173 		dev_warn(&device->dev, "Power state %s not supported\n",
174 			 acpi_power_state_string(state));
175 		return -ENODEV;
176 	}
177 	if (!device->power.flags.ignore_parent &&
178 	    device->parent && (state < device->parent->power.state)) {
179 		dev_warn(&device->dev,
180 			 "Cannot transition to power state %s for parent in %s\n",
181 			 acpi_power_state_string(state),
182 			 acpi_power_state_string(device->parent->power.state));
183 		return -ENODEV;
184 	}
185 
186 	/* For D3cold we should first transition into D3hot. */
187 	if (state == ACPI_STATE_D3_COLD
188 	    && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) {
189 		state = ACPI_STATE_D3_HOT;
190 		cut_power = true;
191 	}
192 
193 	if (state < device->power.state && state != ACPI_STATE_D0
194 	    && device->power.state >= ACPI_STATE_D3_HOT) {
195 		dev_warn(&device->dev,
196 			 "Cannot transition to non-D0 state from D3\n");
197 		return -ENODEV;
198 	}
199 
200 	/*
201 	 * Transition Power
202 	 * ----------------
203 	 * In accordance with the ACPI specification first apply power (via
204 	 * power resources) and then evaluate _PSx.
205 	 */
206 	if (device->power.flags.power_resources) {
207 		result = acpi_power_transition(device, state);
208 		if (result)
209 			goto end;
210 	}
211 	result = acpi_dev_pm_explicit_set(device, state);
212 	if (result)
213 		goto end;
214 
215 	if (cut_power) {
216 		device->power.state = state;
217 		state = ACPI_STATE_D3_COLD;
218 		result = acpi_power_transition(device, state);
219 	}
220 
221  end:
222 	if (result) {
223 		dev_warn(&device->dev, "Failed to change power state to %s\n",
224 			 acpi_power_state_string(state));
225 	} else {
226 		device->power.state = state;
227 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
228 				  "Device [%s] transitioned to %s\n",
229 				  device->pnp.bus_id,
230 				  acpi_power_state_string(state)));
231 	}
232 
233 	return result;
234 }
235 EXPORT_SYMBOL(acpi_device_set_power);
236 
237 int acpi_bus_set_power(acpi_handle handle, int state)
238 {
239 	struct acpi_device *device;
240 	int result;
241 
242 	result = acpi_bus_get_device(handle, &device);
243 	if (result)
244 		return result;
245 
246 	return acpi_device_set_power(device, state);
247 }
248 EXPORT_SYMBOL(acpi_bus_set_power);
249 
250 int acpi_bus_init_power(struct acpi_device *device)
251 {
252 	int state;
253 	int result;
254 
255 	if (!device)
256 		return -EINVAL;
257 
258 	device->power.state = ACPI_STATE_UNKNOWN;
259 	if (!acpi_device_is_present(device))
260 		return -ENXIO;
261 
262 	result = acpi_device_get_power(device, &state);
263 	if (result)
264 		return result;
265 
266 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
267 		result = acpi_power_on_resources(device, state);
268 		if (result)
269 			return result;
270 
271 		result = acpi_dev_pm_explicit_set(device, state);
272 		if (result)
273 			return result;
274 	} else if (state == ACPI_STATE_UNKNOWN) {
275 		/*
276 		 * No power resources and missing _PSC?  Cross fingers and make
277 		 * it D0 in hope that this is what the BIOS put the device into.
278 		 * [We tried to force D0 here by executing _PS0, but that broke
279 		 * Toshiba P870-303 in a nasty way.]
280 		 */
281 		state = ACPI_STATE_D0;
282 	}
283 	device->power.state = state;
284 	return 0;
285 }
286 
287 /**
288  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
289  * @device: Device object whose power state is to be fixed up.
290  *
291  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
292  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
293  * not be the case and this function should be used then.
294  */
295 int acpi_device_fix_up_power(struct acpi_device *device)
296 {
297 	int ret = 0;
298 
299 	if (!device->power.flags.power_resources
300 	    && !device->power.flags.explicit_get
301 	    && device->power.state == ACPI_STATE_D0)
302 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
303 
304 	return ret;
305 }
306 
307 int acpi_device_update_power(struct acpi_device *device, int *state_p)
308 {
309 	int state;
310 	int result;
311 
312 	if (device->power.state == ACPI_STATE_UNKNOWN) {
313 		result = acpi_bus_init_power(device);
314 		if (!result && state_p)
315 			*state_p = device->power.state;
316 
317 		return result;
318 	}
319 
320 	result = acpi_device_get_power(device, &state);
321 	if (result)
322 		return result;
323 
324 	if (state == ACPI_STATE_UNKNOWN) {
325 		state = ACPI_STATE_D0;
326 		result = acpi_device_set_power(device, state);
327 		if (result)
328 			return result;
329 	} else {
330 		if (device->power.flags.power_resources) {
331 			/*
332 			 * We don't need to really switch the state, bu we need
333 			 * to update the power resources' reference counters.
334 			 */
335 			result = acpi_power_transition(device, state);
336 			if (result)
337 				return result;
338 		}
339 		device->power.state = state;
340 	}
341 	if (state_p)
342 		*state_p = state;
343 
344 	return 0;
345 }
346 EXPORT_SYMBOL_GPL(acpi_device_update_power);
347 
348 int acpi_bus_update_power(acpi_handle handle, int *state_p)
349 {
350 	struct acpi_device *device;
351 	int result;
352 
353 	result = acpi_bus_get_device(handle, &device);
354 	return result ? result : acpi_device_update_power(device, state_p);
355 }
356 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
357 
358 bool acpi_bus_power_manageable(acpi_handle handle)
359 {
360 	struct acpi_device *device;
361 	int result;
362 
363 	result = acpi_bus_get_device(handle, &device);
364 	return result ? false : device->flags.power_manageable;
365 }
366 EXPORT_SYMBOL(acpi_bus_power_manageable);
367 
368 #ifdef CONFIG_PM
369 static DEFINE_MUTEX(acpi_pm_notifier_lock);
370 
371 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
372 {
373 	struct acpi_device *adev;
374 
375 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
376 		return;
377 
378 	adev = acpi_bus_get_acpi_device(handle);
379 	if (!adev)
380 		return;
381 
382 	mutex_lock(&acpi_pm_notifier_lock);
383 
384 	if (adev->wakeup.flags.notifier_present) {
385 		__pm_wakeup_event(adev->wakeup.ws, 0);
386 		if (adev->wakeup.context.work.func)
387 			queue_pm_work(&adev->wakeup.context.work);
388 	}
389 
390 	mutex_unlock(&acpi_pm_notifier_lock);
391 
392 	acpi_bus_put_acpi_device(adev);
393 }
394 
395 /**
396  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
397  * @adev: ACPI device to add the notify handler for.
398  * @dev: Device to generate a wakeup event for while handling the notification.
399  * @work_func: Work function to execute when handling the notification.
400  *
401  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
402  * PM wakeup events.  For example, wakeup events may be generated for bridges
403  * if one of the devices below the bridge is signaling wakeup, even if the
404  * bridge itself doesn't have a wakeup GPE associated with it.
405  */
406 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
407 				 void (*work_func)(struct work_struct *work))
408 {
409 	acpi_status status = AE_ALREADY_EXISTS;
410 
411 	if (!dev && !work_func)
412 		return AE_BAD_PARAMETER;
413 
414 	mutex_lock(&acpi_pm_notifier_lock);
415 
416 	if (adev->wakeup.flags.notifier_present)
417 		goto out;
418 
419 	adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
420 	adev->wakeup.context.dev = dev;
421 	if (work_func)
422 		INIT_WORK(&adev->wakeup.context.work, work_func);
423 
424 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
425 					     acpi_pm_notify_handler, NULL);
426 	if (ACPI_FAILURE(status))
427 		goto out;
428 
429 	adev->wakeup.flags.notifier_present = true;
430 
431  out:
432 	mutex_unlock(&acpi_pm_notifier_lock);
433 	return status;
434 }
435 
436 /**
437  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
438  * @adev: ACPI device to remove the notifier from.
439  */
440 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
441 {
442 	acpi_status status = AE_BAD_PARAMETER;
443 
444 	mutex_lock(&acpi_pm_notifier_lock);
445 
446 	if (!adev->wakeup.flags.notifier_present)
447 		goto out;
448 
449 	status = acpi_remove_notify_handler(adev->handle,
450 					    ACPI_SYSTEM_NOTIFY,
451 					    acpi_pm_notify_handler);
452 	if (ACPI_FAILURE(status))
453 		goto out;
454 
455 	if (adev->wakeup.context.work.func) {
456 		cancel_work_sync(&adev->wakeup.context.work);
457 		adev->wakeup.context.work.func = NULL;
458 	}
459 	adev->wakeup.context.dev = NULL;
460 	wakeup_source_unregister(adev->wakeup.ws);
461 
462 	adev->wakeup.flags.notifier_present = false;
463 
464  out:
465 	mutex_unlock(&acpi_pm_notifier_lock);
466 	return status;
467 }
468 
469 bool acpi_bus_can_wakeup(acpi_handle handle)
470 {
471 	struct acpi_device *device;
472 	int result;
473 
474 	result = acpi_bus_get_device(handle, &device);
475 	return result ? false : device->wakeup.flags.valid;
476 }
477 EXPORT_SYMBOL(acpi_bus_can_wakeup);
478 
479 /**
480  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
481  * @dev: Device whose preferred target power state to return.
482  * @adev: ACPI device node corresponding to @dev.
483  * @target_state: System state to match the resultant device state.
484  * @d_min_p: Location to store the highest power state available to the device.
485  * @d_max_p: Location to store the lowest power state available to the device.
486  *
487  * Find the lowest power (highest number) and highest power (lowest number) ACPI
488  * device power states that the device can be in while the system is in the
489  * state represented by @target_state.  Store the integer numbers representing
490  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
491  * respectively.
492  *
493  * Callers must ensure that @dev and @adev are valid pointers and that @adev
494  * actually corresponds to @dev before using this function.
495  *
496  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
497  * returns a value that doesn't make sense.  The memory locations pointed to by
498  * @d_max_p and @d_min_p are only modified on success.
499  */
500 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
501 				 u32 target_state, int *d_min_p, int *d_max_p)
502 {
503 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
504 	acpi_handle handle = adev->handle;
505 	unsigned long long ret;
506 	int d_min, d_max;
507 	bool wakeup = false;
508 	acpi_status status;
509 
510 	/*
511 	 * If the system state is S0, the lowest power state the device can be
512 	 * in is D3cold, unless the device has _S0W and is supposed to signal
513 	 * wakeup, in which case the return value of _S0W has to be used as the
514 	 * lowest power state available to the device.
515 	 */
516 	d_min = ACPI_STATE_D0;
517 	d_max = ACPI_STATE_D3_COLD;
518 
519 	/*
520 	 * If present, _SxD methods return the minimum D-state (highest power
521 	 * state) we can use for the corresponding S-states.  Otherwise, the
522 	 * minimum D-state is D0 (ACPI 3.x).
523 	 */
524 	if (target_state > ACPI_STATE_S0) {
525 		/*
526 		 * We rely on acpi_evaluate_integer() not clobbering the integer
527 		 * provided if AE_NOT_FOUND is returned.
528 		 */
529 		ret = d_min;
530 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
531 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
532 		    || ret > ACPI_STATE_D3_COLD)
533 			return -ENODATA;
534 
535 		/*
536 		 * We need to handle legacy systems where D3hot and D3cold are
537 		 * the same and 3 is returned in both cases, so fall back to
538 		 * D3cold if D3hot is not a valid state.
539 		 */
540 		if (!adev->power.states[ret].flags.valid) {
541 			if (ret == ACPI_STATE_D3_HOT)
542 				ret = ACPI_STATE_D3_COLD;
543 			else
544 				return -ENODATA;
545 		}
546 		d_min = ret;
547 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
548 			&& adev->wakeup.sleep_state >= target_state;
549 	} else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) !=
550 			PM_QOS_FLAGS_NONE) {
551 		wakeup = adev->wakeup.flags.valid;
552 	}
553 
554 	/*
555 	 * If _PRW says we can wake up the system from the target sleep state,
556 	 * the D-state returned by _SxD is sufficient for that (we assume a
557 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
558 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
559 	 * can wake the system.  _S0W may be valid, too.
560 	 */
561 	if (wakeup) {
562 		method[3] = 'W';
563 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
564 		if (status == AE_NOT_FOUND) {
565 			if (target_state > ACPI_STATE_S0)
566 				d_max = d_min;
567 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
568 			/* Fall back to D3cold if ret is not a valid state. */
569 			if (!adev->power.states[ret].flags.valid)
570 				ret = ACPI_STATE_D3_COLD;
571 
572 			d_max = ret > d_min ? ret : d_min;
573 		} else {
574 			return -ENODATA;
575 		}
576 	}
577 
578 	if (d_min_p)
579 		*d_min_p = d_min;
580 
581 	if (d_max_p)
582 		*d_max_p = d_max;
583 
584 	return 0;
585 }
586 
587 /**
588  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
589  * @dev: Device whose preferred target power state to return.
590  * @d_min_p: Location to store the upper limit of the allowed states range.
591  * @d_max_in: Deepest low-power state to take into consideration.
592  * Return value: Preferred power state of the device on success, -ENODEV
593  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
594  * incorrect, or -ENODATA on ACPI method failure.
595  *
596  * The caller must ensure that @dev is valid before using this function.
597  */
598 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
599 {
600 	struct acpi_device *adev;
601 	int ret, d_min, d_max;
602 
603 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
604 		return -EINVAL;
605 
606 	if (d_max_in > ACPI_STATE_D3_HOT) {
607 		enum pm_qos_flags_status stat;
608 
609 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
610 		if (stat == PM_QOS_FLAGS_ALL)
611 			d_max_in = ACPI_STATE_D3_HOT;
612 	}
613 
614 	adev = ACPI_COMPANION(dev);
615 	if (!adev) {
616 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
617 		return -ENODEV;
618 	}
619 
620 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
621 				    &d_min, &d_max);
622 	if (ret)
623 		return ret;
624 
625 	if (d_max_in < d_min)
626 		return -EINVAL;
627 
628 	if (d_max > d_max_in) {
629 		for (d_max = d_max_in; d_max > d_min; d_max--) {
630 			if (adev->power.states[d_max].flags.valid)
631 				break;
632 		}
633 	}
634 
635 	if (d_min_p)
636 		*d_min_p = d_min;
637 
638 	return d_max;
639 }
640 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
641 
642 /**
643  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
644  * @work: Work item to handle.
645  */
646 static void acpi_pm_notify_work_func(struct work_struct *work)
647 {
648 	struct device *dev;
649 
650 	dev = container_of(work, struct acpi_device_wakeup_context, work)->dev;
651 	if (dev) {
652 		pm_wakeup_event(dev, 0);
653 		pm_runtime_resume(dev);
654 	}
655 }
656 
657 /**
658  * acpi_device_wakeup - Enable/disable wakeup functionality for device.
659  * @adev: ACPI device to enable/disable wakeup functionality for.
660  * @target_state: State the system is transitioning into.
661  * @enable: Whether to enable or disable the wakeup functionality.
662  *
663  * Enable/disable the GPE associated with @adev so that it can generate
664  * wakeup signals for the device in response to external (remote) events and
665  * enable/disable device wakeup power.
666  *
667  * Callers must ensure that @adev is a valid ACPI device node before executing
668  * this function.
669  */
670 static int acpi_device_wakeup(struct acpi_device *adev, u32 target_state,
671 			      bool enable)
672 {
673 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
674 
675 	if (enable) {
676 		acpi_status res;
677 		int error;
678 
679 		error = acpi_enable_wakeup_device_power(adev, target_state);
680 		if (error)
681 			return error;
682 
683 		if (adev->wakeup.flags.enabled)
684 			return 0;
685 
686 		res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
687 		if (ACPI_SUCCESS(res)) {
688 			adev->wakeup.flags.enabled = 1;
689 		} else {
690 			acpi_disable_wakeup_device_power(adev);
691 			return -EIO;
692 		}
693 	} else {
694 		if (adev->wakeup.flags.enabled) {
695 			acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
696 			adev->wakeup.flags.enabled = 0;
697 		}
698 		acpi_disable_wakeup_device_power(adev);
699 	}
700 	return 0;
701 }
702 
703 /**
704  * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device.
705  * @dev: Device to enable/disable the platform to wake up.
706  * @enable: Whether to enable or disable the wakeup functionality.
707  */
708 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
709 {
710 	struct acpi_device *adev;
711 
712 	if (!device_run_wake(phys_dev))
713 		return -EINVAL;
714 
715 	adev = ACPI_COMPANION(phys_dev);
716 	if (!adev) {
717 		dev_dbg(phys_dev, "ACPI companion missing in %s!\n", __func__);
718 		return -ENODEV;
719 	}
720 
721 	return acpi_device_wakeup(adev, ACPI_STATE_S0, enable);
722 }
723 EXPORT_SYMBOL(acpi_pm_device_run_wake);
724 
725 #ifdef CONFIG_PM_SLEEP
726 /**
727  * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system.
728  * @dev: Device to enable/desible to wake up the system from sleep states.
729  * @enable: Whether to enable or disable @dev to wake up the system.
730  */
731 int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
732 {
733 	struct acpi_device *adev;
734 	int error;
735 
736 	if (!device_can_wakeup(dev))
737 		return -EINVAL;
738 
739 	adev = ACPI_COMPANION(dev);
740 	if (!adev) {
741 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
742 		return -ENODEV;
743 	}
744 
745 	error = acpi_device_wakeup(adev, acpi_target_system_state(), enable);
746 	if (!error)
747 		dev_info(dev, "System wakeup %s by ACPI\n",
748 				enable ? "enabled" : "disabled");
749 
750 	return error;
751 }
752 #endif /* CONFIG_PM_SLEEP */
753 
754 /**
755  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
756  * @dev: Device to put into a low-power state.
757  * @adev: ACPI device node corresponding to @dev.
758  * @system_state: System state to choose the device state for.
759  */
760 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
761 				 u32 system_state)
762 {
763 	int ret, state;
764 
765 	if (!acpi_device_power_manageable(adev))
766 		return 0;
767 
768 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
769 	return ret ? ret : acpi_device_set_power(adev, state);
770 }
771 
772 /**
773  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
774  * @adev: ACPI device node to put into the full-power state.
775  */
776 static int acpi_dev_pm_full_power(struct acpi_device *adev)
777 {
778 	return acpi_device_power_manageable(adev) ?
779 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
780 }
781 
782 /**
783  * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI.
784  * @dev: Device to put into a low-power state.
785  *
786  * Put the given device into a runtime low-power state using the standard ACPI
787  * mechanism.  Set up remote wakeup if desired, choose the state to put the
788  * device into (this checks if remote wakeup is expected to work too), and set
789  * the power state of the device.
790  */
791 int acpi_dev_runtime_suspend(struct device *dev)
792 {
793 	struct acpi_device *adev = ACPI_COMPANION(dev);
794 	bool remote_wakeup;
795 	int error;
796 
797 	if (!adev)
798 		return 0;
799 
800 	remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) >
801 				PM_QOS_FLAGS_NONE;
802 	error = acpi_device_wakeup(adev, ACPI_STATE_S0, remote_wakeup);
803 	if (remote_wakeup && error)
804 		return -EAGAIN;
805 
806 	error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
807 	if (error)
808 		acpi_device_wakeup(adev, ACPI_STATE_S0, false);
809 
810 	return error;
811 }
812 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend);
813 
814 /**
815  * acpi_dev_runtime_resume - Put device into the full-power state using ACPI.
816  * @dev: Device to put into the full-power state.
817  *
818  * Put the given device into the full-power state using the standard ACPI
819  * mechanism at run time.  Set the power state of the device to ACPI D0 and
820  * disable remote wakeup.
821  */
822 int acpi_dev_runtime_resume(struct device *dev)
823 {
824 	struct acpi_device *adev = ACPI_COMPANION(dev);
825 	int error;
826 
827 	if (!adev)
828 		return 0;
829 
830 	error = acpi_dev_pm_full_power(adev);
831 	acpi_device_wakeup(adev, ACPI_STATE_S0, false);
832 	return error;
833 }
834 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume);
835 
836 /**
837  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
838  * @dev: Device to suspend.
839  *
840  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
841  * it into a runtime low-power state.
842  */
843 int acpi_subsys_runtime_suspend(struct device *dev)
844 {
845 	int ret = pm_generic_runtime_suspend(dev);
846 	return ret ? ret : acpi_dev_runtime_suspend(dev);
847 }
848 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
849 
850 /**
851  * acpi_subsys_runtime_resume - Resume device using ACPI.
852  * @dev: Device to Resume.
853  *
854  * Use ACPI to put the given device into the full-power state and carry out the
855  * generic runtime resume procedure for it.
856  */
857 int acpi_subsys_runtime_resume(struct device *dev)
858 {
859 	int ret = acpi_dev_runtime_resume(dev);
860 	return ret ? ret : pm_generic_runtime_resume(dev);
861 }
862 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
863 
864 #ifdef CONFIG_PM_SLEEP
865 /**
866  * acpi_dev_suspend_late - Put device into a low-power state using ACPI.
867  * @dev: Device to put into a low-power state.
868  *
869  * Put the given device into a low-power state during system transition to a
870  * sleep state using the standard ACPI mechanism.  Set up system wakeup if
871  * desired, choose the state to put the device into (this checks if system
872  * wakeup is expected to work too), and set the power state of the device.
873  */
874 int acpi_dev_suspend_late(struct device *dev)
875 {
876 	struct acpi_device *adev = ACPI_COMPANION(dev);
877 	u32 target_state;
878 	bool wakeup;
879 	int error;
880 
881 	if (!adev)
882 		return 0;
883 
884 	target_state = acpi_target_system_state();
885 	wakeup = device_may_wakeup(dev) && acpi_device_can_wakeup(adev);
886 	error = acpi_device_wakeup(adev, target_state, wakeup);
887 	if (wakeup && error)
888 		return error;
889 
890 	error = acpi_dev_pm_low_power(dev, adev, target_state);
891 	if (error)
892 		acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
893 
894 	return error;
895 }
896 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late);
897 
898 /**
899  * acpi_dev_resume_early - Put device into the full-power state using ACPI.
900  * @dev: Device to put into the full-power state.
901  *
902  * Put the given device into the full-power state using the standard ACPI
903  * mechanism during system transition to the working state.  Set the power
904  * state of the device to ACPI D0 and disable remote wakeup.
905  */
906 int acpi_dev_resume_early(struct device *dev)
907 {
908 	struct acpi_device *adev = ACPI_COMPANION(dev);
909 	int error;
910 
911 	if (!adev)
912 		return 0;
913 
914 	error = acpi_dev_pm_full_power(adev);
915 	acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
916 	return error;
917 }
918 EXPORT_SYMBOL_GPL(acpi_dev_resume_early);
919 
920 /**
921  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
922  * @dev: Device to prepare.
923  */
924 int acpi_subsys_prepare(struct device *dev)
925 {
926 	struct acpi_device *adev = ACPI_COMPANION(dev);
927 	u32 sys_target;
928 	int ret, state;
929 
930 	ret = pm_generic_prepare(dev);
931 	if (ret < 0)
932 		return ret;
933 
934 	if (!adev || !pm_runtime_suspended(dev)
935 	    || device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
936 		return 0;
937 
938 	sys_target = acpi_target_system_state();
939 	if (sys_target == ACPI_STATE_S0)
940 		return 1;
941 
942 	if (adev->power.flags.dsw_present)
943 		return 0;
944 
945 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
946 	return !ret && state == adev->power.state;
947 }
948 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
949 
950 /**
951  * acpi_subsys_complete - Finalize device's resume during system resume.
952  * @dev: Device to handle.
953  */
954 void acpi_subsys_complete(struct device *dev)
955 {
956 	/*
957 	 * If the device had been runtime-suspended before the system went into
958 	 * the sleep state it is going out of and it has never been resumed till
959 	 * now, resume it in case the firmware powered it up.
960 	 */
961 	if (dev->power.direct_complete)
962 		pm_request_resume(dev);
963 }
964 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
965 
966 /**
967  * acpi_subsys_suspend - Run the device driver's suspend callback.
968  * @dev: Device to handle.
969  *
970  * Follow PCI and resume devices suspended at run time before running their
971  * system suspend callbacks.
972  */
973 int acpi_subsys_suspend(struct device *dev)
974 {
975 	pm_runtime_resume(dev);
976 	return pm_generic_suspend(dev);
977 }
978 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
979 
980 /**
981  * acpi_subsys_suspend_late - Suspend device using ACPI.
982  * @dev: Device to suspend.
983  *
984  * Carry out the generic late suspend procedure for @dev and use ACPI to put
985  * it into a low-power state during system transition into a sleep state.
986  */
987 int acpi_subsys_suspend_late(struct device *dev)
988 {
989 	int ret = pm_generic_suspend_late(dev);
990 	return ret ? ret : acpi_dev_suspend_late(dev);
991 }
992 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
993 
994 /**
995  * acpi_subsys_resume_early - Resume device using ACPI.
996  * @dev: Device to Resume.
997  *
998  * Use ACPI to put the given device into the full-power state and carry out the
999  * generic early resume procedure for it during system transition into the
1000  * working state.
1001  */
1002 int acpi_subsys_resume_early(struct device *dev)
1003 {
1004 	int ret = acpi_dev_resume_early(dev);
1005 	return ret ? ret : pm_generic_resume_early(dev);
1006 }
1007 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1008 
1009 /**
1010  * acpi_subsys_freeze - Run the device driver's freeze callback.
1011  * @dev: Device to handle.
1012  */
1013 int acpi_subsys_freeze(struct device *dev)
1014 {
1015 	/*
1016 	 * This used to be done in acpi_subsys_prepare() for all devices and
1017 	 * some drivers may depend on it, so do it here.  Ideally, however,
1018 	 * runtime-suspended devices should not be touched during freeze/thaw
1019 	 * transitions.
1020 	 */
1021 	pm_runtime_resume(dev);
1022 	return pm_generic_freeze(dev);
1023 }
1024 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1025 
1026 #endif /* CONFIG_PM_SLEEP */
1027 
1028 static struct dev_pm_domain acpi_general_pm_domain = {
1029 	.ops = {
1030 #ifdef CONFIG_PM
1031 		.runtime_suspend = acpi_subsys_runtime_suspend,
1032 		.runtime_resume = acpi_subsys_runtime_resume,
1033 #ifdef CONFIG_PM_SLEEP
1034 		.prepare = acpi_subsys_prepare,
1035 		.complete = acpi_subsys_complete,
1036 		.suspend = acpi_subsys_suspend,
1037 		.suspend_late = acpi_subsys_suspend_late,
1038 		.resume_early = acpi_subsys_resume_early,
1039 		.freeze = acpi_subsys_freeze,
1040 		.poweroff = acpi_subsys_suspend,
1041 		.poweroff_late = acpi_subsys_suspend_late,
1042 		.restore_early = acpi_subsys_resume_early,
1043 #endif
1044 #endif
1045 	},
1046 };
1047 
1048 /**
1049  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1050  * @dev: Device to take care of.
1051  * @power_off: Whether or not to try to remove power from the device.
1052  *
1053  * Remove the device from the general ACPI PM domain and remove its wakeup
1054  * notifier.  If @power_off is set, additionally remove power from the device if
1055  * possible.
1056  *
1057  * Callers must ensure proper synchronization of this function with power
1058  * management callbacks.
1059  */
1060 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1061 {
1062 	struct acpi_device *adev = ACPI_COMPANION(dev);
1063 
1064 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1065 		dev->pm_domain = NULL;
1066 		acpi_remove_pm_notifier(adev);
1067 		if (power_off) {
1068 			/*
1069 			 * If the device's PM QoS resume latency limit or flags
1070 			 * have been exposed to user space, they have to be
1071 			 * hidden at this point, so that they don't affect the
1072 			 * choice of the low-power state to put the device into.
1073 			 */
1074 			dev_pm_qos_hide_latency_limit(dev);
1075 			dev_pm_qos_hide_flags(dev);
1076 			acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1077 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1078 		}
1079 	}
1080 }
1081 
1082 /**
1083  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1084  * @dev: Device to prepare.
1085  * @power_on: Whether or not to power on the device.
1086  *
1087  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1088  * attached to it, install a wakeup notification handler for the device and
1089  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1090  * be put into the ACPI D0 state before the function returns.
1091  *
1092  * This assumes that the @dev's bus type uses generic power management callbacks
1093  * (or doesn't use any power management callbacks at all).
1094  *
1095  * Callers must ensure proper synchronization of this function with power
1096  * management callbacks.
1097  */
1098 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1099 {
1100 	struct acpi_device *adev = ACPI_COMPANION(dev);
1101 
1102 	if (!adev)
1103 		return -ENODEV;
1104 
1105 	if (dev->pm_domain)
1106 		return -EEXIST;
1107 
1108 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1109 	dev->pm_domain = &acpi_general_pm_domain;
1110 	if (power_on) {
1111 		acpi_dev_pm_full_power(adev);
1112 		acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1113 	}
1114 
1115 	dev->pm_domain->detach = acpi_dev_pm_detach;
1116 	return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1119 #endif /* CONFIG_PM */
1120