xref: /openbmc/linux/drivers/acpi/cppc_acpi.c (revision e0f6d1a5)
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37 
38 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
39 
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45 
46 #include <acpi/cppc_acpi.h>
47 
48 struct cppc_pcc_data {
49 	struct mbox_chan *pcc_channel;
50 	void __iomem *pcc_comm_addr;
51 	bool pcc_channel_acquired;
52 	ktime_t deadline;
53 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54 
55 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58 
59 	/*
60 	 * Lock to provide controlled access to the PCC channel.
61 	 *
62 	 * For performance critical usecases(currently cppc_set_perf)
63 	 *	We need to take read_lock and check if channel belongs to OSPM
64 	 * before reading or writing to PCC subspace
65 	 *	We need to take write_lock before transferring the channel
66 	 * ownership to the platform via a Doorbell
67 	 *	This allows us to batch a number of CPPC requests if they happen
68 	 * to originate in about the same time
69 	 *
70 	 * For non-performance critical usecases(init)
71 	 *	Take write_lock for all purposes which gives exclusive access
72 	 */
73 	struct rw_semaphore pcc_lock;
74 
75 	/* Wait queue for CPUs whose requests were batched */
76 	wait_queue_head_t pcc_write_wait_q;
77 	ktime_t last_cmd_cmpl_time;
78 	ktime_t last_mpar_reset;
79 	int mpar_count;
80 	int refcount;
81 };
82 
83 /* Array  to represent the PCC channel per subspace id */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx containsper CPU subspace id */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96 
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 						0x8 + (offs))
100 
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
103 				(cpc)->cpc_entry.reg.space_id ==	\
104 				ACPI_ADR_SPACE_PLATFORM_COMM)
105 
106 /* Evalutes to True if reg is a NULL register descriptor */
107 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
108 				(reg)->address == 0 &&			\
109 				(reg)->bit_width == 0 &&		\
110 				(reg)->bit_offset == 0 &&		\
111 				(reg)->access_width == 0)
112 
113 /* Evalutes to True if an optional cpc field is supported */
114 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
115 				!!(cpc)->cpc_entry.int_value :		\
116 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
117 /*
118  * Arbitrary Retries in case the remote processor is slow to respond
119  * to PCC commands. Keeping it high enough to cover emulators where
120  * the processors run painfully slow.
121  */
122 #define NUM_RETRIES 500ULL
123 
124 struct cppc_attr {
125 	struct attribute attr;
126 	ssize_t (*show)(struct kobject *kobj,
127 			struct attribute *attr, char *buf);
128 	ssize_t (*store)(struct kobject *kobj,
129 			struct attribute *attr, const char *c, ssize_t count);
130 };
131 
132 #define define_one_cppc_ro(_name)		\
133 static struct cppc_attr _name =			\
134 __ATTR(_name, 0444, show_##_name, NULL)
135 
136 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
137 
138 #define show_cppc_data(access_fn, struct_name, member_name)		\
139 	static ssize_t show_##member_name(struct kobject *kobj,		\
140 					struct attribute *attr,	char *buf) \
141 	{								\
142 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
143 		struct struct_name st_name = {0};			\
144 		int ret;						\
145 									\
146 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
147 		if (ret)						\
148 			return ret;					\
149 									\
150 		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
151 				(u64)st_name.member_name);		\
152 	}								\
153 	define_one_cppc_ro(member_name)
154 
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
159 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
161 
162 static ssize_t show_feedback_ctrs(struct kobject *kobj,
163 		struct attribute *attr, char *buf)
164 {
165 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
167 	int ret;
168 
169 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
170 	if (ret)
171 		return ret;
172 
173 	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174 			fb_ctrs.reference, fb_ctrs.delivered);
175 }
176 define_one_cppc_ro(feedback_ctrs);
177 
178 static struct attribute *cppc_attrs[] = {
179 	&feedback_ctrs.attr,
180 	&reference_perf.attr,
181 	&wraparound_time.attr,
182 	&highest_perf.attr,
183 	&lowest_perf.attr,
184 	&lowest_nonlinear_perf.attr,
185 	&nominal_perf.attr,
186 	NULL
187 };
188 
189 static struct kobj_type cppc_ktype = {
190 	.sysfs_ops = &kobj_sysfs_ops,
191 	.default_attrs = cppc_attrs,
192 };
193 
194 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
195 {
196 	int ret = -EIO, status = 0;
197 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
198 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
199 		pcc_ss_data->pcc_comm_addr;
200 	ktime_t next_deadline = ktime_add(ktime_get(),
201 					  pcc_ss_data->deadline);
202 
203 	if (!pcc_ss_data->platform_owns_pcc)
204 		return 0;
205 
206 	/* Retry in case the remote processor was too slow to catch up. */
207 	while (!ktime_after(ktime_get(), next_deadline)) {
208 		/*
209 		 * Per spec, prior to boot the PCC space wil be initialized by
210 		 * platform and should have set the command completion bit when
211 		 * PCC can be used by OSPM
212 		 */
213 		status = readw_relaxed(&generic_comm_base->status);
214 		if (status & PCC_CMD_COMPLETE_MASK) {
215 			ret = 0;
216 			if (chk_err_bit && (status & PCC_ERROR_MASK))
217 				ret = -EIO;
218 			break;
219 		}
220 		/*
221 		 * Reducing the bus traffic in case this loop takes longer than
222 		 * a few retries.
223 		 */
224 		udelay(3);
225 	}
226 
227 	if (likely(!ret))
228 		pcc_ss_data->platform_owns_pcc = false;
229 	else
230 		pr_err("PCC check channel failed for ss: %d. Status=%x\n",
231 		       pcc_ss_id, status);
232 
233 	return ret;
234 }
235 
236 /*
237  * This function transfers the ownership of the PCC to the platform
238  * So it must be called while holding write_lock(pcc_lock)
239  */
240 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
241 {
242 	int ret = -EIO, i;
243 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
244 	struct acpi_pcct_shared_memory *generic_comm_base =
245 		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
246 	unsigned int time_delta;
247 
248 	/*
249 	 * For CMD_WRITE we know for a fact the caller should have checked
250 	 * the channel before writing to PCC space
251 	 */
252 	if (cmd == CMD_READ) {
253 		/*
254 		 * If there are pending cpc_writes, then we stole the channel
255 		 * before write completion, so first send a WRITE command to
256 		 * platform
257 		 */
258 		if (pcc_ss_data->pending_pcc_write_cmd)
259 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
260 
261 		ret = check_pcc_chan(pcc_ss_id, false);
262 		if (ret)
263 			goto end;
264 	} else /* CMD_WRITE */
265 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
266 
267 	/*
268 	 * Handle the Minimum Request Turnaround Time(MRTT)
269 	 * "The minimum amount of time that OSPM must wait after the completion
270 	 * of a command before issuing the next command, in microseconds"
271 	 */
272 	if (pcc_ss_data->pcc_mrtt) {
273 		time_delta = ktime_us_delta(ktime_get(),
274 					    pcc_ss_data->last_cmd_cmpl_time);
275 		if (pcc_ss_data->pcc_mrtt > time_delta)
276 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
277 	}
278 
279 	/*
280 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
281 	 * "The maximum number of periodic requests that the subspace channel can
282 	 * support, reported in commands per minute. 0 indicates no limitation."
283 	 *
284 	 * This parameter should be ideally zero or large enough so that it can
285 	 * handle maximum number of requests that all the cores in the system can
286 	 * collectively generate. If it is not, we will follow the spec and just
287 	 * not send the request to the platform after hitting the MPAR limit in
288 	 * any 60s window
289 	 */
290 	if (pcc_ss_data->pcc_mpar) {
291 		if (pcc_ss_data->mpar_count == 0) {
292 			time_delta = ktime_ms_delta(ktime_get(),
293 						    pcc_ss_data->last_mpar_reset);
294 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
295 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
296 					 pcc_ss_id);
297 				ret = -EIO;
298 				goto end;
299 			}
300 			pcc_ss_data->last_mpar_reset = ktime_get();
301 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
302 		}
303 		pcc_ss_data->mpar_count--;
304 	}
305 
306 	/* Write to the shared comm region. */
307 	writew_relaxed(cmd, &generic_comm_base->command);
308 
309 	/* Flip CMD COMPLETE bit */
310 	writew_relaxed(0, &generic_comm_base->status);
311 
312 	pcc_ss_data->platform_owns_pcc = true;
313 
314 	/* Ring doorbell */
315 	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
316 	if (ret < 0) {
317 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
318 		       pcc_ss_id, cmd, ret);
319 		goto end;
320 	}
321 
322 	/* wait for completion and check for PCC errro bit */
323 	ret = check_pcc_chan(pcc_ss_id, true);
324 
325 	if (pcc_ss_data->pcc_mrtt)
326 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
327 
328 	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
329 		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
330 	else
331 		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
332 
333 end:
334 	if (cmd == CMD_WRITE) {
335 		if (unlikely(ret)) {
336 			for_each_possible_cpu(i) {
337 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
338 				if (!desc)
339 					continue;
340 
341 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
342 					desc->write_cmd_status = ret;
343 			}
344 		}
345 		pcc_ss_data->pcc_write_cnt++;
346 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
347 	}
348 
349 	return ret;
350 }
351 
352 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
353 {
354 	if (ret < 0)
355 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
356 				*(u16 *)msg, ret);
357 	else
358 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
359 				*(u16 *)msg, ret);
360 }
361 
362 struct mbox_client cppc_mbox_cl = {
363 	.tx_done = cppc_chan_tx_done,
364 	.knows_txdone = true,
365 };
366 
367 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
368 {
369 	int result = -EFAULT;
370 	acpi_status status = AE_OK;
371 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
372 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
373 	struct acpi_buffer state = {0, NULL};
374 	union acpi_object  *psd = NULL;
375 	struct acpi_psd_package *pdomain;
376 
377 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
378 			ACPI_TYPE_PACKAGE);
379 	if (ACPI_FAILURE(status))
380 		return -ENODEV;
381 
382 	psd = buffer.pointer;
383 	if (!psd || psd->package.count != 1) {
384 		pr_debug("Invalid _PSD data\n");
385 		goto end;
386 	}
387 
388 	pdomain = &(cpc_ptr->domain_info);
389 
390 	state.length = sizeof(struct acpi_psd_package);
391 	state.pointer = pdomain;
392 
393 	status = acpi_extract_package(&(psd->package.elements[0]),
394 		&format, &state);
395 	if (ACPI_FAILURE(status)) {
396 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
397 		goto end;
398 	}
399 
400 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
401 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
402 		goto end;
403 	}
404 
405 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
406 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
407 		goto end;
408 	}
409 
410 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
411 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
412 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
413 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
414 		goto end;
415 	}
416 
417 	result = 0;
418 end:
419 	kfree(buffer.pointer);
420 	return result;
421 }
422 
423 /**
424  * acpi_get_psd_map - Map the CPUs in a common freq domain.
425  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
426  *
427  *	Return: 0 for success or negative value for err.
428  */
429 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
430 {
431 	int count_target;
432 	int retval = 0;
433 	unsigned int i, j;
434 	cpumask_var_t covered_cpus;
435 	struct cppc_cpudata *pr, *match_pr;
436 	struct acpi_psd_package *pdomain;
437 	struct acpi_psd_package *match_pdomain;
438 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
439 
440 	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
441 		return -ENOMEM;
442 
443 	/*
444 	 * Now that we have _PSD data from all CPUs, lets setup P-state
445 	 * domain info.
446 	 */
447 	for_each_possible_cpu(i) {
448 		pr = all_cpu_data[i];
449 		if (!pr)
450 			continue;
451 
452 		if (cpumask_test_cpu(i, covered_cpus))
453 			continue;
454 
455 		cpc_ptr = per_cpu(cpc_desc_ptr, i);
456 		if (!cpc_ptr) {
457 			retval = -EFAULT;
458 			goto err_ret;
459 		}
460 
461 		pdomain = &(cpc_ptr->domain_info);
462 		cpumask_set_cpu(i, pr->shared_cpu_map);
463 		cpumask_set_cpu(i, covered_cpus);
464 		if (pdomain->num_processors <= 1)
465 			continue;
466 
467 		/* Validate the Domain info */
468 		count_target = pdomain->num_processors;
469 		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
470 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
471 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
472 			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
473 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
474 			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
475 
476 		for_each_possible_cpu(j) {
477 			if (i == j)
478 				continue;
479 
480 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
481 			if (!match_cpc_ptr) {
482 				retval = -EFAULT;
483 				goto err_ret;
484 			}
485 
486 			match_pdomain = &(match_cpc_ptr->domain_info);
487 			if (match_pdomain->domain != pdomain->domain)
488 				continue;
489 
490 			/* Here i and j are in the same domain */
491 			if (match_pdomain->num_processors != count_target) {
492 				retval = -EFAULT;
493 				goto err_ret;
494 			}
495 
496 			if (pdomain->coord_type != match_pdomain->coord_type) {
497 				retval = -EFAULT;
498 				goto err_ret;
499 			}
500 
501 			cpumask_set_cpu(j, covered_cpus);
502 			cpumask_set_cpu(j, pr->shared_cpu_map);
503 		}
504 
505 		for_each_possible_cpu(j) {
506 			if (i == j)
507 				continue;
508 
509 			match_pr = all_cpu_data[j];
510 			if (!match_pr)
511 				continue;
512 
513 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
514 			if (!match_cpc_ptr) {
515 				retval = -EFAULT;
516 				goto err_ret;
517 			}
518 
519 			match_pdomain = &(match_cpc_ptr->domain_info);
520 			if (match_pdomain->domain != pdomain->domain)
521 				continue;
522 
523 			match_pr->shared_type = pr->shared_type;
524 			cpumask_copy(match_pr->shared_cpu_map,
525 				     pr->shared_cpu_map);
526 		}
527 	}
528 
529 err_ret:
530 	for_each_possible_cpu(i) {
531 		pr = all_cpu_data[i];
532 		if (!pr)
533 			continue;
534 
535 		/* Assume no coordination on any error parsing domain info */
536 		if (retval) {
537 			cpumask_clear(pr->shared_cpu_map);
538 			cpumask_set_cpu(i, pr->shared_cpu_map);
539 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
540 		}
541 	}
542 
543 	free_cpumask_var(covered_cpus);
544 	return retval;
545 }
546 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
547 
548 static int register_pcc_channel(int pcc_ss_idx)
549 {
550 	struct acpi_pcct_hw_reduced *cppc_ss;
551 	u64 usecs_lat;
552 
553 	if (pcc_ss_idx >= 0) {
554 		pcc_data[pcc_ss_idx]->pcc_channel =
555 			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
556 
557 		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
558 			pr_err("Failed to find PCC channel for subspace %d\n",
559 			       pcc_ss_idx);
560 			return -ENODEV;
561 		}
562 
563 		/*
564 		 * The PCC mailbox controller driver should
565 		 * have parsed the PCCT (global table of all
566 		 * PCC channels) and stored pointers to the
567 		 * subspace communication region in con_priv.
568 		 */
569 		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
570 
571 		if (!cppc_ss) {
572 			pr_err("No PCC subspace found for %d CPPC\n",
573 			       pcc_ss_idx);
574 			return -ENODEV;
575 		}
576 
577 		/*
578 		 * cppc_ss->latency is just a Nominal value. In reality
579 		 * the remote processor could be much slower to reply.
580 		 * So add an arbitrary amount of wait on top of Nominal.
581 		 */
582 		usecs_lat = NUM_RETRIES * cppc_ss->latency;
583 		pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
584 		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
585 		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
586 		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
587 
588 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
589 			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
590 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
591 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
592 			       pcc_ss_idx);
593 			return -ENOMEM;
594 		}
595 
596 		/* Set flag so that we dont come here for each CPU. */
597 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
598 	}
599 
600 	return 0;
601 }
602 
603 /**
604  * cpc_ffh_supported() - check if FFH reading supported
605  *
606  * Check if the architecture has support for functional fixed hardware
607  * read/write capability.
608  *
609  * Return: true for supported, false for not supported
610  */
611 bool __weak cpc_ffh_supported(void)
612 {
613 	return false;
614 }
615 
616 
617 /**
618  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
619  *
620  * Check and allocate the cppc_pcc_data memory.
621  * In some processor configurations it is possible that same subspace
622  * is shared between multiple CPU's. This is seen especially in CPU's
623  * with hardware multi-threading support.
624  *
625  * Return: 0 for success, errno for failure
626  */
627 int pcc_data_alloc(int pcc_ss_id)
628 {
629 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
630 		return -EINVAL;
631 
632 	if (pcc_data[pcc_ss_id]) {
633 		pcc_data[pcc_ss_id]->refcount++;
634 	} else {
635 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
636 					      GFP_KERNEL);
637 		if (!pcc_data[pcc_ss_id])
638 			return -ENOMEM;
639 		pcc_data[pcc_ss_id]->refcount++;
640 	}
641 
642 	return 0;
643 }
644 /*
645  * An example CPC table looks like the following.
646  *
647  *	Name(_CPC, Package()
648  *			{
649  *			17,
650  *			NumEntries
651  *			1,
652  *			// Revision
653  *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
654  *			// Highest Performance
655  *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
656  *			// Nominal Performance
657  *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
658  *			// Lowest Nonlinear Performance
659  *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
660  *			// Lowest Performance
661  *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
662  *			// Guaranteed Performance Register
663  *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
664  *			// Desired Performance Register
665  *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
666  *			..
667  *			..
668  *			..
669  *
670  *		}
671  * Each Register() encodes how to access that specific register.
672  * e.g. a sample PCC entry has the following encoding:
673  *
674  *	Register (
675  *		PCC,
676  *		AddressSpaceKeyword
677  *		8,
678  *		//RegisterBitWidth
679  *		8,
680  *		//RegisterBitOffset
681  *		0x30,
682  *		//RegisterAddress
683  *		9
684  *		//AccessSize (subspace ID)
685  *		0
686  *		)
687  *	}
688  */
689 
690 /**
691  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
692  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
693  *
694  *	Return: 0 for success or negative value for err.
695  */
696 int acpi_cppc_processor_probe(struct acpi_processor *pr)
697 {
698 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
699 	union acpi_object *out_obj, *cpc_obj;
700 	struct cpc_desc *cpc_ptr;
701 	struct cpc_reg *gas_t;
702 	struct device *cpu_dev;
703 	acpi_handle handle = pr->handle;
704 	unsigned int num_ent, i, cpc_rev;
705 	int pcc_subspace_id = -1;
706 	acpi_status status;
707 	int ret = -EFAULT;
708 
709 	/* Parse the ACPI _CPC table for this cpu. */
710 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
711 			ACPI_TYPE_PACKAGE);
712 	if (ACPI_FAILURE(status)) {
713 		ret = -ENODEV;
714 		goto out_buf_free;
715 	}
716 
717 	out_obj = (union acpi_object *) output.pointer;
718 
719 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
720 	if (!cpc_ptr) {
721 		ret = -ENOMEM;
722 		goto out_buf_free;
723 	}
724 
725 	/* First entry is NumEntries. */
726 	cpc_obj = &out_obj->package.elements[0];
727 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
728 		num_ent = cpc_obj->integer.value;
729 	} else {
730 		pr_debug("Unexpected entry type(%d) for NumEntries\n",
731 				cpc_obj->type);
732 		goto out_free;
733 	}
734 
735 	/* Only support CPPCv2. Bail otherwise. */
736 	if (num_ent != CPPC_NUM_ENT) {
737 		pr_debug("Firmware exports %d entries. Expected: %d\n",
738 				num_ent, CPPC_NUM_ENT);
739 		goto out_free;
740 	}
741 
742 	cpc_ptr->num_entries = num_ent;
743 
744 	/* Second entry should be revision. */
745 	cpc_obj = &out_obj->package.elements[1];
746 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
747 		cpc_rev = cpc_obj->integer.value;
748 	} else {
749 		pr_debug("Unexpected entry type(%d) for Revision\n",
750 				cpc_obj->type);
751 		goto out_free;
752 	}
753 
754 	if (cpc_rev != CPPC_REV) {
755 		pr_debug("Firmware exports revision:%d. Expected:%d\n",
756 				cpc_rev, CPPC_REV);
757 		goto out_free;
758 	}
759 
760 	/* Iterate through remaining entries in _CPC */
761 	for (i = 2; i < num_ent; i++) {
762 		cpc_obj = &out_obj->package.elements[i];
763 
764 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
765 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
766 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
767 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
768 			gas_t = (struct cpc_reg *)
769 				cpc_obj->buffer.pointer;
770 
771 			/*
772 			 * The PCC Subspace index is encoded inside
773 			 * the CPC table entries. The same PCC index
774 			 * will be used for all the PCC entries,
775 			 * so extract it only once.
776 			 */
777 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
778 				if (pcc_subspace_id < 0) {
779 					pcc_subspace_id = gas_t->access_width;
780 					if (pcc_data_alloc(pcc_subspace_id))
781 						goto out_free;
782 				} else if (pcc_subspace_id != gas_t->access_width) {
783 					pr_debug("Mismatched PCC ids.\n");
784 					goto out_free;
785 				}
786 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
787 				if (gas_t->address) {
788 					void __iomem *addr;
789 
790 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
791 					if (!addr)
792 						goto out_free;
793 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
794 				}
795 			} else {
796 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
797 					/* Support only PCC ,SYS MEM and FFH type regs */
798 					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
799 					goto out_free;
800 				}
801 			}
802 
803 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
804 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
805 		} else {
806 			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
807 			goto out_free;
808 		}
809 	}
810 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
811 	/* Store CPU Logical ID */
812 	cpc_ptr->cpu_id = pr->id;
813 
814 	/* Parse PSD data for this CPU */
815 	ret = acpi_get_psd(cpc_ptr, handle);
816 	if (ret)
817 		goto out_free;
818 
819 	/* Register PCC channel once for all PCC subspace id. */
820 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
821 		ret = register_pcc_channel(pcc_subspace_id);
822 		if (ret)
823 			goto out_free;
824 
825 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
826 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
827 	}
828 
829 	/* Everything looks okay */
830 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
831 
832 	/* Add per logical CPU nodes for reading its feedback counters. */
833 	cpu_dev = get_cpu_device(pr->id);
834 	if (!cpu_dev) {
835 		ret = -EINVAL;
836 		goto out_free;
837 	}
838 
839 	/* Plug PSD data into this CPUs CPC descriptor. */
840 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
841 
842 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
843 			"acpi_cppc");
844 	if (ret) {
845 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
846 		goto out_free;
847 	}
848 
849 	kfree(output.pointer);
850 	return 0;
851 
852 out_free:
853 	/* Free all the mapped sys mem areas for this CPU */
854 	for (i = 2; i < cpc_ptr->num_entries; i++) {
855 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
856 
857 		if (addr)
858 			iounmap(addr);
859 	}
860 	kfree(cpc_ptr);
861 
862 out_buf_free:
863 	kfree(output.pointer);
864 	return ret;
865 }
866 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
867 
868 /**
869  * acpi_cppc_processor_exit - Cleanup CPC structs.
870  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
871  *
872  * Return: Void
873  */
874 void acpi_cppc_processor_exit(struct acpi_processor *pr)
875 {
876 	struct cpc_desc *cpc_ptr;
877 	unsigned int i;
878 	void __iomem *addr;
879 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
880 
881 	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
882 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
883 			pcc_data[pcc_ss_id]->refcount--;
884 			if (!pcc_data[pcc_ss_id]->refcount) {
885 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
886 				pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
887 				kfree(pcc_data[pcc_ss_id]);
888 			}
889 		}
890 	}
891 
892 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
893 	if (!cpc_ptr)
894 		return;
895 
896 	/* Free all the mapped sys mem areas for this CPU */
897 	for (i = 2; i < cpc_ptr->num_entries; i++) {
898 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
899 		if (addr)
900 			iounmap(addr);
901 	}
902 
903 	kobject_put(&cpc_ptr->kobj);
904 	kfree(cpc_ptr);
905 }
906 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
907 
908 /**
909  * cpc_read_ffh() - Read FFH register
910  * @cpunum:	cpu number to read
911  * @reg:	cppc register information
912  * @val:	place holder for return value
913  *
914  * Read bit_width bits from a specified address and bit_offset
915  *
916  * Return: 0 for success and error code
917  */
918 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
919 {
920 	return -ENOTSUPP;
921 }
922 
923 /**
924  * cpc_write_ffh() - Write FFH register
925  * @cpunum:	cpu number to write
926  * @reg:	cppc register information
927  * @val:	value to write
928  *
929  * Write value of bit_width bits to a specified address and bit_offset
930  *
931  * Return: 0 for success and error code
932  */
933 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
934 {
935 	return -ENOTSUPP;
936 }
937 
938 /*
939  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
940  * as fast as possible. We have already mapped the PCC subspace during init, so
941  * we can directly write to it.
942  */
943 
944 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
945 {
946 	int ret_val = 0;
947 	void __iomem *vaddr = 0;
948 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
949 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
950 
951 	if (reg_res->type == ACPI_TYPE_INTEGER) {
952 		*val = reg_res->cpc_entry.int_value;
953 		return ret_val;
954 	}
955 
956 	*val = 0;
957 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
958 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
959 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
960 		vaddr = reg_res->sys_mem_vaddr;
961 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
962 		return cpc_read_ffh(cpu, reg, val);
963 	else
964 		return acpi_os_read_memory((acpi_physical_address)reg->address,
965 				val, reg->bit_width);
966 
967 	switch (reg->bit_width) {
968 		case 8:
969 			*val = readb_relaxed(vaddr);
970 			break;
971 		case 16:
972 			*val = readw_relaxed(vaddr);
973 			break;
974 		case 32:
975 			*val = readl_relaxed(vaddr);
976 			break;
977 		case 64:
978 			*val = readq_relaxed(vaddr);
979 			break;
980 		default:
981 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
982 				 reg->bit_width, pcc_ss_id);
983 			ret_val = -EFAULT;
984 	}
985 
986 	return ret_val;
987 }
988 
989 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
990 {
991 	int ret_val = 0;
992 	void __iomem *vaddr = 0;
993 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
994 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
995 
996 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
997 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
998 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
999 		vaddr = reg_res->sys_mem_vaddr;
1000 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1001 		return cpc_write_ffh(cpu, reg, val);
1002 	else
1003 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1004 				val, reg->bit_width);
1005 
1006 	switch (reg->bit_width) {
1007 		case 8:
1008 			writeb_relaxed(val, vaddr);
1009 			break;
1010 		case 16:
1011 			writew_relaxed(val, vaddr);
1012 			break;
1013 		case 32:
1014 			writel_relaxed(val, vaddr);
1015 			break;
1016 		case 64:
1017 			writeq_relaxed(val, vaddr);
1018 			break;
1019 		default:
1020 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1021 				 reg->bit_width, pcc_ss_id);
1022 			ret_val = -EFAULT;
1023 			break;
1024 	}
1025 
1026 	return ret_val;
1027 }
1028 
1029 /**
1030  * cppc_get_perf_caps - Get a CPUs performance capabilities.
1031  * @cpunum: CPU from which to get capabilities info.
1032  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1033  *
1034  * Return: 0 for success with perf_caps populated else -ERRNO.
1035  */
1036 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1037 {
1038 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1039 	struct cpc_register_resource *highest_reg, *lowest_reg,
1040 		*lowest_non_linear_reg, *nominal_reg;
1041 	u64 high, low, nom, min_nonlinear;
1042 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1043 	struct cppc_pcc_data *pcc_ss_data;
1044 	int ret = 0, regs_in_pcc = 0;
1045 
1046 	if (!cpc_desc || pcc_ss_id < 0) {
1047 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1048 		return -ENODEV;
1049 	}
1050 
1051 	pcc_ss_data = pcc_data[pcc_ss_id];
1052 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1053 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1054 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1055 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1056 
1057 	/* Are any of the regs PCC ?*/
1058 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1059 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
1060 		regs_in_pcc = 1;
1061 		down_write(&pcc_ss_data->pcc_lock);
1062 		/* Ring doorbell once to update PCC subspace */
1063 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1064 			ret = -EIO;
1065 			goto out_err;
1066 		}
1067 	}
1068 
1069 	cpc_read(cpunum, highest_reg, &high);
1070 	perf_caps->highest_perf = high;
1071 
1072 	cpc_read(cpunum, lowest_reg, &low);
1073 	perf_caps->lowest_perf = low;
1074 
1075 	cpc_read(cpunum, nominal_reg, &nom);
1076 	perf_caps->nominal_perf = nom;
1077 
1078 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1079 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1080 
1081 	if (!high || !low || !nom || !min_nonlinear)
1082 		ret = -EFAULT;
1083 
1084 out_err:
1085 	if (regs_in_pcc)
1086 		up_write(&pcc_ss_data->pcc_lock);
1087 	return ret;
1088 }
1089 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1090 
1091 /**
1092  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1093  * @cpunum: CPU from which to read counters.
1094  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1095  *
1096  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1097  */
1098 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1099 {
1100 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1101 	struct cpc_register_resource *delivered_reg, *reference_reg,
1102 		*ref_perf_reg, *ctr_wrap_reg;
1103 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1104 	struct cppc_pcc_data *pcc_ss_data;
1105 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1106 	int ret = 0, regs_in_pcc = 0;
1107 
1108 	if (!cpc_desc || pcc_ss_id < 0) {
1109 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1110 		return -ENODEV;
1111 	}
1112 
1113 	pcc_ss_data = pcc_data[pcc_ss_id];
1114 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1115 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1116 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1117 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1118 
1119 	/*
1120 	 * If refernce perf register is not supported then we should
1121 	 * use the nominal perf value
1122 	 */
1123 	if (!CPC_SUPPORTED(ref_perf_reg))
1124 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1125 
1126 	/* Are any of the regs PCC ?*/
1127 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1128 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1129 		down_write(&pcc_ss_data->pcc_lock);
1130 		regs_in_pcc = 1;
1131 		/* Ring doorbell once to update PCC subspace */
1132 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1133 			ret = -EIO;
1134 			goto out_err;
1135 		}
1136 	}
1137 
1138 	cpc_read(cpunum, delivered_reg, &delivered);
1139 	cpc_read(cpunum, reference_reg, &reference);
1140 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1141 
1142 	/*
1143 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1144 	 * performance counters are assumed to never wrap during the lifetime of
1145 	 * platform
1146 	 */
1147 	ctr_wrap_time = (u64)(~((u64)0));
1148 	if (CPC_SUPPORTED(ctr_wrap_reg))
1149 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1150 
1151 	if (!delivered || !reference ||	!ref_perf) {
1152 		ret = -EFAULT;
1153 		goto out_err;
1154 	}
1155 
1156 	perf_fb_ctrs->delivered = delivered;
1157 	perf_fb_ctrs->reference = reference;
1158 	perf_fb_ctrs->reference_perf = ref_perf;
1159 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1160 out_err:
1161 	if (regs_in_pcc)
1162 		up_write(&pcc_ss_data->pcc_lock);
1163 	return ret;
1164 }
1165 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1166 
1167 /**
1168  * cppc_set_perf - Set a CPUs performance controls.
1169  * @cpu: CPU for which to set performance controls.
1170  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1171  *
1172  * Return: 0 for success, -ERRNO otherwise.
1173  */
1174 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1175 {
1176 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1177 	struct cpc_register_resource *desired_reg;
1178 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1179 	struct cppc_pcc_data *pcc_ss_data;
1180 	int ret = 0;
1181 
1182 	if (!cpc_desc || pcc_ss_id < 0) {
1183 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1184 		return -ENODEV;
1185 	}
1186 
1187 	pcc_ss_data = pcc_data[pcc_ss_id];
1188 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1189 
1190 	/*
1191 	 * This is Phase-I where we want to write to CPC registers
1192 	 * -> We want all CPUs to be able to execute this phase in parallel
1193 	 *
1194 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1195 	 * achieve that goal here
1196 	 */
1197 	if (CPC_IN_PCC(desired_reg)) {
1198 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1199 		if (pcc_ss_data->platform_owns_pcc) {
1200 			ret = check_pcc_chan(pcc_ss_id, false);
1201 			if (ret) {
1202 				up_read(&pcc_ss_data->pcc_lock);
1203 				return ret;
1204 			}
1205 		}
1206 		/*
1207 		 * Update the pending_write to make sure a PCC CMD_READ will not
1208 		 * arrive and steal the channel during the switch to write lock
1209 		 */
1210 		pcc_ss_data->pending_pcc_write_cmd = true;
1211 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1212 		cpc_desc->write_cmd_status = 0;
1213 	}
1214 
1215 	/*
1216 	 * Skip writing MIN/MAX until Linux knows how to come up with
1217 	 * useful values.
1218 	 */
1219 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1220 
1221 	if (CPC_IN_PCC(desired_reg))
1222 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1223 	/*
1224 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1225 	 *
1226 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1227 	 * requests that happened in short overlapping interval. The last CPU to
1228 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1229 	 *
1230 	 * We have the following requirements for Phase-II:
1231 	 *     1. We want to execute Phase-II only when there are no CPUs
1232 	 * currently executing in Phase-I
1233 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1234 	 * entering Phase-I.
1235 	 *     3. We want only one CPU among all those who went through Phase-I
1236 	 * to run phase-II
1237 	 *
1238 	 * If write_trylock fails to get the lock and doesn't transfer the
1239 	 * PCC ownership to the platform, then one of the following will be TRUE
1240 	 *     1. There is at-least one CPU in Phase-I which will later execute
1241 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1242 	 * executing the Phase-II.
1243 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1244 	 * write_trylock and has already acquired the write_lock. We know for a
1245 	 * fact it(other CPU acquiring the write_lock) couldn't have happened
1246 	 * before this CPU's Phase-I as we held the read_lock.
1247 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1248 	 * down_write, in which case, send_pcc_cmd will check for pending
1249 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1250 	 * So this CPU can be certain that its request will be delivered
1251 	 *    So in all cases, this CPU knows that its request will be delivered
1252 	 * by another CPU and can return
1253 	 *
1254 	 * After getting the down_write we still need to check for
1255 	 * pending_pcc_write_cmd to take care of the following scenario
1256 	 *    The thread running this code could be scheduled out between
1257 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1258 	 * could have delivered the request to Platform by triggering the
1259 	 * doorbell and transferred the ownership of PCC to platform. So this
1260 	 * avoids triggering an unnecessary doorbell and more importantly before
1261 	 * triggering the doorbell it makes sure that the PCC channel ownership
1262 	 * is still with OSPM.
1263 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1264 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1265 	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1266 	 * case during a CMD_READ and if there are pending writes it delivers
1267 	 * the write command before servicing the read command
1268 	 */
1269 	if (CPC_IN_PCC(desired_reg)) {
1270 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1271 			/* Update only if there are pending write commands */
1272 			if (pcc_ss_data->pending_pcc_write_cmd)
1273 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1274 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1275 		} else
1276 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1277 			wait_event(pcc_ss_data->pcc_write_wait_q,
1278 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1279 
1280 		/* send_pcc_cmd updates the status in case of failure */
1281 		ret = cpc_desc->write_cmd_status;
1282 	}
1283 	return ret;
1284 }
1285 EXPORT_SYMBOL_GPL(cppc_set_perf);
1286 
1287 /**
1288  * cppc_get_transition_latency - returns frequency transition latency in ns
1289  *
1290  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1291  * transition latency for perfromance change requests. The closest we have
1292  * is the timing information from the PCCT tables which provides the info
1293  * on the number and frequency of PCC commands the platform can handle.
1294  */
1295 unsigned int cppc_get_transition_latency(int cpu_num)
1296 {
1297 	/*
1298 	 * Expected transition latency is based on the PCCT timing values
1299 	 * Below are definition from ACPI spec:
1300 	 * pcc_nominal- Expected latency to process a command, in microseconds
1301 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1302 	 *              channel can support, reported in commands per minute. 0
1303 	 *              indicates no limitation.
1304 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1305 	 *              completion of a command before issuing the next command,
1306 	 *              in microseconds.
1307 	 */
1308 	unsigned int latency_ns = 0;
1309 	struct cpc_desc *cpc_desc;
1310 	struct cpc_register_resource *desired_reg;
1311 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1312 	struct cppc_pcc_data *pcc_ss_data;
1313 
1314 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1315 	if (!cpc_desc)
1316 		return CPUFREQ_ETERNAL;
1317 
1318 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1319 	if (!CPC_IN_PCC(desired_reg))
1320 		return CPUFREQ_ETERNAL;
1321 
1322 	if (pcc_ss_id < 0)
1323 		return CPUFREQ_ETERNAL;
1324 
1325 	pcc_ss_data = pcc_data[pcc_ss_id];
1326 	if (pcc_ss_data->pcc_mpar)
1327 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1328 
1329 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1330 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1331 
1332 	return latency_ns;
1333 }
1334 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1335