xref: /openbmc/linux/drivers/acpi/cppc_acpi.c (revision fa0a497b)
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37 
38 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
39 
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 
44 #include <acpi/cppc_acpi.h>
45 /*
46  * Lock to provide mutually exclusive access to the PCC
47  * channel. e.g. When the remote updates the shared region
48  * with new data, the reader needs to be protected from
49  * other CPUs activity on the same channel.
50  */
51 static DEFINE_SPINLOCK(pcc_lock);
52 
53 /*
54  * The cpc_desc structure contains the ACPI register details
55  * as described in the per CPU _CPC tables. The details
56  * include the type of register (e.g. PCC, System IO, FFH etc.)
57  * and destination addresses which lets us READ/WRITE CPU performance
58  * information using the appropriate I/O methods.
59  */
60 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
61 
62 /* This layer handles all the PCC specifics for CPPC. */
63 static struct mbox_chan *pcc_channel;
64 static void __iomem *pcc_comm_addr;
65 static u64 comm_base_addr;
66 static int pcc_subspace_idx = -1;
67 static bool pcc_channel_acquired;
68 static ktime_t deadline;
69 static unsigned int pcc_mpar, pcc_mrtt;
70 
71 /* pcc mapped address + header size + offset within PCC subspace */
72 #define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs))
73 
74 /*
75  * Arbitrary Retries in case the remote processor is slow to respond
76  * to PCC commands. Keeping it high enough to cover emulators where
77  * the processors run painfully slow.
78  */
79 #define NUM_RETRIES 500
80 
81 static int check_pcc_chan(void)
82 {
83 	int ret = -EIO;
84 	struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr;
85 	ktime_t next_deadline = ktime_add(ktime_get(), deadline);
86 
87 	/* Retry in case the remote processor was too slow to catch up. */
88 	while (!ktime_after(ktime_get(), next_deadline)) {
89 		/*
90 		 * Per spec, prior to boot the PCC space wil be initialized by
91 		 * platform and should have set the command completion bit when
92 		 * PCC can be used by OSPM
93 		 */
94 		if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) {
95 			ret = 0;
96 			break;
97 		}
98 		/*
99 		 * Reducing the bus traffic in case this loop takes longer than
100 		 * a few retries.
101 		 */
102 		udelay(3);
103 	}
104 
105 	return ret;
106 }
107 
108 static int send_pcc_cmd(u16 cmd)
109 {
110 	int ret = -EIO;
111 	struct acpi_pcct_shared_memory *generic_comm_base =
112 		(struct acpi_pcct_shared_memory *) pcc_comm_addr;
113 	static ktime_t last_cmd_cmpl_time, last_mpar_reset;
114 	static int mpar_count;
115 	unsigned int time_delta;
116 
117 	/*
118 	 * For CMD_WRITE we know for a fact the caller should have checked
119 	 * the channel before writing to PCC space
120 	 */
121 	if (cmd == CMD_READ) {
122 		ret = check_pcc_chan();
123 		if (ret)
124 			return ret;
125 	}
126 
127 	/*
128 	 * Handle the Minimum Request Turnaround Time(MRTT)
129 	 * "The minimum amount of time that OSPM must wait after the completion
130 	 * of a command before issuing the next command, in microseconds"
131 	 */
132 	if (pcc_mrtt) {
133 		time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
134 		if (pcc_mrtt > time_delta)
135 			udelay(pcc_mrtt - time_delta);
136 	}
137 
138 	/*
139 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
140 	 * "The maximum number of periodic requests that the subspace channel can
141 	 * support, reported in commands per minute. 0 indicates no limitation."
142 	 *
143 	 * This parameter should be ideally zero or large enough so that it can
144 	 * handle maximum number of requests that all the cores in the system can
145 	 * collectively generate. If it is not, we will follow the spec and just
146 	 * not send the request to the platform after hitting the MPAR limit in
147 	 * any 60s window
148 	 */
149 	if (pcc_mpar) {
150 		if (mpar_count == 0) {
151 			time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
152 			if (time_delta < 60 * MSEC_PER_SEC) {
153 				pr_debug("PCC cmd not sent due to MPAR limit");
154 				return -EIO;
155 			}
156 			last_mpar_reset = ktime_get();
157 			mpar_count = pcc_mpar;
158 		}
159 		mpar_count--;
160 	}
161 
162 	/* Write to the shared comm region. */
163 	writew_relaxed(cmd, &generic_comm_base->command);
164 
165 	/* Flip CMD COMPLETE bit */
166 	writew_relaxed(0, &generic_comm_base->status);
167 
168 	/* Ring doorbell */
169 	ret = mbox_send_message(pcc_channel, &cmd);
170 	if (ret < 0) {
171 		pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
172 				cmd, ret);
173 		return ret;
174 	}
175 
176 	/*
177 	 * For READs we need to ensure the cmd completed to ensure
178 	 * the ensuing read()s can proceed. For WRITEs we dont care
179 	 * because the actual write()s are done before coming here
180 	 * and the next READ or WRITE will check if the channel
181 	 * is busy/free at the entry of this call.
182 	 *
183 	 * If Minimum Request Turnaround Time is non-zero, we need
184 	 * to record the completion time of both READ and WRITE
185 	 * command for proper handling of MRTT, so we need to check
186 	 * for pcc_mrtt in addition to CMD_READ
187 	 */
188 	if (cmd == CMD_READ || pcc_mrtt) {
189 		ret = check_pcc_chan();
190 		if (pcc_mrtt)
191 			last_cmd_cmpl_time = ktime_get();
192 	}
193 
194 	mbox_client_txdone(pcc_channel, ret);
195 	return ret;
196 }
197 
198 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
199 {
200 	if (ret < 0)
201 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
202 				*(u16 *)msg, ret);
203 	else
204 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
205 				*(u16 *)msg, ret);
206 }
207 
208 struct mbox_client cppc_mbox_cl = {
209 	.tx_done = cppc_chan_tx_done,
210 	.knows_txdone = true,
211 };
212 
213 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
214 {
215 	int result = -EFAULT;
216 	acpi_status status = AE_OK;
217 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
218 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
219 	struct acpi_buffer state = {0, NULL};
220 	union acpi_object  *psd = NULL;
221 	struct acpi_psd_package *pdomain;
222 
223 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
224 			ACPI_TYPE_PACKAGE);
225 	if (ACPI_FAILURE(status))
226 		return -ENODEV;
227 
228 	psd = buffer.pointer;
229 	if (!psd || psd->package.count != 1) {
230 		pr_debug("Invalid _PSD data\n");
231 		goto end;
232 	}
233 
234 	pdomain = &(cpc_ptr->domain_info);
235 
236 	state.length = sizeof(struct acpi_psd_package);
237 	state.pointer = pdomain;
238 
239 	status = acpi_extract_package(&(psd->package.elements[0]),
240 		&format, &state);
241 	if (ACPI_FAILURE(status)) {
242 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
243 		goto end;
244 	}
245 
246 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
247 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
248 		goto end;
249 	}
250 
251 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
252 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
253 		goto end;
254 	}
255 
256 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
257 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
258 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
259 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
260 		goto end;
261 	}
262 
263 	result = 0;
264 end:
265 	kfree(buffer.pointer);
266 	return result;
267 }
268 
269 /**
270  * acpi_get_psd_map - Map the CPUs in a common freq domain.
271  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
272  *
273  *	Return: 0 for success or negative value for err.
274  */
275 int acpi_get_psd_map(struct cpudata **all_cpu_data)
276 {
277 	int count_target;
278 	int retval = 0;
279 	unsigned int i, j;
280 	cpumask_var_t covered_cpus;
281 	struct cpudata *pr, *match_pr;
282 	struct acpi_psd_package *pdomain;
283 	struct acpi_psd_package *match_pdomain;
284 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
285 
286 	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
287 		return -ENOMEM;
288 
289 	/*
290 	 * Now that we have _PSD data from all CPUs, lets setup P-state
291 	 * domain info.
292 	 */
293 	for_each_possible_cpu(i) {
294 		pr = all_cpu_data[i];
295 		if (!pr)
296 			continue;
297 
298 		if (cpumask_test_cpu(i, covered_cpus))
299 			continue;
300 
301 		cpc_ptr = per_cpu(cpc_desc_ptr, i);
302 		if (!cpc_ptr)
303 			continue;
304 
305 		pdomain = &(cpc_ptr->domain_info);
306 		cpumask_set_cpu(i, pr->shared_cpu_map);
307 		cpumask_set_cpu(i, covered_cpus);
308 		if (pdomain->num_processors <= 1)
309 			continue;
310 
311 		/* Validate the Domain info */
312 		count_target = pdomain->num_processors;
313 		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
314 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
315 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
316 			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
317 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
318 			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
319 
320 		for_each_possible_cpu(j) {
321 			if (i == j)
322 				continue;
323 
324 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
325 			if (!match_cpc_ptr)
326 				continue;
327 
328 			match_pdomain = &(match_cpc_ptr->domain_info);
329 			if (match_pdomain->domain != pdomain->domain)
330 				continue;
331 
332 			/* Here i and j are in the same domain */
333 			if (match_pdomain->num_processors != count_target) {
334 				retval = -EFAULT;
335 				goto err_ret;
336 			}
337 
338 			if (pdomain->coord_type != match_pdomain->coord_type) {
339 				retval = -EFAULT;
340 				goto err_ret;
341 			}
342 
343 			cpumask_set_cpu(j, covered_cpus);
344 			cpumask_set_cpu(j, pr->shared_cpu_map);
345 		}
346 
347 		for_each_possible_cpu(j) {
348 			if (i == j)
349 				continue;
350 
351 			match_pr = all_cpu_data[j];
352 			if (!match_pr)
353 				continue;
354 
355 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
356 			if (!match_cpc_ptr)
357 				continue;
358 
359 			match_pdomain = &(match_cpc_ptr->domain_info);
360 			if (match_pdomain->domain != pdomain->domain)
361 				continue;
362 
363 			match_pr->shared_type = pr->shared_type;
364 			cpumask_copy(match_pr->shared_cpu_map,
365 				     pr->shared_cpu_map);
366 		}
367 	}
368 
369 err_ret:
370 	for_each_possible_cpu(i) {
371 		pr = all_cpu_data[i];
372 		if (!pr)
373 			continue;
374 
375 		/* Assume no coordination on any error parsing domain info */
376 		if (retval) {
377 			cpumask_clear(pr->shared_cpu_map);
378 			cpumask_set_cpu(i, pr->shared_cpu_map);
379 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
380 		}
381 	}
382 
383 	free_cpumask_var(covered_cpus);
384 	return retval;
385 }
386 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
387 
388 static int register_pcc_channel(int pcc_subspace_idx)
389 {
390 	struct acpi_pcct_hw_reduced *cppc_ss;
391 	unsigned int len;
392 	u64 usecs_lat;
393 
394 	if (pcc_subspace_idx >= 0) {
395 		pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
396 				pcc_subspace_idx);
397 
398 		if (IS_ERR(pcc_channel)) {
399 			pr_err("Failed to find PCC communication channel\n");
400 			return -ENODEV;
401 		}
402 
403 		/*
404 		 * The PCC mailbox controller driver should
405 		 * have parsed the PCCT (global table of all
406 		 * PCC channels) and stored pointers to the
407 		 * subspace communication region in con_priv.
408 		 */
409 		cppc_ss = pcc_channel->con_priv;
410 
411 		if (!cppc_ss) {
412 			pr_err("No PCC subspace found for CPPC\n");
413 			return -ENODEV;
414 		}
415 
416 		/*
417 		 * This is the shared communication region
418 		 * for the OS and Platform to communicate over.
419 		 */
420 		comm_base_addr = cppc_ss->base_address;
421 		len = cppc_ss->length;
422 
423 		/*
424 		 * cppc_ss->latency is just a Nominal value. In reality
425 		 * the remote processor could be much slower to reply.
426 		 * So add an arbitrary amount of wait on top of Nominal.
427 		 */
428 		usecs_lat = NUM_RETRIES * cppc_ss->latency;
429 		deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
430 		pcc_mrtt = cppc_ss->min_turnaround_time;
431 		pcc_mpar = cppc_ss->max_access_rate;
432 
433 		pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len);
434 		if (!pcc_comm_addr) {
435 			pr_err("Failed to ioremap PCC comm region mem\n");
436 			return -ENOMEM;
437 		}
438 
439 		/* Set flag so that we dont come here for each CPU. */
440 		pcc_channel_acquired = true;
441 	}
442 
443 	return 0;
444 }
445 
446 /*
447  * An example CPC table looks like the following.
448  *
449  *	Name(_CPC, Package()
450  *			{
451  *			17,
452  *			NumEntries
453  *			1,
454  *			// Revision
455  *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
456  *			// Highest Performance
457  *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
458  *			// Nominal Performance
459  *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
460  *			// Lowest Nonlinear Performance
461  *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
462  *			// Lowest Performance
463  *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
464  *			// Guaranteed Performance Register
465  *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
466  *			// Desired Performance Register
467  *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
468  *			..
469  *			..
470  *			..
471  *
472  *		}
473  * Each Register() encodes how to access that specific register.
474  * e.g. a sample PCC entry has the following encoding:
475  *
476  *	Register (
477  *		PCC,
478  *		AddressSpaceKeyword
479  *		8,
480  *		//RegisterBitWidth
481  *		8,
482  *		//RegisterBitOffset
483  *		0x30,
484  *		//RegisterAddress
485  *		9
486  *		//AccessSize (subspace ID)
487  *		0
488  *		)
489  *	}
490  */
491 
492 /**
493  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
494  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
495  *
496  *	Return: 0 for success or negative value for err.
497  */
498 int acpi_cppc_processor_probe(struct acpi_processor *pr)
499 {
500 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
501 	union acpi_object *out_obj, *cpc_obj;
502 	struct cpc_desc *cpc_ptr;
503 	struct cpc_reg *gas_t;
504 	acpi_handle handle = pr->handle;
505 	unsigned int num_ent, i, cpc_rev;
506 	acpi_status status;
507 	int ret = -EFAULT;
508 
509 	/* Parse the ACPI _CPC table for this cpu. */
510 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
511 			ACPI_TYPE_PACKAGE);
512 	if (ACPI_FAILURE(status)) {
513 		ret = -ENODEV;
514 		goto out_buf_free;
515 	}
516 
517 	out_obj = (union acpi_object *) output.pointer;
518 
519 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
520 	if (!cpc_ptr) {
521 		ret = -ENOMEM;
522 		goto out_buf_free;
523 	}
524 
525 	/* First entry is NumEntries. */
526 	cpc_obj = &out_obj->package.elements[0];
527 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
528 		num_ent = cpc_obj->integer.value;
529 	} else {
530 		pr_debug("Unexpected entry type(%d) for NumEntries\n",
531 				cpc_obj->type);
532 		goto out_free;
533 	}
534 
535 	/* Only support CPPCv2. Bail otherwise. */
536 	if (num_ent != CPPC_NUM_ENT) {
537 		pr_debug("Firmware exports %d entries. Expected: %d\n",
538 				num_ent, CPPC_NUM_ENT);
539 		goto out_free;
540 	}
541 
542 	/* Second entry should be revision. */
543 	cpc_obj = &out_obj->package.elements[1];
544 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
545 		cpc_rev = cpc_obj->integer.value;
546 	} else {
547 		pr_debug("Unexpected entry type(%d) for Revision\n",
548 				cpc_obj->type);
549 		goto out_free;
550 	}
551 
552 	if (cpc_rev != CPPC_REV) {
553 		pr_debug("Firmware exports revision:%d. Expected:%d\n",
554 				cpc_rev, CPPC_REV);
555 		goto out_free;
556 	}
557 
558 	/* Iterate through remaining entries in _CPC */
559 	for (i = 2; i < num_ent; i++) {
560 		cpc_obj = &out_obj->package.elements[i];
561 
562 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
563 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
564 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
565 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
566 			gas_t = (struct cpc_reg *)
567 				cpc_obj->buffer.pointer;
568 
569 			/*
570 			 * The PCC Subspace index is encoded inside
571 			 * the CPC table entries. The same PCC index
572 			 * will be used for all the PCC entries,
573 			 * so extract it only once.
574 			 */
575 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
576 				if (pcc_subspace_idx < 0)
577 					pcc_subspace_idx = gas_t->access_width;
578 				else if (pcc_subspace_idx != gas_t->access_width) {
579 					pr_debug("Mismatched PCC ids.\n");
580 					goto out_free;
581 				}
582 			} else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) {
583 				/* Support only PCC and SYS MEM type regs */
584 				pr_debug("Unsupported register type: %d\n", gas_t->space_id);
585 				goto out_free;
586 			}
587 
588 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
589 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
590 		} else {
591 			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
592 			goto out_free;
593 		}
594 	}
595 	/* Store CPU Logical ID */
596 	cpc_ptr->cpu_id = pr->id;
597 
598 	/* Plug it into this CPUs CPC descriptor. */
599 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
600 
601 	/* Parse PSD data for this CPU */
602 	ret = acpi_get_psd(cpc_ptr, handle);
603 	if (ret)
604 		goto out_free;
605 
606 	/* Register PCC channel once for all CPUs. */
607 	if (!pcc_channel_acquired) {
608 		ret = register_pcc_channel(pcc_subspace_idx);
609 		if (ret)
610 			goto out_free;
611 	}
612 
613 	/* Everything looks okay */
614 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
615 
616 	kfree(output.pointer);
617 	return 0;
618 
619 out_free:
620 	kfree(cpc_ptr);
621 
622 out_buf_free:
623 	kfree(output.pointer);
624 	return ret;
625 }
626 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
627 
628 /**
629  * acpi_cppc_processor_exit - Cleanup CPC structs.
630  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
631  *
632  * Return: Void
633  */
634 void acpi_cppc_processor_exit(struct acpi_processor *pr)
635 {
636 	struct cpc_desc *cpc_ptr;
637 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
638 	kfree(cpc_ptr);
639 }
640 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
641 
642 /*
643  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
644  * as fast as possible. We have already mapped the PCC subspace during init, so
645  * we can directly write to it.
646  */
647 
648 static int cpc_read(struct cpc_reg *reg, u64 *val)
649 {
650 	int ret_val = 0;
651 
652 	*val = 0;
653 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
654 		void __iomem *vaddr = GET_PCC_VADDR(reg->address);
655 
656 		switch (reg->bit_width) {
657 		case 8:
658 			*val = readb_relaxed(vaddr);
659 			break;
660 		case 16:
661 			*val = readw_relaxed(vaddr);
662 			break;
663 		case 32:
664 			*val = readl_relaxed(vaddr);
665 			break;
666 		case 64:
667 			*val = readq_relaxed(vaddr);
668 			break;
669 		default:
670 			pr_debug("Error: Cannot read %u bit width from PCC\n",
671 				reg->bit_width);
672 			ret_val = -EFAULT;
673 		}
674 	} else
675 		ret_val = acpi_os_read_memory((acpi_physical_address)reg->address,
676 					val, reg->bit_width);
677 	return ret_val;
678 }
679 
680 static int cpc_write(struct cpc_reg *reg, u64 val)
681 {
682 	int ret_val = 0;
683 
684 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
685 		void __iomem *vaddr = GET_PCC_VADDR(reg->address);
686 
687 		switch (reg->bit_width) {
688 		case 8:
689 			writeb_relaxed(val, vaddr);
690 			break;
691 		case 16:
692 			writew_relaxed(val, vaddr);
693 			break;
694 		case 32:
695 			writel_relaxed(val, vaddr);
696 			break;
697 		case 64:
698 			writeq_relaxed(val, vaddr);
699 			break;
700 		default:
701 			pr_debug("Error: Cannot write %u bit width to PCC\n",
702 				reg->bit_width);
703 			ret_val = -EFAULT;
704 			break;
705 		}
706 	} else
707 		ret_val = acpi_os_write_memory((acpi_physical_address)reg->address,
708 				val, reg->bit_width);
709 	return ret_val;
710 }
711 
712 /**
713  * cppc_get_perf_caps - Get a CPUs performance capabilities.
714  * @cpunum: CPU from which to get capabilities info.
715  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
716  *
717  * Return: 0 for success with perf_caps populated else -ERRNO.
718  */
719 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
720 {
721 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
722 	struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
723 								 *nom_perf;
724 	u64 high, low, ref, nom;
725 	int ret = 0;
726 
727 	if (!cpc_desc) {
728 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
729 		return -ENODEV;
730 	}
731 
732 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
733 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
734 	ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
735 	nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
736 
737 	spin_lock(&pcc_lock);
738 
739 	/* Are any of the regs PCC ?*/
740 	if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
741 			(lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
742 			(ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
743 			(nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
744 		/* Ring doorbell once to update PCC subspace */
745 		if (send_pcc_cmd(CMD_READ) < 0) {
746 			ret = -EIO;
747 			goto out_err;
748 		}
749 	}
750 
751 	cpc_read(&highest_reg->cpc_entry.reg, &high);
752 	perf_caps->highest_perf = high;
753 
754 	cpc_read(&lowest_reg->cpc_entry.reg, &low);
755 	perf_caps->lowest_perf = low;
756 
757 	cpc_read(&ref_perf->cpc_entry.reg, &ref);
758 	perf_caps->reference_perf = ref;
759 
760 	cpc_read(&nom_perf->cpc_entry.reg, &nom);
761 	perf_caps->nominal_perf = nom;
762 
763 	if (!ref)
764 		perf_caps->reference_perf = perf_caps->nominal_perf;
765 
766 	if (!high || !low || !nom)
767 		ret = -EFAULT;
768 
769 out_err:
770 	spin_unlock(&pcc_lock);
771 	return ret;
772 }
773 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
774 
775 /**
776  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
777  * @cpunum: CPU from which to read counters.
778  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
779  *
780  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
781  */
782 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
783 {
784 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
785 	struct cpc_register_resource *delivered_reg, *reference_reg;
786 	u64 delivered, reference;
787 	int ret = 0;
788 
789 	if (!cpc_desc) {
790 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
791 		return -ENODEV;
792 	}
793 
794 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
795 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
796 
797 	spin_lock(&pcc_lock);
798 
799 	/* Are any of the regs PCC ?*/
800 	if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
801 			(reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
802 		/* Ring doorbell once to update PCC subspace */
803 		if (send_pcc_cmd(CMD_READ) < 0) {
804 			ret = -EIO;
805 			goto out_err;
806 		}
807 	}
808 
809 	cpc_read(&delivered_reg->cpc_entry.reg, &delivered);
810 	cpc_read(&reference_reg->cpc_entry.reg, &reference);
811 
812 	if (!delivered || !reference) {
813 		ret = -EFAULT;
814 		goto out_err;
815 	}
816 
817 	perf_fb_ctrs->delivered = delivered;
818 	perf_fb_ctrs->reference = reference;
819 
820 	perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered;
821 	perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference;
822 
823 	perf_fb_ctrs->prev_delivered = delivered;
824 	perf_fb_ctrs->prev_reference = reference;
825 
826 out_err:
827 	spin_unlock(&pcc_lock);
828 	return ret;
829 }
830 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
831 
832 /**
833  * cppc_set_perf - Set a CPUs performance controls.
834  * @cpu: CPU for which to set performance controls.
835  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
836  *
837  * Return: 0 for success, -ERRNO otherwise.
838  */
839 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
840 {
841 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
842 	struct cpc_register_resource *desired_reg;
843 	int ret = 0;
844 
845 	if (!cpc_desc) {
846 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
847 		return -ENODEV;
848 	}
849 
850 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
851 
852 	spin_lock(&pcc_lock);
853 
854 	/* If this is PCC reg, check if channel is free before writing */
855 	if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
856 		ret = check_pcc_chan();
857 		if (ret)
858 			goto busy_channel;
859 	}
860 
861 	/*
862 	 * Skip writing MIN/MAX until Linux knows how to come up with
863 	 * useful values.
864 	 */
865 	cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf);
866 
867 	/* Is this a PCC reg ?*/
868 	if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
869 		/* Ring doorbell so Remote can get our perf request. */
870 		if (send_pcc_cmd(CMD_WRITE) < 0)
871 			ret = -EIO;
872 	}
873 busy_channel:
874 	spin_unlock(&pcc_lock);
875 
876 	return ret;
877 }
878 EXPORT_SYMBOL_GPL(cppc_set_perf);
879