xref: /openbmc/linux/drivers/acpi/cppc_acpi.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37 
38 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
39 
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/iopoll.h>
43 #include <linux/ktime.h>
44 #include <linux/rwsem.h>
45 #include <linux/wait.h>
46 
47 #include <acpi/cppc_acpi.h>
48 
49 struct cppc_pcc_data {
50 	struct mbox_chan *pcc_channel;
51 	void __iomem *pcc_comm_addr;
52 	bool pcc_channel_acquired;
53 	unsigned int deadline_us;
54 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55 
56 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
57 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
58 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
59 
60 	/*
61 	 * Lock to provide controlled access to the PCC channel.
62 	 *
63 	 * For performance critical usecases(currently cppc_set_perf)
64 	 *	We need to take read_lock and check if channel belongs to OSPM
65 	 * before reading or writing to PCC subspace
66 	 *	We need to take write_lock before transferring the channel
67 	 * ownership to the platform via a Doorbell
68 	 *	This allows us to batch a number of CPPC requests if they happen
69 	 * to originate in about the same time
70 	 *
71 	 * For non-performance critical usecases(init)
72 	 *	Take write_lock for all purposes which gives exclusive access
73 	 */
74 	struct rw_semaphore pcc_lock;
75 
76 	/* Wait queue for CPUs whose requests were batched */
77 	wait_queue_head_t pcc_write_wait_q;
78 	ktime_t last_cmd_cmpl_time;
79 	ktime_t last_mpar_reset;
80 	int mpar_count;
81 	int refcount;
82 };
83 
84 /* Array  to represent the PCC channel per subspace id */
85 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
86 /* The cpu_pcc_subspace_idx containsper CPU subspace id */
87 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
88 
89 /*
90  * The cpc_desc structure contains the ACPI register details
91  * as described in the per CPU _CPC tables. The details
92  * include the type of register (e.g. PCC, System IO, FFH etc.)
93  * and destination addresses which lets us READ/WRITE CPU performance
94  * information using the appropriate I/O methods.
95  */
96 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
97 
98 /* pcc mapped address + header size + offset within PCC subspace */
99 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
100 						0x8 + (offs))
101 
102 /* Check if a CPC register is in PCC */
103 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
104 				(cpc)->cpc_entry.reg.space_id ==	\
105 				ACPI_ADR_SPACE_PLATFORM_COMM)
106 
107 /* Evalutes to True if reg is a NULL register descriptor */
108 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
109 				(reg)->address == 0 &&			\
110 				(reg)->bit_width == 0 &&		\
111 				(reg)->bit_offset == 0 &&		\
112 				(reg)->access_width == 0)
113 
114 /* Evalutes to True if an optional cpc field is supported */
115 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
116 				!!(cpc)->cpc_entry.int_value :		\
117 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
118 /*
119  * Arbitrary Retries in case the remote processor is slow to respond
120  * to PCC commands. Keeping it high enough to cover emulators where
121  * the processors run painfully slow.
122  */
123 #define NUM_RETRIES 500ULL
124 
125 struct cppc_attr {
126 	struct attribute attr;
127 	ssize_t (*show)(struct kobject *kobj,
128 			struct attribute *attr, char *buf);
129 	ssize_t (*store)(struct kobject *kobj,
130 			struct attribute *attr, const char *c, ssize_t count);
131 };
132 
133 #define define_one_cppc_ro(_name)		\
134 static struct cppc_attr _name =			\
135 __ATTR(_name, 0444, show_##_name, NULL)
136 
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138 
139 #define show_cppc_data(access_fn, struct_name, member_name)		\
140 	static ssize_t show_##member_name(struct kobject *kobj,		\
141 					struct attribute *attr,	char *buf) \
142 	{								\
143 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
144 		struct struct_name st_name = {0};			\
145 		int ret;						\
146 									\
147 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
148 		if (ret)						\
149 			return ret;					\
150 									\
151 		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
152 				(u64)st_name.member_name);		\
153 	}								\
154 	define_one_cppc_ro(member_name)
155 
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162 
163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165 
166 static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 		struct attribute *attr, char *buf)
168 {
169 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
171 	int ret;
172 
173 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174 	if (ret)
175 		return ret;
176 
177 	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
178 			fb_ctrs.reference, fb_ctrs.delivered);
179 }
180 define_one_cppc_ro(feedback_ctrs);
181 
182 static struct attribute *cppc_attrs[] = {
183 	&feedback_ctrs.attr,
184 	&reference_perf.attr,
185 	&wraparound_time.attr,
186 	&highest_perf.attr,
187 	&lowest_perf.attr,
188 	&lowest_nonlinear_perf.attr,
189 	&nominal_perf.attr,
190 	&nominal_freq.attr,
191 	&lowest_freq.attr,
192 	NULL
193 };
194 
195 static struct kobj_type cppc_ktype = {
196 	.sysfs_ops = &kobj_sysfs_ops,
197 	.default_attrs = cppc_attrs,
198 };
199 
200 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
201 {
202 	int ret, status;
203 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
204 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
205 		pcc_ss_data->pcc_comm_addr;
206 
207 	if (!pcc_ss_data->platform_owns_pcc)
208 		return 0;
209 
210 	/*
211 	 * Poll PCC status register every 3us(delay_us) for maximum of
212 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
213 	 */
214 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
215 					status & PCC_CMD_COMPLETE_MASK, 3,
216 					pcc_ss_data->deadline_us);
217 
218 	if (likely(!ret)) {
219 		pcc_ss_data->platform_owns_pcc = false;
220 		if (chk_err_bit && (status & PCC_ERROR_MASK))
221 			ret = -EIO;
222 	}
223 
224 	if (unlikely(ret))
225 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
226 		       pcc_ss_id, ret);
227 
228 	return ret;
229 }
230 
231 /*
232  * This function transfers the ownership of the PCC to the platform
233  * So it must be called while holding write_lock(pcc_lock)
234  */
235 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
236 {
237 	int ret = -EIO, i;
238 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
239 	struct acpi_pcct_shared_memory *generic_comm_base =
240 		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
241 	unsigned int time_delta;
242 
243 	/*
244 	 * For CMD_WRITE we know for a fact the caller should have checked
245 	 * the channel before writing to PCC space
246 	 */
247 	if (cmd == CMD_READ) {
248 		/*
249 		 * If there are pending cpc_writes, then we stole the channel
250 		 * before write completion, so first send a WRITE command to
251 		 * platform
252 		 */
253 		if (pcc_ss_data->pending_pcc_write_cmd)
254 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
255 
256 		ret = check_pcc_chan(pcc_ss_id, false);
257 		if (ret)
258 			goto end;
259 	} else /* CMD_WRITE */
260 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
261 
262 	/*
263 	 * Handle the Minimum Request Turnaround Time(MRTT)
264 	 * "The minimum amount of time that OSPM must wait after the completion
265 	 * of a command before issuing the next command, in microseconds"
266 	 */
267 	if (pcc_ss_data->pcc_mrtt) {
268 		time_delta = ktime_us_delta(ktime_get(),
269 					    pcc_ss_data->last_cmd_cmpl_time);
270 		if (pcc_ss_data->pcc_mrtt > time_delta)
271 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
272 	}
273 
274 	/*
275 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
276 	 * "The maximum number of periodic requests that the subspace channel can
277 	 * support, reported in commands per minute. 0 indicates no limitation."
278 	 *
279 	 * This parameter should be ideally zero or large enough so that it can
280 	 * handle maximum number of requests that all the cores in the system can
281 	 * collectively generate. If it is not, we will follow the spec and just
282 	 * not send the request to the platform after hitting the MPAR limit in
283 	 * any 60s window
284 	 */
285 	if (pcc_ss_data->pcc_mpar) {
286 		if (pcc_ss_data->mpar_count == 0) {
287 			time_delta = ktime_ms_delta(ktime_get(),
288 						    pcc_ss_data->last_mpar_reset);
289 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
290 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
291 					 pcc_ss_id);
292 				ret = -EIO;
293 				goto end;
294 			}
295 			pcc_ss_data->last_mpar_reset = ktime_get();
296 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
297 		}
298 		pcc_ss_data->mpar_count--;
299 	}
300 
301 	/* Write to the shared comm region. */
302 	writew_relaxed(cmd, &generic_comm_base->command);
303 
304 	/* Flip CMD COMPLETE bit */
305 	writew_relaxed(0, &generic_comm_base->status);
306 
307 	pcc_ss_data->platform_owns_pcc = true;
308 
309 	/* Ring doorbell */
310 	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
311 	if (ret < 0) {
312 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
313 		       pcc_ss_id, cmd, ret);
314 		goto end;
315 	}
316 
317 	/* wait for completion and check for PCC errro bit */
318 	ret = check_pcc_chan(pcc_ss_id, true);
319 
320 	if (pcc_ss_data->pcc_mrtt)
321 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
322 
323 	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
324 		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
325 	else
326 		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
327 
328 end:
329 	if (cmd == CMD_WRITE) {
330 		if (unlikely(ret)) {
331 			for_each_possible_cpu(i) {
332 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
333 				if (!desc)
334 					continue;
335 
336 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
337 					desc->write_cmd_status = ret;
338 			}
339 		}
340 		pcc_ss_data->pcc_write_cnt++;
341 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
342 	}
343 
344 	return ret;
345 }
346 
347 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
348 {
349 	if (ret < 0)
350 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
351 				*(u16 *)msg, ret);
352 	else
353 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
354 				*(u16 *)msg, ret);
355 }
356 
357 struct mbox_client cppc_mbox_cl = {
358 	.tx_done = cppc_chan_tx_done,
359 	.knows_txdone = true,
360 };
361 
362 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
363 {
364 	int result = -EFAULT;
365 	acpi_status status = AE_OK;
366 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
367 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
368 	struct acpi_buffer state = {0, NULL};
369 	union acpi_object  *psd = NULL;
370 	struct acpi_psd_package *pdomain;
371 
372 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
373 			ACPI_TYPE_PACKAGE);
374 	if (ACPI_FAILURE(status))
375 		return -ENODEV;
376 
377 	psd = buffer.pointer;
378 	if (!psd || psd->package.count != 1) {
379 		pr_debug("Invalid _PSD data\n");
380 		goto end;
381 	}
382 
383 	pdomain = &(cpc_ptr->domain_info);
384 
385 	state.length = sizeof(struct acpi_psd_package);
386 	state.pointer = pdomain;
387 
388 	status = acpi_extract_package(&(psd->package.elements[0]),
389 		&format, &state);
390 	if (ACPI_FAILURE(status)) {
391 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
392 		goto end;
393 	}
394 
395 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
396 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
397 		goto end;
398 	}
399 
400 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
401 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
402 		goto end;
403 	}
404 
405 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
406 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
407 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
408 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
409 		goto end;
410 	}
411 
412 	result = 0;
413 end:
414 	kfree(buffer.pointer);
415 	return result;
416 }
417 
418 /**
419  * acpi_get_psd_map - Map the CPUs in a common freq domain.
420  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
421  *
422  *	Return: 0 for success or negative value for err.
423  */
424 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
425 {
426 	int count_target;
427 	int retval = 0;
428 	unsigned int i, j;
429 	cpumask_var_t covered_cpus;
430 	struct cppc_cpudata *pr, *match_pr;
431 	struct acpi_psd_package *pdomain;
432 	struct acpi_psd_package *match_pdomain;
433 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
434 
435 	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
436 		return -ENOMEM;
437 
438 	/*
439 	 * Now that we have _PSD data from all CPUs, lets setup P-state
440 	 * domain info.
441 	 */
442 	for_each_possible_cpu(i) {
443 		pr = all_cpu_data[i];
444 		if (!pr)
445 			continue;
446 
447 		if (cpumask_test_cpu(i, covered_cpus))
448 			continue;
449 
450 		cpc_ptr = per_cpu(cpc_desc_ptr, i);
451 		if (!cpc_ptr) {
452 			retval = -EFAULT;
453 			goto err_ret;
454 		}
455 
456 		pdomain = &(cpc_ptr->domain_info);
457 		cpumask_set_cpu(i, pr->shared_cpu_map);
458 		cpumask_set_cpu(i, covered_cpus);
459 		if (pdomain->num_processors <= 1)
460 			continue;
461 
462 		/* Validate the Domain info */
463 		count_target = pdomain->num_processors;
464 		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
465 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
466 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
467 			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
468 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
469 			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
470 
471 		for_each_possible_cpu(j) {
472 			if (i == j)
473 				continue;
474 
475 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
476 			if (!match_cpc_ptr) {
477 				retval = -EFAULT;
478 				goto err_ret;
479 			}
480 
481 			match_pdomain = &(match_cpc_ptr->domain_info);
482 			if (match_pdomain->domain != pdomain->domain)
483 				continue;
484 
485 			/* Here i and j are in the same domain */
486 			if (match_pdomain->num_processors != count_target) {
487 				retval = -EFAULT;
488 				goto err_ret;
489 			}
490 
491 			if (pdomain->coord_type != match_pdomain->coord_type) {
492 				retval = -EFAULT;
493 				goto err_ret;
494 			}
495 
496 			cpumask_set_cpu(j, covered_cpus);
497 			cpumask_set_cpu(j, pr->shared_cpu_map);
498 		}
499 
500 		for_each_possible_cpu(j) {
501 			if (i == j)
502 				continue;
503 
504 			match_pr = all_cpu_data[j];
505 			if (!match_pr)
506 				continue;
507 
508 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
509 			if (!match_cpc_ptr) {
510 				retval = -EFAULT;
511 				goto err_ret;
512 			}
513 
514 			match_pdomain = &(match_cpc_ptr->domain_info);
515 			if (match_pdomain->domain != pdomain->domain)
516 				continue;
517 
518 			match_pr->shared_type = pr->shared_type;
519 			cpumask_copy(match_pr->shared_cpu_map,
520 				     pr->shared_cpu_map);
521 		}
522 	}
523 
524 err_ret:
525 	for_each_possible_cpu(i) {
526 		pr = all_cpu_data[i];
527 		if (!pr)
528 			continue;
529 
530 		/* Assume no coordination on any error parsing domain info */
531 		if (retval) {
532 			cpumask_clear(pr->shared_cpu_map);
533 			cpumask_set_cpu(i, pr->shared_cpu_map);
534 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
535 		}
536 	}
537 
538 	free_cpumask_var(covered_cpus);
539 	return retval;
540 }
541 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
542 
543 static int register_pcc_channel(int pcc_ss_idx)
544 {
545 	struct acpi_pcct_hw_reduced *cppc_ss;
546 	u64 usecs_lat;
547 
548 	if (pcc_ss_idx >= 0) {
549 		pcc_data[pcc_ss_idx]->pcc_channel =
550 			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
551 
552 		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
553 			pr_err("Failed to find PCC channel for subspace %d\n",
554 			       pcc_ss_idx);
555 			return -ENODEV;
556 		}
557 
558 		/*
559 		 * The PCC mailbox controller driver should
560 		 * have parsed the PCCT (global table of all
561 		 * PCC channels) and stored pointers to the
562 		 * subspace communication region in con_priv.
563 		 */
564 		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
565 
566 		if (!cppc_ss) {
567 			pr_err("No PCC subspace found for %d CPPC\n",
568 			       pcc_ss_idx);
569 			return -ENODEV;
570 		}
571 
572 		/*
573 		 * cppc_ss->latency is just a Nominal value. In reality
574 		 * the remote processor could be much slower to reply.
575 		 * So add an arbitrary amount of wait on top of Nominal.
576 		 */
577 		usecs_lat = NUM_RETRIES * cppc_ss->latency;
578 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
579 		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
580 		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
581 		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
582 
583 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
584 			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
585 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
586 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
587 			       pcc_ss_idx);
588 			return -ENOMEM;
589 		}
590 
591 		/* Set flag so that we dont come here for each CPU. */
592 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
593 	}
594 
595 	return 0;
596 }
597 
598 /**
599  * cpc_ffh_supported() - check if FFH reading supported
600  *
601  * Check if the architecture has support for functional fixed hardware
602  * read/write capability.
603  *
604  * Return: true for supported, false for not supported
605  */
606 bool __weak cpc_ffh_supported(void)
607 {
608 	return false;
609 }
610 
611 /**
612  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
613  *
614  * Check and allocate the cppc_pcc_data memory.
615  * In some processor configurations it is possible that same subspace
616  * is shared between multiple CPU's. This is seen especially in CPU's
617  * with hardware multi-threading support.
618  *
619  * Return: 0 for success, errno for failure
620  */
621 int pcc_data_alloc(int pcc_ss_id)
622 {
623 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
624 		return -EINVAL;
625 
626 	if (pcc_data[pcc_ss_id]) {
627 		pcc_data[pcc_ss_id]->refcount++;
628 	} else {
629 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
630 					      GFP_KERNEL);
631 		if (!pcc_data[pcc_ss_id])
632 			return -ENOMEM;
633 		pcc_data[pcc_ss_id]->refcount++;
634 	}
635 
636 	return 0;
637 }
638 
639 /* Check if CPPC revision + num_ent combination is supported */
640 static bool is_cppc_supported(int revision, int num_ent)
641 {
642 	int expected_num_ent;
643 
644 	switch (revision) {
645 	case CPPC_V2_REV:
646 		expected_num_ent = CPPC_V2_NUM_ENT;
647 		break;
648 	case CPPC_V3_REV:
649 		expected_num_ent = CPPC_V3_NUM_ENT;
650 		break;
651 	default:
652 		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
653 			revision);
654 		return false;
655 	}
656 
657 	if (expected_num_ent != num_ent) {
658 		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
659 			num_ent, expected_num_ent, revision);
660 		return false;
661 	}
662 
663 	return true;
664 }
665 
666 /*
667  * An example CPC table looks like the following.
668  *
669  *	Name(_CPC, Package()
670  *			{
671  *			17,
672  *			NumEntries
673  *			1,
674  *			// Revision
675  *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
676  *			// Highest Performance
677  *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
678  *			// Nominal Performance
679  *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
680  *			// Lowest Nonlinear Performance
681  *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
682  *			// Lowest Performance
683  *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
684  *			// Guaranteed Performance Register
685  *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
686  *			// Desired Performance Register
687  *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
688  *			..
689  *			..
690  *			..
691  *
692  *		}
693  * Each Register() encodes how to access that specific register.
694  * e.g. a sample PCC entry has the following encoding:
695  *
696  *	Register (
697  *		PCC,
698  *		AddressSpaceKeyword
699  *		8,
700  *		//RegisterBitWidth
701  *		8,
702  *		//RegisterBitOffset
703  *		0x30,
704  *		//RegisterAddress
705  *		9
706  *		//AccessSize (subspace ID)
707  *		0
708  *		)
709  *	}
710  */
711 
712 /**
713  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
714  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
715  *
716  *	Return: 0 for success or negative value for err.
717  */
718 int acpi_cppc_processor_probe(struct acpi_processor *pr)
719 {
720 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
721 	union acpi_object *out_obj, *cpc_obj;
722 	struct cpc_desc *cpc_ptr;
723 	struct cpc_reg *gas_t;
724 	struct device *cpu_dev;
725 	acpi_handle handle = pr->handle;
726 	unsigned int num_ent, i, cpc_rev;
727 	int pcc_subspace_id = -1;
728 	acpi_status status;
729 	int ret = -EFAULT;
730 
731 	/* Parse the ACPI _CPC table for this cpu. */
732 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
733 			ACPI_TYPE_PACKAGE);
734 	if (ACPI_FAILURE(status)) {
735 		ret = -ENODEV;
736 		goto out_buf_free;
737 	}
738 
739 	out_obj = (union acpi_object *) output.pointer;
740 
741 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
742 	if (!cpc_ptr) {
743 		ret = -ENOMEM;
744 		goto out_buf_free;
745 	}
746 
747 	/* First entry is NumEntries. */
748 	cpc_obj = &out_obj->package.elements[0];
749 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
750 		num_ent = cpc_obj->integer.value;
751 	} else {
752 		pr_debug("Unexpected entry type(%d) for NumEntries\n",
753 				cpc_obj->type);
754 		goto out_free;
755 	}
756 	cpc_ptr->num_entries = num_ent;
757 
758 	/* Second entry should be revision. */
759 	cpc_obj = &out_obj->package.elements[1];
760 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
761 		cpc_rev = cpc_obj->integer.value;
762 	} else {
763 		pr_debug("Unexpected entry type(%d) for Revision\n",
764 				cpc_obj->type);
765 		goto out_free;
766 	}
767 	cpc_ptr->version = cpc_rev;
768 
769 	if (!is_cppc_supported(cpc_rev, num_ent))
770 		goto out_free;
771 
772 	/* Iterate through remaining entries in _CPC */
773 	for (i = 2; i < num_ent; i++) {
774 		cpc_obj = &out_obj->package.elements[i];
775 
776 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
777 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
778 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
779 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
780 			gas_t = (struct cpc_reg *)
781 				cpc_obj->buffer.pointer;
782 
783 			/*
784 			 * The PCC Subspace index is encoded inside
785 			 * the CPC table entries. The same PCC index
786 			 * will be used for all the PCC entries,
787 			 * so extract it only once.
788 			 */
789 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
790 				if (pcc_subspace_id < 0) {
791 					pcc_subspace_id = gas_t->access_width;
792 					if (pcc_data_alloc(pcc_subspace_id))
793 						goto out_free;
794 				} else if (pcc_subspace_id != gas_t->access_width) {
795 					pr_debug("Mismatched PCC ids.\n");
796 					goto out_free;
797 				}
798 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
799 				if (gas_t->address) {
800 					void __iomem *addr;
801 
802 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
803 					if (!addr)
804 						goto out_free;
805 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
806 				}
807 			} else {
808 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
809 					/* Support only PCC ,SYS MEM and FFH type regs */
810 					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
811 					goto out_free;
812 				}
813 			}
814 
815 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
816 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
817 		} else {
818 			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
819 			goto out_free;
820 		}
821 	}
822 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
823 
824 	/*
825 	 * Initialize the remaining cpc_regs as unsupported.
826 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
827 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
828 	 */
829 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
830 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
831 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
832 	}
833 
834 
835 	/* Store CPU Logical ID */
836 	cpc_ptr->cpu_id = pr->id;
837 
838 	/* Parse PSD data for this CPU */
839 	ret = acpi_get_psd(cpc_ptr, handle);
840 	if (ret)
841 		goto out_free;
842 
843 	/* Register PCC channel once for all PCC subspace id. */
844 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
845 		ret = register_pcc_channel(pcc_subspace_id);
846 		if (ret)
847 			goto out_free;
848 
849 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
850 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
851 	}
852 
853 	/* Everything looks okay */
854 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
855 
856 	/* Add per logical CPU nodes for reading its feedback counters. */
857 	cpu_dev = get_cpu_device(pr->id);
858 	if (!cpu_dev) {
859 		ret = -EINVAL;
860 		goto out_free;
861 	}
862 
863 	/* Plug PSD data into this CPUs CPC descriptor. */
864 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
865 
866 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
867 			"acpi_cppc");
868 	if (ret) {
869 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
870 		goto out_free;
871 	}
872 
873 	kfree(output.pointer);
874 	return 0;
875 
876 out_free:
877 	/* Free all the mapped sys mem areas for this CPU */
878 	for (i = 2; i < cpc_ptr->num_entries; i++) {
879 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
880 
881 		if (addr)
882 			iounmap(addr);
883 	}
884 	kfree(cpc_ptr);
885 
886 out_buf_free:
887 	kfree(output.pointer);
888 	return ret;
889 }
890 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
891 
892 /**
893  * acpi_cppc_processor_exit - Cleanup CPC structs.
894  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
895  *
896  * Return: Void
897  */
898 void acpi_cppc_processor_exit(struct acpi_processor *pr)
899 {
900 	struct cpc_desc *cpc_ptr;
901 	unsigned int i;
902 	void __iomem *addr;
903 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
904 
905 	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
906 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
907 			pcc_data[pcc_ss_id]->refcount--;
908 			if (!pcc_data[pcc_ss_id]->refcount) {
909 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
910 				pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
911 				kfree(pcc_data[pcc_ss_id]);
912 			}
913 		}
914 	}
915 
916 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
917 	if (!cpc_ptr)
918 		return;
919 
920 	/* Free all the mapped sys mem areas for this CPU */
921 	for (i = 2; i < cpc_ptr->num_entries; i++) {
922 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
923 		if (addr)
924 			iounmap(addr);
925 	}
926 
927 	kobject_put(&cpc_ptr->kobj);
928 	kfree(cpc_ptr);
929 }
930 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
931 
932 /**
933  * cpc_read_ffh() - Read FFH register
934  * @cpunum:	cpu number to read
935  * @reg:	cppc register information
936  * @val:	place holder for return value
937  *
938  * Read bit_width bits from a specified address and bit_offset
939  *
940  * Return: 0 for success and error code
941  */
942 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
943 {
944 	return -ENOTSUPP;
945 }
946 
947 /**
948  * cpc_write_ffh() - Write FFH register
949  * @cpunum:	cpu number to write
950  * @reg:	cppc register information
951  * @val:	value to write
952  *
953  * Write value of bit_width bits to a specified address and bit_offset
954  *
955  * Return: 0 for success and error code
956  */
957 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
958 {
959 	return -ENOTSUPP;
960 }
961 
962 /*
963  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
964  * as fast as possible. We have already mapped the PCC subspace during init, so
965  * we can directly write to it.
966  */
967 
968 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
969 {
970 	int ret_val = 0;
971 	void __iomem *vaddr = 0;
972 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
973 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
974 
975 	if (reg_res->type == ACPI_TYPE_INTEGER) {
976 		*val = reg_res->cpc_entry.int_value;
977 		return ret_val;
978 	}
979 
980 	*val = 0;
981 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
982 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
983 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
984 		vaddr = reg_res->sys_mem_vaddr;
985 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
986 		return cpc_read_ffh(cpu, reg, val);
987 	else
988 		return acpi_os_read_memory((acpi_physical_address)reg->address,
989 				val, reg->bit_width);
990 
991 	switch (reg->bit_width) {
992 		case 8:
993 			*val = readb_relaxed(vaddr);
994 			break;
995 		case 16:
996 			*val = readw_relaxed(vaddr);
997 			break;
998 		case 32:
999 			*val = readl_relaxed(vaddr);
1000 			break;
1001 		case 64:
1002 			*val = readq_relaxed(vaddr);
1003 			break;
1004 		default:
1005 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1006 				 reg->bit_width, pcc_ss_id);
1007 			ret_val = -EFAULT;
1008 	}
1009 
1010 	return ret_val;
1011 }
1012 
1013 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1014 {
1015 	int ret_val = 0;
1016 	void __iomem *vaddr = 0;
1017 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1018 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1019 
1020 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1021 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1022 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1023 		vaddr = reg_res->sys_mem_vaddr;
1024 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1025 		return cpc_write_ffh(cpu, reg, val);
1026 	else
1027 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1028 				val, reg->bit_width);
1029 
1030 	switch (reg->bit_width) {
1031 		case 8:
1032 			writeb_relaxed(val, vaddr);
1033 			break;
1034 		case 16:
1035 			writew_relaxed(val, vaddr);
1036 			break;
1037 		case 32:
1038 			writel_relaxed(val, vaddr);
1039 			break;
1040 		case 64:
1041 			writeq_relaxed(val, vaddr);
1042 			break;
1043 		default:
1044 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1045 				 reg->bit_width, pcc_ss_id);
1046 			ret_val = -EFAULT;
1047 			break;
1048 	}
1049 
1050 	return ret_val;
1051 }
1052 
1053 /**
1054  * cppc_get_desired_perf - Get the value of desired performance register.
1055  * @cpunum: CPU from which to get desired performance.
1056  * @desired_perf: address of a variable to store the returned desired performance
1057  *
1058  * Return: 0 for success, -EIO otherwise.
1059  */
1060 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1061 {
1062 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1063 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1064 	struct cpc_register_resource *desired_reg;
1065 	struct cppc_pcc_data *pcc_ss_data = NULL;
1066 
1067 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1068 
1069 	if (CPC_IN_PCC(desired_reg)) {
1070 		int ret = 0;
1071 
1072 		if (pcc_ss_id < 0)
1073 			return -EIO;
1074 
1075 		pcc_ss_data = pcc_data[pcc_ss_id];
1076 
1077 		down_write(&pcc_ss_data->pcc_lock);
1078 
1079 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1080 			cpc_read(cpunum, desired_reg, desired_perf);
1081 		else
1082 			ret = -EIO;
1083 
1084 		up_write(&pcc_ss_data->pcc_lock);
1085 
1086 		return ret;
1087 	}
1088 
1089 	cpc_read(cpunum, desired_reg, desired_perf);
1090 
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1094 
1095 /**
1096  * cppc_get_perf_caps - Get a CPUs performance capabilities.
1097  * @cpunum: CPU from which to get capabilities info.
1098  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1099  *
1100  * Return: 0 for success with perf_caps populated else -ERRNO.
1101  */
1102 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1103 {
1104 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1105 	struct cpc_register_resource *highest_reg, *lowest_reg,
1106 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1107 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1108 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1109 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1110 	struct cppc_pcc_data *pcc_ss_data = NULL;
1111 	int ret = 0, regs_in_pcc = 0;
1112 
1113 	if (!cpc_desc) {
1114 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1115 		return -ENODEV;
1116 	}
1117 
1118 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1119 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1120 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1121 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1122 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1123 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1124 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1125 
1126 	/* Are any of the regs PCC ?*/
1127 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1128 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1129 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1130 		if (pcc_ss_id < 0) {
1131 			pr_debug("Invalid pcc_ss_id\n");
1132 			return -ENODEV;
1133 		}
1134 		pcc_ss_data = pcc_data[pcc_ss_id];
1135 		regs_in_pcc = 1;
1136 		down_write(&pcc_ss_data->pcc_lock);
1137 		/* Ring doorbell once to update PCC subspace */
1138 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1139 			ret = -EIO;
1140 			goto out_err;
1141 		}
1142 	}
1143 
1144 	cpc_read(cpunum, highest_reg, &high);
1145 	perf_caps->highest_perf = high;
1146 
1147 	cpc_read(cpunum, lowest_reg, &low);
1148 	perf_caps->lowest_perf = low;
1149 
1150 	cpc_read(cpunum, nominal_reg, &nom);
1151 	perf_caps->nominal_perf = nom;
1152 
1153 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1154 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1155 		perf_caps->guaranteed_perf = 0;
1156 	} else {
1157 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1158 		perf_caps->guaranteed_perf = guaranteed;
1159 	}
1160 
1161 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1162 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1163 
1164 	if (!high || !low || !nom || !min_nonlinear)
1165 		ret = -EFAULT;
1166 
1167 	/* Read optional lowest and nominal frequencies if present */
1168 	if (CPC_SUPPORTED(low_freq_reg))
1169 		cpc_read(cpunum, low_freq_reg, &low_f);
1170 
1171 	if (CPC_SUPPORTED(nom_freq_reg))
1172 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1173 
1174 	perf_caps->lowest_freq = low_f;
1175 	perf_caps->nominal_freq = nom_f;
1176 
1177 
1178 out_err:
1179 	if (regs_in_pcc)
1180 		up_write(&pcc_ss_data->pcc_lock);
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1184 
1185 /**
1186  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1187  * @cpunum: CPU from which to read counters.
1188  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1189  *
1190  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1191  */
1192 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1193 {
1194 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1195 	struct cpc_register_resource *delivered_reg, *reference_reg,
1196 		*ref_perf_reg, *ctr_wrap_reg;
1197 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1198 	struct cppc_pcc_data *pcc_ss_data = NULL;
1199 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1200 	int ret = 0, regs_in_pcc = 0;
1201 
1202 	if (!cpc_desc) {
1203 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1204 		return -ENODEV;
1205 	}
1206 
1207 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1208 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1209 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1210 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1211 
1212 	/*
1213 	 * If refernce perf register is not supported then we should
1214 	 * use the nominal perf value
1215 	 */
1216 	if (!CPC_SUPPORTED(ref_perf_reg))
1217 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1218 
1219 	/* Are any of the regs PCC ?*/
1220 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1221 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1222 		if (pcc_ss_id < 0) {
1223 			pr_debug("Invalid pcc_ss_id\n");
1224 			return -ENODEV;
1225 		}
1226 		pcc_ss_data = pcc_data[pcc_ss_id];
1227 		down_write(&pcc_ss_data->pcc_lock);
1228 		regs_in_pcc = 1;
1229 		/* Ring doorbell once to update PCC subspace */
1230 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1231 			ret = -EIO;
1232 			goto out_err;
1233 		}
1234 	}
1235 
1236 	cpc_read(cpunum, delivered_reg, &delivered);
1237 	cpc_read(cpunum, reference_reg, &reference);
1238 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1239 
1240 	/*
1241 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1242 	 * performance counters are assumed to never wrap during the lifetime of
1243 	 * platform
1244 	 */
1245 	ctr_wrap_time = (u64)(~((u64)0));
1246 	if (CPC_SUPPORTED(ctr_wrap_reg))
1247 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1248 
1249 	if (!delivered || !reference ||	!ref_perf) {
1250 		ret = -EFAULT;
1251 		goto out_err;
1252 	}
1253 
1254 	perf_fb_ctrs->delivered = delivered;
1255 	perf_fb_ctrs->reference = reference;
1256 	perf_fb_ctrs->reference_perf = ref_perf;
1257 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1258 out_err:
1259 	if (regs_in_pcc)
1260 		up_write(&pcc_ss_data->pcc_lock);
1261 	return ret;
1262 }
1263 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1264 
1265 /**
1266  * cppc_set_perf - Set a CPUs performance controls.
1267  * @cpu: CPU for which to set performance controls.
1268  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1269  *
1270  * Return: 0 for success, -ERRNO otherwise.
1271  */
1272 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1273 {
1274 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1275 	struct cpc_register_resource *desired_reg;
1276 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1277 	struct cppc_pcc_data *pcc_ss_data = NULL;
1278 	int ret = 0;
1279 
1280 	if (!cpc_desc) {
1281 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1282 		return -ENODEV;
1283 	}
1284 
1285 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1286 
1287 	/*
1288 	 * This is Phase-I where we want to write to CPC registers
1289 	 * -> We want all CPUs to be able to execute this phase in parallel
1290 	 *
1291 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1292 	 * achieve that goal here
1293 	 */
1294 	if (CPC_IN_PCC(desired_reg)) {
1295 		if (pcc_ss_id < 0) {
1296 			pr_debug("Invalid pcc_ss_id\n");
1297 			return -ENODEV;
1298 		}
1299 		pcc_ss_data = pcc_data[pcc_ss_id];
1300 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1301 		if (pcc_ss_data->platform_owns_pcc) {
1302 			ret = check_pcc_chan(pcc_ss_id, false);
1303 			if (ret) {
1304 				up_read(&pcc_ss_data->pcc_lock);
1305 				return ret;
1306 			}
1307 		}
1308 		/*
1309 		 * Update the pending_write to make sure a PCC CMD_READ will not
1310 		 * arrive and steal the channel during the switch to write lock
1311 		 */
1312 		pcc_ss_data->pending_pcc_write_cmd = true;
1313 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1314 		cpc_desc->write_cmd_status = 0;
1315 	}
1316 
1317 	/*
1318 	 * Skip writing MIN/MAX until Linux knows how to come up with
1319 	 * useful values.
1320 	 */
1321 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1322 
1323 	if (CPC_IN_PCC(desired_reg))
1324 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1325 	/*
1326 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1327 	 *
1328 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1329 	 * requests that happened in short overlapping interval. The last CPU to
1330 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1331 	 *
1332 	 * We have the following requirements for Phase-II:
1333 	 *     1. We want to execute Phase-II only when there are no CPUs
1334 	 * currently executing in Phase-I
1335 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1336 	 * entering Phase-I.
1337 	 *     3. We want only one CPU among all those who went through Phase-I
1338 	 * to run phase-II
1339 	 *
1340 	 * If write_trylock fails to get the lock and doesn't transfer the
1341 	 * PCC ownership to the platform, then one of the following will be TRUE
1342 	 *     1. There is at-least one CPU in Phase-I which will later execute
1343 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1344 	 * executing the Phase-II.
1345 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1346 	 * write_trylock and has already acquired the write_lock. We know for a
1347 	 * fact it(other CPU acquiring the write_lock) couldn't have happened
1348 	 * before this CPU's Phase-I as we held the read_lock.
1349 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1350 	 * down_write, in which case, send_pcc_cmd will check for pending
1351 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1352 	 * So this CPU can be certain that its request will be delivered
1353 	 *    So in all cases, this CPU knows that its request will be delivered
1354 	 * by another CPU and can return
1355 	 *
1356 	 * After getting the down_write we still need to check for
1357 	 * pending_pcc_write_cmd to take care of the following scenario
1358 	 *    The thread running this code could be scheduled out between
1359 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1360 	 * could have delivered the request to Platform by triggering the
1361 	 * doorbell and transferred the ownership of PCC to platform. So this
1362 	 * avoids triggering an unnecessary doorbell and more importantly before
1363 	 * triggering the doorbell it makes sure that the PCC channel ownership
1364 	 * is still with OSPM.
1365 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1366 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1367 	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1368 	 * case during a CMD_READ and if there are pending writes it delivers
1369 	 * the write command before servicing the read command
1370 	 */
1371 	if (CPC_IN_PCC(desired_reg)) {
1372 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1373 			/* Update only if there are pending write commands */
1374 			if (pcc_ss_data->pending_pcc_write_cmd)
1375 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1376 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1377 		} else
1378 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1379 			wait_event(pcc_ss_data->pcc_write_wait_q,
1380 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1381 
1382 		/* send_pcc_cmd updates the status in case of failure */
1383 		ret = cpc_desc->write_cmd_status;
1384 	}
1385 	return ret;
1386 }
1387 EXPORT_SYMBOL_GPL(cppc_set_perf);
1388 
1389 /**
1390  * cppc_get_transition_latency - returns frequency transition latency in ns
1391  *
1392  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1393  * transition latency for perfromance change requests. The closest we have
1394  * is the timing information from the PCCT tables which provides the info
1395  * on the number and frequency of PCC commands the platform can handle.
1396  */
1397 unsigned int cppc_get_transition_latency(int cpu_num)
1398 {
1399 	/*
1400 	 * Expected transition latency is based on the PCCT timing values
1401 	 * Below are definition from ACPI spec:
1402 	 * pcc_nominal- Expected latency to process a command, in microseconds
1403 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1404 	 *              channel can support, reported in commands per minute. 0
1405 	 *              indicates no limitation.
1406 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1407 	 *              completion of a command before issuing the next command,
1408 	 *              in microseconds.
1409 	 */
1410 	unsigned int latency_ns = 0;
1411 	struct cpc_desc *cpc_desc;
1412 	struct cpc_register_resource *desired_reg;
1413 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1414 	struct cppc_pcc_data *pcc_ss_data;
1415 
1416 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1417 	if (!cpc_desc)
1418 		return CPUFREQ_ETERNAL;
1419 
1420 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1421 	if (!CPC_IN_PCC(desired_reg))
1422 		return CPUFREQ_ETERNAL;
1423 
1424 	if (pcc_ss_id < 0)
1425 		return CPUFREQ_ETERNAL;
1426 
1427 	pcc_ss_data = pcc_data[pcc_ss_id];
1428 	if (pcc_ss_data->pcc_mpar)
1429 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1430 
1431 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1432 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1433 
1434 	return latency_ns;
1435 }
1436 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1437