xref: /openbmc/linux/drivers/acpi/cppc_acpi.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
42 #include <linux/topology.h>
43 
44 #include <acpi/cppc_acpi.h>
45 
46 struct cppc_pcc_data {
47 	struct mbox_chan *pcc_channel;
48 	void __iomem *pcc_comm_addr;
49 	bool pcc_channel_acquired;
50 	unsigned int deadline_us;
51 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
52 
53 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
54 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
55 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
56 
57 	/*
58 	 * Lock to provide controlled access to the PCC channel.
59 	 *
60 	 * For performance critical usecases(currently cppc_set_perf)
61 	 *	We need to take read_lock and check if channel belongs to OSPM
62 	 * before reading or writing to PCC subspace
63 	 *	We need to take write_lock before transferring the channel
64 	 * ownership to the platform via a Doorbell
65 	 *	This allows us to batch a number of CPPC requests if they happen
66 	 * to originate in about the same time
67 	 *
68 	 * For non-performance critical usecases(init)
69 	 *	Take write_lock for all purposes which gives exclusive access
70 	 */
71 	struct rw_semaphore pcc_lock;
72 
73 	/* Wait queue for CPUs whose requests were batched */
74 	wait_queue_head_t pcc_write_wait_q;
75 	ktime_t last_cmd_cmpl_time;
76 	ktime_t last_mpar_reset;
77 	int mpar_count;
78 	int refcount;
79 };
80 
81 /* Array to represent the PCC channel per subspace ID */
82 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
83 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
84 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
85 
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94 
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
97 						0x8 + (offs))
98 
99 /* Check if a CPC register is in PCC */
100 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
101 				(cpc)->cpc_entry.reg.space_id ==	\
102 				ACPI_ADR_SPACE_PLATFORM_COMM)
103 
104 /* Evalutes to True if reg is a NULL register descriptor */
105 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
106 				(reg)->address == 0 &&			\
107 				(reg)->bit_width == 0 &&		\
108 				(reg)->bit_offset == 0 &&		\
109 				(reg)->access_width == 0)
110 
111 /* Evalutes to True if an optional cpc field is supported */
112 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
113 				!!(cpc)->cpc_entry.int_value :		\
114 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 /*
116  * Arbitrary Retries in case the remote processor is slow to respond
117  * to PCC commands. Keeping it high enough to cover emulators where
118  * the processors run painfully slow.
119  */
120 #define NUM_RETRIES 500ULL
121 
122 struct cppc_attr {
123 	struct attribute attr;
124 	ssize_t (*show)(struct kobject *kobj,
125 			struct attribute *attr, char *buf);
126 	ssize_t (*store)(struct kobject *kobj,
127 			struct attribute *attr, const char *c, ssize_t count);
128 };
129 
130 #define define_one_cppc_ro(_name)		\
131 static struct cppc_attr _name =			\
132 __ATTR(_name, 0444, show_##_name, NULL)
133 
134 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135 
136 #define show_cppc_data(access_fn, struct_name, member_name)		\
137 	static ssize_t show_##member_name(struct kobject *kobj,		\
138 					struct attribute *attr,	char *buf) \
139 	{								\
140 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
141 		struct struct_name st_name = {0};			\
142 		int ret;						\
143 									\
144 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
145 		if (ret)						\
146 			return ret;					\
147 									\
148 		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
149 				(u64)st_name.member_name);		\
150 	}								\
151 	define_one_cppc_ro(member_name)
152 
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
159 
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
161 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
162 
163 static ssize_t show_feedback_ctrs(struct kobject *kobj,
164 		struct attribute *attr, char *buf)
165 {
166 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
167 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
168 	int ret;
169 
170 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
171 	if (ret)
172 		return ret;
173 
174 	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
175 			fb_ctrs.reference, fb_ctrs.delivered);
176 }
177 define_one_cppc_ro(feedback_ctrs);
178 
179 static struct attribute *cppc_attrs[] = {
180 	&feedback_ctrs.attr,
181 	&reference_perf.attr,
182 	&wraparound_time.attr,
183 	&highest_perf.attr,
184 	&lowest_perf.attr,
185 	&lowest_nonlinear_perf.attr,
186 	&nominal_perf.attr,
187 	&nominal_freq.attr,
188 	&lowest_freq.attr,
189 	NULL
190 };
191 
192 static struct kobj_type cppc_ktype = {
193 	.sysfs_ops = &kobj_sysfs_ops,
194 	.default_attrs = cppc_attrs,
195 };
196 
197 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
198 {
199 	int ret, status;
200 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
201 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
202 		pcc_ss_data->pcc_comm_addr;
203 
204 	if (!pcc_ss_data->platform_owns_pcc)
205 		return 0;
206 
207 	/*
208 	 * Poll PCC status register every 3us(delay_us) for maximum of
209 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
210 	 */
211 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
212 					status & PCC_CMD_COMPLETE_MASK, 3,
213 					pcc_ss_data->deadline_us);
214 
215 	if (likely(!ret)) {
216 		pcc_ss_data->platform_owns_pcc = false;
217 		if (chk_err_bit && (status & PCC_ERROR_MASK))
218 			ret = -EIO;
219 	}
220 
221 	if (unlikely(ret))
222 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
223 		       pcc_ss_id, ret);
224 
225 	return ret;
226 }
227 
228 /*
229  * This function transfers the ownership of the PCC to the platform
230  * So it must be called while holding write_lock(pcc_lock)
231  */
232 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
233 {
234 	int ret = -EIO, i;
235 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
236 	struct acpi_pcct_shared_memory *generic_comm_base =
237 		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
238 	unsigned int time_delta;
239 
240 	/*
241 	 * For CMD_WRITE we know for a fact the caller should have checked
242 	 * the channel before writing to PCC space
243 	 */
244 	if (cmd == CMD_READ) {
245 		/*
246 		 * If there are pending cpc_writes, then we stole the channel
247 		 * before write completion, so first send a WRITE command to
248 		 * platform
249 		 */
250 		if (pcc_ss_data->pending_pcc_write_cmd)
251 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
252 
253 		ret = check_pcc_chan(pcc_ss_id, false);
254 		if (ret)
255 			goto end;
256 	} else /* CMD_WRITE */
257 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
258 
259 	/*
260 	 * Handle the Minimum Request Turnaround Time(MRTT)
261 	 * "The minimum amount of time that OSPM must wait after the completion
262 	 * of a command before issuing the next command, in microseconds"
263 	 */
264 	if (pcc_ss_data->pcc_mrtt) {
265 		time_delta = ktime_us_delta(ktime_get(),
266 					    pcc_ss_data->last_cmd_cmpl_time);
267 		if (pcc_ss_data->pcc_mrtt > time_delta)
268 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
269 	}
270 
271 	/*
272 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
273 	 * "The maximum number of periodic requests that the subspace channel can
274 	 * support, reported in commands per minute. 0 indicates no limitation."
275 	 *
276 	 * This parameter should be ideally zero or large enough so that it can
277 	 * handle maximum number of requests that all the cores in the system can
278 	 * collectively generate. If it is not, we will follow the spec and just
279 	 * not send the request to the platform after hitting the MPAR limit in
280 	 * any 60s window
281 	 */
282 	if (pcc_ss_data->pcc_mpar) {
283 		if (pcc_ss_data->mpar_count == 0) {
284 			time_delta = ktime_ms_delta(ktime_get(),
285 						    pcc_ss_data->last_mpar_reset);
286 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
287 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
288 					 pcc_ss_id);
289 				ret = -EIO;
290 				goto end;
291 			}
292 			pcc_ss_data->last_mpar_reset = ktime_get();
293 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
294 		}
295 		pcc_ss_data->mpar_count--;
296 	}
297 
298 	/* Write to the shared comm region. */
299 	writew_relaxed(cmd, &generic_comm_base->command);
300 
301 	/* Flip CMD COMPLETE bit */
302 	writew_relaxed(0, &generic_comm_base->status);
303 
304 	pcc_ss_data->platform_owns_pcc = true;
305 
306 	/* Ring doorbell */
307 	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
308 	if (ret < 0) {
309 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
310 		       pcc_ss_id, cmd, ret);
311 		goto end;
312 	}
313 
314 	/* wait for completion and check for PCC errro bit */
315 	ret = check_pcc_chan(pcc_ss_id, true);
316 
317 	if (pcc_ss_data->pcc_mrtt)
318 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
319 
320 	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
321 		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
322 	else
323 		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
324 
325 end:
326 	if (cmd == CMD_WRITE) {
327 		if (unlikely(ret)) {
328 			for_each_possible_cpu(i) {
329 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
330 				if (!desc)
331 					continue;
332 
333 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
334 					desc->write_cmd_status = ret;
335 			}
336 		}
337 		pcc_ss_data->pcc_write_cnt++;
338 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
339 	}
340 
341 	return ret;
342 }
343 
344 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
345 {
346 	if (ret < 0)
347 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
348 				*(u16 *)msg, ret);
349 	else
350 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
351 				*(u16 *)msg, ret);
352 }
353 
354 static struct mbox_client cppc_mbox_cl = {
355 	.tx_done = cppc_chan_tx_done,
356 	.knows_txdone = true,
357 };
358 
359 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
360 {
361 	int result = -EFAULT;
362 	acpi_status status = AE_OK;
363 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
364 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
365 	struct acpi_buffer state = {0, NULL};
366 	union acpi_object  *psd = NULL;
367 	struct acpi_psd_package *pdomain;
368 
369 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
370 					    &buffer, ACPI_TYPE_PACKAGE);
371 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
372 		return 0;
373 	if (ACPI_FAILURE(status))
374 		return -ENODEV;
375 
376 	psd = buffer.pointer;
377 	if (!psd || psd->package.count != 1) {
378 		pr_debug("Invalid _PSD data\n");
379 		goto end;
380 	}
381 
382 	pdomain = &(cpc_ptr->domain_info);
383 
384 	state.length = sizeof(struct acpi_psd_package);
385 	state.pointer = pdomain;
386 
387 	status = acpi_extract_package(&(psd->package.elements[0]),
388 		&format, &state);
389 	if (ACPI_FAILURE(status)) {
390 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
391 		goto end;
392 	}
393 
394 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
395 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
396 		goto end;
397 	}
398 
399 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
400 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
401 		goto end;
402 	}
403 
404 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
405 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
406 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
407 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
408 		goto end;
409 	}
410 
411 	result = 0;
412 end:
413 	kfree(buffer.pointer);
414 	return result;
415 }
416 
417 /**
418  * acpi_get_psd_map - Map the CPUs in a common freq domain.
419  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
420  *
421  *	Return: 0 for success or negative value for err.
422  */
423 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
424 {
425 	int count_target;
426 	int retval = 0;
427 	unsigned int i, j;
428 	cpumask_var_t covered_cpus;
429 	struct cppc_cpudata *pr, *match_pr;
430 	struct acpi_psd_package *pdomain;
431 	struct acpi_psd_package *match_pdomain;
432 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
433 
434 	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
435 		return -ENOMEM;
436 
437 	/*
438 	 * Now that we have _PSD data from all CPUs, let's setup P-state
439 	 * domain info.
440 	 */
441 	for_each_possible_cpu(i) {
442 		if (cpumask_test_cpu(i, covered_cpus))
443 			continue;
444 
445 		pr = all_cpu_data[i];
446 		cpc_ptr = per_cpu(cpc_desc_ptr, i);
447 		if (!cpc_ptr) {
448 			retval = -EFAULT;
449 			goto err_ret;
450 		}
451 
452 		pdomain = &(cpc_ptr->domain_info);
453 		cpumask_set_cpu(i, pr->shared_cpu_map);
454 		cpumask_set_cpu(i, covered_cpus);
455 		if (pdomain->num_processors <= 1)
456 			continue;
457 
458 		/* Validate the Domain info */
459 		count_target = pdomain->num_processors;
460 		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
461 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
462 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
463 			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
464 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
465 			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
466 
467 		for_each_possible_cpu(j) {
468 			if (i == j)
469 				continue;
470 
471 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
472 			if (!match_cpc_ptr) {
473 				retval = -EFAULT;
474 				goto err_ret;
475 			}
476 
477 			match_pdomain = &(match_cpc_ptr->domain_info);
478 			if (match_pdomain->domain != pdomain->domain)
479 				continue;
480 
481 			/* Here i and j are in the same domain */
482 			if (match_pdomain->num_processors != count_target) {
483 				retval = -EFAULT;
484 				goto err_ret;
485 			}
486 
487 			if (pdomain->coord_type != match_pdomain->coord_type) {
488 				retval = -EFAULT;
489 				goto err_ret;
490 			}
491 
492 			cpumask_set_cpu(j, covered_cpus);
493 			cpumask_set_cpu(j, pr->shared_cpu_map);
494 		}
495 
496 		for_each_cpu(j, pr->shared_cpu_map) {
497 			if (i == j)
498 				continue;
499 
500 			match_pr = all_cpu_data[j];
501 			match_pr->shared_type = pr->shared_type;
502 			cpumask_copy(match_pr->shared_cpu_map,
503 				     pr->shared_cpu_map);
504 		}
505 	}
506 	goto out;
507 
508 err_ret:
509 	for_each_possible_cpu(i) {
510 		pr = all_cpu_data[i];
511 
512 		/* Assume no coordination on any error parsing domain info */
513 		cpumask_clear(pr->shared_cpu_map);
514 		cpumask_set_cpu(i, pr->shared_cpu_map);
515 		pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
516 	}
517 out:
518 	free_cpumask_var(covered_cpus);
519 	return retval;
520 }
521 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
522 
523 static int register_pcc_channel(int pcc_ss_idx)
524 {
525 	struct acpi_pcct_hw_reduced *cppc_ss;
526 	u64 usecs_lat;
527 
528 	if (pcc_ss_idx >= 0) {
529 		pcc_data[pcc_ss_idx]->pcc_channel =
530 			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
531 
532 		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
533 			pr_err("Failed to find PCC channel for subspace %d\n",
534 			       pcc_ss_idx);
535 			return -ENODEV;
536 		}
537 
538 		/*
539 		 * The PCC mailbox controller driver should
540 		 * have parsed the PCCT (global table of all
541 		 * PCC channels) and stored pointers to the
542 		 * subspace communication region in con_priv.
543 		 */
544 		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
545 
546 		if (!cppc_ss) {
547 			pr_err("No PCC subspace found for %d CPPC\n",
548 			       pcc_ss_idx);
549 			return -ENODEV;
550 		}
551 
552 		/*
553 		 * cppc_ss->latency is just a Nominal value. In reality
554 		 * the remote processor could be much slower to reply.
555 		 * So add an arbitrary amount of wait on top of Nominal.
556 		 */
557 		usecs_lat = NUM_RETRIES * cppc_ss->latency;
558 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
559 		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
560 		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
561 		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
562 
563 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
564 			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
565 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
566 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
567 			       pcc_ss_idx);
568 			return -ENOMEM;
569 		}
570 
571 		/* Set flag so that we don't come here for each CPU. */
572 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
573 	}
574 
575 	return 0;
576 }
577 
578 /**
579  * cpc_ffh_supported() - check if FFH reading supported
580  *
581  * Check if the architecture has support for functional fixed hardware
582  * read/write capability.
583  *
584  * Return: true for supported, false for not supported
585  */
586 bool __weak cpc_ffh_supported(void)
587 {
588 	return false;
589 }
590 
591 /**
592  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
593  *
594  * Check and allocate the cppc_pcc_data memory.
595  * In some processor configurations it is possible that same subspace
596  * is shared between multiple CPUs. This is seen especially in CPUs
597  * with hardware multi-threading support.
598  *
599  * Return: 0 for success, errno for failure
600  */
601 static int pcc_data_alloc(int pcc_ss_id)
602 {
603 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
604 		return -EINVAL;
605 
606 	if (pcc_data[pcc_ss_id]) {
607 		pcc_data[pcc_ss_id]->refcount++;
608 	} else {
609 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
610 					      GFP_KERNEL);
611 		if (!pcc_data[pcc_ss_id])
612 			return -ENOMEM;
613 		pcc_data[pcc_ss_id]->refcount++;
614 	}
615 
616 	return 0;
617 }
618 
619 /* Check if CPPC revision + num_ent combination is supported */
620 static bool is_cppc_supported(int revision, int num_ent)
621 {
622 	int expected_num_ent;
623 
624 	switch (revision) {
625 	case CPPC_V2_REV:
626 		expected_num_ent = CPPC_V2_NUM_ENT;
627 		break;
628 	case CPPC_V3_REV:
629 		expected_num_ent = CPPC_V3_NUM_ENT;
630 		break;
631 	default:
632 		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
633 			revision);
634 		return false;
635 	}
636 
637 	if (expected_num_ent != num_ent) {
638 		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
639 			num_ent, expected_num_ent, revision);
640 		return false;
641 	}
642 
643 	return true;
644 }
645 
646 /*
647  * An example CPC table looks like the following.
648  *
649  *	Name(_CPC, Package()
650  *			{
651  *			17,
652  *			NumEntries
653  *			1,
654  *			// Revision
655  *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
656  *			// Highest Performance
657  *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
658  *			// Nominal Performance
659  *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
660  *			// Lowest Nonlinear Performance
661  *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
662  *			// Lowest Performance
663  *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
664  *			// Guaranteed Performance Register
665  *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
666  *			// Desired Performance Register
667  *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
668  *			..
669  *			..
670  *			..
671  *
672  *		}
673  * Each Register() encodes how to access that specific register.
674  * e.g. a sample PCC entry has the following encoding:
675  *
676  *	Register (
677  *		PCC,
678  *		AddressSpaceKeyword
679  *		8,
680  *		//RegisterBitWidth
681  *		8,
682  *		//RegisterBitOffset
683  *		0x30,
684  *		//RegisterAddress
685  *		9
686  *		//AccessSize (subspace ID)
687  *		0
688  *		)
689  *	}
690  */
691 
692 #ifndef init_freq_invariance_cppc
693 static inline void init_freq_invariance_cppc(void) { }
694 #endif
695 
696 /**
697  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
698  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
699  *
700  *	Return: 0 for success or negative value for err.
701  */
702 int acpi_cppc_processor_probe(struct acpi_processor *pr)
703 {
704 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
705 	union acpi_object *out_obj, *cpc_obj;
706 	struct cpc_desc *cpc_ptr;
707 	struct cpc_reg *gas_t;
708 	struct device *cpu_dev;
709 	acpi_handle handle = pr->handle;
710 	unsigned int num_ent, i, cpc_rev;
711 	int pcc_subspace_id = -1;
712 	acpi_status status;
713 	int ret = -EFAULT;
714 
715 	/* Parse the ACPI _CPC table for this CPU. */
716 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
717 			ACPI_TYPE_PACKAGE);
718 	if (ACPI_FAILURE(status)) {
719 		ret = -ENODEV;
720 		goto out_buf_free;
721 	}
722 
723 	out_obj = (union acpi_object *) output.pointer;
724 
725 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
726 	if (!cpc_ptr) {
727 		ret = -ENOMEM;
728 		goto out_buf_free;
729 	}
730 
731 	/* First entry is NumEntries. */
732 	cpc_obj = &out_obj->package.elements[0];
733 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
734 		num_ent = cpc_obj->integer.value;
735 	} else {
736 		pr_debug("Unexpected entry type(%d) for NumEntries\n",
737 				cpc_obj->type);
738 		goto out_free;
739 	}
740 	cpc_ptr->num_entries = num_ent;
741 
742 	/* Second entry should be revision. */
743 	cpc_obj = &out_obj->package.elements[1];
744 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
745 		cpc_rev = cpc_obj->integer.value;
746 	} else {
747 		pr_debug("Unexpected entry type(%d) for Revision\n",
748 				cpc_obj->type);
749 		goto out_free;
750 	}
751 	cpc_ptr->version = cpc_rev;
752 
753 	if (!is_cppc_supported(cpc_rev, num_ent))
754 		goto out_free;
755 
756 	/* Iterate through remaining entries in _CPC */
757 	for (i = 2; i < num_ent; i++) {
758 		cpc_obj = &out_obj->package.elements[i];
759 
760 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
761 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
762 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
763 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
764 			gas_t = (struct cpc_reg *)
765 				cpc_obj->buffer.pointer;
766 
767 			/*
768 			 * The PCC Subspace index is encoded inside
769 			 * the CPC table entries. The same PCC index
770 			 * will be used for all the PCC entries,
771 			 * so extract it only once.
772 			 */
773 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
774 				if (pcc_subspace_id < 0) {
775 					pcc_subspace_id = gas_t->access_width;
776 					if (pcc_data_alloc(pcc_subspace_id))
777 						goto out_free;
778 				} else if (pcc_subspace_id != gas_t->access_width) {
779 					pr_debug("Mismatched PCC ids.\n");
780 					goto out_free;
781 				}
782 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
783 				if (gas_t->address) {
784 					void __iomem *addr;
785 
786 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
787 					if (!addr)
788 						goto out_free;
789 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
790 				}
791 			} else {
792 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
793 					/* Support only PCC ,SYS MEM and FFH type regs */
794 					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
795 					goto out_free;
796 				}
797 			}
798 
799 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
800 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
801 		} else {
802 			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
803 			goto out_free;
804 		}
805 	}
806 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
807 
808 	/*
809 	 * Initialize the remaining cpc_regs as unsupported.
810 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
811 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
812 	 */
813 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
814 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
815 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
816 	}
817 
818 
819 	/* Store CPU Logical ID */
820 	cpc_ptr->cpu_id = pr->id;
821 
822 	/* Parse PSD data for this CPU */
823 	ret = acpi_get_psd(cpc_ptr, handle);
824 	if (ret)
825 		goto out_free;
826 
827 	/* Register PCC channel once for all PCC subspace ID. */
828 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
829 		ret = register_pcc_channel(pcc_subspace_id);
830 		if (ret)
831 			goto out_free;
832 
833 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
834 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
835 	}
836 
837 	/* Everything looks okay */
838 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
839 
840 	/* Add per logical CPU nodes for reading its feedback counters. */
841 	cpu_dev = get_cpu_device(pr->id);
842 	if (!cpu_dev) {
843 		ret = -EINVAL;
844 		goto out_free;
845 	}
846 
847 	/* Plug PSD data into this CPU's CPC descriptor. */
848 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
849 
850 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
851 			"acpi_cppc");
852 	if (ret) {
853 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
854 		kobject_put(&cpc_ptr->kobj);
855 		goto out_free;
856 	}
857 
858 	init_freq_invariance_cppc();
859 
860 	kfree(output.pointer);
861 	return 0;
862 
863 out_free:
864 	/* Free all the mapped sys mem areas for this CPU */
865 	for (i = 2; i < cpc_ptr->num_entries; i++) {
866 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
867 
868 		if (addr)
869 			iounmap(addr);
870 	}
871 	kfree(cpc_ptr);
872 
873 out_buf_free:
874 	kfree(output.pointer);
875 	return ret;
876 }
877 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
878 
879 /**
880  * acpi_cppc_processor_exit - Cleanup CPC structs.
881  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
882  *
883  * Return: Void
884  */
885 void acpi_cppc_processor_exit(struct acpi_processor *pr)
886 {
887 	struct cpc_desc *cpc_ptr;
888 	unsigned int i;
889 	void __iomem *addr;
890 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
891 
892 	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
893 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
894 			pcc_data[pcc_ss_id]->refcount--;
895 			if (!pcc_data[pcc_ss_id]->refcount) {
896 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
897 				kfree(pcc_data[pcc_ss_id]);
898 				pcc_data[pcc_ss_id] = NULL;
899 			}
900 		}
901 	}
902 
903 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
904 	if (!cpc_ptr)
905 		return;
906 
907 	/* Free all the mapped sys mem areas for this CPU */
908 	for (i = 2; i < cpc_ptr->num_entries; i++) {
909 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
910 		if (addr)
911 			iounmap(addr);
912 	}
913 
914 	kobject_put(&cpc_ptr->kobj);
915 	kfree(cpc_ptr);
916 }
917 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
918 
919 /**
920  * cpc_read_ffh() - Read FFH register
921  * @cpunum:	CPU number to read
922  * @reg:	cppc register information
923  * @val:	place holder for return value
924  *
925  * Read bit_width bits from a specified address and bit_offset
926  *
927  * Return: 0 for success and error code
928  */
929 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
930 {
931 	return -ENOTSUPP;
932 }
933 
934 /**
935  * cpc_write_ffh() - Write FFH register
936  * @cpunum:	CPU number to write
937  * @reg:	cppc register information
938  * @val:	value to write
939  *
940  * Write value of bit_width bits to a specified address and bit_offset
941  *
942  * Return: 0 for success and error code
943  */
944 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
945 {
946 	return -ENOTSUPP;
947 }
948 
949 /*
950  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
951  * as fast as possible. We have already mapped the PCC subspace during init, so
952  * we can directly write to it.
953  */
954 
955 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
956 {
957 	int ret_val = 0;
958 	void __iomem *vaddr = 0;
959 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
960 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
961 
962 	if (reg_res->type == ACPI_TYPE_INTEGER) {
963 		*val = reg_res->cpc_entry.int_value;
964 		return ret_val;
965 	}
966 
967 	*val = 0;
968 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
969 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
970 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
971 		vaddr = reg_res->sys_mem_vaddr;
972 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
973 		return cpc_read_ffh(cpu, reg, val);
974 	else
975 		return acpi_os_read_memory((acpi_physical_address)reg->address,
976 				val, reg->bit_width);
977 
978 	switch (reg->bit_width) {
979 		case 8:
980 			*val = readb_relaxed(vaddr);
981 			break;
982 		case 16:
983 			*val = readw_relaxed(vaddr);
984 			break;
985 		case 32:
986 			*val = readl_relaxed(vaddr);
987 			break;
988 		case 64:
989 			*val = readq_relaxed(vaddr);
990 			break;
991 		default:
992 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
993 				 reg->bit_width, pcc_ss_id);
994 			ret_val = -EFAULT;
995 	}
996 
997 	return ret_val;
998 }
999 
1000 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1001 {
1002 	int ret_val = 0;
1003 	void __iomem *vaddr = 0;
1004 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1005 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1006 
1007 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1008 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1009 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1010 		vaddr = reg_res->sys_mem_vaddr;
1011 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1012 		return cpc_write_ffh(cpu, reg, val);
1013 	else
1014 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1015 				val, reg->bit_width);
1016 
1017 	switch (reg->bit_width) {
1018 		case 8:
1019 			writeb_relaxed(val, vaddr);
1020 			break;
1021 		case 16:
1022 			writew_relaxed(val, vaddr);
1023 			break;
1024 		case 32:
1025 			writel_relaxed(val, vaddr);
1026 			break;
1027 		case 64:
1028 			writeq_relaxed(val, vaddr);
1029 			break;
1030 		default:
1031 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1032 				 reg->bit_width, pcc_ss_id);
1033 			ret_val = -EFAULT;
1034 			break;
1035 	}
1036 
1037 	return ret_val;
1038 }
1039 
1040 /**
1041  * cppc_get_desired_perf - Get the value of desired performance register.
1042  * @cpunum: CPU from which to get desired performance.
1043  * @desired_perf: address of a variable to store the returned desired performance
1044  *
1045  * Return: 0 for success, -EIO otherwise.
1046  */
1047 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1048 {
1049 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1050 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1051 	struct cpc_register_resource *desired_reg;
1052 	struct cppc_pcc_data *pcc_ss_data = NULL;
1053 
1054 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1055 
1056 	if (CPC_IN_PCC(desired_reg)) {
1057 		int ret = 0;
1058 
1059 		if (pcc_ss_id < 0)
1060 			return -EIO;
1061 
1062 		pcc_ss_data = pcc_data[pcc_ss_id];
1063 
1064 		down_write(&pcc_ss_data->pcc_lock);
1065 
1066 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1067 			cpc_read(cpunum, desired_reg, desired_perf);
1068 		else
1069 			ret = -EIO;
1070 
1071 		up_write(&pcc_ss_data->pcc_lock);
1072 
1073 		return ret;
1074 	}
1075 
1076 	cpc_read(cpunum, desired_reg, desired_perf);
1077 
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1081 
1082 /**
1083  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1084  * @cpunum: CPU from which to get capabilities info.
1085  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1086  *
1087  * Return: 0 for success with perf_caps populated else -ERRNO.
1088  */
1089 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1090 {
1091 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1092 	struct cpc_register_resource *highest_reg, *lowest_reg,
1093 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1094 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1095 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1096 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1097 	struct cppc_pcc_data *pcc_ss_data = NULL;
1098 	int ret = 0, regs_in_pcc = 0;
1099 
1100 	if (!cpc_desc) {
1101 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1102 		return -ENODEV;
1103 	}
1104 
1105 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1106 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1107 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1108 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1109 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1110 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1111 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1112 
1113 	/* Are any of the regs PCC ?*/
1114 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1115 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1116 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1117 		if (pcc_ss_id < 0) {
1118 			pr_debug("Invalid pcc_ss_id\n");
1119 			return -ENODEV;
1120 		}
1121 		pcc_ss_data = pcc_data[pcc_ss_id];
1122 		regs_in_pcc = 1;
1123 		down_write(&pcc_ss_data->pcc_lock);
1124 		/* Ring doorbell once to update PCC subspace */
1125 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1126 			ret = -EIO;
1127 			goto out_err;
1128 		}
1129 	}
1130 
1131 	cpc_read(cpunum, highest_reg, &high);
1132 	perf_caps->highest_perf = high;
1133 
1134 	cpc_read(cpunum, lowest_reg, &low);
1135 	perf_caps->lowest_perf = low;
1136 
1137 	cpc_read(cpunum, nominal_reg, &nom);
1138 	perf_caps->nominal_perf = nom;
1139 
1140 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1141 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1142 		perf_caps->guaranteed_perf = 0;
1143 	} else {
1144 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1145 		perf_caps->guaranteed_perf = guaranteed;
1146 	}
1147 
1148 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1149 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1150 
1151 	if (!high || !low || !nom || !min_nonlinear)
1152 		ret = -EFAULT;
1153 
1154 	/* Read optional lowest and nominal frequencies if present */
1155 	if (CPC_SUPPORTED(low_freq_reg))
1156 		cpc_read(cpunum, low_freq_reg, &low_f);
1157 
1158 	if (CPC_SUPPORTED(nom_freq_reg))
1159 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1160 
1161 	perf_caps->lowest_freq = low_f;
1162 	perf_caps->nominal_freq = nom_f;
1163 
1164 
1165 out_err:
1166 	if (regs_in_pcc)
1167 		up_write(&pcc_ss_data->pcc_lock);
1168 	return ret;
1169 }
1170 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1171 
1172 /**
1173  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1174  * @cpunum: CPU from which to read counters.
1175  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1176  *
1177  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1178  */
1179 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1180 {
1181 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1182 	struct cpc_register_resource *delivered_reg, *reference_reg,
1183 		*ref_perf_reg, *ctr_wrap_reg;
1184 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1185 	struct cppc_pcc_data *pcc_ss_data = NULL;
1186 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1187 	int ret = 0, regs_in_pcc = 0;
1188 
1189 	if (!cpc_desc) {
1190 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1191 		return -ENODEV;
1192 	}
1193 
1194 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1195 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1196 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1197 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1198 
1199 	/*
1200 	 * If reference perf register is not supported then we should
1201 	 * use the nominal perf value
1202 	 */
1203 	if (!CPC_SUPPORTED(ref_perf_reg))
1204 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1205 
1206 	/* Are any of the regs PCC ?*/
1207 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1208 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1209 		if (pcc_ss_id < 0) {
1210 			pr_debug("Invalid pcc_ss_id\n");
1211 			return -ENODEV;
1212 		}
1213 		pcc_ss_data = pcc_data[pcc_ss_id];
1214 		down_write(&pcc_ss_data->pcc_lock);
1215 		regs_in_pcc = 1;
1216 		/* Ring doorbell once to update PCC subspace */
1217 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1218 			ret = -EIO;
1219 			goto out_err;
1220 		}
1221 	}
1222 
1223 	cpc_read(cpunum, delivered_reg, &delivered);
1224 	cpc_read(cpunum, reference_reg, &reference);
1225 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1226 
1227 	/*
1228 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1229 	 * performance counters are assumed to never wrap during the lifetime of
1230 	 * platform
1231 	 */
1232 	ctr_wrap_time = (u64)(~((u64)0));
1233 	if (CPC_SUPPORTED(ctr_wrap_reg))
1234 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1235 
1236 	if (!delivered || !reference ||	!ref_perf) {
1237 		ret = -EFAULT;
1238 		goto out_err;
1239 	}
1240 
1241 	perf_fb_ctrs->delivered = delivered;
1242 	perf_fb_ctrs->reference = reference;
1243 	perf_fb_ctrs->reference_perf = ref_perf;
1244 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1245 out_err:
1246 	if (regs_in_pcc)
1247 		up_write(&pcc_ss_data->pcc_lock);
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1251 
1252 /**
1253  * cppc_set_perf - Set a CPU's performance controls.
1254  * @cpu: CPU for which to set performance controls.
1255  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1256  *
1257  * Return: 0 for success, -ERRNO otherwise.
1258  */
1259 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1260 {
1261 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1262 	struct cpc_register_resource *desired_reg;
1263 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1264 	struct cppc_pcc_data *pcc_ss_data = NULL;
1265 	int ret = 0;
1266 
1267 	if (!cpc_desc) {
1268 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1269 		return -ENODEV;
1270 	}
1271 
1272 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1273 
1274 	/*
1275 	 * This is Phase-I where we want to write to CPC registers
1276 	 * -> We want all CPUs to be able to execute this phase in parallel
1277 	 *
1278 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1279 	 * achieve that goal here
1280 	 */
1281 	if (CPC_IN_PCC(desired_reg)) {
1282 		if (pcc_ss_id < 0) {
1283 			pr_debug("Invalid pcc_ss_id\n");
1284 			return -ENODEV;
1285 		}
1286 		pcc_ss_data = pcc_data[pcc_ss_id];
1287 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1288 		if (pcc_ss_data->platform_owns_pcc) {
1289 			ret = check_pcc_chan(pcc_ss_id, false);
1290 			if (ret) {
1291 				up_read(&pcc_ss_data->pcc_lock);
1292 				return ret;
1293 			}
1294 		}
1295 		/*
1296 		 * Update the pending_write to make sure a PCC CMD_READ will not
1297 		 * arrive and steal the channel during the switch to write lock
1298 		 */
1299 		pcc_ss_data->pending_pcc_write_cmd = true;
1300 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1301 		cpc_desc->write_cmd_status = 0;
1302 	}
1303 
1304 	/*
1305 	 * Skip writing MIN/MAX until Linux knows how to come up with
1306 	 * useful values.
1307 	 */
1308 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1309 
1310 	if (CPC_IN_PCC(desired_reg))
1311 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1312 	/*
1313 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1314 	 *
1315 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1316 	 * requests that happened in short overlapping interval. The last CPU to
1317 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1318 	 *
1319 	 * We have the following requirements for Phase-II:
1320 	 *     1. We want to execute Phase-II only when there are no CPUs
1321 	 * currently executing in Phase-I
1322 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1323 	 * entering Phase-I.
1324 	 *     3. We want only one CPU among all those who went through Phase-I
1325 	 * to run phase-II
1326 	 *
1327 	 * If write_trylock fails to get the lock and doesn't transfer the
1328 	 * PCC ownership to the platform, then one of the following will be TRUE
1329 	 *     1. There is at-least one CPU in Phase-I which will later execute
1330 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1331 	 * executing the Phase-II.
1332 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1333 	 * write_trylock and has already acquired the write_lock. We know for a
1334 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1335 	 * before this CPU's Phase-I as we held the read_lock.
1336 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1337 	 * down_write, in which case, send_pcc_cmd will check for pending
1338 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1339 	 * So this CPU can be certain that its request will be delivered
1340 	 *    So in all cases, this CPU knows that its request will be delivered
1341 	 * by another CPU and can return
1342 	 *
1343 	 * After getting the down_write we still need to check for
1344 	 * pending_pcc_write_cmd to take care of the following scenario
1345 	 *    The thread running this code could be scheduled out between
1346 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1347 	 * could have delivered the request to Platform by triggering the
1348 	 * doorbell and transferred the ownership of PCC to platform. So this
1349 	 * avoids triggering an unnecessary doorbell and more importantly before
1350 	 * triggering the doorbell it makes sure that the PCC channel ownership
1351 	 * is still with OSPM.
1352 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1353 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1354 	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1355 	 * case during a CMD_READ and if there are pending writes it delivers
1356 	 * the write command before servicing the read command
1357 	 */
1358 	if (CPC_IN_PCC(desired_reg)) {
1359 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1360 			/* Update only if there are pending write commands */
1361 			if (pcc_ss_data->pending_pcc_write_cmd)
1362 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1363 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1364 		} else
1365 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1366 			wait_event(pcc_ss_data->pcc_write_wait_q,
1367 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1368 
1369 		/* send_pcc_cmd updates the status in case of failure */
1370 		ret = cpc_desc->write_cmd_status;
1371 	}
1372 	return ret;
1373 }
1374 EXPORT_SYMBOL_GPL(cppc_set_perf);
1375 
1376 /**
1377  * cppc_get_transition_latency - returns frequency transition latency in ns
1378  *
1379  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1380  * transition latency for perfromance change requests. The closest we have
1381  * is the timing information from the PCCT tables which provides the info
1382  * on the number and frequency of PCC commands the platform can handle.
1383  */
1384 unsigned int cppc_get_transition_latency(int cpu_num)
1385 {
1386 	/*
1387 	 * Expected transition latency is based on the PCCT timing values
1388 	 * Below are definition from ACPI spec:
1389 	 * pcc_nominal- Expected latency to process a command, in microseconds
1390 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1391 	 *              channel can support, reported in commands per minute. 0
1392 	 *              indicates no limitation.
1393 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1394 	 *              completion of a command before issuing the next command,
1395 	 *              in microseconds.
1396 	 */
1397 	unsigned int latency_ns = 0;
1398 	struct cpc_desc *cpc_desc;
1399 	struct cpc_register_resource *desired_reg;
1400 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1401 	struct cppc_pcc_data *pcc_ss_data;
1402 
1403 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1404 	if (!cpc_desc)
1405 		return CPUFREQ_ETERNAL;
1406 
1407 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1408 	if (!CPC_IN_PCC(desired_reg))
1409 		return CPUFREQ_ETERNAL;
1410 
1411 	if (pcc_ss_id < 0)
1412 		return CPUFREQ_ETERNAL;
1413 
1414 	pcc_ss_data = pcc_data[pcc_ss_id];
1415 	if (pcc_ss_data->pcc_mpar)
1416 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1417 
1418 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1419 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1420 
1421 	return latency_ns;
1422 }
1423 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1424