1 /* 2 * drivers/acpi/device_pm.c - ACPI device power management routines. 3 * 4 * Copyright (C) 2012, Intel Corp. 5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as published 11 * by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, write to the Free Software Foundation, Inc., 20 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 21 * 22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 23 */ 24 25 #include <linux/device.h> 26 #include <linux/export.h> 27 #include <linux/mutex.h> 28 #include <linux/pm_qos.h> 29 #include <linux/pm_runtime.h> 30 31 #include <acpi/acpi.h> 32 #include <acpi/acpi_bus.h> 33 #include <acpi/acpi_drivers.h> 34 35 #include "internal.h" 36 37 #define _COMPONENT ACPI_POWER_COMPONENT 38 ACPI_MODULE_NAME("device_pm"); 39 40 /** 41 * acpi_power_state_string - String representation of ACPI device power state. 42 * @state: ACPI device power state to return the string representation of. 43 */ 44 const char *acpi_power_state_string(int state) 45 { 46 switch (state) { 47 case ACPI_STATE_D0: 48 return "D0"; 49 case ACPI_STATE_D1: 50 return "D1"; 51 case ACPI_STATE_D2: 52 return "D2"; 53 case ACPI_STATE_D3_HOT: 54 return "D3hot"; 55 case ACPI_STATE_D3_COLD: 56 return "D3cold"; 57 default: 58 return "(unknown)"; 59 } 60 } 61 62 /** 63 * acpi_device_get_power - Get power state of an ACPI device. 64 * @device: Device to get the power state of. 65 * @state: Place to store the power state of the device. 66 * 67 * This function does not update the device's power.state field, but it may 68 * update its parent's power.state field (when the parent's power state is 69 * unknown and the device's power state turns out to be D0). 70 */ 71 int acpi_device_get_power(struct acpi_device *device, int *state) 72 { 73 int result = ACPI_STATE_UNKNOWN; 74 75 if (!device || !state) 76 return -EINVAL; 77 78 if (!device->flags.power_manageable) { 79 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 80 *state = device->parent ? 81 device->parent->power.state : ACPI_STATE_D0; 82 goto out; 83 } 84 85 /* 86 * Get the device's power state from power resources settings and _PSC, 87 * if available. 88 */ 89 if (device->power.flags.power_resources) { 90 int error = acpi_power_get_inferred_state(device, &result); 91 if (error) 92 return error; 93 } 94 if (device->power.flags.explicit_get) { 95 acpi_handle handle = device->handle; 96 unsigned long long psc; 97 acpi_status status; 98 99 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc); 100 if (ACPI_FAILURE(status)) 101 return -ENODEV; 102 103 /* 104 * The power resources settings may indicate a power state 105 * shallower than the actual power state of the device. 106 * 107 * Moreover, on systems predating ACPI 4.0, if the device 108 * doesn't depend on any power resources and _PSC returns 3, 109 * that means "power off". We need to maintain compatibility 110 * with those systems. 111 */ 112 if (psc > result && psc < ACPI_STATE_D3_COLD) 113 result = psc; 114 else if (result == ACPI_STATE_UNKNOWN) 115 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc; 116 } 117 118 /* 119 * If we were unsure about the device parent's power state up to this 120 * point, the fact that the device is in D0 implies that the parent has 121 * to be in D0 too. 122 */ 123 if (device->parent && device->parent->power.state == ACPI_STATE_UNKNOWN 124 && result == ACPI_STATE_D0) 125 device->parent->power.state = ACPI_STATE_D0; 126 127 *state = result; 128 129 out: 130 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n", 131 device->pnp.bus_id, acpi_power_state_string(*state))); 132 133 return 0; 134 } 135 136 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 137 { 138 if (adev->power.states[state].flags.explicit_set) { 139 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 140 acpi_status status; 141 142 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 143 if (ACPI_FAILURE(status)) 144 return -ENODEV; 145 } 146 return 0; 147 } 148 149 /** 150 * acpi_device_set_power - Set power state of an ACPI device. 151 * @device: Device to set the power state of. 152 * @state: New power state to set. 153 * 154 * Callers must ensure that the device is power manageable before using this 155 * function. 156 */ 157 int acpi_device_set_power(struct acpi_device *device, int state) 158 { 159 int result = 0; 160 bool cut_power = false; 161 162 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 163 return -EINVAL; 164 165 /* Make sure this is a valid target state */ 166 167 if (state == device->power.state) { 168 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device is already at %s\n", 169 acpi_power_state_string(state))); 170 return 0; 171 } 172 173 if (!device->power.states[state].flags.valid) { 174 printk(KERN_WARNING PREFIX "Device does not support %s\n", 175 acpi_power_state_string(state)); 176 return -ENODEV; 177 } 178 if (device->parent && (state < device->parent->power.state)) { 179 printk(KERN_WARNING PREFIX 180 "Cannot set device to a higher-powered" 181 " state than parent\n"); 182 return -ENODEV; 183 } 184 185 /* For D3cold we should first transition into D3hot. */ 186 if (state == ACPI_STATE_D3_COLD 187 && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) { 188 state = ACPI_STATE_D3_HOT; 189 cut_power = true; 190 } 191 192 if (state < device->power.state && state != ACPI_STATE_D0 193 && device->power.state >= ACPI_STATE_D3_HOT) { 194 printk(KERN_WARNING PREFIX 195 "Cannot transition to non-D0 state from D3\n"); 196 return -ENODEV; 197 } 198 199 /* 200 * Transition Power 201 * ---------------- 202 * In accordance with the ACPI specification first apply power (via 203 * power resources) and then evalute _PSx. 204 */ 205 if (device->power.flags.power_resources) { 206 result = acpi_power_transition(device, state); 207 if (result) 208 goto end; 209 } 210 result = acpi_dev_pm_explicit_set(device, state); 211 if (result) 212 goto end; 213 214 if (cut_power) { 215 device->power.state = state; 216 state = ACPI_STATE_D3_COLD; 217 result = acpi_power_transition(device, state); 218 } 219 220 end: 221 if (result) { 222 printk(KERN_WARNING PREFIX 223 "Device [%s] failed to transition to %s\n", 224 device->pnp.bus_id, 225 acpi_power_state_string(state)); 226 } else { 227 device->power.state = state; 228 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 229 "Device [%s] transitioned to %s\n", 230 device->pnp.bus_id, 231 acpi_power_state_string(state))); 232 } 233 234 return result; 235 } 236 EXPORT_SYMBOL(acpi_device_set_power); 237 238 int acpi_bus_set_power(acpi_handle handle, int state) 239 { 240 struct acpi_device *device; 241 int result; 242 243 result = acpi_bus_get_device(handle, &device); 244 if (result) 245 return result; 246 247 if (!device->flags.power_manageable) { 248 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 249 "Device [%s] is not power manageable\n", 250 dev_name(&device->dev))); 251 return -ENODEV; 252 } 253 254 return acpi_device_set_power(device, state); 255 } 256 EXPORT_SYMBOL(acpi_bus_set_power); 257 258 int acpi_bus_init_power(struct acpi_device *device) 259 { 260 int state; 261 int result; 262 263 if (!device) 264 return -EINVAL; 265 266 device->power.state = ACPI_STATE_UNKNOWN; 267 268 result = acpi_device_get_power(device, &state); 269 if (result) 270 return result; 271 272 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 273 result = acpi_power_on_resources(device, state); 274 if (result) 275 return result; 276 277 result = acpi_dev_pm_explicit_set(device, state); 278 if (result) 279 return result; 280 } else if (state == ACPI_STATE_UNKNOWN) { 281 /* 282 * No power resources and missing _PSC? Cross fingers and make 283 * it D0 in hope that this is what the BIOS put the device into. 284 * [We tried to force D0 here by executing _PS0, but that broke 285 * Toshiba P870-303 in a nasty way.] 286 */ 287 state = ACPI_STATE_D0; 288 } 289 device->power.state = state; 290 return 0; 291 } 292 293 int acpi_bus_update_power(acpi_handle handle, int *state_p) 294 { 295 struct acpi_device *device; 296 int state; 297 int result; 298 299 result = acpi_bus_get_device(handle, &device); 300 if (result) 301 return result; 302 303 result = acpi_device_get_power(device, &state); 304 if (result) 305 return result; 306 307 if (state == ACPI_STATE_UNKNOWN) 308 state = ACPI_STATE_D0; 309 310 result = acpi_device_set_power(device, state); 311 if (!result && state_p) 312 *state_p = state; 313 314 return result; 315 } 316 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 317 318 bool acpi_bus_power_manageable(acpi_handle handle) 319 { 320 struct acpi_device *device; 321 int result; 322 323 result = acpi_bus_get_device(handle, &device); 324 return result ? false : device->flags.power_manageable; 325 } 326 EXPORT_SYMBOL(acpi_bus_power_manageable); 327 328 #ifdef CONFIG_PM 329 static DEFINE_MUTEX(acpi_pm_notifier_lock); 330 331 /** 332 * acpi_add_pm_notifier - Register PM notifier for given ACPI device. 333 * @adev: ACPI device to add the notifier for. 334 * @context: Context information to pass to the notifier routine. 335 * 336 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 337 * PM wakeup events. For example, wakeup events may be generated for bridges 338 * if one of the devices below the bridge is signaling wakeup, even if the 339 * bridge itself doesn't have a wakeup GPE associated with it. 340 */ 341 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, 342 acpi_notify_handler handler, void *context) 343 { 344 acpi_status status = AE_ALREADY_EXISTS; 345 346 mutex_lock(&acpi_pm_notifier_lock); 347 348 if (adev->wakeup.flags.notifier_present) 349 goto out; 350 351 status = acpi_install_notify_handler(adev->handle, 352 ACPI_SYSTEM_NOTIFY, 353 handler, context); 354 if (ACPI_FAILURE(status)) 355 goto out; 356 357 adev->wakeup.flags.notifier_present = true; 358 359 out: 360 mutex_unlock(&acpi_pm_notifier_lock); 361 return status; 362 } 363 364 /** 365 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 366 * @adev: ACPI device to remove the notifier from. 367 */ 368 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev, 369 acpi_notify_handler handler) 370 { 371 acpi_status status = AE_BAD_PARAMETER; 372 373 mutex_lock(&acpi_pm_notifier_lock); 374 375 if (!adev->wakeup.flags.notifier_present) 376 goto out; 377 378 status = acpi_remove_notify_handler(adev->handle, 379 ACPI_SYSTEM_NOTIFY, 380 handler); 381 if (ACPI_FAILURE(status)) 382 goto out; 383 384 adev->wakeup.flags.notifier_present = false; 385 386 out: 387 mutex_unlock(&acpi_pm_notifier_lock); 388 return status; 389 } 390 391 bool acpi_bus_can_wakeup(acpi_handle handle) 392 { 393 struct acpi_device *device; 394 int result; 395 396 result = acpi_bus_get_device(handle, &device); 397 return result ? false : device->wakeup.flags.valid; 398 } 399 EXPORT_SYMBOL(acpi_bus_can_wakeup); 400 401 /** 402 * acpi_device_power_state - Get preferred power state of ACPI device. 403 * @dev: Device whose preferred target power state to return. 404 * @adev: ACPI device node corresponding to @dev. 405 * @target_state: System state to match the resultant device state. 406 * @d_max_in: Deepest low-power state to take into consideration. 407 * @d_min_p: Location to store the upper limit of the allowed states range. 408 * Return value: Preferred power state of the device on success, -ENODEV 409 * (if there's no 'struct acpi_device' for @dev) or -EINVAL on failure 410 * 411 * Find the lowest power (highest number) ACPI device power state that the 412 * device can be in while the system is in the state represented by 413 * @target_state. If @d_min_p is set, the highest power (lowest number) device 414 * power state that @dev can be in for the given system sleep state is stored 415 * at the location pointed to by it. 416 * 417 * Callers must ensure that @dev and @adev are valid pointers and that @adev 418 * actually corresponds to @dev before using this function. 419 */ 420 int acpi_device_power_state(struct device *dev, struct acpi_device *adev, 421 u32 target_state, int d_max_in, int *d_min_p) 422 { 423 char acpi_method[] = "_SxD"; 424 unsigned long long d_min, d_max; 425 bool wakeup = false; 426 427 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3) 428 return -EINVAL; 429 430 if (d_max_in > ACPI_STATE_D3_HOT) { 431 enum pm_qos_flags_status stat; 432 433 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 434 if (stat == PM_QOS_FLAGS_ALL) 435 d_max_in = ACPI_STATE_D3_HOT; 436 } 437 438 acpi_method[2] = '0' + target_state; 439 /* 440 * If the sleep state is S0, the lowest limit from ACPI is D3, 441 * but if the device has _S0W, we will use the value from _S0W 442 * as the lowest limit from ACPI. Finally, we will constrain 443 * the lowest limit with the specified one. 444 */ 445 d_min = ACPI_STATE_D0; 446 d_max = ACPI_STATE_D3; 447 448 /* 449 * If present, _SxD methods return the minimum D-state (highest power 450 * state) we can use for the corresponding S-states. Otherwise, the 451 * minimum D-state is D0 (ACPI 3.x). 452 * 453 * NOTE: We rely on acpi_evaluate_integer() not clobbering the integer 454 * provided -- that's our fault recovery, we ignore retval. 455 */ 456 if (target_state > ACPI_STATE_S0) { 457 acpi_evaluate_integer(adev->handle, acpi_method, NULL, &d_min); 458 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 459 && adev->wakeup.sleep_state >= target_state; 460 } else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) != 461 PM_QOS_FLAGS_NONE) { 462 wakeup = adev->wakeup.flags.valid; 463 } 464 465 /* 466 * If _PRW says we can wake up the system from the target sleep state, 467 * the D-state returned by _SxD is sufficient for that (we assume a 468 * wakeup-aware driver if wake is set). Still, if _SxW exists 469 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 470 * can wake the system. _S0W may be valid, too. 471 */ 472 if (wakeup) { 473 acpi_status status; 474 475 acpi_method[3] = 'W'; 476 status = acpi_evaluate_integer(adev->handle, acpi_method, NULL, 477 &d_max); 478 if (ACPI_FAILURE(status)) { 479 if (target_state != ACPI_STATE_S0 || 480 status != AE_NOT_FOUND) 481 d_max = d_min; 482 } else if (d_max < d_min) { 483 /* Warn the user of the broken DSDT */ 484 printk(KERN_WARNING "ACPI: Wrong value from %s\n", 485 acpi_method); 486 /* Sanitize it */ 487 d_min = d_max; 488 } 489 } 490 491 if (d_max_in < d_min) 492 return -EINVAL; 493 if (d_min_p) 494 *d_min_p = d_min; 495 /* constrain d_max with specified lowest limit (max number) */ 496 if (d_max > d_max_in) { 497 for (d_max = d_max_in; d_max > d_min; d_max--) { 498 if (adev->power.states[d_max].flags.valid) 499 break; 500 } 501 } 502 return d_max; 503 } 504 EXPORT_SYMBOL_GPL(acpi_device_power_state); 505 506 /** 507 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 508 * @dev: Device whose preferred target power state to return. 509 * @d_min_p: Location to store the upper limit of the allowed states range. 510 * @d_max_in: Deepest low-power state to take into consideration. 511 * Return value: Preferred power state of the device on success, -ENODEV 512 * (if there's no 'struct acpi_device' for @dev) or -EINVAL on failure 513 * 514 * The caller must ensure that @dev is valid before using this function. 515 */ 516 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 517 { 518 acpi_handle handle = DEVICE_ACPI_HANDLE(dev); 519 struct acpi_device *adev; 520 521 if (!handle || acpi_bus_get_device(handle, &adev)) { 522 dev_dbg(dev, "ACPI handle without context in %s!\n", __func__); 523 return -ENODEV; 524 } 525 526 return acpi_device_power_state(dev, adev, acpi_target_system_state(), 527 d_max_in, d_min_p); 528 } 529 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 530 531 #ifdef CONFIG_PM_RUNTIME 532 /** 533 * acpi_wakeup_device - Wakeup notification handler for ACPI devices. 534 * @handle: ACPI handle of the device the notification is for. 535 * @event: Type of the signaled event. 536 * @context: Device corresponding to @handle. 537 */ 538 static void acpi_wakeup_device(acpi_handle handle, u32 event, void *context) 539 { 540 struct device *dev = context; 541 542 if (event == ACPI_NOTIFY_DEVICE_WAKE && dev) { 543 pm_wakeup_event(dev, 0); 544 pm_runtime_resume(dev); 545 } 546 } 547 548 /** 549 * __acpi_device_run_wake - Enable/disable runtime remote wakeup for device. 550 * @adev: ACPI device to enable/disable the remote wakeup for. 551 * @enable: Whether to enable or disable the wakeup functionality. 552 * 553 * Enable/disable the GPE associated with @adev so that it can generate 554 * wakeup signals for the device in response to external (remote) events and 555 * enable/disable device wakeup power. 556 * 557 * Callers must ensure that @adev is a valid ACPI device node before executing 558 * this function. 559 */ 560 int __acpi_device_run_wake(struct acpi_device *adev, bool enable) 561 { 562 struct acpi_device_wakeup *wakeup = &adev->wakeup; 563 564 if (enable) { 565 acpi_status res; 566 int error; 567 568 error = acpi_enable_wakeup_device_power(adev, ACPI_STATE_S0); 569 if (error) 570 return error; 571 572 res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 573 if (ACPI_FAILURE(res)) { 574 acpi_disable_wakeup_device_power(adev); 575 return -EIO; 576 } 577 } else { 578 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 579 acpi_disable_wakeup_device_power(adev); 580 } 581 return 0; 582 } 583 584 /** 585 * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device. 586 * @dev: Device to enable/disable the platform to wake up. 587 * @enable: Whether to enable or disable the wakeup functionality. 588 */ 589 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable) 590 { 591 struct acpi_device *adev; 592 acpi_handle handle; 593 594 if (!device_run_wake(phys_dev)) 595 return -EINVAL; 596 597 handle = DEVICE_ACPI_HANDLE(phys_dev); 598 if (!handle || acpi_bus_get_device(handle, &adev)) { 599 dev_dbg(phys_dev, "ACPI handle without context in %s!\n", 600 __func__); 601 return -ENODEV; 602 } 603 604 return __acpi_device_run_wake(adev, enable); 605 } 606 EXPORT_SYMBOL(acpi_pm_device_run_wake); 607 #else 608 static inline void acpi_wakeup_device(acpi_handle handle, u32 event, 609 void *context) {} 610 #endif /* CONFIG_PM_RUNTIME */ 611 612 #ifdef CONFIG_PM_SLEEP 613 /** 614 * __acpi_device_sleep_wake - Enable or disable device to wake up the system. 615 * @dev: Device to enable/desible to wake up the system. 616 * @target_state: System state the device is supposed to wake up from. 617 * @enable: Whether to enable or disable @dev to wake up the system. 618 */ 619 int __acpi_device_sleep_wake(struct acpi_device *adev, u32 target_state, 620 bool enable) 621 { 622 return enable ? 623 acpi_enable_wakeup_device_power(adev, target_state) : 624 acpi_disable_wakeup_device_power(adev); 625 } 626 627 /** 628 * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system. 629 * @dev: Device to enable/desible to wake up the system from sleep states. 630 * @enable: Whether to enable or disable @dev to wake up the system. 631 */ 632 int acpi_pm_device_sleep_wake(struct device *dev, bool enable) 633 { 634 acpi_handle handle; 635 struct acpi_device *adev; 636 int error; 637 638 if (!device_can_wakeup(dev)) 639 return -EINVAL; 640 641 handle = DEVICE_ACPI_HANDLE(dev); 642 if (!handle || acpi_bus_get_device(handle, &adev)) { 643 dev_dbg(dev, "ACPI handle without context in %s!\n", __func__); 644 return -ENODEV; 645 } 646 647 error = __acpi_device_sleep_wake(adev, acpi_target_system_state(), 648 enable); 649 if (!error) 650 dev_info(dev, "System wakeup %s by ACPI\n", 651 enable ? "enabled" : "disabled"); 652 653 return error; 654 } 655 #endif /* CONFIG_PM_SLEEP */ 656 657 /** 658 * acpi_dev_pm_get_node - Get ACPI device node for the given physical device. 659 * @dev: Device to get the ACPI node for. 660 */ 661 struct acpi_device *acpi_dev_pm_get_node(struct device *dev) 662 { 663 acpi_handle handle = DEVICE_ACPI_HANDLE(dev); 664 struct acpi_device *adev; 665 666 return handle && !acpi_bus_get_device(handle, &adev) ? adev : NULL; 667 } 668 669 /** 670 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 671 * @dev: Device to put into a low-power state. 672 * @adev: ACPI device node corresponding to @dev. 673 * @system_state: System state to choose the device state for. 674 */ 675 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 676 u32 system_state) 677 { 678 int power_state; 679 680 if (!acpi_device_power_manageable(adev)) 681 return 0; 682 683 power_state = acpi_device_power_state(dev, adev, system_state, 684 ACPI_STATE_D3, NULL); 685 if (power_state < ACPI_STATE_D0 || power_state > ACPI_STATE_D3) 686 return -EIO; 687 688 return acpi_device_set_power(adev, power_state); 689 } 690 691 /** 692 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 693 * @adev: ACPI device node to put into the full-power state. 694 */ 695 static int acpi_dev_pm_full_power(struct acpi_device *adev) 696 { 697 return acpi_device_power_manageable(adev) ? 698 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 699 } 700 701 #ifdef CONFIG_PM_RUNTIME 702 /** 703 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI. 704 * @dev: Device to put into a low-power state. 705 * 706 * Put the given device into a runtime low-power state using the standard ACPI 707 * mechanism. Set up remote wakeup if desired, choose the state to put the 708 * device into (this checks if remote wakeup is expected to work too), and set 709 * the power state of the device. 710 */ 711 int acpi_dev_runtime_suspend(struct device *dev) 712 { 713 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 714 bool remote_wakeup; 715 int error; 716 717 if (!adev) 718 return 0; 719 720 remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) > 721 PM_QOS_FLAGS_NONE; 722 error = __acpi_device_run_wake(adev, remote_wakeup); 723 if (remote_wakeup && error) 724 return -EAGAIN; 725 726 error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 727 if (error) 728 __acpi_device_run_wake(adev, false); 729 730 return error; 731 } 732 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend); 733 734 /** 735 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI. 736 * @dev: Device to put into the full-power state. 737 * 738 * Put the given device into the full-power state using the standard ACPI 739 * mechanism at run time. Set the power state of the device to ACPI D0 and 740 * disable remote wakeup. 741 */ 742 int acpi_dev_runtime_resume(struct device *dev) 743 { 744 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 745 int error; 746 747 if (!adev) 748 return 0; 749 750 error = acpi_dev_pm_full_power(adev); 751 __acpi_device_run_wake(adev, false); 752 return error; 753 } 754 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume); 755 756 /** 757 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 758 * @dev: Device to suspend. 759 * 760 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 761 * it into a runtime low-power state. 762 */ 763 int acpi_subsys_runtime_suspend(struct device *dev) 764 { 765 int ret = pm_generic_runtime_suspend(dev); 766 return ret ? ret : acpi_dev_runtime_suspend(dev); 767 } 768 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 769 770 /** 771 * acpi_subsys_runtime_resume - Resume device using ACPI. 772 * @dev: Device to Resume. 773 * 774 * Use ACPI to put the given device into the full-power state and carry out the 775 * generic runtime resume procedure for it. 776 */ 777 int acpi_subsys_runtime_resume(struct device *dev) 778 { 779 int ret = acpi_dev_runtime_resume(dev); 780 return ret ? ret : pm_generic_runtime_resume(dev); 781 } 782 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 783 #endif /* CONFIG_PM_RUNTIME */ 784 785 #ifdef CONFIG_PM_SLEEP 786 /** 787 * acpi_dev_suspend_late - Put device into a low-power state using ACPI. 788 * @dev: Device to put into a low-power state. 789 * 790 * Put the given device into a low-power state during system transition to a 791 * sleep state using the standard ACPI mechanism. Set up system wakeup if 792 * desired, choose the state to put the device into (this checks if system 793 * wakeup is expected to work too), and set the power state of the device. 794 */ 795 int acpi_dev_suspend_late(struct device *dev) 796 { 797 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 798 u32 target_state; 799 bool wakeup; 800 int error; 801 802 if (!adev) 803 return 0; 804 805 target_state = acpi_target_system_state(); 806 wakeup = device_may_wakeup(dev); 807 error = __acpi_device_sleep_wake(adev, target_state, wakeup); 808 if (wakeup && error) 809 return error; 810 811 error = acpi_dev_pm_low_power(dev, adev, target_state); 812 if (error) 813 __acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false); 814 815 return error; 816 } 817 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late); 818 819 /** 820 * acpi_dev_resume_early - Put device into the full-power state using ACPI. 821 * @dev: Device to put into the full-power state. 822 * 823 * Put the given device into the full-power state using the standard ACPI 824 * mechanism during system transition to the working state. Set the power 825 * state of the device to ACPI D0 and disable remote wakeup. 826 */ 827 int acpi_dev_resume_early(struct device *dev) 828 { 829 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 830 int error; 831 832 if (!adev) 833 return 0; 834 835 error = acpi_dev_pm_full_power(adev); 836 __acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false); 837 return error; 838 } 839 EXPORT_SYMBOL_GPL(acpi_dev_resume_early); 840 841 /** 842 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 843 * @dev: Device to prepare. 844 */ 845 int acpi_subsys_prepare(struct device *dev) 846 { 847 /* 848 * Follow PCI and resume devices suspended at run time before running 849 * their system suspend callbacks. 850 */ 851 pm_runtime_resume(dev); 852 return pm_generic_prepare(dev); 853 } 854 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 855 856 /** 857 * acpi_subsys_suspend_late - Suspend device using ACPI. 858 * @dev: Device to suspend. 859 * 860 * Carry out the generic late suspend procedure for @dev and use ACPI to put 861 * it into a low-power state during system transition into a sleep state. 862 */ 863 int acpi_subsys_suspend_late(struct device *dev) 864 { 865 int ret = pm_generic_suspend_late(dev); 866 return ret ? ret : acpi_dev_suspend_late(dev); 867 } 868 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 869 870 /** 871 * acpi_subsys_resume_early - Resume device using ACPI. 872 * @dev: Device to Resume. 873 * 874 * Use ACPI to put the given device into the full-power state and carry out the 875 * generic early resume procedure for it during system transition into the 876 * working state. 877 */ 878 int acpi_subsys_resume_early(struct device *dev) 879 { 880 int ret = acpi_dev_resume_early(dev); 881 return ret ? ret : pm_generic_resume_early(dev); 882 } 883 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early); 884 #endif /* CONFIG_PM_SLEEP */ 885 886 static struct dev_pm_domain acpi_general_pm_domain = { 887 .ops = { 888 #ifdef CONFIG_PM_RUNTIME 889 .runtime_suspend = acpi_subsys_runtime_suspend, 890 .runtime_resume = acpi_subsys_runtime_resume, 891 .runtime_idle = pm_generic_runtime_idle, 892 #endif 893 #ifdef CONFIG_PM_SLEEP 894 .prepare = acpi_subsys_prepare, 895 .suspend_late = acpi_subsys_suspend_late, 896 .resume_early = acpi_subsys_resume_early, 897 .poweroff_late = acpi_subsys_suspend_late, 898 .restore_early = acpi_subsys_resume_early, 899 #endif 900 }, 901 }; 902 903 /** 904 * acpi_dev_pm_attach - Prepare device for ACPI power management. 905 * @dev: Device to prepare. 906 * @power_on: Whether or not to power on the device. 907 * 908 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 909 * attached to it, install a wakeup notification handler for the device and 910 * add it to the general ACPI PM domain. If @power_on is set, the device will 911 * be put into the ACPI D0 state before the function returns. 912 * 913 * This assumes that the @dev's bus type uses generic power management callbacks 914 * (or doesn't use any power management callbacks at all). 915 * 916 * Callers must ensure proper synchronization of this function with power 917 * management callbacks. 918 */ 919 int acpi_dev_pm_attach(struct device *dev, bool power_on) 920 { 921 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 922 923 if (!adev) 924 return -ENODEV; 925 926 if (dev->pm_domain) 927 return -EEXIST; 928 929 acpi_add_pm_notifier(adev, acpi_wakeup_device, dev); 930 dev->pm_domain = &acpi_general_pm_domain; 931 if (power_on) { 932 acpi_dev_pm_full_power(adev); 933 __acpi_device_run_wake(adev, false); 934 } 935 return 0; 936 } 937 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 938 939 /** 940 * acpi_dev_pm_detach - Remove ACPI power management from the device. 941 * @dev: Device to take care of. 942 * @power_off: Whether or not to try to remove power from the device. 943 * 944 * Remove the device from the general ACPI PM domain and remove its wakeup 945 * notifier. If @power_off is set, additionally remove power from the device if 946 * possible. 947 * 948 * Callers must ensure proper synchronization of this function with power 949 * management callbacks. 950 */ 951 void acpi_dev_pm_detach(struct device *dev, bool power_off) 952 { 953 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 954 955 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 956 dev->pm_domain = NULL; 957 acpi_remove_pm_notifier(adev, acpi_wakeup_device); 958 if (power_off) { 959 /* 960 * If the device's PM QoS resume latency limit or flags 961 * have been exposed to user space, they have to be 962 * hidden at this point, so that they don't affect the 963 * choice of the low-power state to put the device into. 964 */ 965 dev_pm_qos_hide_latency_limit(dev); 966 dev_pm_qos_hide_flags(dev); 967 __acpi_device_run_wake(adev, false); 968 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 969 } 970 } 971 } 972 EXPORT_SYMBOL_GPL(acpi_dev_pm_detach); 973 974 /** 975 * acpi_dev_pm_add_dependent - Add physical device depending for PM. 976 * @handle: Handle of ACPI device node. 977 * @depdev: Device depending on that node for PM. 978 */ 979 void acpi_dev_pm_add_dependent(acpi_handle handle, struct device *depdev) 980 { 981 struct acpi_device_physical_node *dep; 982 struct acpi_device *adev; 983 984 if (!depdev || acpi_bus_get_device(handle, &adev)) 985 return; 986 987 mutex_lock(&adev->physical_node_lock); 988 989 list_for_each_entry(dep, &adev->power_dependent, node) 990 if (dep->dev == depdev) 991 goto out; 992 993 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 994 if (dep) { 995 dep->dev = depdev; 996 list_add_tail(&dep->node, &adev->power_dependent); 997 } 998 999 out: 1000 mutex_unlock(&adev->physical_node_lock); 1001 } 1002 EXPORT_SYMBOL_GPL(acpi_dev_pm_add_dependent); 1003 1004 /** 1005 * acpi_dev_pm_remove_dependent - Remove physical device depending for PM. 1006 * @handle: Handle of ACPI device node. 1007 * @depdev: Device depending on that node for PM. 1008 */ 1009 void acpi_dev_pm_remove_dependent(acpi_handle handle, struct device *depdev) 1010 { 1011 struct acpi_device_physical_node *dep; 1012 struct acpi_device *adev; 1013 1014 if (!depdev || acpi_bus_get_device(handle, &adev)) 1015 return; 1016 1017 mutex_lock(&adev->physical_node_lock); 1018 1019 list_for_each_entry(dep, &adev->power_dependent, node) 1020 if (dep->dev == depdev) { 1021 list_del(&dep->node); 1022 kfree(dep); 1023 break; 1024 } 1025 1026 mutex_unlock(&adev->physical_node_lock); 1027 } 1028 EXPORT_SYMBOL_GPL(acpi_dev_pm_remove_dependent); 1029 #endif /* CONFIG_PM */ 1030