1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. 4 * 5 * (C) Copyright 2014, 2015 Linaro Ltd. 6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 7 * 8 * CPPC describes a few methods for controlling CPU performance using 9 * information from a per CPU table called CPC. This table is described in 10 * the ACPI v5.0+ specification. The table consists of a list of 11 * registers which may be memory mapped or hardware registers and also may 12 * include some static integer values. 13 * 14 * CPU performance is on an abstract continuous scale as against a discretized 15 * P-state scale which is tied to CPU frequency only. In brief, the basic 16 * operation involves: 17 * 18 * - OS makes a CPU performance request. (Can provide min and max bounds) 19 * 20 * - Platform (such as BMC) is free to optimize request within requested bounds 21 * depending on power/thermal budgets etc. 22 * 23 * - Platform conveys its decision back to OS 24 * 25 * The communication between OS and platform occurs through another medium 26 * called (PCC) Platform Communication Channel. This is a generic mailbox like 27 * mechanism which includes doorbell semantics to indicate register updates. 28 * See drivers/mailbox/pcc.c for details on PCC. 29 * 30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and 31 * above specifications. 32 */ 33 34 #define pr_fmt(fmt) "ACPI CPPC: " fmt 35 36 #include <linux/delay.h> 37 #include <linux/iopoll.h> 38 #include <linux/ktime.h> 39 #include <linux/rwsem.h> 40 #include <linux/wait.h> 41 #include <linux/topology.h> 42 43 #include <acpi/cppc_acpi.h> 44 45 struct cppc_pcc_data { 46 struct pcc_mbox_chan *pcc_channel; 47 void __iomem *pcc_comm_addr; 48 bool pcc_channel_acquired; 49 unsigned int deadline_us; 50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal; 51 52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */ 53 bool platform_owns_pcc; /* Ownership of PCC subspace */ 54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */ 55 56 /* 57 * Lock to provide controlled access to the PCC channel. 58 * 59 * For performance critical usecases(currently cppc_set_perf) 60 * We need to take read_lock and check if channel belongs to OSPM 61 * before reading or writing to PCC subspace 62 * We need to take write_lock before transferring the channel 63 * ownership to the platform via a Doorbell 64 * This allows us to batch a number of CPPC requests if they happen 65 * to originate in about the same time 66 * 67 * For non-performance critical usecases(init) 68 * Take write_lock for all purposes which gives exclusive access 69 */ 70 struct rw_semaphore pcc_lock; 71 72 /* Wait queue for CPUs whose requests were batched */ 73 wait_queue_head_t pcc_write_wait_q; 74 ktime_t last_cmd_cmpl_time; 75 ktime_t last_mpar_reset; 76 int mpar_count; 77 int refcount; 78 }; 79 80 /* Array to represent the PCC channel per subspace ID */ 81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES]; 82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */ 83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx); 84 85 /* 86 * The cpc_desc structure contains the ACPI register details 87 * as described in the per CPU _CPC tables. The details 88 * include the type of register (e.g. PCC, System IO, FFH etc.) 89 * and destination addresses which lets us READ/WRITE CPU performance 90 * information using the appropriate I/O methods. 91 */ 92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); 93 94 /* pcc mapped address + header size + offset within PCC subspace */ 95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \ 96 0x8 + (offs)) 97 98 /* Check if a CPC register is in PCC */ 99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 100 (cpc)->cpc_entry.reg.space_id == \ 101 ACPI_ADR_SPACE_PLATFORM_COMM) 102 103 /* Evaluates to True if reg is a NULL register descriptor */ 104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \ 105 (reg)->address == 0 && \ 106 (reg)->bit_width == 0 && \ 107 (reg)->bit_offset == 0 && \ 108 (reg)->access_width == 0) 109 110 /* Evaluates to True if an optional cpc field is supported */ 111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \ 112 !!(cpc)->cpc_entry.int_value : \ 113 !IS_NULL_REG(&(cpc)->cpc_entry.reg)) 114 /* 115 * Arbitrary Retries in case the remote processor is slow to respond 116 * to PCC commands. Keeping it high enough to cover emulators where 117 * the processors run painfully slow. 118 */ 119 #define NUM_RETRIES 500ULL 120 121 #define OVER_16BTS_MASK ~0xFFFFULL 122 123 #define define_one_cppc_ro(_name) \ 124 static struct kobj_attribute _name = \ 125 __ATTR(_name, 0444, show_##_name, NULL) 126 127 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj) 128 129 #define show_cppc_data(access_fn, struct_name, member_name) \ 130 static ssize_t show_##member_name(struct kobject *kobj, \ 131 struct kobj_attribute *attr, char *buf) \ 132 { \ 133 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \ 134 struct struct_name st_name = {0}; \ 135 int ret; \ 136 \ 137 ret = access_fn(cpc_ptr->cpu_id, &st_name); \ 138 if (ret) \ 139 return ret; \ 140 \ 141 return scnprintf(buf, PAGE_SIZE, "%llu\n", \ 142 (u64)st_name.member_name); \ 143 } \ 144 define_one_cppc_ro(member_name) 145 146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf); 147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf); 148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf); 149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf); 150 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq); 151 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq); 152 153 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf); 154 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time); 155 156 static ssize_t show_feedback_ctrs(struct kobject *kobj, 157 struct kobj_attribute *attr, char *buf) 158 { 159 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); 160 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 161 int ret; 162 163 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs); 164 if (ret) 165 return ret; 166 167 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n", 168 fb_ctrs.reference, fb_ctrs.delivered); 169 } 170 define_one_cppc_ro(feedback_ctrs); 171 172 static struct attribute *cppc_attrs[] = { 173 &feedback_ctrs.attr, 174 &reference_perf.attr, 175 &wraparound_time.attr, 176 &highest_perf.attr, 177 &lowest_perf.attr, 178 &lowest_nonlinear_perf.attr, 179 &nominal_perf.attr, 180 &nominal_freq.attr, 181 &lowest_freq.attr, 182 NULL 183 }; 184 ATTRIBUTE_GROUPS(cppc); 185 186 static struct kobj_type cppc_ktype = { 187 .sysfs_ops = &kobj_sysfs_ops, 188 .default_groups = cppc_groups, 189 }; 190 191 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit) 192 { 193 int ret, status; 194 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 195 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 196 pcc_ss_data->pcc_comm_addr; 197 198 if (!pcc_ss_data->platform_owns_pcc) 199 return 0; 200 201 /* 202 * Poll PCC status register every 3us(delay_us) for maximum of 203 * deadline_us(timeout_us) until PCC command complete bit is set(cond) 204 */ 205 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status, 206 status & PCC_CMD_COMPLETE_MASK, 3, 207 pcc_ss_data->deadline_us); 208 209 if (likely(!ret)) { 210 pcc_ss_data->platform_owns_pcc = false; 211 if (chk_err_bit && (status & PCC_ERROR_MASK)) 212 ret = -EIO; 213 } 214 215 if (unlikely(ret)) 216 pr_err("PCC check channel failed for ss: %d. ret=%d\n", 217 pcc_ss_id, ret); 218 219 return ret; 220 } 221 222 /* 223 * This function transfers the ownership of the PCC to the platform 224 * So it must be called while holding write_lock(pcc_lock) 225 */ 226 static int send_pcc_cmd(int pcc_ss_id, u16 cmd) 227 { 228 int ret = -EIO, i; 229 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 230 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 231 pcc_ss_data->pcc_comm_addr; 232 unsigned int time_delta; 233 234 /* 235 * For CMD_WRITE we know for a fact the caller should have checked 236 * the channel before writing to PCC space 237 */ 238 if (cmd == CMD_READ) { 239 /* 240 * If there are pending cpc_writes, then we stole the channel 241 * before write completion, so first send a WRITE command to 242 * platform 243 */ 244 if (pcc_ss_data->pending_pcc_write_cmd) 245 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 246 247 ret = check_pcc_chan(pcc_ss_id, false); 248 if (ret) 249 goto end; 250 } else /* CMD_WRITE */ 251 pcc_ss_data->pending_pcc_write_cmd = FALSE; 252 253 /* 254 * Handle the Minimum Request Turnaround Time(MRTT) 255 * "The minimum amount of time that OSPM must wait after the completion 256 * of a command before issuing the next command, in microseconds" 257 */ 258 if (pcc_ss_data->pcc_mrtt) { 259 time_delta = ktime_us_delta(ktime_get(), 260 pcc_ss_data->last_cmd_cmpl_time); 261 if (pcc_ss_data->pcc_mrtt > time_delta) 262 udelay(pcc_ss_data->pcc_mrtt - time_delta); 263 } 264 265 /* 266 * Handle the non-zero Maximum Periodic Access Rate(MPAR) 267 * "The maximum number of periodic requests that the subspace channel can 268 * support, reported in commands per minute. 0 indicates no limitation." 269 * 270 * This parameter should be ideally zero or large enough so that it can 271 * handle maximum number of requests that all the cores in the system can 272 * collectively generate. If it is not, we will follow the spec and just 273 * not send the request to the platform after hitting the MPAR limit in 274 * any 60s window 275 */ 276 if (pcc_ss_data->pcc_mpar) { 277 if (pcc_ss_data->mpar_count == 0) { 278 time_delta = ktime_ms_delta(ktime_get(), 279 pcc_ss_data->last_mpar_reset); 280 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) { 281 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit", 282 pcc_ss_id); 283 ret = -EIO; 284 goto end; 285 } 286 pcc_ss_data->last_mpar_reset = ktime_get(); 287 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar; 288 } 289 pcc_ss_data->mpar_count--; 290 } 291 292 /* Write to the shared comm region. */ 293 writew_relaxed(cmd, &generic_comm_base->command); 294 295 /* Flip CMD COMPLETE bit */ 296 writew_relaxed(0, &generic_comm_base->status); 297 298 pcc_ss_data->platform_owns_pcc = true; 299 300 /* Ring doorbell */ 301 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd); 302 if (ret < 0) { 303 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n", 304 pcc_ss_id, cmd, ret); 305 goto end; 306 } 307 308 /* wait for completion and check for PCC errro bit */ 309 ret = check_pcc_chan(pcc_ss_id, true); 310 311 if (pcc_ss_data->pcc_mrtt) 312 pcc_ss_data->last_cmd_cmpl_time = ktime_get(); 313 314 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq) 315 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret); 316 else 317 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret); 318 319 end: 320 if (cmd == CMD_WRITE) { 321 if (unlikely(ret)) { 322 for_each_possible_cpu(i) { 323 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i); 324 325 if (!desc) 326 continue; 327 328 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt) 329 desc->write_cmd_status = ret; 330 } 331 } 332 pcc_ss_data->pcc_write_cnt++; 333 wake_up_all(&pcc_ss_data->pcc_write_wait_q); 334 } 335 336 return ret; 337 } 338 339 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) 340 { 341 if (ret < 0) 342 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", 343 *(u16 *)msg, ret); 344 else 345 pr_debug("TX completed. CMD sent:%x, ret:%d\n", 346 *(u16 *)msg, ret); 347 } 348 349 static struct mbox_client cppc_mbox_cl = { 350 .tx_done = cppc_chan_tx_done, 351 .knows_txdone = true, 352 }; 353 354 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) 355 { 356 int result = -EFAULT; 357 acpi_status status = AE_OK; 358 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 359 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; 360 struct acpi_buffer state = {0, NULL}; 361 union acpi_object *psd = NULL; 362 struct acpi_psd_package *pdomain; 363 364 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, 365 &buffer, ACPI_TYPE_PACKAGE); 366 if (status == AE_NOT_FOUND) /* _PSD is optional */ 367 return 0; 368 if (ACPI_FAILURE(status)) 369 return -ENODEV; 370 371 psd = buffer.pointer; 372 if (!psd || psd->package.count != 1) { 373 pr_debug("Invalid _PSD data\n"); 374 goto end; 375 } 376 377 pdomain = &(cpc_ptr->domain_info); 378 379 state.length = sizeof(struct acpi_psd_package); 380 state.pointer = pdomain; 381 382 status = acpi_extract_package(&(psd->package.elements[0]), 383 &format, &state); 384 if (ACPI_FAILURE(status)) { 385 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); 386 goto end; 387 } 388 389 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { 390 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); 391 goto end; 392 } 393 394 if (pdomain->revision != ACPI_PSD_REV0_REVISION) { 395 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); 396 goto end; 397 } 398 399 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && 400 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && 401 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { 402 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); 403 goto end; 404 } 405 406 result = 0; 407 end: 408 kfree(buffer.pointer); 409 return result; 410 } 411 412 bool acpi_cpc_valid(void) 413 { 414 struct cpc_desc *cpc_ptr; 415 int cpu; 416 417 for_each_present_cpu(cpu) { 418 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 419 if (!cpc_ptr) 420 return false; 421 } 422 423 return true; 424 } 425 EXPORT_SYMBOL_GPL(acpi_cpc_valid); 426 427 /** 428 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu 429 * @cpu: Find all CPUs that share a domain with cpu. 430 * @cpu_data: Pointer to CPU specific CPPC data including PSD info. 431 * 432 * Return: 0 for success or negative value for err. 433 */ 434 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data) 435 { 436 struct cpc_desc *cpc_ptr, *match_cpc_ptr; 437 struct acpi_psd_package *match_pdomain; 438 struct acpi_psd_package *pdomain; 439 int count_target, i; 440 441 /* 442 * Now that we have _PSD data from all CPUs, let's setup P-state 443 * domain info. 444 */ 445 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 446 if (!cpc_ptr) 447 return -EFAULT; 448 449 pdomain = &(cpc_ptr->domain_info); 450 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); 451 if (pdomain->num_processors <= 1) 452 return 0; 453 454 /* Validate the Domain info */ 455 count_target = pdomain->num_processors; 456 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) 457 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL; 458 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) 459 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW; 460 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) 461 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY; 462 463 for_each_possible_cpu(i) { 464 if (i == cpu) 465 continue; 466 467 match_cpc_ptr = per_cpu(cpc_desc_ptr, i); 468 if (!match_cpc_ptr) 469 goto err_fault; 470 471 match_pdomain = &(match_cpc_ptr->domain_info); 472 if (match_pdomain->domain != pdomain->domain) 473 continue; 474 475 /* Here i and cpu are in the same domain */ 476 if (match_pdomain->num_processors != count_target) 477 goto err_fault; 478 479 if (pdomain->coord_type != match_pdomain->coord_type) 480 goto err_fault; 481 482 cpumask_set_cpu(i, cpu_data->shared_cpu_map); 483 } 484 485 return 0; 486 487 err_fault: 488 /* Assume no coordination on any error parsing domain info */ 489 cpumask_clear(cpu_data->shared_cpu_map); 490 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); 491 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE; 492 493 return -EFAULT; 494 } 495 EXPORT_SYMBOL_GPL(acpi_get_psd_map); 496 497 static int register_pcc_channel(int pcc_ss_idx) 498 { 499 struct pcc_mbox_chan *pcc_chan; 500 u64 usecs_lat; 501 502 if (pcc_ss_idx >= 0) { 503 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx); 504 505 if (IS_ERR(pcc_chan)) { 506 pr_err("Failed to find PCC channel for subspace %d\n", 507 pcc_ss_idx); 508 return -ENODEV; 509 } 510 511 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan; 512 /* 513 * cppc_ss->latency is just a Nominal value. In reality 514 * the remote processor could be much slower to reply. 515 * So add an arbitrary amount of wait on top of Nominal. 516 */ 517 usecs_lat = NUM_RETRIES * pcc_chan->latency; 518 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat; 519 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time; 520 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate; 521 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency; 522 523 pcc_data[pcc_ss_idx]->pcc_comm_addr = 524 acpi_os_ioremap(pcc_chan->shmem_base_addr, 525 pcc_chan->shmem_size); 526 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) { 527 pr_err("Failed to ioremap PCC comm region mem for %d\n", 528 pcc_ss_idx); 529 return -ENOMEM; 530 } 531 532 /* Set flag so that we don't come here for each CPU. */ 533 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true; 534 } 535 536 return 0; 537 } 538 539 /** 540 * cpc_ffh_supported() - check if FFH reading supported 541 * 542 * Check if the architecture has support for functional fixed hardware 543 * read/write capability. 544 * 545 * Return: true for supported, false for not supported 546 */ 547 bool __weak cpc_ffh_supported(void) 548 { 549 return false; 550 } 551 552 /** 553 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace 554 * 555 * Check and allocate the cppc_pcc_data memory. 556 * In some processor configurations it is possible that same subspace 557 * is shared between multiple CPUs. This is seen especially in CPUs 558 * with hardware multi-threading support. 559 * 560 * Return: 0 for success, errno for failure 561 */ 562 static int pcc_data_alloc(int pcc_ss_id) 563 { 564 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES) 565 return -EINVAL; 566 567 if (pcc_data[pcc_ss_id]) { 568 pcc_data[pcc_ss_id]->refcount++; 569 } else { 570 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data), 571 GFP_KERNEL); 572 if (!pcc_data[pcc_ss_id]) 573 return -ENOMEM; 574 pcc_data[pcc_ss_id]->refcount++; 575 } 576 577 return 0; 578 } 579 580 /* Check if CPPC revision + num_ent combination is supported */ 581 static bool is_cppc_supported(int revision, int num_ent) 582 { 583 int expected_num_ent; 584 585 switch (revision) { 586 case CPPC_V2_REV: 587 expected_num_ent = CPPC_V2_NUM_ENT; 588 break; 589 case CPPC_V3_REV: 590 expected_num_ent = CPPC_V3_NUM_ENT; 591 break; 592 default: 593 pr_debug("Firmware exports unsupported CPPC revision: %d\n", 594 revision); 595 return false; 596 } 597 598 if (expected_num_ent != num_ent) { 599 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n", 600 num_ent, expected_num_ent, revision); 601 return false; 602 } 603 604 return true; 605 } 606 607 /* 608 * An example CPC table looks like the following. 609 * 610 * Name (_CPC, Package() { 611 * 17, // NumEntries 612 * 1, // Revision 613 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance 614 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance 615 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance 616 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance 617 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register 618 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register 619 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)}, 620 * ... 621 * ... 622 * ... 623 * } 624 * Each Register() encodes how to access that specific register. 625 * e.g. a sample PCC entry has the following encoding: 626 * 627 * Register ( 628 * PCC, // AddressSpaceKeyword 629 * 8, // RegisterBitWidth 630 * 8, // RegisterBitOffset 631 * 0x30, // RegisterAddress 632 * 9, // AccessSize (subspace ID) 633 * ) 634 */ 635 636 #ifndef init_freq_invariance_cppc 637 static inline void init_freq_invariance_cppc(void) { } 638 #endif 639 640 /** 641 * acpi_cppc_processor_probe - Search for per CPU _CPC objects. 642 * @pr: Ptr to acpi_processor containing this CPU's logical ID. 643 * 644 * Return: 0 for success or negative value for err. 645 */ 646 int acpi_cppc_processor_probe(struct acpi_processor *pr) 647 { 648 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 649 union acpi_object *out_obj, *cpc_obj; 650 struct cpc_desc *cpc_ptr; 651 struct cpc_reg *gas_t; 652 struct device *cpu_dev; 653 acpi_handle handle = pr->handle; 654 unsigned int num_ent, i, cpc_rev; 655 int pcc_subspace_id = -1; 656 acpi_status status; 657 int ret = -EFAULT; 658 659 /* Parse the ACPI _CPC table for this CPU. */ 660 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, 661 ACPI_TYPE_PACKAGE); 662 if (ACPI_FAILURE(status)) { 663 ret = -ENODEV; 664 goto out_buf_free; 665 } 666 667 out_obj = (union acpi_object *) output.pointer; 668 669 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); 670 if (!cpc_ptr) { 671 ret = -ENOMEM; 672 goto out_buf_free; 673 } 674 675 /* First entry is NumEntries. */ 676 cpc_obj = &out_obj->package.elements[0]; 677 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 678 num_ent = cpc_obj->integer.value; 679 } else { 680 pr_debug("Unexpected entry type(%d) for NumEntries\n", 681 cpc_obj->type); 682 goto out_free; 683 } 684 cpc_ptr->num_entries = num_ent; 685 686 /* Second entry should be revision. */ 687 cpc_obj = &out_obj->package.elements[1]; 688 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 689 cpc_rev = cpc_obj->integer.value; 690 } else { 691 pr_debug("Unexpected entry type(%d) for Revision\n", 692 cpc_obj->type); 693 goto out_free; 694 } 695 cpc_ptr->version = cpc_rev; 696 697 if (!is_cppc_supported(cpc_rev, num_ent)) 698 goto out_free; 699 700 /* Iterate through remaining entries in _CPC */ 701 for (i = 2; i < num_ent; i++) { 702 cpc_obj = &out_obj->package.elements[i]; 703 704 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 705 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; 706 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; 707 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { 708 gas_t = (struct cpc_reg *) 709 cpc_obj->buffer.pointer; 710 711 /* 712 * The PCC Subspace index is encoded inside 713 * the CPC table entries. The same PCC index 714 * will be used for all the PCC entries, 715 * so extract it only once. 716 */ 717 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 718 if (pcc_subspace_id < 0) { 719 pcc_subspace_id = gas_t->access_width; 720 if (pcc_data_alloc(pcc_subspace_id)) 721 goto out_free; 722 } else if (pcc_subspace_id != gas_t->access_width) { 723 pr_debug("Mismatched PCC ids.\n"); 724 goto out_free; 725 } 726 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 727 if (gas_t->address) { 728 void __iomem *addr; 729 730 addr = ioremap(gas_t->address, gas_t->bit_width/8); 731 if (!addr) 732 goto out_free; 733 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr; 734 } 735 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 736 if (gas_t->access_width < 1 || gas_t->access_width > 3) { 737 /* 738 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit. 739 * SystemIO doesn't implement 64-bit 740 * registers. 741 */ 742 pr_debug("Invalid access width %d for SystemIO register\n", 743 gas_t->access_width); 744 goto out_free; 745 } 746 if (gas_t->address & OVER_16BTS_MASK) { 747 /* SystemIO registers use 16-bit integer addresses */ 748 pr_debug("Invalid IO port %llu for SystemIO register\n", 749 gas_t->address); 750 goto out_free; 751 } 752 } else { 753 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) { 754 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */ 755 pr_debug("Unsupported register type: %d\n", gas_t->space_id); 756 goto out_free; 757 } 758 } 759 760 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; 761 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); 762 } else { 763 pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id); 764 goto out_free; 765 } 766 } 767 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id; 768 769 /* 770 * Initialize the remaining cpc_regs as unsupported. 771 * Example: In case FW exposes CPPC v2, the below loop will initialize 772 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported 773 */ 774 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) { 775 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER; 776 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0; 777 } 778 779 780 /* Store CPU Logical ID */ 781 cpc_ptr->cpu_id = pr->id; 782 783 /* Parse PSD data for this CPU */ 784 ret = acpi_get_psd(cpc_ptr, handle); 785 if (ret) 786 goto out_free; 787 788 /* Register PCC channel once for all PCC subspace ID. */ 789 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) { 790 ret = register_pcc_channel(pcc_subspace_id); 791 if (ret) 792 goto out_free; 793 794 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock); 795 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q); 796 } 797 798 /* Everything looks okay */ 799 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); 800 801 /* Add per logical CPU nodes for reading its feedback counters. */ 802 cpu_dev = get_cpu_device(pr->id); 803 if (!cpu_dev) { 804 ret = -EINVAL; 805 goto out_free; 806 } 807 808 /* Plug PSD data into this CPU's CPC descriptor. */ 809 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; 810 811 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj, 812 "acpi_cppc"); 813 if (ret) { 814 per_cpu(cpc_desc_ptr, pr->id) = NULL; 815 kobject_put(&cpc_ptr->kobj); 816 goto out_free; 817 } 818 819 init_freq_invariance_cppc(); 820 821 kfree(output.pointer); 822 return 0; 823 824 out_free: 825 /* Free all the mapped sys mem areas for this CPU */ 826 for (i = 2; i < cpc_ptr->num_entries; i++) { 827 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 828 829 if (addr) 830 iounmap(addr); 831 } 832 kfree(cpc_ptr); 833 834 out_buf_free: 835 kfree(output.pointer); 836 return ret; 837 } 838 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); 839 840 /** 841 * acpi_cppc_processor_exit - Cleanup CPC structs. 842 * @pr: Ptr to acpi_processor containing this CPU's logical ID. 843 * 844 * Return: Void 845 */ 846 void acpi_cppc_processor_exit(struct acpi_processor *pr) 847 { 848 struct cpc_desc *cpc_ptr; 849 unsigned int i; 850 void __iomem *addr; 851 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id); 852 853 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) { 854 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) { 855 pcc_data[pcc_ss_id]->refcount--; 856 if (!pcc_data[pcc_ss_id]->refcount) { 857 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel); 858 kfree(pcc_data[pcc_ss_id]); 859 pcc_data[pcc_ss_id] = NULL; 860 } 861 } 862 } 863 864 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); 865 if (!cpc_ptr) 866 return; 867 868 /* Free all the mapped sys mem areas for this CPU */ 869 for (i = 2; i < cpc_ptr->num_entries; i++) { 870 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 871 if (addr) 872 iounmap(addr); 873 } 874 875 kobject_put(&cpc_ptr->kobj); 876 kfree(cpc_ptr); 877 } 878 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); 879 880 /** 881 * cpc_read_ffh() - Read FFH register 882 * @cpunum: CPU number to read 883 * @reg: cppc register information 884 * @val: place holder for return value 885 * 886 * Read bit_width bits from a specified address and bit_offset 887 * 888 * Return: 0 for success and error code 889 */ 890 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val) 891 { 892 return -ENOTSUPP; 893 } 894 895 /** 896 * cpc_write_ffh() - Write FFH register 897 * @cpunum: CPU number to write 898 * @reg: cppc register information 899 * @val: value to write 900 * 901 * Write value of bit_width bits to a specified address and bit_offset 902 * 903 * Return: 0 for success and error code 904 */ 905 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) 906 { 907 return -ENOTSUPP; 908 } 909 910 /* 911 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be 912 * as fast as possible. We have already mapped the PCC subspace during init, so 913 * we can directly write to it. 914 */ 915 916 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val) 917 { 918 int ret_val = 0; 919 void __iomem *vaddr = NULL; 920 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 921 struct cpc_reg *reg = ®_res->cpc_entry.reg; 922 923 if (reg_res->type == ACPI_TYPE_INTEGER) { 924 *val = reg_res->cpc_entry.int_value; 925 return ret_val; 926 } 927 928 *val = 0; 929 930 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 931 u32 width = 8 << (reg->access_width - 1); 932 acpi_status status; 933 934 status = acpi_os_read_port((acpi_io_address)reg->address, 935 (u32 *)val, width); 936 if (ACPI_FAILURE(status)) { 937 pr_debug("Error: Failed to read SystemIO port %llx\n", 938 reg->address); 939 return -EFAULT; 940 } 941 942 return 0; 943 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) 944 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 945 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 946 vaddr = reg_res->sys_mem_vaddr; 947 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 948 return cpc_read_ffh(cpu, reg, val); 949 else 950 return acpi_os_read_memory((acpi_physical_address)reg->address, 951 val, reg->bit_width); 952 953 switch (reg->bit_width) { 954 case 8: 955 *val = readb_relaxed(vaddr); 956 break; 957 case 16: 958 *val = readw_relaxed(vaddr); 959 break; 960 case 32: 961 *val = readl_relaxed(vaddr); 962 break; 963 case 64: 964 *val = readq_relaxed(vaddr); 965 break; 966 default: 967 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n", 968 reg->bit_width, pcc_ss_id); 969 ret_val = -EFAULT; 970 } 971 972 return ret_val; 973 } 974 975 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val) 976 { 977 int ret_val = 0; 978 void __iomem *vaddr = NULL; 979 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 980 struct cpc_reg *reg = ®_res->cpc_entry.reg; 981 982 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 983 u32 width = 8 << (reg->access_width - 1); 984 acpi_status status; 985 986 status = acpi_os_write_port((acpi_io_address)reg->address, 987 (u32)val, width); 988 if (ACPI_FAILURE(status)) { 989 pr_debug("Error: Failed to write SystemIO port %llx\n", 990 reg->address); 991 return -EFAULT; 992 } 993 994 return 0; 995 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) 996 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 997 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 998 vaddr = reg_res->sys_mem_vaddr; 999 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 1000 return cpc_write_ffh(cpu, reg, val); 1001 else 1002 return acpi_os_write_memory((acpi_physical_address)reg->address, 1003 val, reg->bit_width); 1004 1005 switch (reg->bit_width) { 1006 case 8: 1007 writeb_relaxed(val, vaddr); 1008 break; 1009 case 16: 1010 writew_relaxed(val, vaddr); 1011 break; 1012 case 32: 1013 writel_relaxed(val, vaddr); 1014 break; 1015 case 64: 1016 writeq_relaxed(val, vaddr); 1017 break; 1018 default: 1019 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n", 1020 reg->bit_width, pcc_ss_id); 1021 ret_val = -EFAULT; 1022 break; 1023 } 1024 1025 return ret_val; 1026 } 1027 1028 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf) 1029 { 1030 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1031 struct cpc_register_resource *reg; 1032 1033 if (!cpc_desc) { 1034 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1035 return -ENODEV; 1036 } 1037 1038 reg = &cpc_desc->cpc_regs[reg_idx]; 1039 1040 if (CPC_IN_PCC(reg)) { 1041 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1042 struct cppc_pcc_data *pcc_ss_data = NULL; 1043 int ret = 0; 1044 1045 if (pcc_ss_id < 0) 1046 return -EIO; 1047 1048 pcc_ss_data = pcc_data[pcc_ss_id]; 1049 1050 down_write(&pcc_ss_data->pcc_lock); 1051 1052 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) 1053 cpc_read(cpunum, reg, perf); 1054 else 1055 ret = -EIO; 1056 1057 up_write(&pcc_ss_data->pcc_lock); 1058 1059 return ret; 1060 } 1061 1062 cpc_read(cpunum, reg, perf); 1063 1064 return 0; 1065 } 1066 1067 /** 1068 * cppc_get_desired_perf - Get the desired performance register value. 1069 * @cpunum: CPU from which to get desired performance. 1070 * @desired_perf: Return address. 1071 * 1072 * Return: 0 for success, -EIO otherwise. 1073 */ 1074 int cppc_get_desired_perf(int cpunum, u64 *desired_perf) 1075 { 1076 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf); 1077 } 1078 EXPORT_SYMBOL_GPL(cppc_get_desired_perf); 1079 1080 /** 1081 * cppc_get_nominal_perf - Get the nominal performance register value. 1082 * @cpunum: CPU from which to get nominal performance. 1083 * @nominal_perf: Return address. 1084 * 1085 * Return: 0 for success, -EIO otherwise. 1086 */ 1087 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf) 1088 { 1089 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf); 1090 } 1091 1092 /** 1093 * cppc_get_perf_caps - Get a CPU's performance capabilities. 1094 * @cpunum: CPU from which to get capabilities info. 1095 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h 1096 * 1097 * Return: 0 for success with perf_caps populated else -ERRNO. 1098 */ 1099 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) 1100 { 1101 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1102 struct cpc_register_resource *highest_reg, *lowest_reg, 1103 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg, 1104 *low_freq_reg = NULL, *nom_freq_reg = NULL; 1105 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0; 1106 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1107 struct cppc_pcc_data *pcc_ss_data = NULL; 1108 int ret = 0, regs_in_pcc = 0; 1109 1110 if (!cpc_desc) { 1111 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1112 return -ENODEV; 1113 } 1114 1115 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; 1116 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; 1117 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF]; 1118 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1119 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ]; 1120 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ]; 1121 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF]; 1122 1123 /* Are any of the regs PCC ?*/ 1124 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) || 1125 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) || 1126 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) { 1127 if (pcc_ss_id < 0) { 1128 pr_debug("Invalid pcc_ss_id\n"); 1129 return -ENODEV; 1130 } 1131 pcc_ss_data = pcc_data[pcc_ss_id]; 1132 regs_in_pcc = 1; 1133 down_write(&pcc_ss_data->pcc_lock); 1134 /* Ring doorbell once to update PCC subspace */ 1135 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1136 ret = -EIO; 1137 goto out_err; 1138 } 1139 } 1140 1141 cpc_read(cpunum, highest_reg, &high); 1142 perf_caps->highest_perf = high; 1143 1144 cpc_read(cpunum, lowest_reg, &low); 1145 perf_caps->lowest_perf = low; 1146 1147 cpc_read(cpunum, nominal_reg, &nom); 1148 perf_caps->nominal_perf = nom; 1149 1150 if (guaranteed_reg->type != ACPI_TYPE_BUFFER || 1151 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) { 1152 perf_caps->guaranteed_perf = 0; 1153 } else { 1154 cpc_read(cpunum, guaranteed_reg, &guaranteed); 1155 perf_caps->guaranteed_perf = guaranteed; 1156 } 1157 1158 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear); 1159 perf_caps->lowest_nonlinear_perf = min_nonlinear; 1160 1161 if (!high || !low || !nom || !min_nonlinear) 1162 ret = -EFAULT; 1163 1164 /* Read optional lowest and nominal frequencies if present */ 1165 if (CPC_SUPPORTED(low_freq_reg)) 1166 cpc_read(cpunum, low_freq_reg, &low_f); 1167 1168 if (CPC_SUPPORTED(nom_freq_reg)) 1169 cpc_read(cpunum, nom_freq_reg, &nom_f); 1170 1171 perf_caps->lowest_freq = low_f; 1172 perf_caps->nominal_freq = nom_f; 1173 1174 1175 out_err: 1176 if (regs_in_pcc) 1177 up_write(&pcc_ss_data->pcc_lock); 1178 return ret; 1179 } 1180 EXPORT_SYMBOL_GPL(cppc_get_perf_caps); 1181 1182 /** 1183 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters. 1184 * @cpunum: CPU from which to read counters. 1185 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h 1186 * 1187 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. 1188 */ 1189 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) 1190 { 1191 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1192 struct cpc_register_resource *delivered_reg, *reference_reg, 1193 *ref_perf_reg, *ctr_wrap_reg; 1194 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1195 struct cppc_pcc_data *pcc_ss_data = NULL; 1196 u64 delivered, reference, ref_perf, ctr_wrap_time; 1197 int ret = 0, regs_in_pcc = 0; 1198 1199 if (!cpc_desc) { 1200 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1201 return -ENODEV; 1202 } 1203 1204 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; 1205 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; 1206 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; 1207 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME]; 1208 1209 /* 1210 * If reference perf register is not supported then we should 1211 * use the nominal perf value 1212 */ 1213 if (!CPC_SUPPORTED(ref_perf_reg)) 1214 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1215 1216 /* Are any of the regs PCC ?*/ 1217 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) || 1218 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) { 1219 if (pcc_ss_id < 0) { 1220 pr_debug("Invalid pcc_ss_id\n"); 1221 return -ENODEV; 1222 } 1223 pcc_ss_data = pcc_data[pcc_ss_id]; 1224 down_write(&pcc_ss_data->pcc_lock); 1225 regs_in_pcc = 1; 1226 /* Ring doorbell once to update PCC subspace */ 1227 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1228 ret = -EIO; 1229 goto out_err; 1230 } 1231 } 1232 1233 cpc_read(cpunum, delivered_reg, &delivered); 1234 cpc_read(cpunum, reference_reg, &reference); 1235 cpc_read(cpunum, ref_perf_reg, &ref_perf); 1236 1237 /* 1238 * Per spec, if ctr_wrap_time optional register is unsupported, then the 1239 * performance counters are assumed to never wrap during the lifetime of 1240 * platform 1241 */ 1242 ctr_wrap_time = (u64)(~((u64)0)); 1243 if (CPC_SUPPORTED(ctr_wrap_reg)) 1244 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time); 1245 1246 if (!delivered || !reference || !ref_perf) { 1247 ret = -EFAULT; 1248 goto out_err; 1249 } 1250 1251 perf_fb_ctrs->delivered = delivered; 1252 perf_fb_ctrs->reference = reference; 1253 perf_fb_ctrs->reference_perf = ref_perf; 1254 perf_fb_ctrs->wraparound_time = ctr_wrap_time; 1255 out_err: 1256 if (regs_in_pcc) 1257 up_write(&pcc_ss_data->pcc_lock); 1258 return ret; 1259 } 1260 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); 1261 1262 /** 1263 * cppc_set_enable - Set to enable CPPC on the processor by writing the 1264 * Continuous Performance Control package EnableRegister field. 1265 * @cpu: CPU for which to enable CPPC register. 1266 * @enable: 0 - disable, 1 - enable CPPC feature on the processor. 1267 * 1268 * Return: 0 for success, -ERRNO or -EIO otherwise. 1269 */ 1270 int cppc_set_enable(int cpu, bool enable) 1271 { 1272 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1273 struct cpc_register_resource *enable_reg; 1274 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1275 struct cppc_pcc_data *pcc_ss_data = NULL; 1276 int ret = -EINVAL; 1277 1278 if (!cpc_desc) { 1279 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1280 return -EINVAL; 1281 } 1282 1283 enable_reg = &cpc_desc->cpc_regs[ENABLE]; 1284 1285 if (CPC_IN_PCC(enable_reg)) { 1286 1287 if (pcc_ss_id < 0) 1288 return -EIO; 1289 1290 ret = cpc_write(cpu, enable_reg, enable); 1291 if (ret) 1292 return ret; 1293 1294 pcc_ss_data = pcc_data[pcc_ss_id]; 1295 1296 down_write(&pcc_ss_data->pcc_lock); 1297 /* after writing CPC, transfer the ownership of PCC to platfrom */ 1298 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1299 up_write(&pcc_ss_data->pcc_lock); 1300 return ret; 1301 } 1302 1303 return cpc_write(cpu, enable_reg, enable); 1304 } 1305 EXPORT_SYMBOL_GPL(cppc_set_enable); 1306 1307 /** 1308 * cppc_set_perf - Set a CPU's performance controls. 1309 * @cpu: CPU for which to set performance controls. 1310 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h 1311 * 1312 * Return: 0 for success, -ERRNO otherwise. 1313 */ 1314 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) 1315 { 1316 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1317 struct cpc_register_resource *desired_reg; 1318 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1319 struct cppc_pcc_data *pcc_ss_data = NULL; 1320 int ret = 0; 1321 1322 if (!cpc_desc) { 1323 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1324 return -ENODEV; 1325 } 1326 1327 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1328 1329 /* 1330 * This is Phase-I where we want to write to CPC registers 1331 * -> We want all CPUs to be able to execute this phase in parallel 1332 * 1333 * Since read_lock can be acquired by multiple CPUs simultaneously we 1334 * achieve that goal here 1335 */ 1336 if (CPC_IN_PCC(desired_reg)) { 1337 if (pcc_ss_id < 0) { 1338 pr_debug("Invalid pcc_ss_id\n"); 1339 return -ENODEV; 1340 } 1341 pcc_ss_data = pcc_data[pcc_ss_id]; 1342 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */ 1343 if (pcc_ss_data->platform_owns_pcc) { 1344 ret = check_pcc_chan(pcc_ss_id, false); 1345 if (ret) { 1346 up_read(&pcc_ss_data->pcc_lock); 1347 return ret; 1348 } 1349 } 1350 /* 1351 * Update the pending_write to make sure a PCC CMD_READ will not 1352 * arrive and steal the channel during the switch to write lock 1353 */ 1354 pcc_ss_data->pending_pcc_write_cmd = true; 1355 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt; 1356 cpc_desc->write_cmd_status = 0; 1357 } 1358 1359 /* 1360 * Skip writing MIN/MAX until Linux knows how to come up with 1361 * useful values. 1362 */ 1363 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf); 1364 1365 if (CPC_IN_PCC(desired_reg)) 1366 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */ 1367 /* 1368 * This is Phase-II where we transfer the ownership of PCC to Platform 1369 * 1370 * Short Summary: Basically if we think of a group of cppc_set_perf 1371 * requests that happened in short overlapping interval. The last CPU to 1372 * come out of Phase-I will enter Phase-II and ring the doorbell. 1373 * 1374 * We have the following requirements for Phase-II: 1375 * 1. We want to execute Phase-II only when there are no CPUs 1376 * currently executing in Phase-I 1377 * 2. Once we start Phase-II we want to avoid all other CPUs from 1378 * entering Phase-I. 1379 * 3. We want only one CPU among all those who went through Phase-I 1380 * to run phase-II 1381 * 1382 * If write_trylock fails to get the lock and doesn't transfer the 1383 * PCC ownership to the platform, then one of the following will be TRUE 1384 * 1. There is at-least one CPU in Phase-I which will later execute 1385 * write_trylock, so the CPUs in Phase-I will be responsible for 1386 * executing the Phase-II. 1387 * 2. Some other CPU has beaten this CPU to successfully execute the 1388 * write_trylock and has already acquired the write_lock. We know for a 1389 * fact it (other CPU acquiring the write_lock) couldn't have happened 1390 * before this CPU's Phase-I as we held the read_lock. 1391 * 3. Some other CPU executing pcc CMD_READ has stolen the 1392 * down_write, in which case, send_pcc_cmd will check for pending 1393 * CMD_WRITE commands by checking the pending_pcc_write_cmd. 1394 * So this CPU can be certain that its request will be delivered 1395 * So in all cases, this CPU knows that its request will be delivered 1396 * by another CPU and can return 1397 * 1398 * After getting the down_write we still need to check for 1399 * pending_pcc_write_cmd to take care of the following scenario 1400 * The thread running this code could be scheduled out between 1401 * Phase-I and Phase-II. Before it is scheduled back on, another CPU 1402 * could have delivered the request to Platform by triggering the 1403 * doorbell and transferred the ownership of PCC to platform. So this 1404 * avoids triggering an unnecessary doorbell and more importantly before 1405 * triggering the doorbell it makes sure that the PCC channel ownership 1406 * is still with OSPM. 1407 * pending_pcc_write_cmd can also be cleared by a different CPU, if 1408 * there was a pcc CMD_READ waiting on down_write and it steals the lock 1409 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this 1410 * case during a CMD_READ and if there are pending writes it delivers 1411 * the write command before servicing the read command 1412 */ 1413 if (CPC_IN_PCC(desired_reg)) { 1414 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */ 1415 /* Update only if there are pending write commands */ 1416 if (pcc_ss_data->pending_pcc_write_cmd) 1417 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1418 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */ 1419 } else 1420 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */ 1421 wait_event(pcc_ss_data->pcc_write_wait_q, 1422 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt); 1423 1424 /* send_pcc_cmd updates the status in case of failure */ 1425 ret = cpc_desc->write_cmd_status; 1426 } 1427 return ret; 1428 } 1429 EXPORT_SYMBOL_GPL(cppc_set_perf); 1430 1431 /** 1432 * cppc_get_transition_latency - returns frequency transition latency in ns 1433 * 1434 * ACPI CPPC does not explicitly specify how a platform can specify the 1435 * transition latency for performance change requests. The closest we have 1436 * is the timing information from the PCCT tables which provides the info 1437 * on the number and frequency of PCC commands the platform can handle. 1438 */ 1439 unsigned int cppc_get_transition_latency(int cpu_num) 1440 { 1441 /* 1442 * Expected transition latency is based on the PCCT timing values 1443 * Below are definition from ACPI spec: 1444 * pcc_nominal- Expected latency to process a command, in microseconds 1445 * pcc_mpar - The maximum number of periodic requests that the subspace 1446 * channel can support, reported in commands per minute. 0 1447 * indicates no limitation. 1448 * pcc_mrtt - The minimum amount of time that OSPM must wait after the 1449 * completion of a command before issuing the next command, 1450 * in microseconds. 1451 */ 1452 unsigned int latency_ns = 0; 1453 struct cpc_desc *cpc_desc; 1454 struct cpc_register_resource *desired_reg; 1455 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num); 1456 struct cppc_pcc_data *pcc_ss_data; 1457 1458 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num); 1459 if (!cpc_desc) 1460 return CPUFREQ_ETERNAL; 1461 1462 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1463 if (!CPC_IN_PCC(desired_reg)) 1464 return CPUFREQ_ETERNAL; 1465 1466 if (pcc_ss_id < 0) 1467 return CPUFREQ_ETERNAL; 1468 1469 pcc_ss_data = pcc_data[pcc_ss_id]; 1470 if (pcc_ss_data->pcc_mpar) 1471 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar); 1472 1473 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000); 1474 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000); 1475 1476 return latency_ns; 1477 } 1478 EXPORT_SYMBOL_GPL(cppc_get_transition_latency); 1479