1 /* 2 * drivers/acpi/device_pm.c - ACPI device power management routines. 3 * 4 * Copyright (C) 2012, Intel Corp. 5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as published 11 * by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, write to the Free Software Foundation, Inc., 20 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 21 * 22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 23 */ 24 25 #include <linux/device.h> 26 #include <linux/export.h> 27 #include <linux/mutex.h> 28 #include <linux/pm_qos.h> 29 #include <linux/pm_runtime.h> 30 31 #include <acpi/acpi.h> 32 #include <acpi/acpi_bus.h> 33 #include <acpi/acpi_drivers.h> 34 35 #include "internal.h" 36 37 #define _COMPONENT ACPI_POWER_COMPONENT 38 ACPI_MODULE_NAME("device_pm"); 39 40 /** 41 * acpi_power_state_string - String representation of ACPI device power state. 42 * @state: ACPI device power state to return the string representation of. 43 */ 44 const char *acpi_power_state_string(int state) 45 { 46 switch (state) { 47 case ACPI_STATE_D0: 48 return "D0"; 49 case ACPI_STATE_D1: 50 return "D1"; 51 case ACPI_STATE_D2: 52 return "D2"; 53 case ACPI_STATE_D3_HOT: 54 return "D3hot"; 55 case ACPI_STATE_D3_COLD: 56 return "D3cold"; 57 default: 58 return "(unknown)"; 59 } 60 } 61 62 /** 63 * acpi_device_get_power - Get power state of an ACPI device. 64 * @device: Device to get the power state of. 65 * @state: Place to store the power state of the device. 66 * 67 * This function does not update the device's power.state field, but it may 68 * update its parent's power.state field (when the parent's power state is 69 * unknown and the device's power state turns out to be D0). 70 */ 71 int acpi_device_get_power(struct acpi_device *device, int *state) 72 { 73 int result = ACPI_STATE_UNKNOWN; 74 75 if (!device || !state) 76 return -EINVAL; 77 78 if (!device->flags.power_manageable) { 79 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 80 *state = device->parent ? 81 device->parent->power.state : ACPI_STATE_D0; 82 goto out; 83 } 84 85 /* 86 * Get the device's power state from power resources settings and _PSC, 87 * if available. 88 */ 89 if (device->power.flags.power_resources) { 90 int error = acpi_power_get_inferred_state(device, &result); 91 if (error) 92 return error; 93 } 94 if (device->power.flags.explicit_get) { 95 acpi_handle handle = device->handle; 96 unsigned long long psc; 97 acpi_status status; 98 99 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc); 100 if (ACPI_FAILURE(status)) 101 return -ENODEV; 102 103 /* 104 * The power resources settings may indicate a power state 105 * shallower than the actual power state of the device. 106 * 107 * Moreover, on systems predating ACPI 4.0, if the device 108 * doesn't depend on any power resources and _PSC returns 3, 109 * that means "power off". We need to maintain compatibility 110 * with those systems. 111 */ 112 if (psc > result && psc < ACPI_STATE_D3_COLD) 113 result = psc; 114 else if (result == ACPI_STATE_UNKNOWN) 115 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc; 116 } 117 118 /* 119 * If we were unsure about the device parent's power state up to this 120 * point, the fact that the device is in D0 implies that the parent has 121 * to be in D0 too. 122 */ 123 if (device->parent && device->parent->power.state == ACPI_STATE_UNKNOWN 124 && result == ACPI_STATE_D0) 125 device->parent->power.state = ACPI_STATE_D0; 126 127 *state = result; 128 129 out: 130 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n", 131 device->pnp.bus_id, acpi_power_state_string(*state))); 132 133 return 0; 134 } 135 136 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 137 { 138 if (adev->power.states[state].flags.explicit_set) { 139 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 140 acpi_status status; 141 142 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 143 if (ACPI_FAILURE(status)) 144 return -ENODEV; 145 } 146 return 0; 147 } 148 149 /** 150 * acpi_device_set_power - Set power state of an ACPI device. 151 * @device: Device to set the power state of. 152 * @state: New power state to set. 153 * 154 * Callers must ensure that the device is power manageable before using this 155 * function. 156 */ 157 int acpi_device_set_power(struct acpi_device *device, int state) 158 { 159 int result = 0; 160 bool cut_power = false; 161 162 if (!device || !device->flags.power_manageable 163 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 164 return -EINVAL; 165 166 /* Make sure this is a valid target state */ 167 168 if (state == device->power.state) { 169 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n", 170 device->pnp.bus_id, 171 acpi_power_state_string(state))); 172 return 0; 173 } 174 175 if (!device->power.states[state].flags.valid) { 176 dev_warn(&device->dev, "Power state %s not supported\n", 177 acpi_power_state_string(state)); 178 return -ENODEV; 179 } 180 if (device->parent && (state < device->parent->power.state)) { 181 dev_warn(&device->dev, 182 "Cannot transition to power state %s for parent in %s\n", 183 acpi_power_state_string(state), 184 acpi_power_state_string(device->parent->power.state)); 185 return -ENODEV; 186 } 187 188 /* For D3cold we should first transition into D3hot. */ 189 if (state == ACPI_STATE_D3_COLD 190 && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) { 191 state = ACPI_STATE_D3_HOT; 192 cut_power = true; 193 } 194 195 if (state < device->power.state && state != ACPI_STATE_D0 196 && device->power.state >= ACPI_STATE_D3_HOT) { 197 dev_warn(&device->dev, 198 "Cannot transition to non-D0 state from D3\n"); 199 return -ENODEV; 200 } 201 202 /* 203 * Transition Power 204 * ---------------- 205 * In accordance with the ACPI specification first apply power (via 206 * power resources) and then evalute _PSx. 207 */ 208 if (device->power.flags.power_resources) { 209 result = acpi_power_transition(device, state); 210 if (result) 211 goto end; 212 } 213 result = acpi_dev_pm_explicit_set(device, state); 214 if (result) 215 goto end; 216 217 if (cut_power) { 218 device->power.state = state; 219 state = ACPI_STATE_D3_COLD; 220 result = acpi_power_transition(device, state); 221 } 222 223 end: 224 if (result) { 225 dev_warn(&device->dev, "Failed to change power state to %s\n", 226 acpi_power_state_string(state)); 227 } else { 228 device->power.state = state; 229 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 230 "Device [%s] transitioned to %s\n", 231 device->pnp.bus_id, 232 acpi_power_state_string(state))); 233 } 234 235 return result; 236 } 237 EXPORT_SYMBOL(acpi_device_set_power); 238 239 int acpi_bus_set_power(acpi_handle handle, int state) 240 { 241 struct acpi_device *device; 242 int result; 243 244 result = acpi_bus_get_device(handle, &device); 245 if (result) 246 return result; 247 248 return acpi_device_set_power(device, state); 249 } 250 EXPORT_SYMBOL(acpi_bus_set_power); 251 252 int acpi_bus_init_power(struct acpi_device *device) 253 { 254 int state; 255 int result; 256 257 if (!device) 258 return -EINVAL; 259 260 device->power.state = ACPI_STATE_UNKNOWN; 261 262 result = acpi_device_get_power(device, &state); 263 if (result) 264 return result; 265 266 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 267 result = acpi_power_on_resources(device, state); 268 if (result) 269 return result; 270 271 result = acpi_dev_pm_explicit_set(device, state); 272 if (result) 273 return result; 274 } else if (state == ACPI_STATE_UNKNOWN) { 275 /* 276 * No power resources and missing _PSC? Cross fingers and make 277 * it D0 in hope that this is what the BIOS put the device into. 278 * [We tried to force D0 here by executing _PS0, but that broke 279 * Toshiba P870-303 in a nasty way.] 280 */ 281 state = ACPI_STATE_D0; 282 } 283 device->power.state = state; 284 return 0; 285 } 286 287 /** 288 * acpi_device_fix_up_power - Force device with missing _PSC into D0. 289 * @device: Device object whose power state is to be fixed up. 290 * 291 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined, 292 * are assumed to be put into D0 by the BIOS. However, in some cases that may 293 * not be the case and this function should be used then. 294 */ 295 int acpi_device_fix_up_power(struct acpi_device *device) 296 { 297 int ret = 0; 298 299 if (!device->power.flags.power_resources 300 && !device->power.flags.explicit_get 301 && device->power.state == ACPI_STATE_D0) 302 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 303 304 return ret; 305 } 306 307 int acpi_bus_update_power(acpi_handle handle, int *state_p) 308 { 309 struct acpi_device *device; 310 int state; 311 int result; 312 313 result = acpi_bus_get_device(handle, &device); 314 if (result) 315 return result; 316 317 result = acpi_device_get_power(device, &state); 318 if (result) 319 return result; 320 321 if (state == ACPI_STATE_UNKNOWN) { 322 state = ACPI_STATE_D0; 323 result = acpi_device_set_power(device, state); 324 if (result) 325 return result; 326 } else { 327 if (device->power.flags.power_resources) { 328 /* 329 * We don't need to really switch the state, bu we need 330 * to update the power resources' reference counters. 331 */ 332 result = acpi_power_transition(device, state); 333 if (result) 334 return result; 335 } 336 device->power.state = state; 337 } 338 if (state_p) 339 *state_p = state; 340 341 return 0; 342 } 343 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 344 345 bool acpi_bus_power_manageable(acpi_handle handle) 346 { 347 struct acpi_device *device; 348 int result; 349 350 result = acpi_bus_get_device(handle, &device); 351 return result ? false : device->flags.power_manageable; 352 } 353 EXPORT_SYMBOL(acpi_bus_power_manageable); 354 355 #ifdef CONFIG_PM 356 static DEFINE_MUTEX(acpi_pm_notifier_lock); 357 358 /** 359 * acpi_add_pm_notifier - Register PM notifier for given ACPI device. 360 * @adev: ACPI device to add the notifier for. 361 * @context: Context information to pass to the notifier routine. 362 * 363 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 364 * PM wakeup events. For example, wakeup events may be generated for bridges 365 * if one of the devices below the bridge is signaling wakeup, even if the 366 * bridge itself doesn't have a wakeup GPE associated with it. 367 */ 368 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, 369 acpi_notify_handler handler, void *context) 370 { 371 acpi_status status = AE_ALREADY_EXISTS; 372 373 mutex_lock(&acpi_pm_notifier_lock); 374 375 if (adev->wakeup.flags.notifier_present) 376 goto out; 377 378 status = acpi_install_notify_handler(adev->handle, 379 ACPI_SYSTEM_NOTIFY, 380 handler, context); 381 if (ACPI_FAILURE(status)) 382 goto out; 383 384 adev->wakeup.flags.notifier_present = true; 385 386 out: 387 mutex_unlock(&acpi_pm_notifier_lock); 388 return status; 389 } 390 391 /** 392 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 393 * @adev: ACPI device to remove the notifier from. 394 */ 395 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev, 396 acpi_notify_handler handler) 397 { 398 acpi_status status = AE_BAD_PARAMETER; 399 400 mutex_lock(&acpi_pm_notifier_lock); 401 402 if (!adev->wakeup.flags.notifier_present) 403 goto out; 404 405 status = acpi_remove_notify_handler(adev->handle, 406 ACPI_SYSTEM_NOTIFY, 407 handler); 408 if (ACPI_FAILURE(status)) 409 goto out; 410 411 adev->wakeup.flags.notifier_present = false; 412 413 out: 414 mutex_unlock(&acpi_pm_notifier_lock); 415 return status; 416 } 417 418 bool acpi_bus_can_wakeup(acpi_handle handle) 419 { 420 struct acpi_device *device; 421 int result; 422 423 result = acpi_bus_get_device(handle, &device); 424 return result ? false : device->wakeup.flags.valid; 425 } 426 EXPORT_SYMBOL(acpi_bus_can_wakeup); 427 428 /** 429 * acpi_dev_pm_get_state - Get preferred power state of ACPI device. 430 * @dev: Device whose preferred target power state to return. 431 * @adev: ACPI device node corresponding to @dev. 432 * @target_state: System state to match the resultant device state. 433 * @d_min_p: Location to store the highest power state available to the device. 434 * @d_max_p: Location to store the lowest power state available to the device. 435 * 436 * Find the lowest power (highest number) and highest power (lowest number) ACPI 437 * device power states that the device can be in while the system is in the 438 * state represented by @target_state. Store the integer numbers representing 439 * those stats in the memory locations pointed to by @d_max_p and @d_min_p, 440 * respectively. 441 * 442 * Callers must ensure that @dev and @adev are valid pointers and that @adev 443 * actually corresponds to @dev before using this function. 444 * 445 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or 446 * returns a value that doesn't make sense. The memory locations pointed to by 447 * @d_max_p and @d_min_p are only modified on success. 448 */ 449 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev, 450 u32 target_state, int *d_min_p, int *d_max_p) 451 { 452 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' }; 453 acpi_handle handle = adev->handle; 454 unsigned long long ret; 455 int d_min, d_max; 456 bool wakeup = false; 457 acpi_status status; 458 459 /* 460 * If the system state is S0, the lowest power state the device can be 461 * in is D3cold, unless the device has _S0W and is supposed to signal 462 * wakeup, in which case the return value of _S0W has to be used as the 463 * lowest power state available to the device. 464 */ 465 d_min = ACPI_STATE_D0; 466 d_max = ACPI_STATE_D3_COLD; 467 468 /* 469 * If present, _SxD methods return the minimum D-state (highest power 470 * state) we can use for the corresponding S-states. Otherwise, the 471 * minimum D-state is D0 (ACPI 3.x). 472 */ 473 if (target_state > ACPI_STATE_S0) { 474 /* 475 * We rely on acpi_evaluate_integer() not clobbering the integer 476 * provided if AE_NOT_FOUND is returned. 477 */ 478 ret = d_min; 479 status = acpi_evaluate_integer(handle, method, NULL, &ret); 480 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND) 481 || ret > ACPI_STATE_D3_COLD) 482 return -ENODATA; 483 484 /* 485 * We need to handle legacy systems where D3hot and D3cold are 486 * the same and 3 is returned in both cases, so fall back to 487 * D3cold if D3hot is not a valid state. 488 */ 489 if (!adev->power.states[ret].flags.valid) { 490 if (ret == ACPI_STATE_D3_HOT) 491 ret = ACPI_STATE_D3_COLD; 492 else 493 return -ENODATA; 494 } 495 d_min = ret; 496 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 497 && adev->wakeup.sleep_state >= target_state; 498 } else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) != 499 PM_QOS_FLAGS_NONE) { 500 wakeup = adev->wakeup.flags.valid; 501 } 502 503 /* 504 * If _PRW says we can wake up the system from the target sleep state, 505 * the D-state returned by _SxD is sufficient for that (we assume a 506 * wakeup-aware driver if wake is set). Still, if _SxW exists 507 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 508 * can wake the system. _S0W may be valid, too. 509 */ 510 if (wakeup) { 511 method[3] = 'W'; 512 status = acpi_evaluate_integer(handle, method, NULL, &ret); 513 if (status == AE_NOT_FOUND) { 514 if (target_state > ACPI_STATE_S0) 515 d_max = d_min; 516 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) { 517 /* Fall back to D3cold if ret is not a valid state. */ 518 if (!adev->power.states[ret].flags.valid) 519 ret = ACPI_STATE_D3_COLD; 520 521 d_max = ret > d_min ? ret : d_min; 522 } else { 523 return -ENODATA; 524 } 525 } 526 527 if (d_min_p) 528 *d_min_p = d_min; 529 530 if (d_max_p) 531 *d_max_p = d_max; 532 533 return 0; 534 } 535 536 /** 537 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 538 * @dev: Device whose preferred target power state to return. 539 * @d_min_p: Location to store the upper limit of the allowed states range. 540 * @d_max_in: Deepest low-power state to take into consideration. 541 * Return value: Preferred power state of the device on success, -ENODEV 542 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is 543 * incorrect, or -ENODATA on ACPI method failure. 544 * 545 * The caller must ensure that @dev is valid before using this function. 546 */ 547 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 548 { 549 acpi_handle handle = DEVICE_ACPI_HANDLE(dev); 550 struct acpi_device *adev; 551 int ret, d_min, d_max; 552 553 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD) 554 return -EINVAL; 555 556 if (d_max_in > ACPI_STATE_D3_HOT) { 557 enum pm_qos_flags_status stat; 558 559 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 560 if (stat == PM_QOS_FLAGS_ALL) 561 d_max_in = ACPI_STATE_D3_HOT; 562 } 563 564 if (!handle || acpi_bus_get_device(handle, &adev)) { 565 dev_dbg(dev, "ACPI handle without context in %s!\n", __func__); 566 return -ENODEV; 567 } 568 569 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(), 570 &d_min, &d_max); 571 if (ret) 572 return ret; 573 574 if (d_max_in < d_min) 575 return -EINVAL; 576 577 if (d_max > d_max_in) { 578 for (d_max = d_max_in; d_max > d_min; d_max--) { 579 if (adev->power.states[d_max].flags.valid) 580 break; 581 } 582 } 583 584 if (d_min_p) 585 *d_min_p = d_min; 586 587 return d_max; 588 } 589 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 590 591 #ifdef CONFIG_PM_RUNTIME 592 /** 593 * acpi_wakeup_device - Wakeup notification handler for ACPI devices. 594 * @handle: ACPI handle of the device the notification is for. 595 * @event: Type of the signaled event. 596 * @context: Device corresponding to @handle. 597 */ 598 static void acpi_wakeup_device(acpi_handle handle, u32 event, void *context) 599 { 600 struct device *dev = context; 601 602 if (event == ACPI_NOTIFY_DEVICE_WAKE && dev) { 603 pm_wakeup_event(dev, 0); 604 pm_runtime_resume(dev); 605 } 606 } 607 608 /** 609 * __acpi_device_run_wake - Enable/disable runtime remote wakeup for device. 610 * @adev: ACPI device to enable/disable the remote wakeup for. 611 * @enable: Whether to enable or disable the wakeup functionality. 612 * 613 * Enable/disable the GPE associated with @adev so that it can generate 614 * wakeup signals for the device in response to external (remote) events and 615 * enable/disable device wakeup power. 616 * 617 * Callers must ensure that @adev is a valid ACPI device node before executing 618 * this function. 619 */ 620 int __acpi_device_run_wake(struct acpi_device *adev, bool enable) 621 { 622 struct acpi_device_wakeup *wakeup = &adev->wakeup; 623 624 if (enable) { 625 acpi_status res; 626 int error; 627 628 error = acpi_enable_wakeup_device_power(adev, ACPI_STATE_S0); 629 if (error) 630 return error; 631 632 res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 633 if (ACPI_FAILURE(res)) { 634 acpi_disable_wakeup_device_power(adev); 635 return -EIO; 636 } 637 } else { 638 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 639 acpi_disable_wakeup_device_power(adev); 640 } 641 return 0; 642 } 643 644 /** 645 * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device. 646 * @dev: Device to enable/disable the platform to wake up. 647 * @enable: Whether to enable or disable the wakeup functionality. 648 */ 649 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable) 650 { 651 struct acpi_device *adev; 652 acpi_handle handle; 653 654 if (!device_run_wake(phys_dev)) 655 return -EINVAL; 656 657 handle = DEVICE_ACPI_HANDLE(phys_dev); 658 if (!handle || acpi_bus_get_device(handle, &adev)) { 659 dev_dbg(phys_dev, "ACPI handle without context in %s!\n", 660 __func__); 661 return -ENODEV; 662 } 663 664 return __acpi_device_run_wake(adev, enable); 665 } 666 EXPORT_SYMBOL(acpi_pm_device_run_wake); 667 #else 668 static inline void acpi_wakeup_device(acpi_handle handle, u32 event, 669 void *context) {} 670 #endif /* CONFIG_PM_RUNTIME */ 671 672 #ifdef CONFIG_PM_SLEEP 673 /** 674 * __acpi_device_sleep_wake - Enable or disable device to wake up the system. 675 * @dev: Device to enable/desible to wake up the system. 676 * @target_state: System state the device is supposed to wake up from. 677 * @enable: Whether to enable or disable @dev to wake up the system. 678 */ 679 int __acpi_device_sleep_wake(struct acpi_device *adev, u32 target_state, 680 bool enable) 681 { 682 return enable ? 683 acpi_enable_wakeup_device_power(adev, target_state) : 684 acpi_disable_wakeup_device_power(adev); 685 } 686 687 /** 688 * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system. 689 * @dev: Device to enable/desible to wake up the system from sleep states. 690 * @enable: Whether to enable or disable @dev to wake up the system. 691 */ 692 int acpi_pm_device_sleep_wake(struct device *dev, bool enable) 693 { 694 acpi_handle handle; 695 struct acpi_device *adev; 696 int error; 697 698 if (!device_can_wakeup(dev)) 699 return -EINVAL; 700 701 handle = DEVICE_ACPI_HANDLE(dev); 702 if (!handle || acpi_bus_get_device(handle, &adev)) { 703 dev_dbg(dev, "ACPI handle without context in %s!\n", __func__); 704 return -ENODEV; 705 } 706 707 error = __acpi_device_sleep_wake(adev, acpi_target_system_state(), 708 enable); 709 if (!error) 710 dev_info(dev, "System wakeup %s by ACPI\n", 711 enable ? "enabled" : "disabled"); 712 713 return error; 714 } 715 #endif /* CONFIG_PM_SLEEP */ 716 717 /** 718 * acpi_dev_pm_get_node - Get ACPI device node for the given physical device. 719 * @dev: Device to get the ACPI node for. 720 */ 721 struct acpi_device *acpi_dev_pm_get_node(struct device *dev) 722 { 723 acpi_handle handle = DEVICE_ACPI_HANDLE(dev); 724 struct acpi_device *adev; 725 726 return handle && !acpi_bus_get_device(handle, &adev) ? adev : NULL; 727 } 728 729 /** 730 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 731 * @dev: Device to put into a low-power state. 732 * @adev: ACPI device node corresponding to @dev. 733 * @system_state: System state to choose the device state for. 734 */ 735 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 736 u32 system_state) 737 { 738 int ret, state; 739 740 if (!acpi_device_power_manageable(adev)) 741 return 0; 742 743 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state); 744 return ret ? ret : acpi_device_set_power(adev, state); 745 } 746 747 /** 748 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 749 * @adev: ACPI device node to put into the full-power state. 750 */ 751 static int acpi_dev_pm_full_power(struct acpi_device *adev) 752 { 753 return acpi_device_power_manageable(adev) ? 754 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 755 } 756 757 #ifdef CONFIG_PM_RUNTIME 758 /** 759 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI. 760 * @dev: Device to put into a low-power state. 761 * 762 * Put the given device into a runtime low-power state using the standard ACPI 763 * mechanism. Set up remote wakeup if desired, choose the state to put the 764 * device into (this checks if remote wakeup is expected to work too), and set 765 * the power state of the device. 766 */ 767 int acpi_dev_runtime_suspend(struct device *dev) 768 { 769 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 770 bool remote_wakeup; 771 int error; 772 773 if (!adev) 774 return 0; 775 776 remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) > 777 PM_QOS_FLAGS_NONE; 778 error = __acpi_device_run_wake(adev, remote_wakeup); 779 if (remote_wakeup && error) 780 return -EAGAIN; 781 782 error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 783 if (error) 784 __acpi_device_run_wake(adev, false); 785 786 return error; 787 } 788 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend); 789 790 /** 791 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI. 792 * @dev: Device to put into the full-power state. 793 * 794 * Put the given device into the full-power state using the standard ACPI 795 * mechanism at run time. Set the power state of the device to ACPI D0 and 796 * disable remote wakeup. 797 */ 798 int acpi_dev_runtime_resume(struct device *dev) 799 { 800 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 801 int error; 802 803 if (!adev) 804 return 0; 805 806 error = acpi_dev_pm_full_power(adev); 807 __acpi_device_run_wake(adev, false); 808 return error; 809 } 810 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume); 811 812 /** 813 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 814 * @dev: Device to suspend. 815 * 816 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 817 * it into a runtime low-power state. 818 */ 819 int acpi_subsys_runtime_suspend(struct device *dev) 820 { 821 int ret = pm_generic_runtime_suspend(dev); 822 return ret ? ret : acpi_dev_runtime_suspend(dev); 823 } 824 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 825 826 /** 827 * acpi_subsys_runtime_resume - Resume device using ACPI. 828 * @dev: Device to Resume. 829 * 830 * Use ACPI to put the given device into the full-power state and carry out the 831 * generic runtime resume procedure for it. 832 */ 833 int acpi_subsys_runtime_resume(struct device *dev) 834 { 835 int ret = acpi_dev_runtime_resume(dev); 836 return ret ? ret : pm_generic_runtime_resume(dev); 837 } 838 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 839 #endif /* CONFIG_PM_RUNTIME */ 840 841 #ifdef CONFIG_PM_SLEEP 842 /** 843 * acpi_dev_suspend_late - Put device into a low-power state using ACPI. 844 * @dev: Device to put into a low-power state. 845 * 846 * Put the given device into a low-power state during system transition to a 847 * sleep state using the standard ACPI mechanism. Set up system wakeup if 848 * desired, choose the state to put the device into (this checks if system 849 * wakeup is expected to work too), and set the power state of the device. 850 */ 851 int acpi_dev_suspend_late(struct device *dev) 852 { 853 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 854 u32 target_state; 855 bool wakeup; 856 int error; 857 858 if (!adev) 859 return 0; 860 861 target_state = acpi_target_system_state(); 862 wakeup = device_may_wakeup(dev); 863 error = __acpi_device_sleep_wake(adev, target_state, wakeup); 864 if (wakeup && error) 865 return error; 866 867 error = acpi_dev_pm_low_power(dev, adev, target_state); 868 if (error) 869 __acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false); 870 871 return error; 872 } 873 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late); 874 875 /** 876 * acpi_dev_resume_early - Put device into the full-power state using ACPI. 877 * @dev: Device to put into the full-power state. 878 * 879 * Put the given device into the full-power state using the standard ACPI 880 * mechanism during system transition to the working state. Set the power 881 * state of the device to ACPI D0 and disable remote wakeup. 882 */ 883 int acpi_dev_resume_early(struct device *dev) 884 { 885 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 886 int error; 887 888 if (!adev) 889 return 0; 890 891 error = acpi_dev_pm_full_power(adev); 892 __acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false); 893 return error; 894 } 895 EXPORT_SYMBOL_GPL(acpi_dev_resume_early); 896 897 /** 898 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 899 * @dev: Device to prepare. 900 */ 901 int acpi_subsys_prepare(struct device *dev) 902 { 903 /* 904 * Follow PCI and resume devices suspended at run time before running 905 * their system suspend callbacks. 906 */ 907 pm_runtime_resume(dev); 908 return pm_generic_prepare(dev); 909 } 910 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 911 912 /** 913 * acpi_subsys_suspend_late - Suspend device using ACPI. 914 * @dev: Device to suspend. 915 * 916 * Carry out the generic late suspend procedure for @dev and use ACPI to put 917 * it into a low-power state during system transition into a sleep state. 918 */ 919 int acpi_subsys_suspend_late(struct device *dev) 920 { 921 int ret = pm_generic_suspend_late(dev); 922 return ret ? ret : acpi_dev_suspend_late(dev); 923 } 924 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 925 926 /** 927 * acpi_subsys_resume_early - Resume device using ACPI. 928 * @dev: Device to Resume. 929 * 930 * Use ACPI to put the given device into the full-power state and carry out the 931 * generic early resume procedure for it during system transition into the 932 * working state. 933 */ 934 int acpi_subsys_resume_early(struct device *dev) 935 { 936 int ret = acpi_dev_resume_early(dev); 937 return ret ? ret : pm_generic_resume_early(dev); 938 } 939 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early); 940 #endif /* CONFIG_PM_SLEEP */ 941 942 static struct dev_pm_domain acpi_general_pm_domain = { 943 .ops = { 944 #ifdef CONFIG_PM_RUNTIME 945 .runtime_suspend = acpi_subsys_runtime_suspend, 946 .runtime_resume = acpi_subsys_runtime_resume, 947 #endif 948 #ifdef CONFIG_PM_SLEEP 949 .prepare = acpi_subsys_prepare, 950 .suspend_late = acpi_subsys_suspend_late, 951 .resume_early = acpi_subsys_resume_early, 952 .poweroff_late = acpi_subsys_suspend_late, 953 .restore_early = acpi_subsys_resume_early, 954 #endif 955 }, 956 }; 957 958 /** 959 * acpi_dev_pm_attach - Prepare device for ACPI power management. 960 * @dev: Device to prepare. 961 * @power_on: Whether or not to power on the device. 962 * 963 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 964 * attached to it, install a wakeup notification handler for the device and 965 * add it to the general ACPI PM domain. If @power_on is set, the device will 966 * be put into the ACPI D0 state before the function returns. 967 * 968 * This assumes that the @dev's bus type uses generic power management callbacks 969 * (or doesn't use any power management callbacks at all). 970 * 971 * Callers must ensure proper synchronization of this function with power 972 * management callbacks. 973 */ 974 int acpi_dev_pm_attach(struct device *dev, bool power_on) 975 { 976 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 977 978 if (!adev) 979 return -ENODEV; 980 981 if (dev->pm_domain) 982 return -EEXIST; 983 984 acpi_add_pm_notifier(adev, acpi_wakeup_device, dev); 985 dev->pm_domain = &acpi_general_pm_domain; 986 if (power_on) { 987 acpi_dev_pm_full_power(adev); 988 __acpi_device_run_wake(adev, false); 989 } 990 return 0; 991 } 992 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 993 994 /** 995 * acpi_dev_pm_detach - Remove ACPI power management from the device. 996 * @dev: Device to take care of. 997 * @power_off: Whether or not to try to remove power from the device. 998 * 999 * Remove the device from the general ACPI PM domain and remove its wakeup 1000 * notifier. If @power_off is set, additionally remove power from the device if 1001 * possible. 1002 * 1003 * Callers must ensure proper synchronization of this function with power 1004 * management callbacks. 1005 */ 1006 void acpi_dev_pm_detach(struct device *dev, bool power_off) 1007 { 1008 struct acpi_device *adev = acpi_dev_pm_get_node(dev); 1009 1010 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 1011 dev->pm_domain = NULL; 1012 acpi_remove_pm_notifier(adev, acpi_wakeup_device); 1013 if (power_off) { 1014 /* 1015 * If the device's PM QoS resume latency limit or flags 1016 * have been exposed to user space, they have to be 1017 * hidden at this point, so that they don't affect the 1018 * choice of the low-power state to put the device into. 1019 */ 1020 dev_pm_qos_hide_latency_limit(dev); 1021 dev_pm_qos_hide_flags(dev); 1022 __acpi_device_run_wake(adev, false); 1023 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 1024 } 1025 } 1026 } 1027 EXPORT_SYMBOL_GPL(acpi_dev_pm_detach); 1028 #endif /* CONFIG_PM */ 1029