1 /* 2 * drivers/acpi/device_pm.c - ACPI device power management routines. 3 * 4 * Copyright (C) 2012, Intel Corp. 5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as published 11 * by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, write to the Free Software Foundation, Inc., 20 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 21 * 22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 23 */ 24 25 #include <linux/acpi.h> 26 #include <linux/export.h> 27 #include <linux/mutex.h> 28 #include <linux/pm_qos.h> 29 #include <linux/pm_runtime.h> 30 31 #include "internal.h" 32 33 #define _COMPONENT ACPI_POWER_COMPONENT 34 ACPI_MODULE_NAME("device_pm"); 35 36 /** 37 * acpi_power_state_string - String representation of ACPI device power state. 38 * @state: ACPI device power state to return the string representation of. 39 */ 40 const char *acpi_power_state_string(int state) 41 { 42 switch (state) { 43 case ACPI_STATE_D0: 44 return "D0"; 45 case ACPI_STATE_D1: 46 return "D1"; 47 case ACPI_STATE_D2: 48 return "D2"; 49 case ACPI_STATE_D3_HOT: 50 return "D3hot"; 51 case ACPI_STATE_D3_COLD: 52 return "D3cold"; 53 default: 54 return "(unknown)"; 55 } 56 } 57 58 /** 59 * acpi_device_get_power - Get power state of an ACPI device. 60 * @device: Device to get the power state of. 61 * @state: Place to store the power state of the device. 62 * 63 * This function does not update the device's power.state field, but it may 64 * update its parent's power.state field (when the parent's power state is 65 * unknown and the device's power state turns out to be D0). 66 */ 67 int acpi_device_get_power(struct acpi_device *device, int *state) 68 { 69 int result = ACPI_STATE_UNKNOWN; 70 71 if (!device || !state) 72 return -EINVAL; 73 74 if (!device->flags.power_manageable) { 75 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 76 *state = device->parent ? 77 device->parent->power.state : ACPI_STATE_D0; 78 goto out; 79 } 80 81 /* 82 * Get the device's power state from power resources settings and _PSC, 83 * if available. 84 */ 85 if (device->power.flags.power_resources) { 86 int error = acpi_power_get_inferred_state(device, &result); 87 if (error) 88 return error; 89 } 90 if (device->power.flags.explicit_get) { 91 acpi_handle handle = device->handle; 92 unsigned long long psc; 93 acpi_status status; 94 95 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc); 96 if (ACPI_FAILURE(status)) 97 return -ENODEV; 98 99 /* 100 * The power resources settings may indicate a power state 101 * shallower than the actual power state of the device. 102 * 103 * Moreover, on systems predating ACPI 4.0, if the device 104 * doesn't depend on any power resources and _PSC returns 3, 105 * that means "power off". We need to maintain compatibility 106 * with those systems. 107 */ 108 if (psc > result && psc < ACPI_STATE_D3_COLD) 109 result = psc; 110 else if (result == ACPI_STATE_UNKNOWN) 111 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc; 112 } 113 114 /* 115 * If we were unsure about the device parent's power state up to this 116 * point, the fact that the device is in D0 implies that the parent has 117 * to be in D0 too, except if ignore_parent is set. 118 */ 119 if (!device->power.flags.ignore_parent && device->parent 120 && device->parent->power.state == ACPI_STATE_UNKNOWN 121 && result == ACPI_STATE_D0) 122 device->parent->power.state = ACPI_STATE_D0; 123 124 *state = result; 125 126 out: 127 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n", 128 device->pnp.bus_id, acpi_power_state_string(*state))); 129 130 return 0; 131 } 132 133 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 134 { 135 if (adev->power.states[state].flags.explicit_set) { 136 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 137 acpi_status status; 138 139 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 140 if (ACPI_FAILURE(status)) 141 return -ENODEV; 142 } 143 return 0; 144 } 145 146 /** 147 * acpi_device_set_power - Set power state of an ACPI device. 148 * @device: Device to set the power state of. 149 * @state: New power state to set. 150 * 151 * Callers must ensure that the device is power manageable before using this 152 * function. 153 */ 154 int acpi_device_set_power(struct acpi_device *device, int state) 155 { 156 int result = 0; 157 bool cut_power = false; 158 159 if (!device || !device->flags.power_manageable 160 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 161 return -EINVAL; 162 163 /* Make sure this is a valid target state */ 164 165 if (state == device->power.state) { 166 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n", 167 device->pnp.bus_id, 168 acpi_power_state_string(state))); 169 return 0; 170 } 171 172 if (!device->power.states[state].flags.valid) { 173 dev_warn(&device->dev, "Power state %s not supported\n", 174 acpi_power_state_string(state)); 175 return -ENODEV; 176 } 177 if (!device->power.flags.ignore_parent && 178 device->parent && (state < device->parent->power.state)) { 179 dev_warn(&device->dev, 180 "Cannot transition to power state %s for parent in %s\n", 181 acpi_power_state_string(state), 182 acpi_power_state_string(device->parent->power.state)); 183 return -ENODEV; 184 } 185 186 /* For D3cold we should first transition into D3hot. */ 187 if (state == ACPI_STATE_D3_COLD 188 && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) { 189 state = ACPI_STATE_D3_HOT; 190 cut_power = true; 191 } 192 193 if (state < device->power.state && state != ACPI_STATE_D0 194 && device->power.state >= ACPI_STATE_D3_HOT) { 195 dev_warn(&device->dev, 196 "Cannot transition to non-D0 state from D3\n"); 197 return -ENODEV; 198 } 199 200 /* 201 * Transition Power 202 * ---------------- 203 * In accordance with the ACPI specification first apply power (via 204 * power resources) and then evalute _PSx. 205 */ 206 if (device->power.flags.power_resources) { 207 result = acpi_power_transition(device, state); 208 if (result) 209 goto end; 210 } 211 result = acpi_dev_pm_explicit_set(device, state); 212 if (result) 213 goto end; 214 215 if (cut_power) { 216 device->power.state = state; 217 state = ACPI_STATE_D3_COLD; 218 result = acpi_power_transition(device, state); 219 } 220 221 end: 222 if (result) { 223 dev_warn(&device->dev, "Failed to change power state to %s\n", 224 acpi_power_state_string(state)); 225 } else { 226 device->power.state = state; 227 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 228 "Device [%s] transitioned to %s\n", 229 device->pnp.bus_id, 230 acpi_power_state_string(state))); 231 } 232 233 return result; 234 } 235 EXPORT_SYMBOL(acpi_device_set_power); 236 237 int acpi_bus_set_power(acpi_handle handle, int state) 238 { 239 struct acpi_device *device; 240 int result; 241 242 result = acpi_bus_get_device(handle, &device); 243 if (result) 244 return result; 245 246 return acpi_device_set_power(device, state); 247 } 248 EXPORT_SYMBOL(acpi_bus_set_power); 249 250 int acpi_bus_init_power(struct acpi_device *device) 251 { 252 int state; 253 int result; 254 255 if (!device) 256 return -EINVAL; 257 258 device->power.state = ACPI_STATE_UNKNOWN; 259 if (!acpi_device_is_present(device)) 260 return 0; 261 262 result = acpi_device_get_power(device, &state); 263 if (result) 264 return result; 265 266 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 267 result = acpi_power_on_resources(device, state); 268 if (result) 269 return result; 270 271 result = acpi_dev_pm_explicit_set(device, state); 272 if (result) 273 return result; 274 } else if (state == ACPI_STATE_UNKNOWN) { 275 /* 276 * No power resources and missing _PSC? Cross fingers and make 277 * it D0 in hope that this is what the BIOS put the device into. 278 * [We tried to force D0 here by executing _PS0, but that broke 279 * Toshiba P870-303 in a nasty way.] 280 */ 281 state = ACPI_STATE_D0; 282 } 283 device->power.state = state; 284 return 0; 285 } 286 287 /** 288 * acpi_device_fix_up_power - Force device with missing _PSC into D0. 289 * @device: Device object whose power state is to be fixed up. 290 * 291 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined, 292 * are assumed to be put into D0 by the BIOS. However, in some cases that may 293 * not be the case and this function should be used then. 294 */ 295 int acpi_device_fix_up_power(struct acpi_device *device) 296 { 297 int ret = 0; 298 299 if (!device->power.flags.power_resources 300 && !device->power.flags.explicit_get 301 && device->power.state == ACPI_STATE_D0) 302 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 303 304 return ret; 305 } 306 307 int acpi_device_update_power(struct acpi_device *device, int *state_p) 308 { 309 int state; 310 int result; 311 312 if (device->power.state == ACPI_STATE_UNKNOWN) { 313 result = acpi_bus_init_power(device); 314 if (!result && state_p) 315 *state_p = device->power.state; 316 317 return result; 318 } 319 320 result = acpi_device_get_power(device, &state); 321 if (result) 322 return result; 323 324 if (state == ACPI_STATE_UNKNOWN) { 325 state = ACPI_STATE_D0; 326 result = acpi_device_set_power(device, state); 327 if (result) 328 return result; 329 } else { 330 if (device->power.flags.power_resources) { 331 /* 332 * We don't need to really switch the state, bu we need 333 * to update the power resources' reference counters. 334 */ 335 result = acpi_power_transition(device, state); 336 if (result) 337 return result; 338 } 339 device->power.state = state; 340 } 341 if (state_p) 342 *state_p = state; 343 344 return 0; 345 } 346 347 int acpi_bus_update_power(acpi_handle handle, int *state_p) 348 { 349 struct acpi_device *device; 350 int result; 351 352 result = acpi_bus_get_device(handle, &device); 353 return result ? result : acpi_device_update_power(device, state_p); 354 } 355 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 356 357 bool acpi_bus_power_manageable(acpi_handle handle) 358 { 359 struct acpi_device *device; 360 int result; 361 362 result = acpi_bus_get_device(handle, &device); 363 return result ? false : device->flags.power_manageable; 364 } 365 EXPORT_SYMBOL(acpi_bus_power_manageable); 366 367 #ifdef CONFIG_PM 368 static DEFINE_MUTEX(acpi_pm_notifier_lock); 369 370 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used) 371 { 372 struct acpi_device *adev; 373 374 if (val != ACPI_NOTIFY_DEVICE_WAKE) 375 return; 376 377 adev = acpi_bus_get_acpi_device(handle); 378 if (!adev) 379 return; 380 381 mutex_lock(&acpi_pm_notifier_lock); 382 383 if (adev->wakeup.flags.notifier_present) { 384 __pm_wakeup_event(adev->wakeup.ws, 0); 385 if (adev->wakeup.context.work.func) 386 queue_pm_work(&adev->wakeup.context.work); 387 } 388 389 mutex_unlock(&acpi_pm_notifier_lock); 390 391 acpi_bus_put_acpi_device(adev); 392 } 393 394 /** 395 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device. 396 * @adev: ACPI device to add the notify handler for. 397 * @dev: Device to generate a wakeup event for while handling the notification. 398 * @work_func: Work function to execute when handling the notification. 399 * 400 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 401 * PM wakeup events. For example, wakeup events may be generated for bridges 402 * if one of the devices below the bridge is signaling wakeup, even if the 403 * bridge itself doesn't have a wakeup GPE associated with it. 404 */ 405 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, 406 void (*work_func)(struct work_struct *work)) 407 { 408 acpi_status status = AE_ALREADY_EXISTS; 409 410 if (!dev && !work_func) 411 return AE_BAD_PARAMETER; 412 413 mutex_lock(&acpi_pm_notifier_lock); 414 415 if (adev->wakeup.flags.notifier_present) 416 goto out; 417 418 adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev)); 419 adev->wakeup.context.dev = dev; 420 if (work_func) 421 INIT_WORK(&adev->wakeup.context.work, work_func); 422 423 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY, 424 acpi_pm_notify_handler, NULL); 425 if (ACPI_FAILURE(status)) 426 goto out; 427 428 adev->wakeup.flags.notifier_present = true; 429 430 out: 431 mutex_unlock(&acpi_pm_notifier_lock); 432 return status; 433 } 434 435 /** 436 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 437 * @adev: ACPI device to remove the notifier from. 438 */ 439 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) 440 { 441 acpi_status status = AE_BAD_PARAMETER; 442 443 mutex_lock(&acpi_pm_notifier_lock); 444 445 if (!adev->wakeup.flags.notifier_present) 446 goto out; 447 448 status = acpi_remove_notify_handler(adev->handle, 449 ACPI_SYSTEM_NOTIFY, 450 acpi_pm_notify_handler); 451 if (ACPI_FAILURE(status)) 452 goto out; 453 454 if (adev->wakeup.context.work.func) { 455 cancel_work_sync(&adev->wakeup.context.work); 456 adev->wakeup.context.work.func = NULL; 457 } 458 adev->wakeup.context.dev = NULL; 459 wakeup_source_unregister(adev->wakeup.ws); 460 461 adev->wakeup.flags.notifier_present = false; 462 463 out: 464 mutex_unlock(&acpi_pm_notifier_lock); 465 return status; 466 } 467 468 bool acpi_bus_can_wakeup(acpi_handle handle) 469 { 470 struct acpi_device *device; 471 int result; 472 473 result = acpi_bus_get_device(handle, &device); 474 return result ? false : device->wakeup.flags.valid; 475 } 476 EXPORT_SYMBOL(acpi_bus_can_wakeup); 477 478 /** 479 * acpi_dev_pm_get_state - Get preferred power state of ACPI device. 480 * @dev: Device whose preferred target power state to return. 481 * @adev: ACPI device node corresponding to @dev. 482 * @target_state: System state to match the resultant device state. 483 * @d_min_p: Location to store the highest power state available to the device. 484 * @d_max_p: Location to store the lowest power state available to the device. 485 * 486 * Find the lowest power (highest number) and highest power (lowest number) ACPI 487 * device power states that the device can be in while the system is in the 488 * state represented by @target_state. Store the integer numbers representing 489 * those stats in the memory locations pointed to by @d_max_p and @d_min_p, 490 * respectively. 491 * 492 * Callers must ensure that @dev and @adev are valid pointers and that @adev 493 * actually corresponds to @dev before using this function. 494 * 495 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or 496 * returns a value that doesn't make sense. The memory locations pointed to by 497 * @d_max_p and @d_min_p are only modified on success. 498 */ 499 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev, 500 u32 target_state, int *d_min_p, int *d_max_p) 501 { 502 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' }; 503 acpi_handle handle = adev->handle; 504 unsigned long long ret; 505 int d_min, d_max; 506 bool wakeup = false; 507 acpi_status status; 508 509 /* 510 * If the system state is S0, the lowest power state the device can be 511 * in is D3cold, unless the device has _S0W and is supposed to signal 512 * wakeup, in which case the return value of _S0W has to be used as the 513 * lowest power state available to the device. 514 */ 515 d_min = ACPI_STATE_D0; 516 d_max = ACPI_STATE_D3_COLD; 517 518 /* 519 * If present, _SxD methods return the minimum D-state (highest power 520 * state) we can use for the corresponding S-states. Otherwise, the 521 * minimum D-state is D0 (ACPI 3.x). 522 */ 523 if (target_state > ACPI_STATE_S0) { 524 /* 525 * We rely on acpi_evaluate_integer() not clobbering the integer 526 * provided if AE_NOT_FOUND is returned. 527 */ 528 ret = d_min; 529 status = acpi_evaluate_integer(handle, method, NULL, &ret); 530 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND) 531 || ret > ACPI_STATE_D3_COLD) 532 return -ENODATA; 533 534 /* 535 * We need to handle legacy systems where D3hot and D3cold are 536 * the same and 3 is returned in both cases, so fall back to 537 * D3cold if D3hot is not a valid state. 538 */ 539 if (!adev->power.states[ret].flags.valid) { 540 if (ret == ACPI_STATE_D3_HOT) 541 ret = ACPI_STATE_D3_COLD; 542 else 543 return -ENODATA; 544 } 545 d_min = ret; 546 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 547 && adev->wakeup.sleep_state >= target_state; 548 } else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) != 549 PM_QOS_FLAGS_NONE) { 550 wakeup = adev->wakeup.flags.valid; 551 } 552 553 /* 554 * If _PRW says we can wake up the system from the target sleep state, 555 * the D-state returned by _SxD is sufficient for that (we assume a 556 * wakeup-aware driver if wake is set). Still, if _SxW exists 557 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 558 * can wake the system. _S0W may be valid, too. 559 */ 560 if (wakeup) { 561 method[3] = 'W'; 562 status = acpi_evaluate_integer(handle, method, NULL, &ret); 563 if (status == AE_NOT_FOUND) { 564 if (target_state > ACPI_STATE_S0) 565 d_max = d_min; 566 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) { 567 /* Fall back to D3cold if ret is not a valid state. */ 568 if (!adev->power.states[ret].flags.valid) 569 ret = ACPI_STATE_D3_COLD; 570 571 d_max = ret > d_min ? ret : d_min; 572 } else { 573 return -ENODATA; 574 } 575 } 576 577 if (d_min_p) 578 *d_min_p = d_min; 579 580 if (d_max_p) 581 *d_max_p = d_max; 582 583 return 0; 584 } 585 586 /** 587 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 588 * @dev: Device whose preferred target power state to return. 589 * @d_min_p: Location to store the upper limit of the allowed states range. 590 * @d_max_in: Deepest low-power state to take into consideration. 591 * Return value: Preferred power state of the device on success, -ENODEV 592 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is 593 * incorrect, or -ENODATA on ACPI method failure. 594 * 595 * The caller must ensure that @dev is valid before using this function. 596 */ 597 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 598 { 599 struct acpi_device *adev; 600 int ret, d_min, d_max; 601 602 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD) 603 return -EINVAL; 604 605 if (d_max_in > ACPI_STATE_D3_HOT) { 606 enum pm_qos_flags_status stat; 607 608 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 609 if (stat == PM_QOS_FLAGS_ALL) 610 d_max_in = ACPI_STATE_D3_HOT; 611 } 612 613 adev = ACPI_COMPANION(dev); 614 if (!adev) { 615 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 616 return -ENODEV; 617 } 618 619 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(), 620 &d_min, &d_max); 621 if (ret) 622 return ret; 623 624 if (d_max_in < d_min) 625 return -EINVAL; 626 627 if (d_max > d_max_in) { 628 for (d_max = d_max_in; d_max > d_min; d_max--) { 629 if (adev->power.states[d_max].flags.valid) 630 break; 631 } 632 } 633 634 if (d_min_p) 635 *d_min_p = d_min; 636 637 return d_max; 638 } 639 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 640 641 /** 642 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function. 643 * @work: Work item to handle. 644 */ 645 static void acpi_pm_notify_work_func(struct work_struct *work) 646 { 647 struct device *dev; 648 649 dev = container_of(work, struct acpi_device_wakeup_context, work)->dev; 650 if (dev) { 651 pm_wakeup_event(dev, 0); 652 pm_runtime_resume(dev); 653 } 654 } 655 656 /** 657 * acpi_device_wakeup - Enable/disable wakeup functionality for device. 658 * @adev: ACPI device to enable/disable wakeup functionality for. 659 * @target_state: State the system is transitioning into. 660 * @enable: Whether to enable or disable the wakeup functionality. 661 * 662 * Enable/disable the GPE associated with @adev so that it can generate 663 * wakeup signals for the device in response to external (remote) events and 664 * enable/disable device wakeup power. 665 * 666 * Callers must ensure that @adev is a valid ACPI device node before executing 667 * this function. 668 */ 669 static int acpi_device_wakeup(struct acpi_device *adev, u32 target_state, 670 bool enable) 671 { 672 struct acpi_device_wakeup *wakeup = &adev->wakeup; 673 674 if (enable) { 675 acpi_status res; 676 int error; 677 678 error = acpi_enable_wakeup_device_power(adev, target_state); 679 if (error) 680 return error; 681 682 res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 683 if (ACPI_FAILURE(res)) { 684 acpi_disable_wakeup_device_power(adev); 685 return -EIO; 686 } 687 } else { 688 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 689 acpi_disable_wakeup_device_power(adev); 690 } 691 return 0; 692 } 693 694 #ifdef CONFIG_PM_RUNTIME 695 /** 696 * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device. 697 * @dev: Device to enable/disable the platform to wake up. 698 * @enable: Whether to enable or disable the wakeup functionality. 699 */ 700 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable) 701 { 702 struct acpi_device *adev; 703 704 if (!device_run_wake(phys_dev)) 705 return -EINVAL; 706 707 adev = ACPI_COMPANION(phys_dev); 708 if (!adev) { 709 dev_dbg(phys_dev, "ACPI companion missing in %s!\n", __func__); 710 return -ENODEV; 711 } 712 713 return acpi_device_wakeup(adev, enable, ACPI_STATE_S0); 714 } 715 EXPORT_SYMBOL(acpi_pm_device_run_wake); 716 #endif /* CONFIG_PM_RUNTIME */ 717 718 #ifdef CONFIG_PM_SLEEP 719 /** 720 * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system. 721 * @dev: Device to enable/desible to wake up the system from sleep states. 722 * @enable: Whether to enable or disable @dev to wake up the system. 723 */ 724 int acpi_pm_device_sleep_wake(struct device *dev, bool enable) 725 { 726 struct acpi_device *adev; 727 int error; 728 729 if (!device_can_wakeup(dev)) 730 return -EINVAL; 731 732 adev = ACPI_COMPANION(dev); 733 if (!adev) { 734 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 735 return -ENODEV; 736 } 737 738 error = acpi_device_wakeup(adev, acpi_target_system_state(), enable); 739 if (!error) 740 dev_info(dev, "System wakeup %s by ACPI\n", 741 enable ? "enabled" : "disabled"); 742 743 return error; 744 } 745 #endif /* CONFIG_PM_SLEEP */ 746 747 /** 748 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 749 * @dev: Device to put into a low-power state. 750 * @adev: ACPI device node corresponding to @dev. 751 * @system_state: System state to choose the device state for. 752 */ 753 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 754 u32 system_state) 755 { 756 int ret, state; 757 758 if (!acpi_device_power_manageable(adev)) 759 return 0; 760 761 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state); 762 return ret ? ret : acpi_device_set_power(adev, state); 763 } 764 765 /** 766 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 767 * @adev: ACPI device node to put into the full-power state. 768 */ 769 static int acpi_dev_pm_full_power(struct acpi_device *adev) 770 { 771 return acpi_device_power_manageable(adev) ? 772 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 773 } 774 775 #ifdef CONFIG_PM_RUNTIME 776 /** 777 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI. 778 * @dev: Device to put into a low-power state. 779 * 780 * Put the given device into a runtime low-power state using the standard ACPI 781 * mechanism. Set up remote wakeup if desired, choose the state to put the 782 * device into (this checks if remote wakeup is expected to work too), and set 783 * the power state of the device. 784 */ 785 int acpi_dev_runtime_suspend(struct device *dev) 786 { 787 struct acpi_device *adev = ACPI_COMPANION(dev); 788 bool remote_wakeup; 789 int error; 790 791 if (!adev) 792 return 0; 793 794 remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) > 795 PM_QOS_FLAGS_NONE; 796 error = acpi_device_wakeup(adev, ACPI_STATE_S0, remote_wakeup); 797 if (remote_wakeup && error) 798 return -EAGAIN; 799 800 error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 801 if (error) 802 acpi_device_wakeup(adev, ACPI_STATE_S0, false); 803 804 return error; 805 } 806 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend); 807 808 /** 809 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI. 810 * @dev: Device to put into the full-power state. 811 * 812 * Put the given device into the full-power state using the standard ACPI 813 * mechanism at run time. Set the power state of the device to ACPI D0 and 814 * disable remote wakeup. 815 */ 816 int acpi_dev_runtime_resume(struct device *dev) 817 { 818 struct acpi_device *adev = ACPI_COMPANION(dev); 819 int error; 820 821 if (!adev) 822 return 0; 823 824 error = acpi_dev_pm_full_power(adev); 825 acpi_device_wakeup(adev, ACPI_STATE_S0, false); 826 return error; 827 } 828 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume); 829 830 /** 831 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 832 * @dev: Device to suspend. 833 * 834 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 835 * it into a runtime low-power state. 836 */ 837 int acpi_subsys_runtime_suspend(struct device *dev) 838 { 839 int ret = pm_generic_runtime_suspend(dev); 840 return ret ? ret : acpi_dev_runtime_suspend(dev); 841 } 842 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 843 844 /** 845 * acpi_subsys_runtime_resume - Resume device using ACPI. 846 * @dev: Device to Resume. 847 * 848 * Use ACPI to put the given device into the full-power state and carry out the 849 * generic runtime resume procedure for it. 850 */ 851 int acpi_subsys_runtime_resume(struct device *dev) 852 { 853 int ret = acpi_dev_runtime_resume(dev); 854 return ret ? ret : pm_generic_runtime_resume(dev); 855 } 856 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 857 #endif /* CONFIG_PM_RUNTIME */ 858 859 #ifdef CONFIG_PM_SLEEP 860 /** 861 * acpi_dev_suspend_late - Put device into a low-power state using ACPI. 862 * @dev: Device to put into a low-power state. 863 * 864 * Put the given device into a low-power state during system transition to a 865 * sleep state using the standard ACPI mechanism. Set up system wakeup if 866 * desired, choose the state to put the device into (this checks if system 867 * wakeup is expected to work too), and set the power state of the device. 868 */ 869 int acpi_dev_suspend_late(struct device *dev) 870 { 871 struct acpi_device *adev = ACPI_COMPANION(dev); 872 u32 target_state; 873 bool wakeup; 874 int error; 875 876 if (!adev) 877 return 0; 878 879 target_state = acpi_target_system_state(); 880 wakeup = device_may_wakeup(dev); 881 error = acpi_device_wakeup(adev, target_state, wakeup); 882 if (wakeup && error) 883 return error; 884 885 error = acpi_dev_pm_low_power(dev, adev, target_state); 886 if (error) 887 acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false); 888 889 return error; 890 } 891 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late); 892 893 /** 894 * acpi_dev_resume_early - Put device into the full-power state using ACPI. 895 * @dev: Device to put into the full-power state. 896 * 897 * Put the given device into the full-power state using the standard ACPI 898 * mechanism during system transition to the working state. Set the power 899 * state of the device to ACPI D0 and disable remote wakeup. 900 */ 901 int acpi_dev_resume_early(struct device *dev) 902 { 903 struct acpi_device *adev = ACPI_COMPANION(dev); 904 int error; 905 906 if (!adev) 907 return 0; 908 909 error = acpi_dev_pm_full_power(adev); 910 acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false); 911 return error; 912 } 913 EXPORT_SYMBOL_GPL(acpi_dev_resume_early); 914 915 /** 916 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 917 * @dev: Device to prepare. 918 */ 919 int acpi_subsys_prepare(struct device *dev) 920 { 921 struct acpi_device *adev = ACPI_COMPANION(dev); 922 u32 sys_target; 923 int ret, state; 924 925 ret = pm_generic_prepare(dev); 926 if (ret < 0) 927 return ret; 928 929 if (!adev || !pm_runtime_suspended(dev) 930 || device_may_wakeup(dev) != !!adev->wakeup.prepare_count) 931 return 0; 932 933 sys_target = acpi_target_system_state(); 934 if (sys_target == ACPI_STATE_S0) 935 return 1; 936 937 if (adev->power.flags.dsw_present) 938 return 0; 939 940 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state); 941 return !ret && state == adev->power.state; 942 } 943 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 944 945 /** 946 * acpi_subsys_complete - Finalize device's resume during system resume. 947 * @dev: Device to handle. 948 */ 949 void acpi_subsys_complete(struct device *dev) 950 { 951 /* 952 * If the device had been runtime-suspended before the system went into 953 * the sleep state it is going out of and it has never been resumed till 954 * now, resume it in case the firmware powered it up. 955 */ 956 if (dev->power.direct_complete) 957 pm_request_resume(dev); 958 } 959 EXPORT_SYMBOL_GPL(acpi_subsys_complete); 960 961 /** 962 * acpi_subsys_suspend - Run the device driver's suspend callback. 963 * @dev: Device to handle. 964 * 965 * Follow PCI and resume devices suspended at run time before running their 966 * system suspend callbacks. 967 */ 968 int acpi_subsys_suspend(struct device *dev) 969 { 970 pm_runtime_resume(dev); 971 return pm_generic_suspend(dev); 972 } 973 EXPORT_SYMBOL_GPL(acpi_subsys_suspend); 974 975 /** 976 * acpi_subsys_suspend_late - Suspend device using ACPI. 977 * @dev: Device to suspend. 978 * 979 * Carry out the generic late suspend procedure for @dev and use ACPI to put 980 * it into a low-power state during system transition into a sleep state. 981 */ 982 int acpi_subsys_suspend_late(struct device *dev) 983 { 984 int ret = pm_generic_suspend_late(dev); 985 return ret ? ret : acpi_dev_suspend_late(dev); 986 } 987 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 988 989 /** 990 * acpi_subsys_resume_early - Resume device using ACPI. 991 * @dev: Device to Resume. 992 * 993 * Use ACPI to put the given device into the full-power state and carry out the 994 * generic early resume procedure for it during system transition into the 995 * working state. 996 */ 997 int acpi_subsys_resume_early(struct device *dev) 998 { 999 int ret = acpi_dev_resume_early(dev); 1000 return ret ? ret : pm_generic_resume_early(dev); 1001 } 1002 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early); 1003 1004 /** 1005 * acpi_subsys_freeze - Run the device driver's freeze callback. 1006 * @dev: Device to handle. 1007 */ 1008 int acpi_subsys_freeze(struct device *dev) 1009 { 1010 /* 1011 * This used to be done in acpi_subsys_prepare() for all devices and 1012 * some drivers may depend on it, so do it here. Ideally, however, 1013 * runtime-suspended devices should not be touched during freeze/thaw 1014 * transitions. 1015 */ 1016 pm_runtime_resume(dev); 1017 return pm_generic_freeze(dev); 1018 } 1019 EXPORT_SYMBOL_GPL(acpi_subsys_freeze); 1020 1021 #endif /* CONFIG_PM_SLEEP */ 1022 1023 static struct dev_pm_domain acpi_general_pm_domain = { 1024 .ops = { 1025 #ifdef CONFIG_PM_RUNTIME 1026 .runtime_suspend = acpi_subsys_runtime_suspend, 1027 .runtime_resume = acpi_subsys_runtime_resume, 1028 #endif 1029 #ifdef CONFIG_PM_SLEEP 1030 .prepare = acpi_subsys_prepare, 1031 .complete = acpi_subsys_complete, 1032 .suspend = acpi_subsys_suspend, 1033 .suspend_late = acpi_subsys_suspend_late, 1034 .resume_early = acpi_subsys_resume_early, 1035 .freeze = acpi_subsys_freeze, 1036 .poweroff = acpi_subsys_suspend, 1037 .poweroff_late = acpi_subsys_suspend_late, 1038 .restore_early = acpi_subsys_resume_early, 1039 #endif 1040 }, 1041 }; 1042 1043 /** 1044 * acpi_dev_pm_detach - Remove ACPI power management from the device. 1045 * @dev: Device to take care of. 1046 * @power_off: Whether or not to try to remove power from the device. 1047 * 1048 * Remove the device from the general ACPI PM domain and remove its wakeup 1049 * notifier. If @power_off is set, additionally remove power from the device if 1050 * possible. 1051 * 1052 * Callers must ensure proper synchronization of this function with power 1053 * management callbacks. 1054 */ 1055 static void acpi_dev_pm_detach(struct device *dev, bool power_off) 1056 { 1057 struct acpi_device *adev = ACPI_COMPANION(dev); 1058 1059 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 1060 dev->pm_domain = NULL; 1061 acpi_remove_pm_notifier(adev); 1062 if (power_off) { 1063 /* 1064 * If the device's PM QoS resume latency limit or flags 1065 * have been exposed to user space, they have to be 1066 * hidden at this point, so that they don't affect the 1067 * choice of the low-power state to put the device into. 1068 */ 1069 dev_pm_qos_hide_latency_limit(dev); 1070 dev_pm_qos_hide_flags(dev); 1071 acpi_device_wakeup(adev, ACPI_STATE_S0, false); 1072 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 1073 } 1074 } 1075 } 1076 1077 /** 1078 * acpi_dev_pm_attach - Prepare device for ACPI power management. 1079 * @dev: Device to prepare. 1080 * @power_on: Whether or not to power on the device. 1081 * 1082 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 1083 * attached to it, install a wakeup notification handler for the device and 1084 * add it to the general ACPI PM domain. If @power_on is set, the device will 1085 * be put into the ACPI D0 state before the function returns. 1086 * 1087 * This assumes that the @dev's bus type uses generic power management callbacks 1088 * (or doesn't use any power management callbacks at all). 1089 * 1090 * Callers must ensure proper synchronization of this function with power 1091 * management callbacks. 1092 */ 1093 int acpi_dev_pm_attach(struct device *dev, bool power_on) 1094 { 1095 struct acpi_device *adev = ACPI_COMPANION(dev); 1096 1097 if (!adev) 1098 return -ENODEV; 1099 1100 if (dev->pm_domain) 1101 return -EEXIST; 1102 1103 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func); 1104 dev->pm_domain = &acpi_general_pm_domain; 1105 if (power_on) { 1106 acpi_dev_pm_full_power(adev); 1107 acpi_device_wakeup(adev, ACPI_STATE_S0, false); 1108 } 1109 1110 dev->pm_domain->detach = acpi_dev_pm_detach; 1111 return 0; 1112 } 1113 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 1114 #endif /* CONFIG_PM */ 1115