xref: /openbmc/linux/drivers/acpi/cppc_acpi.c (revision 6aa7de05)
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37 
38 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
39 
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45 
46 #include <acpi/cppc_acpi.h>
47 
48 struct cppc_pcc_data {
49 	struct mbox_chan *pcc_channel;
50 	void __iomem *pcc_comm_addr;
51 	int pcc_subspace_idx;
52 	bool pcc_channel_acquired;
53 	ktime_t deadline;
54 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55 
56 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
57 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
58 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
59 
60 	/*
61 	 * Lock to provide controlled access to the PCC channel.
62 	 *
63 	 * For performance critical usecases(currently cppc_set_perf)
64 	 *	We need to take read_lock and check if channel belongs to OSPM
65 	 * before reading or writing to PCC subspace
66 	 *	We need to take write_lock before transferring the channel
67 	 * ownership to the platform via a Doorbell
68 	 *	This allows us to batch a number of CPPC requests if they happen
69 	 * to originate in about the same time
70 	 *
71 	 * For non-performance critical usecases(init)
72 	 *	Take write_lock for all purposes which gives exclusive access
73 	 */
74 	struct rw_semaphore pcc_lock;
75 
76 	/* Wait queue for CPUs whose requests were batched */
77 	wait_queue_head_t pcc_write_wait_q;
78 };
79 
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82 	.pcc_subspace_idx = -1,
83 	.platform_owns_pcc = true,
84 };
85 
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94 
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97 
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
100 				(cpc)->cpc_entry.reg.space_id ==	\
101 				ACPI_ADR_SPACE_PLATFORM_COMM)
102 
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 				(reg)->address == 0 &&			\
106 				(reg)->bit_width == 0 &&		\
107 				(reg)->bit_offset == 0 &&		\
108 				(reg)->access_width == 0)
109 
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
112 				!!(cpc)->cpc_entry.int_value :		\
113 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500
120 
121 struct cppc_attr {
122 	struct attribute attr;
123 	ssize_t (*show)(struct kobject *kobj,
124 			struct attribute *attr, char *buf);
125 	ssize_t (*store)(struct kobject *kobj,
126 			struct attribute *attr, const char *c, ssize_t count);
127 };
128 
129 #define define_one_cppc_ro(_name)		\
130 static struct cppc_attr _name =			\
131 __ATTR(_name, 0444, show_##_name, NULL)
132 
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134 
135 #define show_cppc_data(access_fn, struct_name, member_name)		\
136 	static ssize_t show_##member_name(struct kobject *kobj,		\
137 					struct attribute *attr,	char *buf) \
138 	{								\
139 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
140 		struct struct_name st_name = {0};			\
141 		int ret;						\
142 									\
143 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
144 		if (ret)						\
145 			return ret;					\
146 									\
147 		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
148 				(u64)st_name.member_name);		\
149 	}								\
150 	define_one_cppc_ro(member_name)
151 
152 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
157 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
158 
159 static ssize_t show_feedback_ctrs(struct kobject *kobj,
160 		struct attribute *attr, char *buf)
161 {
162 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
163 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
164 	int ret;
165 
166 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
167 	if (ret)
168 		return ret;
169 
170 	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
171 			fb_ctrs.reference, fb_ctrs.delivered);
172 }
173 define_one_cppc_ro(feedback_ctrs);
174 
175 static struct attribute *cppc_attrs[] = {
176 	&feedback_ctrs.attr,
177 	&reference_perf.attr,
178 	&wraparound_time.attr,
179 	&highest_perf.attr,
180 	&lowest_perf.attr,
181 	&lowest_nonlinear_perf.attr,
182 	&nominal_perf.attr,
183 	NULL
184 };
185 
186 static struct kobj_type cppc_ktype = {
187 	.sysfs_ops = &kobj_sysfs_ops,
188 	.default_attrs = cppc_attrs,
189 };
190 
191 static int check_pcc_chan(bool chk_err_bit)
192 {
193 	int ret = -EIO, status = 0;
194 	struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
195 	ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
196 
197 	if (!pcc_data.platform_owns_pcc)
198 		return 0;
199 
200 	/* Retry in case the remote processor was too slow to catch up. */
201 	while (!ktime_after(ktime_get(), next_deadline)) {
202 		/*
203 		 * Per spec, prior to boot the PCC space wil be initialized by
204 		 * platform and should have set the command completion bit when
205 		 * PCC can be used by OSPM
206 		 */
207 		status = readw_relaxed(&generic_comm_base->status);
208 		if (status & PCC_CMD_COMPLETE_MASK) {
209 			ret = 0;
210 			if (chk_err_bit && (status & PCC_ERROR_MASK))
211 				ret = -EIO;
212 			break;
213 		}
214 		/*
215 		 * Reducing the bus traffic in case this loop takes longer than
216 		 * a few retries.
217 		 */
218 		udelay(3);
219 	}
220 
221 	if (likely(!ret))
222 		pcc_data.platform_owns_pcc = false;
223 	else
224 		pr_err("PCC check channel failed. Status=%x\n", status);
225 
226 	return ret;
227 }
228 
229 /*
230  * This function transfers the ownership of the PCC to the platform
231  * So it must be called while holding write_lock(pcc_lock)
232  */
233 static int send_pcc_cmd(u16 cmd)
234 {
235 	int ret = -EIO, i;
236 	struct acpi_pcct_shared_memory *generic_comm_base =
237 		(struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
238 	static ktime_t last_cmd_cmpl_time, last_mpar_reset;
239 	static int mpar_count;
240 	unsigned int time_delta;
241 
242 	/*
243 	 * For CMD_WRITE we know for a fact the caller should have checked
244 	 * the channel before writing to PCC space
245 	 */
246 	if (cmd == CMD_READ) {
247 		/*
248 		 * If there are pending cpc_writes, then we stole the channel
249 		 * before write completion, so first send a WRITE command to
250 		 * platform
251 		 */
252 		if (pcc_data.pending_pcc_write_cmd)
253 			send_pcc_cmd(CMD_WRITE);
254 
255 		ret = check_pcc_chan(false);
256 		if (ret)
257 			goto end;
258 	} else /* CMD_WRITE */
259 		pcc_data.pending_pcc_write_cmd = FALSE;
260 
261 	/*
262 	 * Handle the Minimum Request Turnaround Time(MRTT)
263 	 * "The minimum amount of time that OSPM must wait after the completion
264 	 * of a command before issuing the next command, in microseconds"
265 	 */
266 	if (pcc_data.pcc_mrtt) {
267 		time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
268 		if (pcc_data.pcc_mrtt > time_delta)
269 			udelay(pcc_data.pcc_mrtt - time_delta);
270 	}
271 
272 	/*
273 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
274 	 * "The maximum number of periodic requests that the subspace channel can
275 	 * support, reported in commands per minute. 0 indicates no limitation."
276 	 *
277 	 * This parameter should be ideally zero or large enough so that it can
278 	 * handle maximum number of requests that all the cores in the system can
279 	 * collectively generate. If it is not, we will follow the spec and just
280 	 * not send the request to the platform after hitting the MPAR limit in
281 	 * any 60s window
282 	 */
283 	if (pcc_data.pcc_mpar) {
284 		if (mpar_count == 0) {
285 			time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
286 			if (time_delta < 60 * MSEC_PER_SEC) {
287 				pr_debug("PCC cmd not sent due to MPAR limit");
288 				ret = -EIO;
289 				goto end;
290 			}
291 			last_mpar_reset = ktime_get();
292 			mpar_count = pcc_data.pcc_mpar;
293 		}
294 		mpar_count--;
295 	}
296 
297 	/* Write to the shared comm region. */
298 	writew_relaxed(cmd, &generic_comm_base->command);
299 
300 	/* Flip CMD COMPLETE bit */
301 	writew_relaxed(0, &generic_comm_base->status);
302 
303 	pcc_data.platform_owns_pcc = true;
304 
305 	/* Ring doorbell */
306 	ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
307 	if (ret < 0) {
308 		pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
309 				cmd, ret);
310 		goto end;
311 	}
312 
313 	/* wait for completion and check for PCC errro bit */
314 	ret = check_pcc_chan(true);
315 
316 	if (pcc_data.pcc_mrtt)
317 		last_cmd_cmpl_time = ktime_get();
318 
319 	if (pcc_data.pcc_channel->mbox->txdone_irq)
320 		mbox_chan_txdone(pcc_data.pcc_channel, ret);
321 	else
322 		mbox_client_txdone(pcc_data.pcc_channel, ret);
323 
324 end:
325 	if (cmd == CMD_WRITE) {
326 		if (unlikely(ret)) {
327 			for_each_possible_cpu(i) {
328 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
329 				if (!desc)
330 					continue;
331 
332 				if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
333 					desc->write_cmd_status = ret;
334 			}
335 		}
336 		pcc_data.pcc_write_cnt++;
337 		wake_up_all(&pcc_data.pcc_write_wait_q);
338 	}
339 
340 	return ret;
341 }
342 
343 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
344 {
345 	if (ret < 0)
346 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
347 				*(u16 *)msg, ret);
348 	else
349 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
350 				*(u16 *)msg, ret);
351 }
352 
353 struct mbox_client cppc_mbox_cl = {
354 	.tx_done = cppc_chan_tx_done,
355 	.knows_txdone = true,
356 };
357 
358 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
359 {
360 	int result = -EFAULT;
361 	acpi_status status = AE_OK;
362 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
363 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
364 	struct acpi_buffer state = {0, NULL};
365 	union acpi_object  *psd = NULL;
366 	struct acpi_psd_package *pdomain;
367 
368 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
369 			ACPI_TYPE_PACKAGE);
370 	if (ACPI_FAILURE(status))
371 		return -ENODEV;
372 
373 	psd = buffer.pointer;
374 	if (!psd || psd->package.count != 1) {
375 		pr_debug("Invalid _PSD data\n");
376 		goto end;
377 	}
378 
379 	pdomain = &(cpc_ptr->domain_info);
380 
381 	state.length = sizeof(struct acpi_psd_package);
382 	state.pointer = pdomain;
383 
384 	status = acpi_extract_package(&(psd->package.elements[0]),
385 		&format, &state);
386 	if (ACPI_FAILURE(status)) {
387 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
388 		goto end;
389 	}
390 
391 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
392 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
393 		goto end;
394 	}
395 
396 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
397 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
398 		goto end;
399 	}
400 
401 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
402 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
403 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
404 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
405 		goto end;
406 	}
407 
408 	result = 0;
409 end:
410 	kfree(buffer.pointer);
411 	return result;
412 }
413 
414 /**
415  * acpi_get_psd_map - Map the CPUs in a common freq domain.
416  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
417  *
418  *	Return: 0 for success or negative value for err.
419  */
420 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
421 {
422 	int count_target;
423 	int retval = 0;
424 	unsigned int i, j;
425 	cpumask_var_t covered_cpus;
426 	struct cppc_cpudata *pr, *match_pr;
427 	struct acpi_psd_package *pdomain;
428 	struct acpi_psd_package *match_pdomain;
429 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
430 
431 	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
432 		return -ENOMEM;
433 
434 	/*
435 	 * Now that we have _PSD data from all CPUs, lets setup P-state
436 	 * domain info.
437 	 */
438 	for_each_possible_cpu(i) {
439 		pr = all_cpu_data[i];
440 		if (!pr)
441 			continue;
442 
443 		if (cpumask_test_cpu(i, covered_cpus))
444 			continue;
445 
446 		cpc_ptr = per_cpu(cpc_desc_ptr, i);
447 		if (!cpc_ptr) {
448 			retval = -EFAULT;
449 			goto err_ret;
450 		}
451 
452 		pdomain = &(cpc_ptr->domain_info);
453 		cpumask_set_cpu(i, pr->shared_cpu_map);
454 		cpumask_set_cpu(i, covered_cpus);
455 		if (pdomain->num_processors <= 1)
456 			continue;
457 
458 		/* Validate the Domain info */
459 		count_target = pdomain->num_processors;
460 		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
461 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
462 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
463 			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
464 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
465 			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
466 
467 		for_each_possible_cpu(j) {
468 			if (i == j)
469 				continue;
470 
471 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
472 			if (!match_cpc_ptr) {
473 				retval = -EFAULT;
474 				goto err_ret;
475 			}
476 
477 			match_pdomain = &(match_cpc_ptr->domain_info);
478 			if (match_pdomain->domain != pdomain->domain)
479 				continue;
480 
481 			/* Here i and j are in the same domain */
482 			if (match_pdomain->num_processors != count_target) {
483 				retval = -EFAULT;
484 				goto err_ret;
485 			}
486 
487 			if (pdomain->coord_type != match_pdomain->coord_type) {
488 				retval = -EFAULT;
489 				goto err_ret;
490 			}
491 
492 			cpumask_set_cpu(j, covered_cpus);
493 			cpumask_set_cpu(j, pr->shared_cpu_map);
494 		}
495 
496 		for_each_possible_cpu(j) {
497 			if (i == j)
498 				continue;
499 
500 			match_pr = all_cpu_data[j];
501 			if (!match_pr)
502 				continue;
503 
504 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
505 			if (!match_cpc_ptr) {
506 				retval = -EFAULT;
507 				goto err_ret;
508 			}
509 
510 			match_pdomain = &(match_cpc_ptr->domain_info);
511 			if (match_pdomain->domain != pdomain->domain)
512 				continue;
513 
514 			match_pr->shared_type = pr->shared_type;
515 			cpumask_copy(match_pr->shared_cpu_map,
516 				     pr->shared_cpu_map);
517 		}
518 	}
519 
520 err_ret:
521 	for_each_possible_cpu(i) {
522 		pr = all_cpu_data[i];
523 		if (!pr)
524 			continue;
525 
526 		/* Assume no coordination on any error parsing domain info */
527 		if (retval) {
528 			cpumask_clear(pr->shared_cpu_map);
529 			cpumask_set_cpu(i, pr->shared_cpu_map);
530 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
531 		}
532 	}
533 
534 	free_cpumask_var(covered_cpus);
535 	return retval;
536 }
537 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
538 
539 static int register_pcc_channel(int pcc_subspace_idx)
540 {
541 	struct acpi_pcct_hw_reduced *cppc_ss;
542 	u64 usecs_lat;
543 
544 	if (pcc_subspace_idx >= 0) {
545 		pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
546 				pcc_subspace_idx);
547 
548 		if (IS_ERR(pcc_data.pcc_channel)) {
549 			pr_err("Failed to find PCC communication channel\n");
550 			return -ENODEV;
551 		}
552 
553 		/*
554 		 * The PCC mailbox controller driver should
555 		 * have parsed the PCCT (global table of all
556 		 * PCC channels) and stored pointers to the
557 		 * subspace communication region in con_priv.
558 		 */
559 		cppc_ss = (pcc_data.pcc_channel)->con_priv;
560 
561 		if (!cppc_ss) {
562 			pr_err("No PCC subspace found for CPPC\n");
563 			return -ENODEV;
564 		}
565 
566 		/*
567 		 * cppc_ss->latency is just a Nominal value. In reality
568 		 * the remote processor could be much slower to reply.
569 		 * So add an arbitrary amount of wait on top of Nominal.
570 		 */
571 		usecs_lat = NUM_RETRIES * cppc_ss->latency;
572 		pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
573 		pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
574 		pcc_data.pcc_mpar = cppc_ss->max_access_rate;
575 		pcc_data.pcc_nominal = cppc_ss->latency;
576 
577 		pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
578 		if (!pcc_data.pcc_comm_addr) {
579 			pr_err("Failed to ioremap PCC comm region mem\n");
580 			return -ENOMEM;
581 		}
582 
583 		/* Set flag so that we dont come here for each CPU. */
584 		pcc_data.pcc_channel_acquired = true;
585 	}
586 
587 	return 0;
588 }
589 
590 /**
591  * cpc_ffh_supported() - check if FFH reading supported
592  *
593  * Check if the architecture has support for functional fixed hardware
594  * read/write capability.
595  *
596  * Return: true for supported, false for not supported
597  */
598 bool __weak cpc_ffh_supported(void)
599 {
600 	return false;
601 }
602 
603 /*
604  * An example CPC table looks like the following.
605  *
606  *	Name(_CPC, Package()
607  *			{
608  *			17,
609  *			NumEntries
610  *			1,
611  *			// Revision
612  *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
613  *			// Highest Performance
614  *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
615  *			// Nominal Performance
616  *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
617  *			// Lowest Nonlinear Performance
618  *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
619  *			// Lowest Performance
620  *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
621  *			// Guaranteed Performance Register
622  *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
623  *			// Desired Performance Register
624  *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
625  *			..
626  *			..
627  *			..
628  *
629  *		}
630  * Each Register() encodes how to access that specific register.
631  * e.g. a sample PCC entry has the following encoding:
632  *
633  *	Register (
634  *		PCC,
635  *		AddressSpaceKeyword
636  *		8,
637  *		//RegisterBitWidth
638  *		8,
639  *		//RegisterBitOffset
640  *		0x30,
641  *		//RegisterAddress
642  *		9
643  *		//AccessSize (subspace ID)
644  *		0
645  *		)
646  *	}
647  */
648 
649 /**
650  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
651  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
652  *
653  *	Return: 0 for success or negative value for err.
654  */
655 int acpi_cppc_processor_probe(struct acpi_processor *pr)
656 {
657 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
658 	union acpi_object *out_obj, *cpc_obj;
659 	struct cpc_desc *cpc_ptr;
660 	struct cpc_reg *gas_t;
661 	struct device *cpu_dev;
662 	acpi_handle handle = pr->handle;
663 	unsigned int num_ent, i, cpc_rev;
664 	acpi_status status;
665 	int ret = -EFAULT;
666 
667 	/* Parse the ACPI _CPC table for this cpu. */
668 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
669 			ACPI_TYPE_PACKAGE);
670 	if (ACPI_FAILURE(status)) {
671 		ret = -ENODEV;
672 		goto out_buf_free;
673 	}
674 
675 	out_obj = (union acpi_object *) output.pointer;
676 
677 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
678 	if (!cpc_ptr) {
679 		ret = -ENOMEM;
680 		goto out_buf_free;
681 	}
682 
683 	/* First entry is NumEntries. */
684 	cpc_obj = &out_obj->package.elements[0];
685 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
686 		num_ent = cpc_obj->integer.value;
687 	} else {
688 		pr_debug("Unexpected entry type(%d) for NumEntries\n",
689 				cpc_obj->type);
690 		goto out_free;
691 	}
692 
693 	/* Only support CPPCv2. Bail otherwise. */
694 	if (num_ent != CPPC_NUM_ENT) {
695 		pr_debug("Firmware exports %d entries. Expected: %d\n",
696 				num_ent, CPPC_NUM_ENT);
697 		goto out_free;
698 	}
699 
700 	cpc_ptr->num_entries = num_ent;
701 
702 	/* Second entry should be revision. */
703 	cpc_obj = &out_obj->package.elements[1];
704 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
705 		cpc_rev = cpc_obj->integer.value;
706 	} else {
707 		pr_debug("Unexpected entry type(%d) for Revision\n",
708 				cpc_obj->type);
709 		goto out_free;
710 	}
711 
712 	if (cpc_rev != CPPC_REV) {
713 		pr_debug("Firmware exports revision:%d. Expected:%d\n",
714 				cpc_rev, CPPC_REV);
715 		goto out_free;
716 	}
717 
718 	/* Iterate through remaining entries in _CPC */
719 	for (i = 2; i < num_ent; i++) {
720 		cpc_obj = &out_obj->package.elements[i];
721 
722 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
723 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
724 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
725 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
726 			gas_t = (struct cpc_reg *)
727 				cpc_obj->buffer.pointer;
728 
729 			/*
730 			 * The PCC Subspace index is encoded inside
731 			 * the CPC table entries. The same PCC index
732 			 * will be used for all the PCC entries,
733 			 * so extract it only once.
734 			 */
735 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
736 				if (pcc_data.pcc_subspace_idx < 0)
737 					pcc_data.pcc_subspace_idx = gas_t->access_width;
738 				else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
739 					pr_debug("Mismatched PCC ids.\n");
740 					goto out_free;
741 				}
742 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
743 				if (gas_t->address) {
744 					void __iomem *addr;
745 
746 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
747 					if (!addr)
748 						goto out_free;
749 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
750 				}
751 			} else {
752 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
753 					/* Support only PCC ,SYS MEM and FFH type regs */
754 					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
755 					goto out_free;
756 				}
757 			}
758 
759 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
760 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
761 		} else {
762 			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
763 			goto out_free;
764 		}
765 	}
766 	/* Store CPU Logical ID */
767 	cpc_ptr->cpu_id = pr->id;
768 
769 	/* Parse PSD data for this CPU */
770 	ret = acpi_get_psd(cpc_ptr, handle);
771 	if (ret)
772 		goto out_free;
773 
774 	/* Register PCC channel once for all CPUs. */
775 	if (!pcc_data.pcc_channel_acquired) {
776 		ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
777 		if (ret)
778 			goto out_free;
779 
780 		init_rwsem(&pcc_data.pcc_lock);
781 		init_waitqueue_head(&pcc_data.pcc_write_wait_q);
782 	}
783 
784 	/* Everything looks okay */
785 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
786 
787 	/* Add per logical CPU nodes for reading its feedback counters. */
788 	cpu_dev = get_cpu_device(pr->id);
789 	if (!cpu_dev) {
790 		ret = -EINVAL;
791 		goto out_free;
792 	}
793 
794 	/* Plug PSD data into this CPUs CPC descriptor. */
795 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
796 
797 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
798 			"acpi_cppc");
799 	if (ret) {
800 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
801 		goto out_free;
802 	}
803 
804 	kfree(output.pointer);
805 	return 0;
806 
807 out_free:
808 	/* Free all the mapped sys mem areas for this CPU */
809 	for (i = 2; i < cpc_ptr->num_entries; i++) {
810 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
811 
812 		if (addr)
813 			iounmap(addr);
814 	}
815 	kfree(cpc_ptr);
816 
817 out_buf_free:
818 	kfree(output.pointer);
819 	return ret;
820 }
821 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
822 
823 /**
824  * acpi_cppc_processor_exit - Cleanup CPC structs.
825  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
826  *
827  * Return: Void
828  */
829 void acpi_cppc_processor_exit(struct acpi_processor *pr)
830 {
831 	struct cpc_desc *cpc_ptr;
832 	unsigned int i;
833 	void __iomem *addr;
834 
835 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
836 	if (!cpc_ptr)
837 		return;
838 
839 	/* Free all the mapped sys mem areas for this CPU */
840 	for (i = 2; i < cpc_ptr->num_entries; i++) {
841 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
842 		if (addr)
843 			iounmap(addr);
844 	}
845 
846 	kobject_put(&cpc_ptr->kobj);
847 	kfree(cpc_ptr);
848 }
849 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
850 
851 /**
852  * cpc_read_ffh() - Read FFH register
853  * @cpunum:	cpu number to read
854  * @reg:	cppc register information
855  * @val:	place holder for return value
856  *
857  * Read bit_width bits from a specified address and bit_offset
858  *
859  * Return: 0 for success and error code
860  */
861 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
862 {
863 	return -ENOTSUPP;
864 }
865 
866 /**
867  * cpc_write_ffh() - Write FFH register
868  * @cpunum:	cpu number to write
869  * @reg:	cppc register information
870  * @val:	value to write
871  *
872  * Write value of bit_width bits to a specified address and bit_offset
873  *
874  * Return: 0 for success and error code
875  */
876 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
877 {
878 	return -ENOTSUPP;
879 }
880 
881 /*
882  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
883  * as fast as possible. We have already mapped the PCC subspace during init, so
884  * we can directly write to it.
885  */
886 
887 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
888 {
889 	int ret_val = 0;
890 	void __iomem *vaddr = 0;
891 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
892 
893 	if (reg_res->type == ACPI_TYPE_INTEGER) {
894 		*val = reg_res->cpc_entry.int_value;
895 		return ret_val;
896 	}
897 
898 	*val = 0;
899 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
900 		vaddr = GET_PCC_VADDR(reg->address);
901 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
902 		vaddr = reg_res->sys_mem_vaddr;
903 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
904 		return cpc_read_ffh(cpu, reg, val);
905 	else
906 		return acpi_os_read_memory((acpi_physical_address)reg->address,
907 				val, reg->bit_width);
908 
909 	switch (reg->bit_width) {
910 		case 8:
911 			*val = readb_relaxed(vaddr);
912 			break;
913 		case 16:
914 			*val = readw_relaxed(vaddr);
915 			break;
916 		case 32:
917 			*val = readl_relaxed(vaddr);
918 			break;
919 		case 64:
920 			*val = readq_relaxed(vaddr);
921 			break;
922 		default:
923 			pr_debug("Error: Cannot read %u bit width from PCC\n",
924 					reg->bit_width);
925 			ret_val = -EFAULT;
926 	}
927 
928 	return ret_val;
929 }
930 
931 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
932 {
933 	int ret_val = 0;
934 	void __iomem *vaddr = 0;
935 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
936 
937 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
938 		vaddr = GET_PCC_VADDR(reg->address);
939 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
940 		vaddr = reg_res->sys_mem_vaddr;
941 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
942 		return cpc_write_ffh(cpu, reg, val);
943 	else
944 		return acpi_os_write_memory((acpi_physical_address)reg->address,
945 				val, reg->bit_width);
946 
947 	switch (reg->bit_width) {
948 		case 8:
949 			writeb_relaxed(val, vaddr);
950 			break;
951 		case 16:
952 			writew_relaxed(val, vaddr);
953 			break;
954 		case 32:
955 			writel_relaxed(val, vaddr);
956 			break;
957 		case 64:
958 			writeq_relaxed(val, vaddr);
959 			break;
960 		default:
961 			pr_debug("Error: Cannot write %u bit width to PCC\n",
962 					reg->bit_width);
963 			ret_val = -EFAULT;
964 			break;
965 	}
966 
967 	return ret_val;
968 }
969 
970 /**
971  * cppc_get_perf_caps - Get a CPUs performance capabilities.
972  * @cpunum: CPU from which to get capabilities info.
973  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
974  *
975  * Return: 0 for success with perf_caps populated else -ERRNO.
976  */
977 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
978 {
979 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
980 	struct cpc_register_resource *highest_reg, *lowest_reg,
981 		*lowest_non_linear_reg, *nominal_reg;
982 	u64 high, low, nom, min_nonlinear;
983 	int ret = 0, regs_in_pcc = 0;
984 
985 	if (!cpc_desc) {
986 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
987 		return -ENODEV;
988 	}
989 
990 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
991 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
992 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
993 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
994 
995 	/* Are any of the regs PCC ?*/
996 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
997 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
998 		regs_in_pcc = 1;
999 		down_write(&pcc_data.pcc_lock);
1000 		/* Ring doorbell once to update PCC subspace */
1001 		if (send_pcc_cmd(CMD_READ) < 0) {
1002 			ret = -EIO;
1003 			goto out_err;
1004 		}
1005 	}
1006 
1007 	cpc_read(cpunum, highest_reg, &high);
1008 	perf_caps->highest_perf = high;
1009 
1010 	cpc_read(cpunum, lowest_reg, &low);
1011 	perf_caps->lowest_perf = low;
1012 
1013 	cpc_read(cpunum, nominal_reg, &nom);
1014 	perf_caps->nominal_perf = nom;
1015 
1016 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1017 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1018 
1019 	if (!high || !low || !nom || !min_nonlinear)
1020 		ret = -EFAULT;
1021 
1022 out_err:
1023 	if (regs_in_pcc)
1024 		up_write(&pcc_data.pcc_lock);
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1028 
1029 /**
1030  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1031  * @cpunum: CPU from which to read counters.
1032  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1033  *
1034  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1035  */
1036 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1037 {
1038 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1039 	struct cpc_register_resource *delivered_reg, *reference_reg,
1040 		*ref_perf_reg, *ctr_wrap_reg;
1041 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1042 	int ret = 0, regs_in_pcc = 0;
1043 
1044 	if (!cpc_desc) {
1045 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1046 		return -ENODEV;
1047 	}
1048 
1049 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1050 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1051 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1052 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1053 
1054 	/*
1055 	 * If refernce perf register is not supported then we should
1056 	 * use the nominal perf value
1057 	 */
1058 	if (!CPC_SUPPORTED(ref_perf_reg))
1059 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1060 
1061 	/* Are any of the regs PCC ?*/
1062 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1063 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1064 		down_write(&pcc_data.pcc_lock);
1065 		regs_in_pcc = 1;
1066 		/* Ring doorbell once to update PCC subspace */
1067 		if (send_pcc_cmd(CMD_READ) < 0) {
1068 			ret = -EIO;
1069 			goto out_err;
1070 		}
1071 	}
1072 
1073 	cpc_read(cpunum, delivered_reg, &delivered);
1074 	cpc_read(cpunum, reference_reg, &reference);
1075 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1076 
1077 	/*
1078 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1079 	 * performance counters are assumed to never wrap during the lifetime of
1080 	 * platform
1081 	 */
1082 	ctr_wrap_time = (u64)(~((u64)0));
1083 	if (CPC_SUPPORTED(ctr_wrap_reg))
1084 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1085 
1086 	if (!delivered || !reference ||	!ref_perf) {
1087 		ret = -EFAULT;
1088 		goto out_err;
1089 	}
1090 
1091 	perf_fb_ctrs->delivered = delivered;
1092 	perf_fb_ctrs->reference = reference;
1093 	perf_fb_ctrs->reference_perf = ref_perf;
1094 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1095 out_err:
1096 	if (regs_in_pcc)
1097 		up_write(&pcc_data.pcc_lock);
1098 	return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1101 
1102 /**
1103  * cppc_set_perf - Set a CPUs performance controls.
1104  * @cpu: CPU for which to set performance controls.
1105  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1106  *
1107  * Return: 0 for success, -ERRNO otherwise.
1108  */
1109 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1110 {
1111 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1112 	struct cpc_register_resource *desired_reg;
1113 	int ret = 0;
1114 
1115 	if (!cpc_desc) {
1116 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1117 		return -ENODEV;
1118 	}
1119 
1120 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1121 
1122 	/*
1123 	 * This is Phase-I where we want to write to CPC registers
1124 	 * -> We want all CPUs to be able to execute this phase in parallel
1125 	 *
1126 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1127 	 * achieve that goal here
1128 	 */
1129 	if (CPC_IN_PCC(desired_reg)) {
1130 		down_read(&pcc_data.pcc_lock);	/* BEGIN Phase-I */
1131 		if (pcc_data.platform_owns_pcc) {
1132 			ret = check_pcc_chan(false);
1133 			if (ret) {
1134 				up_read(&pcc_data.pcc_lock);
1135 				return ret;
1136 			}
1137 		}
1138 		/*
1139 		 * Update the pending_write to make sure a PCC CMD_READ will not
1140 		 * arrive and steal the channel during the switch to write lock
1141 		 */
1142 		pcc_data.pending_pcc_write_cmd = true;
1143 		cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1144 		cpc_desc->write_cmd_status = 0;
1145 	}
1146 
1147 	/*
1148 	 * Skip writing MIN/MAX until Linux knows how to come up with
1149 	 * useful values.
1150 	 */
1151 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1152 
1153 	if (CPC_IN_PCC(desired_reg))
1154 		up_read(&pcc_data.pcc_lock);	/* END Phase-I */
1155 	/*
1156 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1157 	 *
1158 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1159 	 * requests that happened in short overlapping interval. The last CPU to
1160 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1161 	 *
1162 	 * We have the following requirements for Phase-II:
1163 	 *     1. We want to execute Phase-II only when there are no CPUs
1164 	 * currently executing in Phase-I
1165 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1166 	 * entering Phase-I.
1167 	 *     3. We want only one CPU among all those who went through Phase-I
1168 	 * to run phase-II
1169 	 *
1170 	 * If write_trylock fails to get the lock and doesn't transfer the
1171 	 * PCC ownership to the platform, then one of the following will be TRUE
1172 	 *     1. There is at-least one CPU in Phase-I which will later execute
1173 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1174 	 * executing the Phase-II.
1175 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1176 	 * write_trylock and has already acquired the write_lock. We know for a
1177 	 * fact it(other CPU acquiring the write_lock) couldn't have happened
1178 	 * before this CPU's Phase-I as we held the read_lock.
1179 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1180 	 * down_write, in which case, send_pcc_cmd will check for pending
1181 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1182 	 * So this CPU can be certain that its request will be delivered
1183 	 *    So in all cases, this CPU knows that its request will be delivered
1184 	 * by another CPU and can return
1185 	 *
1186 	 * After getting the down_write we still need to check for
1187 	 * pending_pcc_write_cmd to take care of the following scenario
1188 	 *    The thread running this code could be scheduled out between
1189 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1190 	 * could have delivered the request to Platform by triggering the
1191 	 * doorbell and transferred the ownership of PCC to platform. So this
1192 	 * avoids triggering an unnecessary doorbell and more importantly before
1193 	 * triggering the doorbell it makes sure that the PCC channel ownership
1194 	 * is still with OSPM.
1195 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1196 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1197 	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1198 	 * case during a CMD_READ and if there are pending writes it delivers
1199 	 * the write command before servicing the read command
1200 	 */
1201 	if (CPC_IN_PCC(desired_reg)) {
1202 		if (down_write_trylock(&pcc_data.pcc_lock)) {	/* BEGIN Phase-II */
1203 			/* Update only if there are pending write commands */
1204 			if (pcc_data.pending_pcc_write_cmd)
1205 				send_pcc_cmd(CMD_WRITE);
1206 			up_write(&pcc_data.pcc_lock);		/* END Phase-II */
1207 		} else
1208 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1209 			wait_event(pcc_data.pcc_write_wait_q,
1210 				cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1211 
1212 		/* send_pcc_cmd updates the status in case of failure */
1213 		ret = cpc_desc->write_cmd_status;
1214 	}
1215 	return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(cppc_set_perf);
1218 
1219 /**
1220  * cppc_get_transition_latency - returns frequency transition latency in ns
1221  *
1222  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1223  * transition latency for perfromance change requests. The closest we have
1224  * is the timing information from the PCCT tables which provides the info
1225  * on the number and frequency of PCC commands the platform can handle.
1226  */
1227 unsigned int cppc_get_transition_latency(int cpu_num)
1228 {
1229 	/*
1230 	 * Expected transition latency is based on the PCCT timing values
1231 	 * Below are definition from ACPI spec:
1232 	 * pcc_nominal- Expected latency to process a command, in microseconds
1233 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1234 	 *              channel can support, reported in commands per minute. 0
1235 	 *              indicates no limitation.
1236 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1237 	 *              completion of a command before issuing the next command,
1238 	 *              in microseconds.
1239 	 */
1240 	unsigned int latency_ns = 0;
1241 	struct cpc_desc *cpc_desc;
1242 	struct cpc_register_resource *desired_reg;
1243 
1244 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1245 	if (!cpc_desc)
1246 		return CPUFREQ_ETERNAL;
1247 
1248 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1249 	if (!CPC_IN_PCC(desired_reg))
1250 		return CPUFREQ_ETERNAL;
1251 
1252 	if (pcc_data.pcc_mpar)
1253 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1254 
1255 	latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1256 	latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1257 
1258 	return latency_ns;
1259 }
1260 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1261