xref: /openbmc/linux/drivers/acpi/device_pm.c (revision 3932b9ca)
1 /*
2  * drivers/acpi/device_pm.c - ACPI device power management routines.
3  *
4  * Copyright (C) 2012, Intel Corp.
5  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License version 2 as published
11  *  by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License along
19  *  with this program; if not, write to the Free Software Foundation, Inc.,
20  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  */
24 
25 #include <linux/acpi.h>
26 #include <linux/export.h>
27 #include <linux/mutex.h>
28 #include <linux/pm_qos.h>
29 #include <linux/pm_runtime.h>
30 
31 #include "internal.h"
32 
33 #define _COMPONENT	ACPI_POWER_COMPONENT
34 ACPI_MODULE_NAME("device_pm");
35 
36 /**
37  * acpi_power_state_string - String representation of ACPI device power state.
38  * @state: ACPI device power state to return the string representation of.
39  */
40 const char *acpi_power_state_string(int state)
41 {
42 	switch (state) {
43 	case ACPI_STATE_D0:
44 		return "D0";
45 	case ACPI_STATE_D1:
46 		return "D1";
47 	case ACPI_STATE_D2:
48 		return "D2";
49 	case ACPI_STATE_D3_HOT:
50 		return "D3hot";
51 	case ACPI_STATE_D3_COLD:
52 		return "D3cold";
53 	default:
54 		return "(unknown)";
55 	}
56 }
57 
58 /**
59  * acpi_device_get_power - Get power state of an ACPI device.
60  * @device: Device to get the power state of.
61  * @state: Place to store the power state of the device.
62  *
63  * This function does not update the device's power.state field, but it may
64  * update its parent's power.state field (when the parent's power state is
65  * unknown and the device's power state turns out to be D0).
66  */
67 int acpi_device_get_power(struct acpi_device *device, int *state)
68 {
69 	int result = ACPI_STATE_UNKNOWN;
70 
71 	if (!device || !state)
72 		return -EINVAL;
73 
74 	if (!device->flags.power_manageable) {
75 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
76 		*state = device->parent ?
77 			device->parent->power.state : ACPI_STATE_D0;
78 		goto out;
79 	}
80 
81 	/*
82 	 * Get the device's power state from power resources settings and _PSC,
83 	 * if available.
84 	 */
85 	if (device->power.flags.power_resources) {
86 		int error = acpi_power_get_inferred_state(device, &result);
87 		if (error)
88 			return error;
89 	}
90 	if (device->power.flags.explicit_get) {
91 		acpi_handle handle = device->handle;
92 		unsigned long long psc;
93 		acpi_status status;
94 
95 		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
96 		if (ACPI_FAILURE(status))
97 			return -ENODEV;
98 
99 		/*
100 		 * The power resources settings may indicate a power state
101 		 * shallower than the actual power state of the device.
102 		 *
103 		 * Moreover, on systems predating ACPI 4.0, if the device
104 		 * doesn't depend on any power resources and _PSC returns 3,
105 		 * that means "power off".  We need to maintain compatibility
106 		 * with those systems.
107 		 */
108 		if (psc > result && psc < ACPI_STATE_D3_COLD)
109 			result = psc;
110 		else if (result == ACPI_STATE_UNKNOWN)
111 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc;
112 	}
113 
114 	/*
115 	 * If we were unsure about the device parent's power state up to this
116 	 * point, the fact that the device is in D0 implies that the parent has
117 	 * to be in D0 too, except if ignore_parent is set.
118 	 */
119 	if (!device->power.flags.ignore_parent && device->parent
120 	    && device->parent->power.state == ACPI_STATE_UNKNOWN
121 	    && result == ACPI_STATE_D0)
122 		device->parent->power.state = ACPI_STATE_D0;
123 
124 	*state = result;
125 
126  out:
127 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
128 			  device->pnp.bus_id, acpi_power_state_string(*state)));
129 
130 	return 0;
131 }
132 
133 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
134 {
135 	if (adev->power.states[state].flags.explicit_set) {
136 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
137 		acpi_status status;
138 
139 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
140 		if (ACPI_FAILURE(status))
141 			return -ENODEV;
142 	}
143 	return 0;
144 }
145 
146 /**
147  * acpi_device_set_power - Set power state of an ACPI device.
148  * @device: Device to set the power state of.
149  * @state: New power state to set.
150  *
151  * Callers must ensure that the device is power manageable before using this
152  * function.
153  */
154 int acpi_device_set_power(struct acpi_device *device, int state)
155 {
156 	int result = 0;
157 	bool cut_power = false;
158 
159 	if (!device || !device->flags.power_manageable
160 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
161 		return -EINVAL;
162 
163 	/* Make sure this is a valid target state */
164 
165 	if (state == device->power.state) {
166 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
167 				  device->pnp.bus_id,
168 				  acpi_power_state_string(state)));
169 		return 0;
170 	}
171 
172 	if (!device->power.states[state].flags.valid) {
173 		dev_warn(&device->dev, "Power state %s not supported\n",
174 			 acpi_power_state_string(state));
175 		return -ENODEV;
176 	}
177 	if (!device->power.flags.ignore_parent &&
178 	    device->parent && (state < device->parent->power.state)) {
179 		dev_warn(&device->dev,
180 			 "Cannot transition to power state %s for parent in %s\n",
181 			 acpi_power_state_string(state),
182 			 acpi_power_state_string(device->parent->power.state));
183 		return -ENODEV;
184 	}
185 
186 	/* For D3cold we should first transition into D3hot. */
187 	if (state == ACPI_STATE_D3_COLD
188 	    && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) {
189 		state = ACPI_STATE_D3_HOT;
190 		cut_power = true;
191 	}
192 
193 	if (state < device->power.state && state != ACPI_STATE_D0
194 	    && device->power.state >= ACPI_STATE_D3_HOT) {
195 		dev_warn(&device->dev,
196 			 "Cannot transition to non-D0 state from D3\n");
197 		return -ENODEV;
198 	}
199 
200 	/*
201 	 * Transition Power
202 	 * ----------------
203 	 * In accordance with the ACPI specification first apply power (via
204 	 * power resources) and then evalute _PSx.
205 	 */
206 	if (device->power.flags.power_resources) {
207 		result = acpi_power_transition(device, state);
208 		if (result)
209 			goto end;
210 	}
211 	result = acpi_dev_pm_explicit_set(device, state);
212 	if (result)
213 		goto end;
214 
215 	if (cut_power) {
216 		device->power.state = state;
217 		state = ACPI_STATE_D3_COLD;
218 		result = acpi_power_transition(device, state);
219 	}
220 
221  end:
222 	if (result) {
223 		dev_warn(&device->dev, "Failed to change power state to %s\n",
224 			 acpi_power_state_string(state));
225 	} else {
226 		device->power.state = state;
227 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
228 				  "Device [%s] transitioned to %s\n",
229 				  device->pnp.bus_id,
230 				  acpi_power_state_string(state)));
231 	}
232 
233 	return result;
234 }
235 EXPORT_SYMBOL(acpi_device_set_power);
236 
237 int acpi_bus_set_power(acpi_handle handle, int state)
238 {
239 	struct acpi_device *device;
240 	int result;
241 
242 	result = acpi_bus_get_device(handle, &device);
243 	if (result)
244 		return result;
245 
246 	return acpi_device_set_power(device, state);
247 }
248 EXPORT_SYMBOL(acpi_bus_set_power);
249 
250 int acpi_bus_init_power(struct acpi_device *device)
251 {
252 	int state;
253 	int result;
254 
255 	if (!device)
256 		return -EINVAL;
257 
258 	device->power.state = ACPI_STATE_UNKNOWN;
259 	if (!acpi_device_is_present(device))
260 		return 0;
261 
262 	result = acpi_device_get_power(device, &state);
263 	if (result)
264 		return result;
265 
266 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
267 		result = acpi_power_on_resources(device, state);
268 		if (result)
269 			return result;
270 
271 		result = acpi_dev_pm_explicit_set(device, state);
272 		if (result)
273 			return result;
274 	} else if (state == ACPI_STATE_UNKNOWN) {
275 		/*
276 		 * No power resources and missing _PSC?  Cross fingers and make
277 		 * it D0 in hope that this is what the BIOS put the device into.
278 		 * [We tried to force D0 here by executing _PS0, but that broke
279 		 * Toshiba P870-303 in a nasty way.]
280 		 */
281 		state = ACPI_STATE_D0;
282 	}
283 	device->power.state = state;
284 	return 0;
285 }
286 
287 /**
288  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
289  * @device: Device object whose power state is to be fixed up.
290  *
291  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
292  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
293  * not be the case and this function should be used then.
294  */
295 int acpi_device_fix_up_power(struct acpi_device *device)
296 {
297 	int ret = 0;
298 
299 	if (!device->power.flags.power_resources
300 	    && !device->power.flags.explicit_get
301 	    && device->power.state == ACPI_STATE_D0)
302 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
303 
304 	return ret;
305 }
306 
307 int acpi_device_update_power(struct acpi_device *device, int *state_p)
308 {
309 	int state;
310 	int result;
311 
312 	if (device->power.state == ACPI_STATE_UNKNOWN) {
313 		result = acpi_bus_init_power(device);
314 		if (!result && state_p)
315 			*state_p = device->power.state;
316 
317 		return result;
318 	}
319 
320 	result = acpi_device_get_power(device, &state);
321 	if (result)
322 		return result;
323 
324 	if (state == ACPI_STATE_UNKNOWN) {
325 		state = ACPI_STATE_D0;
326 		result = acpi_device_set_power(device, state);
327 		if (result)
328 			return result;
329 	} else {
330 		if (device->power.flags.power_resources) {
331 			/*
332 			 * We don't need to really switch the state, bu we need
333 			 * to update the power resources' reference counters.
334 			 */
335 			result = acpi_power_transition(device, state);
336 			if (result)
337 				return result;
338 		}
339 		device->power.state = state;
340 	}
341 	if (state_p)
342 		*state_p = state;
343 
344 	return 0;
345 }
346 
347 int acpi_bus_update_power(acpi_handle handle, int *state_p)
348 {
349 	struct acpi_device *device;
350 	int result;
351 
352 	result = acpi_bus_get_device(handle, &device);
353 	return result ? result : acpi_device_update_power(device, state_p);
354 }
355 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
356 
357 bool acpi_bus_power_manageable(acpi_handle handle)
358 {
359 	struct acpi_device *device;
360 	int result;
361 
362 	result = acpi_bus_get_device(handle, &device);
363 	return result ? false : device->flags.power_manageable;
364 }
365 EXPORT_SYMBOL(acpi_bus_power_manageable);
366 
367 #ifdef CONFIG_PM
368 static DEFINE_MUTEX(acpi_pm_notifier_lock);
369 
370 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
371 {
372 	struct acpi_device *adev;
373 
374 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
375 		return;
376 
377 	adev = acpi_bus_get_acpi_device(handle);
378 	if (!adev)
379 		return;
380 
381 	mutex_lock(&acpi_pm_notifier_lock);
382 
383 	if (adev->wakeup.flags.notifier_present) {
384 		__pm_wakeup_event(adev->wakeup.ws, 0);
385 		if (adev->wakeup.context.work.func)
386 			queue_pm_work(&adev->wakeup.context.work);
387 	}
388 
389 	mutex_unlock(&acpi_pm_notifier_lock);
390 
391 	acpi_bus_put_acpi_device(adev);
392 }
393 
394 /**
395  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
396  * @adev: ACPI device to add the notify handler for.
397  * @dev: Device to generate a wakeup event for while handling the notification.
398  * @work_func: Work function to execute when handling the notification.
399  *
400  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
401  * PM wakeup events.  For example, wakeup events may be generated for bridges
402  * if one of the devices below the bridge is signaling wakeup, even if the
403  * bridge itself doesn't have a wakeup GPE associated with it.
404  */
405 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
406 				 void (*work_func)(struct work_struct *work))
407 {
408 	acpi_status status = AE_ALREADY_EXISTS;
409 
410 	if (!dev && !work_func)
411 		return AE_BAD_PARAMETER;
412 
413 	mutex_lock(&acpi_pm_notifier_lock);
414 
415 	if (adev->wakeup.flags.notifier_present)
416 		goto out;
417 
418 	adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
419 	adev->wakeup.context.dev = dev;
420 	if (work_func)
421 		INIT_WORK(&adev->wakeup.context.work, work_func);
422 
423 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
424 					     acpi_pm_notify_handler, NULL);
425 	if (ACPI_FAILURE(status))
426 		goto out;
427 
428 	adev->wakeup.flags.notifier_present = true;
429 
430  out:
431 	mutex_unlock(&acpi_pm_notifier_lock);
432 	return status;
433 }
434 
435 /**
436  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
437  * @adev: ACPI device to remove the notifier from.
438  */
439 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
440 {
441 	acpi_status status = AE_BAD_PARAMETER;
442 
443 	mutex_lock(&acpi_pm_notifier_lock);
444 
445 	if (!adev->wakeup.flags.notifier_present)
446 		goto out;
447 
448 	status = acpi_remove_notify_handler(adev->handle,
449 					    ACPI_SYSTEM_NOTIFY,
450 					    acpi_pm_notify_handler);
451 	if (ACPI_FAILURE(status))
452 		goto out;
453 
454 	if (adev->wakeup.context.work.func) {
455 		cancel_work_sync(&adev->wakeup.context.work);
456 		adev->wakeup.context.work.func = NULL;
457 	}
458 	adev->wakeup.context.dev = NULL;
459 	wakeup_source_unregister(adev->wakeup.ws);
460 
461 	adev->wakeup.flags.notifier_present = false;
462 
463  out:
464 	mutex_unlock(&acpi_pm_notifier_lock);
465 	return status;
466 }
467 
468 bool acpi_bus_can_wakeup(acpi_handle handle)
469 {
470 	struct acpi_device *device;
471 	int result;
472 
473 	result = acpi_bus_get_device(handle, &device);
474 	return result ? false : device->wakeup.flags.valid;
475 }
476 EXPORT_SYMBOL(acpi_bus_can_wakeup);
477 
478 /**
479  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
480  * @dev: Device whose preferred target power state to return.
481  * @adev: ACPI device node corresponding to @dev.
482  * @target_state: System state to match the resultant device state.
483  * @d_min_p: Location to store the highest power state available to the device.
484  * @d_max_p: Location to store the lowest power state available to the device.
485  *
486  * Find the lowest power (highest number) and highest power (lowest number) ACPI
487  * device power states that the device can be in while the system is in the
488  * state represented by @target_state.  Store the integer numbers representing
489  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
490  * respectively.
491  *
492  * Callers must ensure that @dev and @adev are valid pointers and that @adev
493  * actually corresponds to @dev before using this function.
494  *
495  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
496  * returns a value that doesn't make sense.  The memory locations pointed to by
497  * @d_max_p and @d_min_p are only modified on success.
498  */
499 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
500 				 u32 target_state, int *d_min_p, int *d_max_p)
501 {
502 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
503 	acpi_handle handle = adev->handle;
504 	unsigned long long ret;
505 	int d_min, d_max;
506 	bool wakeup = false;
507 	acpi_status status;
508 
509 	/*
510 	 * If the system state is S0, the lowest power state the device can be
511 	 * in is D3cold, unless the device has _S0W and is supposed to signal
512 	 * wakeup, in which case the return value of _S0W has to be used as the
513 	 * lowest power state available to the device.
514 	 */
515 	d_min = ACPI_STATE_D0;
516 	d_max = ACPI_STATE_D3_COLD;
517 
518 	/*
519 	 * If present, _SxD methods return the minimum D-state (highest power
520 	 * state) we can use for the corresponding S-states.  Otherwise, the
521 	 * minimum D-state is D0 (ACPI 3.x).
522 	 */
523 	if (target_state > ACPI_STATE_S0) {
524 		/*
525 		 * We rely on acpi_evaluate_integer() not clobbering the integer
526 		 * provided if AE_NOT_FOUND is returned.
527 		 */
528 		ret = d_min;
529 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
530 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
531 		    || ret > ACPI_STATE_D3_COLD)
532 			return -ENODATA;
533 
534 		/*
535 		 * We need to handle legacy systems where D3hot and D3cold are
536 		 * the same and 3 is returned in both cases, so fall back to
537 		 * D3cold if D3hot is not a valid state.
538 		 */
539 		if (!adev->power.states[ret].flags.valid) {
540 			if (ret == ACPI_STATE_D3_HOT)
541 				ret = ACPI_STATE_D3_COLD;
542 			else
543 				return -ENODATA;
544 		}
545 		d_min = ret;
546 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
547 			&& adev->wakeup.sleep_state >= target_state;
548 	} else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) !=
549 			PM_QOS_FLAGS_NONE) {
550 		wakeup = adev->wakeup.flags.valid;
551 	}
552 
553 	/*
554 	 * If _PRW says we can wake up the system from the target sleep state,
555 	 * the D-state returned by _SxD is sufficient for that (we assume a
556 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
557 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
558 	 * can wake the system.  _S0W may be valid, too.
559 	 */
560 	if (wakeup) {
561 		method[3] = 'W';
562 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
563 		if (status == AE_NOT_FOUND) {
564 			if (target_state > ACPI_STATE_S0)
565 				d_max = d_min;
566 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
567 			/* Fall back to D3cold if ret is not a valid state. */
568 			if (!adev->power.states[ret].flags.valid)
569 				ret = ACPI_STATE_D3_COLD;
570 
571 			d_max = ret > d_min ? ret : d_min;
572 		} else {
573 			return -ENODATA;
574 		}
575 	}
576 
577 	if (d_min_p)
578 		*d_min_p = d_min;
579 
580 	if (d_max_p)
581 		*d_max_p = d_max;
582 
583 	return 0;
584 }
585 
586 /**
587  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
588  * @dev: Device whose preferred target power state to return.
589  * @d_min_p: Location to store the upper limit of the allowed states range.
590  * @d_max_in: Deepest low-power state to take into consideration.
591  * Return value: Preferred power state of the device on success, -ENODEV
592  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
593  * incorrect, or -ENODATA on ACPI method failure.
594  *
595  * The caller must ensure that @dev is valid before using this function.
596  */
597 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
598 {
599 	struct acpi_device *adev;
600 	int ret, d_min, d_max;
601 
602 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
603 		return -EINVAL;
604 
605 	if (d_max_in > ACPI_STATE_D3_HOT) {
606 		enum pm_qos_flags_status stat;
607 
608 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
609 		if (stat == PM_QOS_FLAGS_ALL)
610 			d_max_in = ACPI_STATE_D3_HOT;
611 	}
612 
613 	adev = ACPI_COMPANION(dev);
614 	if (!adev) {
615 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
616 		return -ENODEV;
617 	}
618 
619 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
620 				    &d_min, &d_max);
621 	if (ret)
622 		return ret;
623 
624 	if (d_max_in < d_min)
625 		return -EINVAL;
626 
627 	if (d_max > d_max_in) {
628 		for (d_max = d_max_in; d_max > d_min; d_max--) {
629 			if (adev->power.states[d_max].flags.valid)
630 				break;
631 		}
632 	}
633 
634 	if (d_min_p)
635 		*d_min_p = d_min;
636 
637 	return d_max;
638 }
639 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
640 
641 /**
642  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
643  * @work: Work item to handle.
644  */
645 static void acpi_pm_notify_work_func(struct work_struct *work)
646 {
647 	struct device *dev;
648 
649 	dev = container_of(work, struct acpi_device_wakeup_context, work)->dev;
650 	if (dev) {
651 		pm_wakeup_event(dev, 0);
652 		pm_runtime_resume(dev);
653 	}
654 }
655 
656 /**
657  * acpi_device_wakeup - Enable/disable wakeup functionality for device.
658  * @adev: ACPI device to enable/disable wakeup functionality for.
659  * @target_state: State the system is transitioning into.
660  * @enable: Whether to enable or disable the wakeup functionality.
661  *
662  * Enable/disable the GPE associated with @adev so that it can generate
663  * wakeup signals for the device in response to external (remote) events and
664  * enable/disable device wakeup power.
665  *
666  * Callers must ensure that @adev is a valid ACPI device node before executing
667  * this function.
668  */
669 static int acpi_device_wakeup(struct acpi_device *adev, u32 target_state,
670 			      bool enable)
671 {
672 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
673 
674 	if (enable) {
675 		acpi_status res;
676 		int error;
677 
678 		error = acpi_enable_wakeup_device_power(adev, target_state);
679 		if (error)
680 			return error;
681 
682 		res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
683 		if (ACPI_FAILURE(res)) {
684 			acpi_disable_wakeup_device_power(adev);
685 			return -EIO;
686 		}
687 	} else {
688 		acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
689 		acpi_disable_wakeup_device_power(adev);
690 	}
691 	return 0;
692 }
693 
694 #ifdef CONFIG_PM_RUNTIME
695 /**
696  * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device.
697  * @dev: Device to enable/disable the platform to wake up.
698  * @enable: Whether to enable or disable the wakeup functionality.
699  */
700 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
701 {
702 	struct acpi_device *adev;
703 
704 	if (!device_run_wake(phys_dev))
705 		return -EINVAL;
706 
707 	adev = ACPI_COMPANION(phys_dev);
708 	if (!adev) {
709 		dev_dbg(phys_dev, "ACPI companion missing in %s!\n", __func__);
710 		return -ENODEV;
711 	}
712 
713 	return acpi_device_wakeup(adev, enable, ACPI_STATE_S0);
714 }
715 EXPORT_SYMBOL(acpi_pm_device_run_wake);
716 #endif /* CONFIG_PM_RUNTIME */
717 
718 #ifdef CONFIG_PM_SLEEP
719 /**
720  * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system.
721  * @dev: Device to enable/desible to wake up the system from sleep states.
722  * @enable: Whether to enable or disable @dev to wake up the system.
723  */
724 int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
725 {
726 	struct acpi_device *adev;
727 	int error;
728 
729 	if (!device_can_wakeup(dev))
730 		return -EINVAL;
731 
732 	adev = ACPI_COMPANION(dev);
733 	if (!adev) {
734 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
735 		return -ENODEV;
736 	}
737 
738 	error = acpi_device_wakeup(adev, acpi_target_system_state(), enable);
739 	if (!error)
740 		dev_info(dev, "System wakeup %s by ACPI\n",
741 				enable ? "enabled" : "disabled");
742 
743 	return error;
744 }
745 #endif /* CONFIG_PM_SLEEP */
746 
747 /**
748  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
749  * @dev: Device to put into a low-power state.
750  * @adev: ACPI device node corresponding to @dev.
751  * @system_state: System state to choose the device state for.
752  */
753 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
754 				 u32 system_state)
755 {
756 	int ret, state;
757 
758 	if (!acpi_device_power_manageable(adev))
759 		return 0;
760 
761 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
762 	return ret ? ret : acpi_device_set_power(adev, state);
763 }
764 
765 /**
766  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
767  * @adev: ACPI device node to put into the full-power state.
768  */
769 static int acpi_dev_pm_full_power(struct acpi_device *adev)
770 {
771 	return acpi_device_power_manageable(adev) ?
772 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
773 }
774 
775 #ifdef CONFIG_PM_RUNTIME
776 /**
777  * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI.
778  * @dev: Device to put into a low-power state.
779  *
780  * Put the given device into a runtime low-power state using the standard ACPI
781  * mechanism.  Set up remote wakeup if desired, choose the state to put the
782  * device into (this checks if remote wakeup is expected to work too), and set
783  * the power state of the device.
784  */
785 int acpi_dev_runtime_suspend(struct device *dev)
786 {
787 	struct acpi_device *adev = ACPI_COMPANION(dev);
788 	bool remote_wakeup;
789 	int error;
790 
791 	if (!adev)
792 		return 0;
793 
794 	remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) >
795 				PM_QOS_FLAGS_NONE;
796 	error = acpi_device_wakeup(adev, ACPI_STATE_S0, remote_wakeup);
797 	if (remote_wakeup && error)
798 		return -EAGAIN;
799 
800 	error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
801 	if (error)
802 		acpi_device_wakeup(adev, ACPI_STATE_S0, false);
803 
804 	return error;
805 }
806 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend);
807 
808 /**
809  * acpi_dev_runtime_resume - Put device into the full-power state using ACPI.
810  * @dev: Device to put into the full-power state.
811  *
812  * Put the given device into the full-power state using the standard ACPI
813  * mechanism at run time.  Set the power state of the device to ACPI D0 and
814  * disable remote wakeup.
815  */
816 int acpi_dev_runtime_resume(struct device *dev)
817 {
818 	struct acpi_device *adev = ACPI_COMPANION(dev);
819 	int error;
820 
821 	if (!adev)
822 		return 0;
823 
824 	error = acpi_dev_pm_full_power(adev);
825 	acpi_device_wakeup(adev, ACPI_STATE_S0, false);
826 	return error;
827 }
828 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume);
829 
830 /**
831  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
832  * @dev: Device to suspend.
833  *
834  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
835  * it into a runtime low-power state.
836  */
837 int acpi_subsys_runtime_suspend(struct device *dev)
838 {
839 	int ret = pm_generic_runtime_suspend(dev);
840 	return ret ? ret : acpi_dev_runtime_suspend(dev);
841 }
842 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
843 
844 /**
845  * acpi_subsys_runtime_resume - Resume device using ACPI.
846  * @dev: Device to Resume.
847  *
848  * Use ACPI to put the given device into the full-power state and carry out the
849  * generic runtime resume procedure for it.
850  */
851 int acpi_subsys_runtime_resume(struct device *dev)
852 {
853 	int ret = acpi_dev_runtime_resume(dev);
854 	return ret ? ret : pm_generic_runtime_resume(dev);
855 }
856 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
857 #endif /* CONFIG_PM_RUNTIME */
858 
859 #ifdef CONFIG_PM_SLEEP
860 /**
861  * acpi_dev_suspend_late - Put device into a low-power state using ACPI.
862  * @dev: Device to put into a low-power state.
863  *
864  * Put the given device into a low-power state during system transition to a
865  * sleep state using the standard ACPI mechanism.  Set up system wakeup if
866  * desired, choose the state to put the device into (this checks if system
867  * wakeup is expected to work too), and set the power state of the device.
868  */
869 int acpi_dev_suspend_late(struct device *dev)
870 {
871 	struct acpi_device *adev = ACPI_COMPANION(dev);
872 	u32 target_state;
873 	bool wakeup;
874 	int error;
875 
876 	if (!adev)
877 		return 0;
878 
879 	target_state = acpi_target_system_state();
880 	wakeup = device_may_wakeup(dev);
881 	error = acpi_device_wakeup(adev, target_state, wakeup);
882 	if (wakeup && error)
883 		return error;
884 
885 	error = acpi_dev_pm_low_power(dev, adev, target_state);
886 	if (error)
887 		acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
888 
889 	return error;
890 }
891 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late);
892 
893 /**
894  * acpi_dev_resume_early - Put device into the full-power state using ACPI.
895  * @dev: Device to put into the full-power state.
896  *
897  * Put the given device into the full-power state using the standard ACPI
898  * mechanism during system transition to the working state.  Set the power
899  * state of the device to ACPI D0 and disable remote wakeup.
900  */
901 int acpi_dev_resume_early(struct device *dev)
902 {
903 	struct acpi_device *adev = ACPI_COMPANION(dev);
904 	int error;
905 
906 	if (!adev)
907 		return 0;
908 
909 	error = acpi_dev_pm_full_power(adev);
910 	acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
911 	return error;
912 }
913 EXPORT_SYMBOL_GPL(acpi_dev_resume_early);
914 
915 /**
916  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
917  * @dev: Device to prepare.
918  */
919 int acpi_subsys_prepare(struct device *dev)
920 {
921 	struct acpi_device *adev = ACPI_COMPANION(dev);
922 	u32 sys_target;
923 	int ret, state;
924 
925 	ret = pm_generic_prepare(dev);
926 	if (ret < 0)
927 		return ret;
928 
929 	if (!adev || !pm_runtime_suspended(dev)
930 	    || device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
931 		return 0;
932 
933 	sys_target = acpi_target_system_state();
934 	if (sys_target == ACPI_STATE_S0)
935 		return 1;
936 
937 	if (adev->power.flags.dsw_present)
938 		return 0;
939 
940 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
941 	return !ret && state == adev->power.state;
942 }
943 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
944 
945 /**
946  * acpi_subsys_complete - Finalize device's resume during system resume.
947  * @dev: Device to handle.
948  */
949 void acpi_subsys_complete(struct device *dev)
950 {
951 	/*
952 	 * If the device had been runtime-suspended before the system went into
953 	 * the sleep state it is going out of and it has never been resumed till
954 	 * now, resume it in case the firmware powered it up.
955 	 */
956 	if (dev->power.direct_complete)
957 		pm_request_resume(dev);
958 }
959 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
960 
961 /**
962  * acpi_subsys_suspend - Run the device driver's suspend callback.
963  * @dev: Device to handle.
964  *
965  * Follow PCI and resume devices suspended at run time before running their
966  * system suspend callbacks.
967  */
968 int acpi_subsys_suspend(struct device *dev)
969 {
970 	pm_runtime_resume(dev);
971 	return pm_generic_suspend(dev);
972 }
973 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
974 
975 /**
976  * acpi_subsys_suspend_late - Suspend device using ACPI.
977  * @dev: Device to suspend.
978  *
979  * Carry out the generic late suspend procedure for @dev and use ACPI to put
980  * it into a low-power state during system transition into a sleep state.
981  */
982 int acpi_subsys_suspend_late(struct device *dev)
983 {
984 	int ret = pm_generic_suspend_late(dev);
985 	return ret ? ret : acpi_dev_suspend_late(dev);
986 }
987 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
988 
989 /**
990  * acpi_subsys_resume_early - Resume device using ACPI.
991  * @dev: Device to Resume.
992  *
993  * Use ACPI to put the given device into the full-power state and carry out the
994  * generic early resume procedure for it during system transition into the
995  * working state.
996  */
997 int acpi_subsys_resume_early(struct device *dev)
998 {
999 	int ret = acpi_dev_resume_early(dev);
1000 	return ret ? ret : pm_generic_resume_early(dev);
1001 }
1002 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1003 
1004 /**
1005  * acpi_subsys_freeze - Run the device driver's freeze callback.
1006  * @dev: Device to handle.
1007  */
1008 int acpi_subsys_freeze(struct device *dev)
1009 {
1010 	/*
1011 	 * This used to be done in acpi_subsys_prepare() for all devices and
1012 	 * some drivers may depend on it, so do it here.  Ideally, however,
1013 	 * runtime-suspended devices should not be touched during freeze/thaw
1014 	 * transitions.
1015 	 */
1016 	pm_runtime_resume(dev);
1017 	return pm_generic_freeze(dev);
1018 }
1019 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1020 
1021 #endif /* CONFIG_PM_SLEEP */
1022 
1023 static struct dev_pm_domain acpi_general_pm_domain = {
1024 	.ops = {
1025 #ifdef CONFIG_PM_RUNTIME
1026 		.runtime_suspend = acpi_subsys_runtime_suspend,
1027 		.runtime_resume = acpi_subsys_runtime_resume,
1028 #endif
1029 #ifdef CONFIG_PM_SLEEP
1030 		.prepare = acpi_subsys_prepare,
1031 		.complete = acpi_subsys_complete,
1032 		.suspend = acpi_subsys_suspend,
1033 		.suspend_late = acpi_subsys_suspend_late,
1034 		.resume_early = acpi_subsys_resume_early,
1035 		.freeze = acpi_subsys_freeze,
1036 		.poweroff = acpi_subsys_suspend,
1037 		.poweroff_late = acpi_subsys_suspend_late,
1038 		.restore_early = acpi_subsys_resume_early,
1039 #endif
1040 	},
1041 };
1042 
1043 /**
1044  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1045  * @dev: Device to prepare.
1046  * @power_on: Whether or not to power on the device.
1047  *
1048  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1049  * attached to it, install a wakeup notification handler for the device and
1050  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1051  * be put into the ACPI D0 state before the function returns.
1052  *
1053  * This assumes that the @dev's bus type uses generic power management callbacks
1054  * (or doesn't use any power management callbacks at all).
1055  *
1056  * Callers must ensure proper synchronization of this function with power
1057  * management callbacks.
1058  */
1059 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1060 {
1061 	struct acpi_device *adev = ACPI_COMPANION(dev);
1062 
1063 	if (!adev)
1064 		return -ENODEV;
1065 
1066 	if (dev->pm_domain)
1067 		return -EEXIST;
1068 
1069 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1070 	dev->pm_domain = &acpi_general_pm_domain;
1071 	if (power_on) {
1072 		acpi_dev_pm_full_power(adev);
1073 		acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1074 	}
1075 	return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1078 
1079 /**
1080  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1081  * @dev: Device to take care of.
1082  * @power_off: Whether or not to try to remove power from the device.
1083  *
1084  * Remove the device from the general ACPI PM domain and remove its wakeup
1085  * notifier.  If @power_off is set, additionally remove power from the device if
1086  * possible.
1087  *
1088  * Callers must ensure proper synchronization of this function with power
1089  * management callbacks.
1090  */
1091 void acpi_dev_pm_detach(struct device *dev, bool power_off)
1092 {
1093 	struct acpi_device *adev = ACPI_COMPANION(dev);
1094 
1095 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1096 		dev->pm_domain = NULL;
1097 		acpi_remove_pm_notifier(adev);
1098 		if (power_off) {
1099 			/*
1100 			 * If the device's PM QoS resume latency limit or flags
1101 			 * have been exposed to user space, they have to be
1102 			 * hidden at this point, so that they don't affect the
1103 			 * choice of the low-power state to put the device into.
1104 			 */
1105 			dev_pm_qos_hide_latency_limit(dev);
1106 			dev_pm_qos_hide_flags(dev);
1107 			acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1108 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1109 		}
1110 	}
1111 }
1112 EXPORT_SYMBOL_GPL(acpi_dev_pm_detach);
1113 #endif /* CONFIG_PM */
1114