xref: /openbmc/linux/drivers/acpi/cppc_acpi.c (revision 0b983c08)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 
43 #include <acpi/cppc_acpi.h>
44 
45 struct cppc_pcc_data {
46 	struct pcc_mbox_chan *pcc_channel;
47 	void __iomem *pcc_comm_addr;
48 	bool pcc_channel_acquired;
49 	unsigned int deadline_us;
50 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51 
52 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
53 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
54 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
55 
56 	/*
57 	 * Lock to provide controlled access to the PCC channel.
58 	 *
59 	 * For performance critical usecases(currently cppc_set_perf)
60 	 *	We need to take read_lock and check if channel belongs to OSPM
61 	 * before reading or writing to PCC subspace
62 	 *	We need to take write_lock before transferring the channel
63 	 * ownership to the platform via a Doorbell
64 	 *	This allows us to batch a number of CPPC requests if they happen
65 	 * to originate in about the same time
66 	 *
67 	 * For non-performance critical usecases(init)
68 	 *	Take write_lock for all purposes which gives exclusive access
69 	 */
70 	struct rw_semaphore pcc_lock;
71 
72 	/* Wait queue for CPUs whose requests were batched */
73 	wait_queue_head_t pcc_write_wait_q;
74 	ktime_t last_cmd_cmpl_time;
75 	ktime_t last_mpar_reset;
76 	int mpar_count;
77 	int refcount;
78 };
79 
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84 
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93 
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 						0x8 + (offs))
97 
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
100 				(cpc)->cpc_entry.reg.space_id ==	\
101 				ACPI_ADR_SPACE_PLATFORM_COMM)
102 
103 /* Check if a CPC register is in SystemMemory */
104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
105 				(cpc)->cpc_entry.reg.space_id ==	\
106 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
107 
108 /* Check if a CPC register is in SystemIo */
109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
110 				(cpc)->cpc_entry.reg.space_id ==	\
111 				ACPI_ADR_SPACE_SYSTEM_IO)
112 
113 /* Evaluates to True if reg is a NULL register descriptor */
114 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115 				(reg)->address == 0 &&			\
116 				(reg)->bit_width == 0 &&		\
117 				(reg)->bit_offset == 0 &&		\
118 				(reg)->access_width == 0)
119 
120 /* Evaluates to True if an optional cpc field is supported */
121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
122 				!!(cpc)->cpc_entry.int_value :		\
123 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
124 /*
125  * Arbitrary Retries in case the remote processor is slow to respond
126  * to PCC commands. Keeping it high enough to cover emulators where
127  * the processors run painfully slow.
128  */
129 #define NUM_RETRIES 500ULL
130 
131 #define OVER_16BTS_MASK ~0xFFFFULL
132 
133 #define define_one_cppc_ro(_name)		\
134 static struct kobj_attribute _name =		\
135 __ATTR(_name, 0444, show_##_name, NULL)
136 
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138 
139 #define show_cppc_data(access_fn, struct_name, member_name)		\
140 	static ssize_t show_##member_name(struct kobject *kobj,		\
141 				struct kobj_attribute *attr, char *buf)	\
142 	{								\
143 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
144 		struct struct_name st_name = {0};			\
145 		int ret;						\
146 									\
147 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
148 		if (ret)						\
149 			return ret;					\
150 									\
151 		return sysfs_emit(buf, "%llu\n",		\
152 				(u64)st_name.member_name);		\
153 	}								\
154 	define_one_cppc_ro(member_name)
155 
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162 
163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165 
166 /* Check for valid access_width, otherwise, fallback to using bit_width */
167 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
168 
169 /* Shift and apply the mask for CPC reads/writes */
170 #define MASK_VAL(reg, val) (((val) >> (reg)->bit_offset) & 			\
171 					GENMASK(((reg)->bit_width) - 1, 0))
172 
173 static ssize_t show_feedback_ctrs(struct kobject *kobj,
174 		struct kobj_attribute *attr, char *buf)
175 {
176 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
177 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
178 	int ret;
179 
180 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
181 	if (ret)
182 		return ret;
183 
184 	return sysfs_emit(buf, "ref:%llu del:%llu\n",
185 			fb_ctrs.reference, fb_ctrs.delivered);
186 }
187 define_one_cppc_ro(feedback_ctrs);
188 
189 static struct attribute *cppc_attrs[] = {
190 	&feedback_ctrs.attr,
191 	&reference_perf.attr,
192 	&wraparound_time.attr,
193 	&highest_perf.attr,
194 	&lowest_perf.attr,
195 	&lowest_nonlinear_perf.attr,
196 	&nominal_perf.attr,
197 	&nominal_freq.attr,
198 	&lowest_freq.attr,
199 	NULL
200 };
201 ATTRIBUTE_GROUPS(cppc);
202 
203 static const struct kobj_type cppc_ktype = {
204 	.sysfs_ops = &kobj_sysfs_ops,
205 	.default_groups = cppc_groups,
206 };
207 
208 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
209 {
210 	int ret, status;
211 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
212 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
213 		pcc_ss_data->pcc_comm_addr;
214 
215 	if (!pcc_ss_data->platform_owns_pcc)
216 		return 0;
217 
218 	/*
219 	 * Poll PCC status register every 3us(delay_us) for maximum of
220 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
221 	 */
222 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
223 					status & PCC_CMD_COMPLETE_MASK, 3,
224 					pcc_ss_data->deadline_us);
225 
226 	if (likely(!ret)) {
227 		pcc_ss_data->platform_owns_pcc = false;
228 		if (chk_err_bit && (status & PCC_ERROR_MASK))
229 			ret = -EIO;
230 	}
231 
232 	if (unlikely(ret))
233 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
234 		       pcc_ss_id, ret);
235 
236 	return ret;
237 }
238 
239 /*
240  * This function transfers the ownership of the PCC to the platform
241  * So it must be called while holding write_lock(pcc_lock)
242  */
243 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
244 {
245 	int ret = -EIO, i;
246 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
247 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
248 		pcc_ss_data->pcc_comm_addr;
249 	unsigned int time_delta;
250 
251 	/*
252 	 * For CMD_WRITE we know for a fact the caller should have checked
253 	 * the channel before writing to PCC space
254 	 */
255 	if (cmd == CMD_READ) {
256 		/*
257 		 * If there are pending cpc_writes, then we stole the channel
258 		 * before write completion, so first send a WRITE command to
259 		 * platform
260 		 */
261 		if (pcc_ss_data->pending_pcc_write_cmd)
262 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
263 
264 		ret = check_pcc_chan(pcc_ss_id, false);
265 		if (ret)
266 			goto end;
267 	} else /* CMD_WRITE */
268 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
269 
270 	/*
271 	 * Handle the Minimum Request Turnaround Time(MRTT)
272 	 * "The minimum amount of time that OSPM must wait after the completion
273 	 * of a command before issuing the next command, in microseconds"
274 	 */
275 	if (pcc_ss_data->pcc_mrtt) {
276 		time_delta = ktime_us_delta(ktime_get(),
277 					    pcc_ss_data->last_cmd_cmpl_time);
278 		if (pcc_ss_data->pcc_mrtt > time_delta)
279 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
280 	}
281 
282 	/*
283 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
284 	 * "The maximum number of periodic requests that the subspace channel can
285 	 * support, reported in commands per minute. 0 indicates no limitation."
286 	 *
287 	 * This parameter should be ideally zero or large enough so that it can
288 	 * handle maximum number of requests that all the cores in the system can
289 	 * collectively generate. If it is not, we will follow the spec and just
290 	 * not send the request to the platform after hitting the MPAR limit in
291 	 * any 60s window
292 	 */
293 	if (pcc_ss_data->pcc_mpar) {
294 		if (pcc_ss_data->mpar_count == 0) {
295 			time_delta = ktime_ms_delta(ktime_get(),
296 						    pcc_ss_data->last_mpar_reset);
297 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
298 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
299 					 pcc_ss_id);
300 				ret = -EIO;
301 				goto end;
302 			}
303 			pcc_ss_data->last_mpar_reset = ktime_get();
304 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
305 		}
306 		pcc_ss_data->mpar_count--;
307 	}
308 
309 	/* Write to the shared comm region. */
310 	writew_relaxed(cmd, &generic_comm_base->command);
311 
312 	/* Flip CMD COMPLETE bit */
313 	writew_relaxed(0, &generic_comm_base->status);
314 
315 	pcc_ss_data->platform_owns_pcc = true;
316 
317 	/* Ring doorbell */
318 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
319 	if (ret < 0) {
320 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
321 		       pcc_ss_id, cmd, ret);
322 		goto end;
323 	}
324 
325 	/* wait for completion and check for PCC error bit */
326 	ret = check_pcc_chan(pcc_ss_id, true);
327 
328 	if (pcc_ss_data->pcc_mrtt)
329 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
330 
331 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
332 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
333 	else
334 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
335 
336 end:
337 	if (cmd == CMD_WRITE) {
338 		if (unlikely(ret)) {
339 			for_each_possible_cpu(i) {
340 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
341 
342 				if (!desc)
343 					continue;
344 
345 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
346 					desc->write_cmd_status = ret;
347 			}
348 		}
349 		pcc_ss_data->pcc_write_cnt++;
350 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
351 	}
352 
353 	return ret;
354 }
355 
356 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
357 {
358 	if (ret < 0)
359 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
360 				*(u16 *)msg, ret);
361 	else
362 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
363 				*(u16 *)msg, ret);
364 }
365 
366 static struct mbox_client cppc_mbox_cl = {
367 	.tx_done = cppc_chan_tx_done,
368 	.knows_txdone = true,
369 };
370 
371 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
372 {
373 	int result = -EFAULT;
374 	acpi_status status = AE_OK;
375 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
376 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
377 	struct acpi_buffer state = {0, NULL};
378 	union acpi_object  *psd = NULL;
379 	struct acpi_psd_package *pdomain;
380 
381 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
382 					    &buffer, ACPI_TYPE_PACKAGE);
383 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
384 		return 0;
385 	if (ACPI_FAILURE(status))
386 		return -ENODEV;
387 
388 	psd = buffer.pointer;
389 	if (!psd || psd->package.count != 1) {
390 		pr_debug("Invalid _PSD data\n");
391 		goto end;
392 	}
393 
394 	pdomain = &(cpc_ptr->domain_info);
395 
396 	state.length = sizeof(struct acpi_psd_package);
397 	state.pointer = pdomain;
398 
399 	status = acpi_extract_package(&(psd->package.elements[0]),
400 		&format, &state);
401 	if (ACPI_FAILURE(status)) {
402 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
403 		goto end;
404 	}
405 
406 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
407 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
408 		goto end;
409 	}
410 
411 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
412 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
413 		goto end;
414 	}
415 
416 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
417 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
418 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
419 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
420 		goto end;
421 	}
422 
423 	result = 0;
424 end:
425 	kfree(buffer.pointer);
426 	return result;
427 }
428 
429 bool acpi_cpc_valid(void)
430 {
431 	struct cpc_desc *cpc_ptr;
432 	int cpu;
433 
434 	if (acpi_disabled)
435 		return false;
436 
437 	for_each_present_cpu(cpu) {
438 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
439 		if (!cpc_ptr)
440 			return false;
441 	}
442 
443 	return true;
444 }
445 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
446 
447 bool cppc_allow_fast_switch(void)
448 {
449 	struct cpc_register_resource *desired_reg;
450 	struct cpc_desc *cpc_ptr;
451 	int cpu;
452 
453 	for_each_possible_cpu(cpu) {
454 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
455 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
456 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
457 				!CPC_IN_SYSTEM_IO(desired_reg))
458 			return false;
459 	}
460 
461 	return true;
462 }
463 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
464 
465 /**
466  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
467  * @cpu: Find all CPUs that share a domain with cpu.
468  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
469  *
470  *	Return: 0 for success or negative value for err.
471  */
472 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
473 {
474 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
475 	struct acpi_psd_package *match_pdomain;
476 	struct acpi_psd_package *pdomain;
477 	int count_target, i;
478 
479 	/*
480 	 * Now that we have _PSD data from all CPUs, let's setup P-state
481 	 * domain info.
482 	 */
483 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
484 	if (!cpc_ptr)
485 		return -EFAULT;
486 
487 	pdomain = &(cpc_ptr->domain_info);
488 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
489 	if (pdomain->num_processors <= 1)
490 		return 0;
491 
492 	/* Validate the Domain info */
493 	count_target = pdomain->num_processors;
494 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
495 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
496 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
497 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
498 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
499 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
500 
501 	for_each_possible_cpu(i) {
502 		if (i == cpu)
503 			continue;
504 
505 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
506 		if (!match_cpc_ptr)
507 			goto err_fault;
508 
509 		match_pdomain = &(match_cpc_ptr->domain_info);
510 		if (match_pdomain->domain != pdomain->domain)
511 			continue;
512 
513 		/* Here i and cpu are in the same domain */
514 		if (match_pdomain->num_processors != count_target)
515 			goto err_fault;
516 
517 		if (pdomain->coord_type != match_pdomain->coord_type)
518 			goto err_fault;
519 
520 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
521 	}
522 
523 	return 0;
524 
525 err_fault:
526 	/* Assume no coordination on any error parsing domain info */
527 	cpumask_clear(cpu_data->shared_cpu_map);
528 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
529 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
530 
531 	return -EFAULT;
532 }
533 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
534 
535 static int register_pcc_channel(int pcc_ss_idx)
536 {
537 	struct pcc_mbox_chan *pcc_chan;
538 	u64 usecs_lat;
539 
540 	if (pcc_ss_idx >= 0) {
541 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
542 
543 		if (IS_ERR(pcc_chan)) {
544 			pr_err("Failed to find PCC channel for subspace %d\n",
545 			       pcc_ss_idx);
546 			return -ENODEV;
547 		}
548 
549 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
550 		/*
551 		 * cppc_ss->latency is just a Nominal value. In reality
552 		 * the remote processor could be much slower to reply.
553 		 * So add an arbitrary amount of wait on top of Nominal.
554 		 */
555 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
556 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
557 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
558 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
559 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
560 
561 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
562 			acpi_os_ioremap(pcc_chan->shmem_base_addr,
563 					pcc_chan->shmem_size);
564 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
565 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
566 			       pcc_ss_idx);
567 			return -ENOMEM;
568 		}
569 
570 		/* Set flag so that we don't come here for each CPU. */
571 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
572 	}
573 
574 	return 0;
575 }
576 
577 /**
578  * cpc_ffh_supported() - check if FFH reading supported
579  *
580  * Check if the architecture has support for functional fixed hardware
581  * read/write capability.
582  *
583  * Return: true for supported, false for not supported
584  */
585 bool __weak cpc_ffh_supported(void)
586 {
587 	return false;
588 }
589 
590 /**
591  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
592  *
593  * Check if the architectural support for CPPC is present even
594  * if the _OSC hasn't prescribed it
595  *
596  * Return: true for supported, false for not supported
597  */
598 bool __weak cpc_supported_by_cpu(void)
599 {
600 	return false;
601 }
602 
603 /**
604  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
605  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
606  *
607  * Check and allocate the cppc_pcc_data memory.
608  * In some processor configurations it is possible that same subspace
609  * is shared between multiple CPUs. This is seen especially in CPUs
610  * with hardware multi-threading support.
611  *
612  * Return: 0 for success, errno for failure
613  */
614 static int pcc_data_alloc(int pcc_ss_id)
615 {
616 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
617 		return -EINVAL;
618 
619 	if (pcc_data[pcc_ss_id]) {
620 		pcc_data[pcc_ss_id]->refcount++;
621 	} else {
622 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
623 					      GFP_KERNEL);
624 		if (!pcc_data[pcc_ss_id])
625 			return -ENOMEM;
626 		pcc_data[pcc_ss_id]->refcount++;
627 	}
628 
629 	return 0;
630 }
631 
632 /*
633  * An example CPC table looks like the following.
634  *
635  *  Name (_CPC, Package() {
636  *      17,							// NumEntries
637  *      1,							// Revision
638  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
639  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
640  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
641  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
642  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
643  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
644  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
645  *      ...
646  *      ...
647  *      ...
648  *  }
649  * Each Register() encodes how to access that specific register.
650  * e.g. a sample PCC entry has the following encoding:
651  *
652  *  Register (
653  *      PCC,	// AddressSpaceKeyword
654  *      8,	// RegisterBitWidth
655  *      8,	// RegisterBitOffset
656  *      0x30,	// RegisterAddress
657  *      9,	// AccessSize (subspace ID)
658  *  )
659  */
660 
661 #ifndef arch_init_invariance_cppc
662 static inline void arch_init_invariance_cppc(void) { }
663 #endif
664 
665 /**
666  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
667  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
668  *
669  *	Return: 0 for success or negative value for err.
670  */
671 int acpi_cppc_processor_probe(struct acpi_processor *pr)
672 {
673 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
674 	union acpi_object *out_obj, *cpc_obj;
675 	struct cpc_desc *cpc_ptr;
676 	struct cpc_reg *gas_t;
677 	struct device *cpu_dev;
678 	acpi_handle handle = pr->handle;
679 	unsigned int num_ent, i, cpc_rev;
680 	int pcc_subspace_id = -1;
681 	acpi_status status;
682 	int ret = -ENODATA;
683 
684 	if (!osc_sb_cppc2_support_acked) {
685 		pr_debug("CPPC v2 _OSC not acked\n");
686 		if (!cpc_supported_by_cpu())
687 			return -ENODEV;
688 	}
689 
690 	/* Parse the ACPI _CPC table for this CPU. */
691 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
692 			ACPI_TYPE_PACKAGE);
693 	if (ACPI_FAILURE(status)) {
694 		ret = -ENODEV;
695 		goto out_buf_free;
696 	}
697 
698 	out_obj = (union acpi_object *) output.pointer;
699 
700 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
701 	if (!cpc_ptr) {
702 		ret = -ENOMEM;
703 		goto out_buf_free;
704 	}
705 
706 	/* First entry is NumEntries. */
707 	cpc_obj = &out_obj->package.elements[0];
708 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
709 		num_ent = cpc_obj->integer.value;
710 		if (num_ent <= 1) {
711 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
712 				 num_ent, pr->id);
713 			goto out_free;
714 		}
715 	} else {
716 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
717 			 cpc_obj->type, pr->id);
718 		goto out_free;
719 	}
720 
721 	/* Second entry should be revision. */
722 	cpc_obj = &out_obj->package.elements[1];
723 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
724 		cpc_rev = cpc_obj->integer.value;
725 	} else {
726 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
727 			 cpc_obj->type, pr->id);
728 		goto out_free;
729 	}
730 
731 	if (cpc_rev < CPPC_V2_REV) {
732 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
733 			 pr->id);
734 		goto out_free;
735 	}
736 
737 	/*
738 	 * Disregard _CPC if the number of entries in the return pachage is not
739 	 * as expected, but support future revisions being proper supersets of
740 	 * the v3 and only causing more entries to be returned by _CPC.
741 	 */
742 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
743 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
744 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
745 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
746 			 num_ent, pr->id);
747 		goto out_free;
748 	}
749 	if (cpc_rev > CPPC_V3_REV) {
750 		num_ent = CPPC_V3_NUM_ENT;
751 		cpc_rev = CPPC_V3_REV;
752 	}
753 
754 	cpc_ptr->num_entries = num_ent;
755 	cpc_ptr->version = cpc_rev;
756 
757 	/* Iterate through remaining entries in _CPC */
758 	for (i = 2; i < num_ent; i++) {
759 		cpc_obj = &out_obj->package.elements[i];
760 
761 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
762 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
763 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
764 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
765 			gas_t = (struct cpc_reg *)
766 				cpc_obj->buffer.pointer;
767 
768 			/*
769 			 * The PCC Subspace index is encoded inside
770 			 * the CPC table entries. The same PCC index
771 			 * will be used for all the PCC entries,
772 			 * so extract it only once.
773 			 */
774 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
775 				if (pcc_subspace_id < 0) {
776 					pcc_subspace_id = gas_t->access_width;
777 					if (pcc_data_alloc(pcc_subspace_id))
778 						goto out_free;
779 				} else if (pcc_subspace_id != gas_t->access_width) {
780 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
781 						 pr->id);
782 					goto out_free;
783 				}
784 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
785 				if (gas_t->address) {
786 					void __iomem *addr;
787 					size_t access_width;
788 
789 					if (!osc_cpc_flexible_adr_space_confirmed) {
790 						pr_debug("Flexible address space capability not supported\n");
791 						if (!cpc_supported_by_cpu())
792 							goto out_free;
793 					}
794 
795 					access_width = GET_BIT_WIDTH(gas_t) / 8;
796 					addr = ioremap(gas_t->address, access_width);
797 					if (!addr)
798 						goto out_free;
799 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
800 				}
801 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
802 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
803 					/*
804 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
805 					 * SystemIO doesn't implement 64-bit
806 					 * registers.
807 					 */
808 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
809 						 gas_t->access_width);
810 					goto out_free;
811 				}
812 				if (gas_t->address & OVER_16BTS_MASK) {
813 					/* SystemIO registers use 16-bit integer addresses */
814 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
815 						 gas_t->address);
816 					goto out_free;
817 				}
818 				if (!osc_cpc_flexible_adr_space_confirmed) {
819 					pr_debug("Flexible address space capability not supported\n");
820 					if (!cpc_supported_by_cpu())
821 						goto out_free;
822 				}
823 			} else {
824 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
825 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
826 					pr_debug("Unsupported register type (%d) in _CPC\n",
827 						 gas_t->space_id);
828 					goto out_free;
829 				}
830 			}
831 
832 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
833 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
834 		} else {
835 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
836 				 i, pr->id);
837 			goto out_free;
838 		}
839 	}
840 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
841 
842 	/*
843 	 * Initialize the remaining cpc_regs as unsupported.
844 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
845 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
846 	 */
847 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
848 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
849 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
850 	}
851 
852 
853 	/* Store CPU Logical ID */
854 	cpc_ptr->cpu_id = pr->id;
855 
856 	/* Parse PSD data for this CPU */
857 	ret = acpi_get_psd(cpc_ptr, handle);
858 	if (ret)
859 		goto out_free;
860 
861 	/* Register PCC channel once for all PCC subspace ID. */
862 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
863 		ret = register_pcc_channel(pcc_subspace_id);
864 		if (ret)
865 			goto out_free;
866 
867 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
868 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
869 	}
870 
871 	/* Everything looks okay */
872 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
873 
874 	/* Add per logical CPU nodes for reading its feedback counters. */
875 	cpu_dev = get_cpu_device(pr->id);
876 	if (!cpu_dev) {
877 		ret = -EINVAL;
878 		goto out_free;
879 	}
880 
881 	/* Plug PSD data into this CPU's CPC descriptor. */
882 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
883 
884 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
885 			"acpi_cppc");
886 	if (ret) {
887 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
888 		kobject_put(&cpc_ptr->kobj);
889 		goto out_free;
890 	}
891 
892 	arch_init_invariance_cppc();
893 
894 	kfree(output.pointer);
895 	return 0;
896 
897 out_free:
898 	/* Free all the mapped sys mem areas for this CPU */
899 	for (i = 2; i < cpc_ptr->num_entries; i++) {
900 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
901 
902 		if (addr)
903 			iounmap(addr);
904 	}
905 	kfree(cpc_ptr);
906 
907 out_buf_free:
908 	kfree(output.pointer);
909 	return ret;
910 }
911 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
912 
913 /**
914  * acpi_cppc_processor_exit - Cleanup CPC structs.
915  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
916  *
917  * Return: Void
918  */
919 void acpi_cppc_processor_exit(struct acpi_processor *pr)
920 {
921 	struct cpc_desc *cpc_ptr;
922 	unsigned int i;
923 	void __iomem *addr;
924 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
925 
926 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
927 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
928 			pcc_data[pcc_ss_id]->refcount--;
929 			if (!pcc_data[pcc_ss_id]->refcount) {
930 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
931 				kfree(pcc_data[pcc_ss_id]);
932 				pcc_data[pcc_ss_id] = NULL;
933 			}
934 		}
935 	}
936 
937 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
938 	if (!cpc_ptr)
939 		return;
940 
941 	/* Free all the mapped sys mem areas for this CPU */
942 	for (i = 2; i < cpc_ptr->num_entries; i++) {
943 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
944 		if (addr)
945 			iounmap(addr);
946 	}
947 
948 	kobject_put(&cpc_ptr->kobj);
949 	kfree(cpc_ptr);
950 }
951 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
952 
953 /**
954  * cpc_read_ffh() - Read FFH register
955  * @cpunum:	CPU number to read
956  * @reg:	cppc register information
957  * @val:	place holder for return value
958  *
959  * Read bit_width bits from a specified address and bit_offset
960  *
961  * Return: 0 for success and error code
962  */
963 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
964 {
965 	return -ENOTSUPP;
966 }
967 
968 /**
969  * cpc_write_ffh() - Write FFH register
970  * @cpunum:	CPU number to write
971  * @reg:	cppc register information
972  * @val:	value to write
973  *
974  * Write value of bit_width bits to a specified address and bit_offset
975  *
976  * Return: 0 for success and error code
977  */
978 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
979 {
980 	return -ENOTSUPP;
981 }
982 
983 /*
984  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
985  * as fast as possible. We have already mapped the PCC subspace during init, so
986  * we can directly write to it.
987  */
988 
989 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
990 {
991 	void __iomem *vaddr = NULL;
992 	int size;
993 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
994 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
995 
996 	if (reg_res->type == ACPI_TYPE_INTEGER) {
997 		*val = reg_res->cpc_entry.int_value;
998 		return 0;
999 	}
1000 
1001 	*val = 0;
1002 	size = GET_BIT_WIDTH(reg);
1003 
1004 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1005 		u32 val_u32;
1006 		acpi_status status;
1007 
1008 		status = acpi_os_read_port((acpi_io_address)reg->address,
1009 					   &val_u32, size);
1010 		if (ACPI_FAILURE(status)) {
1011 			pr_debug("Error: Failed to read SystemIO port %llx\n",
1012 				 reg->address);
1013 			return -EFAULT;
1014 		}
1015 
1016 		*val = val_u32;
1017 		return 0;
1018 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1019 		/*
1020 		 * For registers in PCC space, the register size is determined
1021 		 * by the bit width field; the access size is used to indicate
1022 		 * the PCC subspace id.
1023 		 */
1024 		size = reg->bit_width;
1025 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1026 	}
1027 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1028 		vaddr = reg_res->sys_mem_vaddr;
1029 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1030 		return cpc_read_ffh(cpu, reg, val);
1031 	else
1032 		return acpi_os_read_memory((acpi_physical_address)reg->address,
1033 				val, size);
1034 
1035 	switch (size) {
1036 	case 8:
1037 		*val = readb_relaxed(vaddr);
1038 		break;
1039 	case 16:
1040 		*val = readw_relaxed(vaddr);
1041 		break;
1042 	case 32:
1043 		*val = readl_relaxed(vaddr);
1044 		break;
1045 	case 64:
1046 		*val = readq_relaxed(vaddr);
1047 		break;
1048 	default:
1049 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1050 			pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1051 				size, reg->address);
1052 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1053 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1054 				size, pcc_ss_id);
1055 		}
1056 		return -EFAULT;
1057 	}
1058 
1059 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1060 		*val = MASK_VAL(reg, *val);
1061 
1062 	return 0;
1063 }
1064 
1065 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1066 {
1067 	int ret_val = 0;
1068 	int size;
1069 	void __iomem *vaddr = NULL;
1070 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1071 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1072 
1073 	size = GET_BIT_WIDTH(reg);
1074 
1075 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1076 		acpi_status status;
1077 
1078 		status = acpi_os_write_port((acpi_io_address)reg->address,
1079 					    (u32)val, size);
1080 		if (ACPI_FAILURE(status)) {
1081 			pr_debug("Error: Failed to write SystemIO port %llx\n",
1082 				 reg->address);
1083 			return -EFAULT;
1084 		}
1085 
1086 		return 0;
1087 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1088 		/*
1089 		 * For registers in PCC space, the register size is determined
1090 		 * by the bit width field; the access size is used to indicate
1091 		 * the PCC subspace id.
1092 		 */
1093 		size = reg->bit_width;
1094 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1095 	}
1096 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1097 		vaddr = reg_res->sys_mem_vaddr;
1098 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1099 		return cpc_write_ffh(cpu, reg, val);
1100 	else
1101 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1102 				val, size);
1103 
1104 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1105 		val = MASK_VAL(reg, val);
1106 
1107 	switch (size) {
1108 	case 8:
1109 		writeb_relaxed(val, vaddr);
1110 		break;
1111 	case 16:
1112 		writew_relaxed(val, vaddr);
1113 		break;
1114 	case 32:
1115 		writel_relaxed(val, vaddr);
1116 		break;
1117 	case 64:
1118 		writeq_relaxed(val, vaddr);
1119 		break;
1120 	default:
1121 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1122 			pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1123 				size, reg->address);
1124 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1125 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1126 				size, pcc_ss_id);
1127 		}
1128 		ret_val = -EFAULT;
1129 		break;
1130 	}
1131 
1132 	return ret_val;
1133 }
1134 
1135 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1136 {
1137 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1138 	struct cpc_register_resource *reg;
1139 
1140 	if (!cpc_desc) {
1141 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1142 		return -ENODEV;
1143 	}
1144 
1145 	reg = &cpc_desc->cpc_regs[reg_idx];
1146 
1147 	if (CPC_IN_PCC(reg)) {
1148 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1149 		struct cppc_pcc_data *pcc_ss_data = NULL;
1150 		int ret = 0;
1151 
1152 		if (pcc_ss_id < 0)
1153 			return -EIO;
1154 
1155 		pcc_ss_data = pcc_data[pcc_ss_id];
1156 
1157 		down_write(&pcc_ss_data->pcc_lock);
1158 
1159 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1160 			cpc_read(cpunum, reg, perf);
1161 		else
1162 			ret = -EIO;
1163 
1164 		up_write(&pcc_ss_data->pcc_lock);
1165 
1166 		return ret;
1167 	}
1168 
1169 	cpc_read(cpunum, reg, perf);
1170 
1171 	return 0;
1172 }
1173 
1174 /**
1175  * cppc_get_desired_perf - Get the desired performance register value.
1176  * @cpunum: CPU from which to get desired performance.
1177  * @desired_perf: Return address.
1178  *
1179  * Return: 0 for success, -EIO otherwise.
1180  */
1181 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1182 {
1183 	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1184 }
1185 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1186 
1187 /**
1188  * cppc_get_nominal_perf - Get the nominal performance register value.
1189  * @cpunum: CPU from which to get nominal performance.
1190  * @nominal_perf: Return address.
1191  *
1192  * Return: 0 for success, -EIO otherwise.
1193  */
1194 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1195 {
1196 	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1197 }
1198 
1199 /**
1200  * cppc_get_highest_perf - Get the highest performance register value.
1201  * @cpunum: CPU from which to get highest performance.
1202  * @highest_perf: Return address.
1203  *
1204  * Return: 0 for success, -EIO otherwise.
1205  */
1206 int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1207 {
1208 	return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1209 }
1210 EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1211 
1212 /**
1213  * cppc_get_epp_perf - Get the epp register value.
1214  * @cpunum: CPU from which to get epp preference value.
1215  * @epp_perf: Return address.
1216  *
1217  * Return: 0 for success, -EIO otherwise.
1218  */
1219 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1220 {
1221 	return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1222 }
1223 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1224 
1225 /**
1226  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1227  * @cpunum: CPU from which to get capabilities info.
1228  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1229  *
1230  * Return: 0 for success with perf_caps populated else -ERRNO.
1231  */
1232 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1233 {
1234 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1235 	struct cpc_register_resource *highest_reg, *lowest_reg,
1236 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1237 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1238 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1239 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1240 	struct cppc_pcc_data *pcc_ss_data = NULL;
1241 	int ret = 0, regs_in_pcc = 0;
1242 
1243 	if (!cpc_desc) {
1244 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1245 		return -ENODEV;
1246 	}
1247 
1248 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1249 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1250 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1251 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1252 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1253 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1254 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1255 
1256 	/* Are any of the regs PCC ?*/
1257 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1258 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1259 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1260 		if (pcc_ss_id < 0) {
1261 			pr_debug("Invalid pcc_ss_id\n");
1262 			return -ENODEV;
1263 		}
1264 		pcc_ss_data = pcc_data[pcc_ss_id];
1265 		regs_in_pcc = 1;
1266 		down_write(&pcc_ss_data->pcc_lock);
1267 		/* Ring doorbell once to update PCC subspace */
1268 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1269 			ret = -EIO;
1270 			goto out_err;
1271 		}
1272 	}
1273 
1274 	cpc_read(cpunum, highest_reg, &high);
1275 	perf_caps->highest_perf = high;
1276 
1277 	cpc_read(cpunum, lowest_reg, &low);
1278 	perf_caps->lowest_perf = low;
1279 
1280 	cpc_read(cpunum, nominal_reg, &nom);
1281 	perf_caps->nominal_perf = nom;
1282 
1283 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1284 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1285 		perf_caps->guaranteed_perf = 0;
1286 	} else {
1287 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1288 		perf_caps->guaranteed_perf = guaranteed;
1289 	}
1290 
1291 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1292 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1293 
1294 	if (!high || !low || !nom || !min_nonlinear)
1295 		ret = -EFAULT;
1296 
1297 	/* Read optional lowest and nominal frequencies if present */
1298 	if (CPC_SUPPORTED(low_freq_reg))
1299 		cpc_read(cpunum, low_freq_reg, &low_f);
1300 
1301 	if (CPC_SUPPORTED(nom_freq_reg))
1302 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1303 
1304 	perf_caps->lowest_freq = low_f;
1305 	perf_caps->nominal_freq = nom_f;
1306 
1307 
1308 out_err:
1309 	if (regs_in_pcc)
1310 		up_write(&pcc_ss_data->pcc_lock);
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1314 
1315 /**
1316  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1317  *
1318  * CPPC has flexibility about how CPU performance counters are accessed.
1319  * One of the choices is PCC regions, which can have a high access latency. This
1320  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1321  *
1322  * Return: true if any of the counters are in PCC regions, false otherwise
1323  */
1324 bool cppc_perf_ctrs_in_pcc(void)
1325 {
1326 	int cpu;
1327 
1328 	for_each_present_cpu(cpu) {
1329 		struct cpc_register_resource *ref_perf_reg;
1330 		struct cpc_desc *cpc_desc;
1331 
1332 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1333 
1334 		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1335 		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1336 		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1337 			return true;
1338 
1339 
1340 		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1341 
1342 		/*
1343 		 * If reference perf register is not supported then we should
1344 		 * use the nominal perf value
1345 		 */
1346 		if (!CPC_SUPPORTED(ref_perf_reg))
1347 			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1348 
1349 		if (CPC_IN_PCC(ref_perf_reg))
1350 			return true;
1351 	}
1352 
1353 	return false;
1354 }
1355 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1356 
1357 /**
1358  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1359  * @cpunum: CPU from which to read counters.
1360  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1361  *
1362  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1363  */
1364 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1365 {
1366 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1367 	struct cpc_register_resource *delivered_reg, *reference_reg,
1368 		*ref_perf_reg, *ctr_wrap_reg;
1369 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1370 	struct cppc_pcc_data *pcc_ss_data = NULL;
1371 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1372 	int ret = 0, regs_in_pcc = 0;
1373 
1374 	if (!cpc_desc) {
1375 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1376 		return -ENODEV;
1377 	}
1378 
1379 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1380 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1381 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1382 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1383 
1384 	/*
1385 	 * If reference perf register is not supported then we should
1386 	 * use the nominal perf value
1387 	 */
1388 	if (!CPC_SUPPORTED(ref_perf_reg))
1389 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1390 
1391 	/* Are any of the regs PCC ?*/
1392 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1393 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1394 		if (pcc_ss_id < 0) {
1395 			pr_debug("Invalid pcc_ss_id\n");
1396 			return -ENODEV;
1397 		}
1398 		pcc_ss_data = pcc_data[pcc_ss_id];
1399 		down_write(&pcc_ss_data->pcc_lock);
1400 		regs_in_pcc = 1;
1401 		/* Ring doorbell once to update PCC subspace */
1402 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1403 			ret = -EIO;
1404 			goto out_err;
1405 		}
1406 	}
1407 
1408 	cpc_read(cpunum, delivered_reg, &delivered);
1409 	cpc_read(cpunum, reference_reg, &reference);
1410 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1411 
1412 	/*
1413 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1414 	 * performance counters are assumed to never wrap during the lifetime of
1415 	 * platform
1416 	 */
1417 	ctr_wrap_time = (u64)(~((u64)0));
1418 	if (CPC_SUPPORTED(ctr_wrap_reg))
1419 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1420 
1421 	if (!delivered || !reference ||	!ref_perf) {
1422 		ret = -EFAULT;
1423 		goto out_err;
1424 	}
1425 
1426 	perf_fb_ctrs->delivered = delivered;
1427 	perf_fb_ctrs->reference = reference;
1428 	perf_fb_ctrs->reference_perf = ref_perf;
1429 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1430 out_err:
1431 	if (regs_in_pcc)
1432 		up_write(&pcc_ss_data->pcc_lock);
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1436 
1437 /*
1438  * Set Energy Performance Preference Register value through
1439  * Performance Controls Interface
1440  */
1441 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1442 {
1443 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1444 	struct cpc_register_resource *epp_set_reg;
1445 	struct cpc_register_resource *auto_sel_reg;
1446 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1447 	struct cppc_pcc_data *pcc_ss_data = NULL;
1448 	int ret;
1449 
1450 	if (!cpc_desc) {
1451 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1452 		return -ENODEV;
1453 	}
1454 
1455 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1456 	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1457 
1458 	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1459 		if (pcc_ss_id < 0) {
1460 			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1461 			return -ENODEV;
1462 		}
1463 
1464 		if (CPC_SUPPORTED(auto_sel_reg)) {
1465 			ret = cpc_write(cpu, auto_sel_reg, enable);
1466 			if (ret)
1467 				return ret;
1468 		}
1469 
1470 		if (CPC_SUPPORTED(epp_set_reg)) {
1471 			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1472 			if (ret)
1473 				return ret;
1474 		}
1475 
1476 		pcc_ss_data = pcc_data[pcc_ss_id];
1477 
1478 		down_write(&pcc_ss_data->pcc_lock);
1479 		/* after writing CPC, transfer the ownership of PCC to platform */
1480 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1481 		up_write(&pcc_ss_data->pcc_lock);
1482 	} else {
1483 		ret = -ENOTSUPP;
1484 		pr_debug("_CPC in PCC is not supported\n");
1485 	}
1486 
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1490 
1491 /**
1492  * cppc_get_auto_sel_caps - Read autonomous selection register.
1493  * @cpunum : CPU from which to read register.
1494  * @perf_caps : struct where autonomous selection register value is updated.
1495  */
1496 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1497 {
1498 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1499 	struct cpc_register_resource *auto_sel_reg;
1500 	u64  auto_sel;
1501 
1502 	if (!cpc_desc) {
1503 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1504 		return -ENODEV;
1505 	}
1506 
1507 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1508 
1509 	if (!CPC_SUPPORTED(auto_sel_reg))
1510 		pr_warn_once("Autonomous mode is not unsupported!\n");
1511 
1512 	if (CPC_IN_PCC(auto_sel_reg)) {
1513 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1514 		struct cppc_pcc_data *pcc_ss_data = NULL;
1515 		int ret = 0;
1516 
1517 		if (pcc_ss_id < 0)
1518 			return -ENODEV;
1519 
1520 		pcc_ss_data = pcc_data[pcc_ss_id];
1521 
1522 		down_write(&pcc_ss_data->pcc_lock);
1523 
1524 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1525 			cpc_read(cpunum, auto_sel_reg, &auto_sel);
1526 			perf_caps->auto_sel = (bool)auto_sel;
1527 		} else {
1528 			ret = -EIO;
1529 		}
1530 
1531 		up_write(&pcc_ss_data->pcc_lock);
1532 
1533 		return ret;
1534 	}
1535 
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1539 
1540 /**
1541  * cppc_set_auto_sel - Write autonomous selection register.
1542  * @cpu    : CPU to which to write register.
1543  * @enable : the desired value of autonomous selection resiter to be updated.
1544  */
1545 int cppc_set_auto_sel(int cpu, bool enable)
1546 {
1547 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1548 	struct cpc_register_resource *auto_sel_reg;
1549 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1550 	struct cppc_pcc_data *pcc_ss_data = NULL;
1551 	int ret = -EINVAL;
1552 
1553 	if (!cpc_desc) {
1554 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1555 		return -ENODEV;
1556 	}
1557 
1558 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1559 
1560 	if (CPC_IN_PCC(auto_sel_reg)) {
1561 		if (pcc_ss_id < 0) {
1562 			pr_debug("Invalid pcc_ss_id\n");
1563 			return -ENODEV;
1564 		}
1565 
1566 		if (CPC_SUPPORTED(auto_sel_reg)) {
1567 			ret = cpc_write(cpu, auto_sel_reg, enable);
1568 			if (ret)
1569 				return ret;
1570 		}
1571 
1572 		pcc_ss_data = pcc_data[pcc_ss_id];
1573 
1574 		down_write(&pcc_ss_data->pcc_lock);
1575 		/* after writing CPC, transfer the ownership of PCC to platform */
1576 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1577 		up_write(&pcc_ss_data->pcc_lock);
1578 	} else {
1579 		ret = -ENOTSUPP;
1580 		pr_debug("_CPC in PCC is not supported\n");
1581 	}
1582 
1583 	return ret;
1584 }
1585 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1586 
1587 /**
1588  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1589  * Continuous Performance Control package EnableRegister field.
1590  * @cpu: CPU for which to enable CPPC register.
1591  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1592  *
1593  * Return: 0 for success, -ERRNO or -EIO otherwise.
1594  */
1595 int cppc_set_enable(int cpu, bool enable)
1596 {
1597 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1598 	struct cpc_register_resource *enable_reg;
1599 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1600 	struct cppc_pcc_data *pcc_ss_data = NULL;
1601 	int ret = -EINVAL;
1602 
1603 	if (!cpc_desc) {
1604 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1605 		return -EINVAL;
1606 	}
1607 
1608 	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1609 
1610 	if (CPC_IN_PCC(enable_reg)) {
1611 
1612 		if (pcc_ss_id < 0)
1613 			return -EIO;
1614 
1615 		ret = cpc_write(cpu, enable_reg, enable);
1616 		if (ret)
1617 			return ret;
1618 
1619 		pcc_ss_data = pcc_data[pcc_ss_id];
1620 
1621 		down_write(&pcc_ss_data->pcc_lock);
1622 		/* after writing CPC, transfer the ownership of PCC to platfrom */
1623 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1624 		up_write(&pcc_ss_data->pcc_lock);
1625 		return ret;
1626 	}
1627 
1628 	return cpc_write(cpu, enable_reg, enable);
1629 }
1630 EXPORT_SYMBOL_GPL(cppc_set_enable);
1631 
1632 /**
1633  * cppc_set_perf - Set a CPU's performance controls.
1634  * @cpu: CPU for which to set performance controls.
1635  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1636  *
1637  * Return: 0 for success, -ERRNO otherwise.
1638  */
1639 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1640 {
1641 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1642 	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1643 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1644 	struct cppc_pcc_data *pcc_ss_data = NULL;
1645 	int ret = 0;
1646 
1647 	if (!cpc_desc) {
1648 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1649 		return -ENODEV;
1650 	}
1651 
1652 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1653 	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1654 	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1655 
1656 	/*
1657 	 * This is Phase-I where we want to write to CPC registers
1658 	 * -> We want all CPUs to be able to execute this phase in parallel
1659 	 *
1660 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1661 	 * achieve that goal here
1662 	 */
1663 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1664 		if (pcc_ss_id < 0) {
1665 			pr_debug("Invalid pcc_ss_id\n");
1666 			return -ENODEV;
1667 		}
1668 		pcc_ss_data = pcc_data[pcc_ss_id];
1669 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1670 		if (pcc_ss_data->platform_owns_pcc) {
1671 			ret = check_pcc_chan(pcc_ss_id, false);
1672 			if (ret) {
1673 				up_read(&pcc_ss_data->pcc_lock);
1674 				return ret;
1675 			}
1676 		}
1677 		/*
1678 		 * Update the pending_write to make sure a PCC CMD_READ will not
1679 		 * arrive and steal the channel during the switch to write lock
1680 		 */
1681 		pcc_ss_data->pending_pcc_write_cmd = true;
1682 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1683 		cpc_desc->write_cmd_status = 0;
1684 	}
1685 
1686 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1687 
1688 	/*
1689 	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1690 	 * value to min and max perf, but they don't mean to set the zero value,
1691 	 * they just don't want to write to those registers.
1692 	 */
1693 	if (perf_ctrls->min_perf)
1694 		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1695 	if (perf_ctrls->max_perf)
1696 		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1697 
1698 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1699 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1700 	/*
1701 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1702 	 *
1703 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1704 	 * requests that happened in short overlapping interval. The last CPU to
1705 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1706 	 *
1707 	 * We have the following requirements for Phase-II:
1708 	 *     1. We want to execute Phase-II only when there are no CPUs
1709 	 * currently executing in Phase-I
1710 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1711 	 * entering Phase-I.
1712 	 *     3. We want only one CPU among all those who went through Phase-I
1713 	 * to run phase-II
1714 	 *
1715 	 * If write_trylock fails to get the lock and doesn't transfer the
1716 	 * PCC ownership to the platform, then one of the following will be TRUE
1717 	 *     1. There is at-least one CPU in Phase-I which will later execute
1718 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1719 	 * executing the Phase-II.
1720 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1721 	 * write_trylock and has already acquired the write_lock. We know for a
1722 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1723 	 * before this CPU's Phase-I as we held the read_lock.
1724 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1725 	 * down_write, in which case, send_pcc_cmd will check for pending
1726 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1727 	 * So this CPU can be certain that its request will be delivered
1728 	 *    So in all cases, this CPU knows that its request will be delivered
1729 	 * by another CPU and can return
1730 	 *
1731 	 * After getting the down_write we still need to check for
1732 	 * pending_pcc_write_cmd to take care of the following scenario
1733 	 *    The thread running this code could be scheduled out between
1734 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1735 	 * could have delivered the request to Platform by triggering the
1736 	 * doorbell and transferred the ownership of PCC to platform. So this
1737 	 * avoids triggering an unnecessary doorbell and more importantly before
1738 	 * triggering the doorbell it makes sure that the PCC channel ownership
1739 	 * is still with OSPM.
1740 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1741 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1742 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1743 	 * case during a CMD_READ and if there are pending writes it delivers
1744 	 * the write command before servicing the read command
1745 	 */
1746 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1747 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1748 			/* Update only if there are pending write commands */
1749 			if (pcc_ss_data->pending_pcc_write_cmd)
1750 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1751 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1752 		} else
1753 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1754 			wait_event(pcc_ss_data->pcc_write_wait_q,
1755 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1756 
1757 		/* send_pcc_cmd updates the status in case of failure */
1758 		ret = cpc_desc->write_cmd_status;
1759 	}
1760 	return ret;
1761 }
1762 EXPORT_SYMBOL_GPL(cppc_set_perf);
1763 
1764 /**
1765  * cppc_get_transition_latency - returns frequency transition latency in ns
1766  * @cpu_num: CPU number for per_cpu().
1767  *
1768  * ACPI CPPC does not explicitly specify how a platform can specify the
1769  * transition latency for performance change requests. The closest we have
1770  * is the timing information from the PCCT tables which provides the info
1771  * on the number and frequency of PCC commands the platform can handle.
1772  *
1773  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1774  * then assume there is no latency.
1775  */
1776 unsigned int cppc_get_transition_latency(int cpu_num)
1777 {
1778 	/*
1779 	 * Expected transition latency is based on the PCCT timing values
1780 	 * Below are definition from ACPI spec:
1781 	 * pcc_nominal- Expected latency to process a command, in microseconds
1782 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1783 	 *              channel can support, reported in commands per minute. 0
1784 	 *              indicates no limitation.
1785 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1786 	 *              completion of a command before issuing the next command,
1787 	 *              in microseconds.
1788 	 */
1789 	unsigned int latency_ns = 0;
1790 	struct cpc_desc *cpc_desc;
1791 	struct cpc_register_resource *desired_reg;
1792 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1793 	struct cppc_pcc_data *pcc_ss_data;
1794 
1795 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1796 	if (!cpc_desc)
1797 		return CPUFREQ_ETERNAL;
1798 
1799 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1800 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1801 		return 0;
1802 	else if (!CPC_IN_PCC(desired_reg))
1803 		return CPUFREQ_ETERNAL;
1804 
1805 	if (pcc_ss_id < 0)
1806 		return CPUFREQ_ETERNAL;
1807 
1808 	pcc_ss_data = pcc_data[pcc_ss_id];
1809 	if (pcc_ss_data->pcc_mpar)
1810 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1811 
1812 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1813 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1814 
1815 	return latency_ns;
1816 }
1817 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1818