1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. 4 * 5 * (C) Copyright 2014, 2015 Linaro Ltd. 6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 7 * 8 * CPPC describes a few methods for controlling CPU performance using 9 * information from a per CPU table called CPC. This table is described in 10 * the ACPI v5.0+ specification. The table consists of a list of 11 * registers which may be memory mapped or hardware registers and also may 12 * include some static integer values. 13 * 14 * CPU performance is on an abstract continuous scale as against a discretized 15 * P-state scale which is tied to CPU frequency only. In brief, the basic 16 * operation involves: 17 * 18 * - OS makes a CPU performance request. (Can provide min and max bounds) 19 * 20 * - Platform (such as BMC) is free to optimize request within requested bounds 21 * depending on power/thermal budgets etc. 22 * 23 * - Platform conveys its decision back to OS 24 * 25 * The communication between OS and platform occurs through another medium 26 * called (PCC) Platform Communication Channel. This is a generic mailbox like 27 * mechanism which includes doorbell semantics to indicate register updates. 28 * See drivers/mailbox/pcc.c for details on PCC. 29 * 30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and 31 * above specifications. 32 */ 33 34 #define pr_fmt(fmt) "ACPI CPPC: " fmt 35 36 #include <linux/delay.h> 37 #include <linux/iopoll.h> 38 #include <linux/ktime.h> 39 #include <linux/rwsem.h> 40 #include <linux/wait.h> 41 #include <linux/topology.h> 42 43 #include <acpi/cppc_acpi.h> 44 45 struct cppc_pcc_data { 46 struct pcc_mbox_chan *pcc_channel; 47 void __iomem *pcc_comm_addr; 48 bool pcc_channel_acquired; 49 unsigned int deadline_us; 50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal; 51 52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */ 53 bool platform_owns_pcc; /* Ownership of PCC subspace */ 54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */ 55 56 /* 57 * Lock to provide controlled access to the PCC channel. 58 * 59 * For performance critical usecases(currently cppc_set_perf) 60 * We need to take read_lock and check if channel belongs to OSPM 61 * before reading or writing to PCC subspace 62 * We need to take write_lock before transferring the channel 63 * ownership to the platform via a Doorbell 64 * This allows us to batch a number of CPPC requests if they happen 65 * to originate in about the same time 66 * 67 * For non-performance critical usecases(init) 68 * Take write_lock for all purposes which gives exclusive access 69 */ 70 struct rw_semaphore pcc_lock; 71 72 /* Wait queue for CPUs whose requests were batched */ 73 wait_queue_head_t pcc_write_wait_q; 74 ktime_t last_cmd_cmpl_time; 75 ktime_t last_mpar_reset; 76 int mpar_count; 77 int refcount; 78 }; 79 80 /* Array to represent the PCC channel per subspace ID */ 81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES]; 82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */ 83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx); 84 85 /* 86 * The cpc_desc structure contains the ACPI register details 87 * as described in the per CPU _CPC tables. The details 88 * include the type of register (e.g. PCC, System IO, FFH etc.) 89 * and destination addresses which lets us READ/WRITE CPU performance 90 * information using the appropriate I/O methods. 91 */ 92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); 93 94 /* pcc mapped address + header size + offset within PCC subspace */ 95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \ 96 0x8 + (offs)) 97 98 /* Check if a CPC register is in PCC */ 99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 100 (cpc)->cpc_entry.reg.space_id == \ 101 ACPI_ADR_SPACE_PLATFORM_COMM) 102 103 /* Check if a CPC register is in SystemMemory */ 104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 105 (cpc)->cpc_entry.reg.space_id == \ 106 ACPI_ADR_SPACE_SYSTEM_MEMORY) 107 108 /* Check if a CPC register is in SystemIo */ 109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 110 (cpc)->cpc_entry.reg.space_id == \ 111 ACPI_ADR_SPACE_SYSTEM_IO) 112 113 /* Evaluates to True if reg is a NULL register descriptor */ 114 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \ 115 (reg)->address == 0 && \ 116 (reg)->bit_width == 0 && \ 117 (reg)->bit_offset == 0 && \ 118 (reg)->access_width == 0) 119 120 /* Evaluates to True if an optional cpc field is supported */ 121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \ 122 !!(cpc)->cpc_entry.int_value : \ 123 !IS_NULL_REG(&(cpc)->cpc_entry.reg)) 124 /* 125 * Arbitrary Retries in case the remote processor is slow to respond 126 * to PCC commands. Keeping it high enough to cover emulators where 127 * the processors run painfully slow. 128 */ 129 #define NUM_RETRIES 500ULL 130 131 #define OVER_16BTS_MASK ~0xFFFFULL 132 133 #define define_one_cppc_ro(_name) \ 134 static struct kobj_attribute _name = \ 135 __ATTR(_name, 0444, show_##_name, NULL) 136 137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj) 138 139 #define show_cppc_data(access_fn, struct_name, member_name) \ 140 static ssize_t show_##member_name(struct kobject *kobj, \ 141 struct kobj_attribute *attr, char *buf) \ 142 { \ 143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \ 144 struct struct_name st_name = {0}; \ 145 int ret; \ 146 \ 147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \ 148 if (ret) \ 149 return ret; \ 150 \ 151 return sysfs_emit(buf, "%llu\n", \ 152 (u64)st_name.member_name); \ 153 } \ 154 define_one_cppc_ro(member_name) 155 156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf); 157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf); 158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf); 159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf); 160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq); 161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq); 162 163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf); 164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time); 165 166 /* Check for valid access_width, otherwise, fallback to using bit_width */ 167 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width) 168 169 /* Shift and apply the mask for CPC reads/writes */ 170 #define MASK_VAL(reg, val) (((val) >> (reg)->bit_offset) & \ 171 GENMASK(((reg)->bit_width) - 1, 0)) 172 173 static ssize_t show_feedback_ctrs(struct kobject *kobj, 174 struct kobj_attribute *attr, char *buf) 175 { 176 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); 177 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 178 int ret; 179 180 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs); 181 if (ret) 182 return ret; 183 184 return sysfs_emit(buf, "ref:%llu del:%llu\n", 185 fb_ctrs.reference, fb_ctrs.delivered); 186 } 187 define_one_cppc_ro(feedback_ctrs); 188 189 static struct attribute *cppc_attrs[] = { 190 &feedback_ctrs.attr, 191 &reference_perf.attr, 192 &wraparound_time.attr, 193 &highest_perf.attr, 194 &lowest_perf.attr, 195 &lowest_nonlinear_perf.attr, 196 &nominal_perf.attr, 197 &nominal_freq.attr, 198 &lowest_freq.attr, 199 NULL 200 }; 201 ATTRIBUTE_GROUPS(cppc); 202 203 static const struct kobj_type cppc_ktype = { 204 .sysfs_ops = &kobj_sysfs_ops, 205 .default_groups = cppc_groups, 206 }; 207 208 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit) 209 { 210 int ret, status; 211 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 212 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 213 pcc_ss_data->pcc_comm_addr; 214 215 if (!pcc_ss_data->platform_owns_pcc) 216 return 0; 217 218 /* 219 * Poll PCC status register every 3us(delay_us) for maximum of 220 * deadline_us(timeout_us) until PCC command complete bit is set(cond) 221 */ 222 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status, 223 status & PCC_CMD_COMPLETE_MASK, 3, 224 pcc_ss_data->deadline_us); 225 226 if (likely(!ret)) { 227 pcc_ss_data->platform_owns_pcc = false; 228 if (chk_err_bit && (status & PCC_ERROR_MASK)) 229 ret = -EIO; 230 } 231 232 if (unlikely(ret)) 233 pr_err("PCC check channel failed for ss: %d. ret=%d\n", 234 pcc_ss_id, ret); 235 236 return ret; 237 } 238 239 /* 240 * This function transfers the ownership of the PCC to the platform 241 * So it must be called while holding write_lock(pcc_lock) 242 */ 243 static int send_pcc_cmd(int pcc_ss_id, u16 cmd) 244 { 245 int ret = -EIO, i; 246 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 247 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 248 pcc_ss_data->pcc_comm_addr; 249 unsigned int time_delta; 250 251 /* 252 * For CMD_WRITE we know for a fact the caller should have checked 253 * the channel before writing to PCC space 254 */ 255 if (cmd == CMD_READ) { 256 /* 257 * If there are pending cpc_writes, then we stole the channel 258 * before write completion, so first send a WRITE command to 259 * platform 260 */ 261 if (pcc_ss_data->pending_pcc_write_cmd) 262 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 263 264 ret = check_pcc_chan(pcc_ss_id, false); 265 if (ret) 266 goto end; 267 } else /* CMD_WRITE */ 268 pcc_ss_data->pending_pcc_write_cmd = FALSE; 269 270 /* 271 * Handle the Minimum Request Turnaround Time(MRTT) 272 * "The minimum amount of time that OSPM must wait after the completion 273 * of a command before issuing the next command, in microseconds" 274 */ 275 if (pcc_ss_data->pcc_mrtt) { 276 time_delta = ktime_us_delta(ktime_get(), 277 pcc_ss_data->last_cmd_cmpl_time); 278 if (pcc_ss_data->pcc_mrtt > time_delta) 279 udelay(pcc_ss_data->pcc_mrtt - time_delta); 280 } 281 282 /* 283 * Handle the non-zero Maximum Periodic Access Rate(MPAR) 284 * "The maximum number of periodic requests that the subspace channel can 285 * support, reported in commands per minute. 0 indicates no limitation." 286 * 287 * This parameter should be ideally zero or large enough so that it can 288 * handle maximum number of requests that all the cores in the system can 289 * collectively generate. If it is not, we will follow the spec and just 290 * not send the request to the platform after hitting the MPAR limit in 291 * any 60s window 292 */ 293 if (pcc_ss_data->pcc_mpar) { 294 if (pcc_ss_data->mpar_count == 0) { 295 time_delta = ktime_ms_delta(ktime_get(), 296 pcc_ss_data->last_mpar_reset); 297 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) { 298 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit", 299 pcc_ss_id); 300 ret = -EIO; 301 goto end; 302 } 303 pcc_ss_data->last_mpar_reset = ktime_get(); 304 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar; 305 } 306 pcc_ss_data->mpar_count--; 307 } 308 309 /* Write to the shared comm region. */ 310 writew_relaxed(cmd, &generic_comm_base->command); 311 312 /* Flip CMD COMPLETE bit */ 313 writew_relaxed(0, &generic_comm_base->status); 314 315 pcc_ss_data->platform_owns_pcc = true; 316 317 /* Ring doorbell */ 318 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd); 319 if (ret < 0) { 320 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n", 321 pcc_ss_id, cmd, ret); 322 goto end; 323 } 324 325 /* wait for completion and check for PCC error bit */ 326 ret = check_pcc_chan(pcc_ss_id, true); 327 328 if (pcc_ss_data->pcc_mrtt) 329 pcc_ss_data->last_cmd_cmpl_time = ktime_get(); 330 331 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq) 332 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret); 333 else 334 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret); 335 336 end: 337 if (cmd == CMD_WRITE) { 338 if (unlikely(ret)) { 339 for_each_possible_cpu(i) { 340 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i); 341 342 if (!desc) 343 continue; 344 345 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt) 346 desc->write_cmd_status = ret; 347 } 348 } 349 pcc_ss_data->pcc_write_cnt++; 350 wake_up_all(&pcc_ss_data->pcc_write_wait_q); 351 } 352 353 return ret; 354 } 355 356 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) 357 { 358 if (ret < 0) 359 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", 360 *(u16 *)msg, ret); 361 else 362 pr_debug("TX completed. CMD sent:%x, ret:%d\n", 363 *(u16 *)msg, ret); 364 } 365 366 static struct mbox_client cppc_mbox_cl = { 367 .tx_done = cppc_chan_tx_done, 368 .knows_txdone = true, 369 }; 370 371 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) 372 { 373 int result = -EFAULT; 374 acpi_status status = AE_OK; 375 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 376 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; 377 struct acpi_buffer state = {0, NULL}; 378 union acpi_object *psd = NULL; 379 struct acpi_psd_package *pdomain; 380 381 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, 382 &buffer, ACPI_TYPE_PACKAGE); 383 if (status == AE_NOT_FOUND) /* _PSD is optional */ 384 return 0; 385 if (ACPI_FAILURE(status)) 386 return -ENODEV; 387 388 psd = buffer.pointer; 389 if (!psd || psd->package.count != 1) { 390 pr_debug("Invalid _PSD data\n"); 391 goto end; 392 } 393 394 pdomain = &(cpc_ptr->domain_info); 395 396 state.length = sizeof(struct acpi_psd_package); 397 state.pointer = pdomain; 398 399 status = acpi_extract_package(&(psd->package.elements[0]), 400 &format, &state); 401 if (ACPI_FAILURE(status)) { 402 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); 403 goto end; 404 } 405 406 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { 407 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); 408 goto end; 409 } 410 411 if (pdomain->revision != ACPI_PSD_REV0_REVISION) { 412 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); 413 goto end; 414 } 415 416 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && 417 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && 418 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { 419 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); 420 goto end; 421 } 422 423 result = 0; 424 end: 425 kfree(buffer.pointer); 426 return result; 427 } 428 429 bool acpi_cpc_valid(void) 430 { 431 struct cpc_desc *cpc_ptr; 432 int cpu; 433 434 if (acpi_disabled) 435 return false; 436 437 for_each_present_cpu(cpu) { 438 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 439 if (!cpc_ptr) 440 return false; 441 } 442 443 return true; 444 } 445 EXPORT_SYMBOL_GPL(acpi_cpc_valid); 446 447 bool cppc_allow_fast_switch(void) 448 { 449 struct cpc_register_resource *desired_reg; 450 struct cpc_desc *cpc_ptr; 451 int cpu; 452 453 for_each_possible_cpu(cpu) { 454 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 455 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF]; 456 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) && 457 !CPC_IN_SYSTEM_IO(desired_reg)) 458 return false; 459 } 460 461 return true; 462 } 463 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch); 464 465 /** 466 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu 467 * @cpu: Find all CPUs that share a domain with cpu. 468 * @cpu_data: Pointer to CPU specific CPPC data including PSD info. 469 * 470 * Return: 0 for success or negative value for err. 471 */ 472 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data) 473 { 474 struct cpc_desc *cpc_ptr, *match_cpc_ptr; 475 struct acpi_psd_package *match_pdomain; 476 struct acpi_psd_package *pdomain; 477 int count_target, i; 478 479 /* 480 * Now that we have _PSD data from all CPUs, let's setup P-state 481 * domain info. 482 */ 483 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 484 if (!cpc_ptr) 485 return -EFAULT; 486 487 pdomain = &(cpc_ptr->domain_info); 488 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); 489 if (pdomain->num_processors <= 1) 490 return 0; 491 492 /* Validate the Domain info */ 493 count_target = pdomain->num_processors; 494 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) 495 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL; 496 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) 497 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW; 498 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) 499 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY; 500 501 for_each_possible_cpu(i) { 502 if (i == cpu) 503 continue; 504 505 match_cpc_ptr = per_cpu(cpc_desc_ptr, i); 506 if (!match_cpc_ptr) 507 goto err_fault; 508 509 match_pdomain = &(match_cpc_ptr->domain_info); 510 if (match_pdomain->domain != pdomain->domain) 511 continue; 512 513 /* Here i and cpu are in the same domain */ 514 if (match_pdomain->num_processors != count_target) 515 goto err_fault; 516 517 if (pdomain->coord_type != match_pdomain->coord_type) 518 goto err_fault; 519 520 cpumask_set_cpu(i, cpu_data->shared_cpu_map); 521 } 522 523 return 0; 524 525 err_fault: 526 /* Assume no coordination on any error parsing domain info */ 527 cpumask_clear(cpu_data->shared_cpu_map); 528 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); 529 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE; 530 531 return -EFAULT; 532 } 533 EXPORT_SYMBOL_GPL(acpi_get_psd_map); 534 535 static int register_pcc_channel(int pcc_ss_idx) 536 { 537 struct pcc_mbox_chan *pcc_chan; 538 u64 usecs_lat; 539 540 if (pcc_ss_idx >= 0) { 541 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx); 542 543 if (IS_ERR(pcc_chan)) { 544 pr_err("Failed to find PCC channel for subspace %d\n", 545 pcc_ss_idx); 546 return -ENODEV; 547 } 548 549 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan; 550 /* 551 * cppc_ss->latency is just a Nominal value. In reality 552 * the remote processor could be much slower to reply. 553 * So add an arbitrary amount of wait on top of Nominal. 554 */ 555 usecs_lat = NUM_RETRIES * pcc_chan->latency; 556 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat; 557 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time; 558 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate; 559 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency; 560 561 pcc_data[pcc_ss_idx]->pcc_comm_addr = 562 acpi_os_ioremap(pcc_chan->shmem_base_addr, 563 pcc_chan->shmem_size); 564 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) { 565 pr_err("Failed to ioremap PCC comm region mem for %d\n", 566 pcc_ss_idx); 567 return -ENOMEM; 568 } 569 570 /* Set flag so that we don't come here for each CPU. */ 571 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true; 572 } 573 574 return 0; 575 } 576 577 /** 578 * cpc_ffh_supported() - check if FFH reading supported 579 * 580 * Check if the architecture has support for functional fixed hardware 581 * read/write capability. 582 * 583 * Return: true for supported, false for not supported 584 */ 585 bool __weak cpc_ffh_supported(void) 586 { 587 return false; 588 } 589 590 /** 591 * cpc_supported_by_cpu() - check if CPPC is supported by CPU 592 * 593 * Check if the architectural support for CPPC is present even 594 * if the _OSC hasn't prescribed it 595 * 596 * Return: true for supported, false for not supported 597 */ 598 bool __weak cpc_supported_by_cpu(void) 599 { 600 return false; 601 } 602 603 /** 604 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace 605 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package. 606 * 607 * Check and allocate the cppc_pcc_data memory. 608 * In some processor configurations it is possible that same subspace 609 * is shared between multiple CPUs. This is seen especially in CPUs 610 * with hardware multi-threading support. 611 * 612 * Return: 0 for success, errno for failure 613 */ 614 static int pcc_data_alloc(int pcc_ss_id) 615 { 616 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES) 617 return -EINVAL; 618 619 if (pcc_data[pcc_ss_id]) { 620 pcc_data[pcc_ss_id]->refcount++; 621 } else { 622 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data), 623 GFP_KERNEL); 624 if (!pcc_data[pcc_ss_id]) 625 return -ENOMEM; 626 pcc_data[pcc_ss_id]->refcount++; 627 } 628 629 return 0; 630 } 631 632 /* 633 * An example CPC table looks like the following. 634 * 635 * Name (_CPC, Package() { 636 * 17, // NumEntries 637 * 1, // Revision 638 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance 639 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance 640 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance 641 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance 642 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register 643 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register 644 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)}, 645 * ... 646 * ... 647 * ... 648 * } 649 * Each Register() encodes how to access that specific register. 650 * e.g. a sample PCC entry has the following encoding: 651 * 652 * Register ( 653 * PCC, // AddressSpaceKeyword 654 * 8, // RegisterBitWidth 655 * 8, // RegisterBitOffset 656 * 0x30, // RegisterAddress 657 * 9, // AccessSize (subspace ID) 658 * ) 659 */ 660 661 #ifndef arch_init_invariance_cppc 662 static inline void arch_init_invariance_cppc(void) { } 663 #endif 664 665 /** 666 * acpi_cppc_processor_probe - Search for per CPU _CPC objects. 667 * @pr: Ptr to acpi_processor containing this CPU's logical ID. 668 * 669 * Return: 0 for success or negative value for err. 670 */ 671 int acpi_cppc_processor_probe(struct acpi_processor *pr) 672 { 673 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 674 union acpi_object *out_obj, *cpc_obj; 675 struct cpc_desc *cpc_ptr; 676 struct cpc_reg *gas_t; 677 struct device *cpu_dev; 678 acpi_handle handle = pr->handle; 679 unsigned int num_ent, i, cpc_rev; 680 int pcc_subspace_id = -1; 681 acpi_status status; 682 int ret = -ENODATA; 683 684 if (!osc_sb_cppc2_support_acked) { 685 pr_debug("CPPC v2 _OSC not acked\n"); 686 if (!cpc_supported_by_cpu()) 687 return -ENODEV; 688 } 689 690 /* Parse the ACPI _CPC table for this CPU. */ 691 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, 692 ACPI_TYPE_PACKAGE); 693 if (ACPI_FAILURE(status)) { 694 ret = -ENODEV; 695 goto out_buf_free; 696 } 697 698 out_obj = (union acpi_object *) output.pointer; 699 700 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); 701 if (!cpc_ptr) { 702 ret = -ENOMEM; 703 goto out_buf_free; 704 } 705 706 /* First entry is NumEntries. */ 707 cpc_obj = &out_obj->package.elements[0]; 708 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 709 num_ent = cpc_obj->integer.value; 710 if (num_ent <= 1) { 711 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n", 712 num_ent, pr->id); 713 goto out_free; 714 } 715 } else { 716 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n", 717 cpc_obj->type, pr->id); 718 goto out_free; 719 } 720 721 /* Second entry should be revision. */ 722 cpc_obj = &out_obj->package.elements[1]; 723 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 724 cpc_rev = cpc_obj->integer.value; 725 } else { 726 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n", 727 cpc_obj->type, pr->id); 728 goto out_free; 729 } 730 731 if (cpc_rev < CPPC_V2_REV) { 732 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev, 733 pr->id); 734 goto out_free; 735 } 736 737 /* 738 * Disregard _CPC if the number of entries in the return pachage is not 739 * as expected, but support future revisions being proper supersets of 740 * the v3 and only causing more entries to be returned by _CPC. 741 */ 742 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) || 743 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) || 744 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) { 745 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n", 746 num_ent, pr->id); 747 goto out_free; 748 } 749 if (cpc_rev > CPPC_V3_REV) { 750 num_ent = CPPC_V3_NUM_ENT; 751 cpc_rev = CPPC_V3_REV; 752 } 753 754 cpc_ptr->num_entries = num_ent; 755 cpc_ptr->version = cpc_rev; 756 757 /* Iterate through remaining entries in _CPC */ 758 for (i = 2; i < num_ent; i++) { 759 cpc_obj = &out_obj->package.elements[i]; 760 761 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 762 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; 763 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; 764 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { 765 gas_t = (struct cpc_reg *) 766 cpc_obj->buffer.pointer; 767 768 /* 769 * The PCC Subspace index is encoded inside 770 * the CPC table entries. The same PCC index 771 * will be used for all the PCC entries, 772 * so extract it only once. 773 */ 774 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 775 if (pcc_subspace_id < 0) { 776 pcc_subspace_id = gas_t->access_width; 777 if (pcc_data_alloc(pcc_subspace_id)) 778 goto out_free; 779 } else if (pcc_subspace_id != gas_t->access_width) { 780 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n", 781 pr->id); 782 goto out_free; 783 } 784 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 785 if (gas_t->address) { 786 void __iomem *addr; 787 size_t access_width; 788 789 if (!osc_cpc_flexible_adr_space_confirmed) { 790 pr_debug("Flexible address space capability not supported\n"); 791 if (!cpc_supported_by_cpu()) 792 goto out_free; 793 } 794 795 access_width = GET_BIT_WIDTH(gas_t) / 8; 796 addr = ioremap(gas_t->address, access_width); 797 if (!addr) 798 goto out_free; 799 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr; 800 } 801 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 802 if (gas_t->access_width < 1 || gas_t->access_width > 3) { 803 /* 804 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit. 805 * SystemIO doesn't implement 64-bit 806 * registers. 807 */ 808 pr_debug("Invalid access width %d for SystemIO register in _CPC\n", 809 gas_t->access_width); 810 goto out_free; 811 } 812 if (gas_t->address & OVER_16BTS_MASK) { 813 /* SystemIO registers use 16-bit integer addresses */ 814 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n", 815 gas_t->address); 816 goto out_free; 817 } 818 if (!osc_cpc_flexible_adr_space_confirmed) { 819 pr_debug("Flexible address space capability not supported\n"); 820 if (!cpc_supported_by_cpu()) 821 goto out_free; 822 } 823 } else { 824 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) { 825 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */ 826 pr_debug("Unsupported register type (%d) in _CPC\n", 827 gas_t->space_id); 828 goto out_free; 829 } 830 } 831 832 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; 833 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); 834 } else { 835 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n", 836 i, pr->id); 837 goto out_free; 838 } 839 } 840 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id; 841 842 /* 843 * Initialize the remaining cpc_regs as unsupported. 844 * Example: In case FW exposes CPPC v2, the below loop will initialize 845 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported 846 */ 847 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) { 848 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER; 849 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0; 850 } 851 852 853 /* Store CPU Logical ID */ 854 cpc_ptr->cpu_id = pr->id; 855 856 /* Parse PSD data for this CPU */ 857 ret = acpi_get_psd(cpc_ptr, handle); 858 if (ret) 859 goto out_free; 860 861 /* Register PCC channel once for all PCC subspace ID. */ 862 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) { 863 ret = register_pcc_channel(pcc_subspace_id); 864 if (ret) 865 goto out_free; 866 867 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock); 868 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q); 869 } 870 871 /* Everything looks okay */ 872 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); 873 874 /* Add per logical CPU nodes for reading its feedback counters. */ 875 cpu_dev = get_cpu_device(pr->id); 876 if (!cpu_dev) { 877 ret = -EINVAL; 878 goto out_free; 879 } 880 881 /* Plug PSD data into this CPU's CPC descriptor. */ 882 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; 883 884 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj, 885 "acpi_cppc"); 886 if (ret) { 887 per_cpu(cpc_desc_ptr, pr->id) = NULL; 888 kobject_put(&cpc_ptr->kobj); 889 goto out_free; 890 } 891 892 arch_init_invariance_cppc(); 893 894 kfree(output.pointer); 895 return 0; 896 897 out_free: 898 /* Free all the mapped sys mem areas for this CPU */ 899 for (i = 2; i < cpc_ptr->num_entries; i++) { 900 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 901 902 if (addr) 903 iounmap(addr); 904 } 905 kfree(cpc_ptr); 906 907 out_buf_free: 908 kfree(output.pointer); 909 return ret; 910 } 911 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); 912 913 /** 914 * acpi_cppc_processor_exit - Cleanup CPC structs. 915 * @pr: Ptr to acpi_processor containing this CPU's logical ID. 916 * 917 * Return: Void 918 */ 919 void acpi_cppc_processor_exit(struct acpi_processor *pr) 920 { 921 struct cpc_desc *cpc_ptr; 922 unsigned int i; 923 void __iomem *addr; 924 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id); 925 926 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) { 927 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) { 928 pcc_data[pcc_ss_id]->refcount--; 929 if (!pcc_data[pcc_ss_id]->refcount) { 930 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel); 931 kfree(pcc_data[pcc_ss_id]); 932 pcc_data[pcc_ss_id] = NULL; 933 } 934 } 935 } 936 937 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); 938 if (!cpc_ptr) 939 return; 940 941 /* Free all the mapped sys mem areas for this CPU */ 942 for (i = 2; i < cpc_ptr->num_entries; i++) { 943 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 944 if (addr) 945 iounmap(addr); 946 } 947 948 kobject_put(&cpc_ptr->kobj); 949 kfree(cpc_ptr); 950 } 951 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); 952 953 /** 954 * cpc_read_ffh() - Read FFH register 955 * @cpunum: CPU number to read 956 * @reg: cppc register information 957 * @val: place holder for return value 958 * 959 * Read bit_width bits from a specified address and bit_offset 960 * 961 * Return: 0 for success and error code 962 */ 963 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val) 964 { 965 return -ENOTSUPP; 966 } 967 968 /** 969 * cpc_write_ffh() - Write FFH register 970 * @cpunum: CPU number to write 971 * @reg: cppc register information 972 * @val: value to write 973 * 974 * Write value of bit_width bits to a specified address and bit_offset 975 * 976 * Return: 0 for success and error code 977 */ 978 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) 979 { 980 return -ENOTSUPP; 981 } 982 983 /* 984 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be 985 * as fast as possible. We have already mapped the PCC subspace during init, so 986 * we can directly write to it. 987 */ 988 989 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val) 990 { 991 void __iomem *vaddr = NULL; 992 int size; 993 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 994 struct cpc_reg *reg = ®_res->cpc_entry.reg; 995 996 if (reg_res->type == ACPI_TYPE_INTEGER) { 997 *val = reg_res->cpc_entry.int_value; 998 return 0; 999 } 1000 1001 *val = 0; 1002 size = GET_BIT_WIDTH(reg); 1003 1004 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1005 u32 val_u32; 1006 acpi_status status; 1007 1008 status = acpi_os_read_port((acpi_io_address)reg->address, 1009 &val_u32, size); 1010 if (ACPI_FAILURE(status)) { 1011 pr_debug("Error: Failed to read SystemIO port %llx\n", 1012 reg->address); 1013 return -EFAULT; 1014 } 1015 1016 *val = val_u32; 1017 return 0; 1018 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) { 1019 /* 1020 * For registers in PCC space, the register size is determined 1021 * by the bit width field; the access size is used to indicate 1022 * the PCC subspace id. 1023 */ 1024 size = reg->bit_width; 1025 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 1026 } 1027 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1028 vaddr = reg_res->sys_mem_vaddr; 1029 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 1030 return cpc_read_ffh(cpu, reg, val); 1031 else 1032 return acpi_os_read_memory((acpi_physical_address)reg->address, 1033 val, size); 1034 1035 switch (size) { 1036 case 8: 1037 *val = readb_relaxed(vaddr); 1038 break; 1039 case 16: 1040 *val = readw_relaxed(vaddr); 1041 break; 1042 case 32: 1043 *val = readl_relaxed(vaddr); 1044 break; 1045 case 64: 1046 *val = readq_relaxed(vaddr); 1047 break; 1048 default: 1049 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1050 pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n", 1051 size, reg->address); 1052 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 1053 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n", 1054 size, pcc_ss_id); 1055 } 1056 return -EFAULT; 1057 } 1058 1059 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1060 *val = MASK_VAL(reg, *val); 1061 1062 return 0; 1063 } 1064 1065 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val) 1066 { 1067 int ret_val = 0; 1068 int size; 1069 void __iomem *vaddr = NULL; 1070 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1071 struct cpc_reg *reg = ®_res->cpc_entry.reg; 1072 1073 size = GET_BIT_WIDTH(reg); 1074 1075 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1076 acpi_status status; 1077 1078 status = acpi_os_write_port((acpi_io_address)reg->address, 1079 (u32)val, size); 1080 if (ACPI_FAILURE(status)) { 1081 pr_debug("Error: Failed to write SystemIO port %llx\n", 1082 reg->address); 1083 return -EFAULT; 1084 } 1085 1086 return 0; 1087 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) { 1088 /* 1089 * For registers in PCC space, the register size is determined 1090 * by the bit width field; the access size is used to indicate 1091 * the PCC subspace id. 1092 */ 1093 size = reg->bit_width; 1094 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 1095 } 1096 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1097 vaddr = reg_res->sys_mem_vaddr; 1098 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 1099 return cpc_write_ffh(cpu, reg, val); 1100 else 1101 return acpi_os_write_memory((acpi_physical_address)reg->address, 1102 val, size); 1103 1104 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1105 val = MASK_VAL(reg, val); 1106 1107 switch (size) { 1108 case 8: 1109 writeb_relaxed(val, vaddr); 1110 break; 1111 case 16: 1112 writew_relaxed(val, vaddr); 1113 break; 1114 case 32: 1115 writel_relaxed(val, vaddr); 1116 break; 1117 case 64: 1118 writeq_relaxed(val, vaddr); 1119 break; 1120 default: 1121 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1122 pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n", 1123 size, reg->address); 1124 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 1125 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n", 1126 size, pcc_ss_id); 1127 } 1128 ret_val = -EFAULT; 1129 break; 1130 } 1131 1132 return ret_val; 1133 } 1134 1135 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf) 1136 { 1137 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1138 struct cpc_register_resource *reg; 1139 1140 if (!cpc_desc) { 1141 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1142 return -ENODEV; 1143 } 1144 1145 reg = &cpc_desc->cpc_regs[reg_idx]; 1146 1147 if (CPC_IN_PCC(reg)) { 1148 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1149 struct cppc_pcc_data *pcc_ss_data = NULL; 1150 int ret = 0; 1151 1152 if (pcc_ss_id < 0) 1153 return -EIO; 1154 1155 pcc_ss_data = pcc_data[pcc_ss_id]; 1156 1157 down_write(&pcc_ss_data->pcc_lock); 1158 1159 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) 1160 cpc_read(cpunum, reg, perf); 1161 else 1162 ret = -EIO; 1163 1164 up_write(&pcc_ss_data->pcc_lock); 1165 1166 return ret; 1167 } 1168 1169 cpc_read(cpunum, reg, perf); 1170 1171 return 0; 1172 } 1173 1174 /** 1175 * cppc_get_desired_perf - Get the desired performance register value. 1176 * @cpunum: CPU from which to get desired performance. 1177 * @desired_perf: Return address. 1178 * 1179 * Return: 0 for success, -EIO otherwise. 1180 */ 1181 int cppc_get_desired_perf(int cpunum, u64 *desired_perf) 1182 { 1183 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf); 1184 } 1185 EXPORT_SYMBOL_GPL(cppc_get_desired_perf); 1186 1187 /** 1188 * cppc_get_nominal_perf - Get the nominal performance register value. 1189 * @cpunum: CPU from which to get nominal performance. 1190 * @nominal_perf: Return address. 1191 * 1192 * Return: 0 for success, -EIO otherwise. 1193 */ 1194 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf) 1195 { 1196 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf); 1197 } 1198 1199 /** 1200 * cppc_get_highest_perf - Get the highest performance register value. 1201 * @cpunum: CPU from which to get highest performance. 1202 * @highest_perf: Return address. 1203 * 1204 * Return: 0 for success, -EIO otherwise. 1205 */ 1206 int cppc_get_highest_perf(int cpunum, u64 *highest_perf) 1207 { 1208 return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf); 1209 } 1210 EXPORT_SYMBOL_GPL(cppc_get_highest_perf); 1211 1212 /** 1213 * cppc_get_epp_perf - Get the epp register value. 1214 * @cpunum: CPU from which to get epp preference value. 1215 * @epp_perf: Return address. 1216 * 1217 * Return: 0 for success, -EIO otherwise. 1218 */ 1219 int cppc_get_epp_perf(int cpunum, u64 *epp_perf) 1220 { 1221 return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf); 1222 } 1223 EXPORT_SYMBOL_GPL(cppc_get_epp_perf); 1224 1225 /** 1226 * cppc_get_perf_caps - Get a CPU's performance capabilities. 1227 * @cpunum: CPU from which to get capabilities info. 1228 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h 1229 * 1230 * Return: 0 for success with perf_caps populated else -ERRNO. 1231 */ 1232 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) 1233 { 1234 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1235 struct cpc_register_resource *highest_reg, *lowest_reg, 1236 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg, 1237 *low_freq_reg = NULL, *nom_freq_reg = NULL; 1238 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0; 1239 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1240 struct cppc_pcc_data *pcc_ss_data = NULL; 1241 int ret = 0, regs_in_pcc = 0; 1242 1243 if (!cpc_desc) { 1244 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1245 return -ENODEV; 1246 } 1247 1248 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; 1249 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; 1250 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF]; 1251 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1252 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ]; 1253 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ]; 1254 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF]; 1255 1256 /* Are any of the regs PCC ?*/ 1257 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) || 1258 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) || 1259 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) { 1260 if (pcc_ss_id < 0) { 1261 pr_debug("Invalid pcc_ss_id\n"); 1262 return -ENODEV; 1263 } 1264 pcc_ss_data = pcc_data[pcc_ss_id]; 1265 regs_in_pcc = 1; 1266 down_write(&pcc_ss_data->pcc_lock); 1267 /* Ring doorbell once to update PCC subspace */ 1268 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1269 ret = -EIO; 1270 goto out_err; 1271 } 1272 } 1273 1274 cpc_read(cpunum, highest_reg, &high); 1275 perf_caps->highest_perf = high; 1276 1277 cpc_read(cpunum, lowest_reg, &low); 1278 perf_caps->lowest_perf = low; 1279 1280 cpc_read(cpunum, nominal_reg, &nom); 1281 perf_caps->nominal_perf = nom; 1282 1283 if (guaranteed_reg->type != ACPI_TYPE_BUFFER || 1284 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) { 1285 perf_caps->guaranteed_perf = 0; 1286 } else { 1287 cpc_read(cpunum, guaranteed_reg, &guaranteed); 1288 perf_caps->guaranteed_perf = guaranteed; 1289 } 1290 1291 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear); 1292 perf_caps->lowest_nonlinear_perf = min_nonlinear; 1293 1294 if (!high || !low || !nom || !min_nonlinear) 1295 ret = -EFAULT; 1296 1297 /* Read optional lowest and nominal frequencies if present */ 1298 if (CPC_SUPPORTED(low_freq_reg)) 1299 cpc_read(cpunum, low_freq_reg, &low_f); 1300 1301 if (CPC_SUPPORTED(nom_freq_reg)) 1302 cpc_read(cpunum, nom_freq_reg, &nom_f); 1303 1304 perf_caps->lowest_freq = low_f; 1305 perf_caps->nominal_freq = nom_f; 1306 1307 1308 out_err: 1309 if (regs_in_pcc) 1310 up_write(&pcc_ss_data->pcc_lock); 1311 return ret; 1312 } 1313 EXPORT_SYMBOL_GPL(cppc_get_perf_caps); 1314 1315 /** 1316 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region. 1317 * 1318 * CPPC has flexibility about how CPU performance counters are accessed. 1319 * One of the choices is PCC regions, which can have a high access latency. This 1320 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time. 1321 * 1322 * Return: true if any of the counters are in PCC regions, false otherwise 1323 */ 1324 bool cppc_perf_ctrs_in_pcc(void) 1325 { 1326 int cpu; 1327 1328 for_each_present_cpu(cpu) { 1329 struct cpc_register_resource *ref_perf_reg; 1330 struct cpc_desc *cpc_desc; 1331 1332 cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1333 1334 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) || 1335 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) || 1336 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME])) 1337 return true; 1338 1339 1340 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; 1341 1342 /* 1343 * If reference perf register is not supported then we should 1344 * use the nominal perf value 1345 */ 1346 if (!CPC_SUPPORTED(ref_perf_reg)) 1347 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1348 1349 if (CPC_IN_PCC(ref_perf_reg)) 1350 return true; 1351 } 1352 1353 return false; 1354 } 1355 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc); 1356 1357 /** 1358 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters. 1359 * @cpunum: CPU from which to read counters. 1360 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h 1361 * 1362 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. 1363 */ 1364 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) 1365 { 1366 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1367 struct cpc_register_resource *delivered_reg, *reference_reg, 1368 *ref_perf_reg, *ctr_wrap_reg; 1369 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1370 struct cppc_pcc_data *pcc_ss_data = NULL; 1371 u64 delivered, reference, ref_perf, ctr_wrap_time; 1372 int ret = 0, regs_in_pcc = 0; 1373 1374 if (!cpc_desc) { 1375 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1376 return -ENODEV; 1377 } 1378 1379 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; 1380 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; 1381 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; 1382 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME]; 1383 1384 /* 1385 * If reference perf register is not supported then we should 1386 * use the nominal perf value 1387 */ 1388 if (!CPC_SUPPORTED(ref_perf_reg)) 1389 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1390 1391 /* Are any of the regs PCC ?*/ 1392 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) || 1393 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) { 1394 if (pcc_ss_id < 0) { 1395 pr_debug("Invalid pcc_ss_id\n"); 1396 return -ENODEV; 1397 } 1398 pcc_ss_data = pcc_data[pcc_ss_id]; 1399 down_write(&pcc_ss_data->pcc_lock); 1400 regs_in_pcc = 1; 1401 /* Ring doorbell once to update PCC subspace */ 1402 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1403 ret = -EIO; 1404 goto out_err; 1405 } 1406 } 1407 1408 cpc_read(cpunum, delivered_reg, &delivered); 1409 cpc_read(cpunum, reference_reg, &reference); 1410 cpc_read(cpunum, ref_perf_reg, &ref_perf); 1411 1412 /* 1413 * Per spec, if ctr_wrap_time optional register is unsupported, then the 1414 * performance counters are assumed to never wrap during the lifetime of 1415 * platform 1416 */ 1417 ctr_wrap_time = (u64)(~((u64)0)); 1418 if (CPC_SUPPORTED(ctr_wrap_reg)) 1419 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time); 1420 1421 if (!delivered || !reference || !ref_perf) { 1422 ret = -EFAULT; 1423 goto out_err; 1424 } 1425 1426 perf_fb_ctrs->delivered = delivered; 1427 perf_fb_ctrs->reference = reference; 1428 perf_fb_ctrs->reference_perf = ref_perf; 1429 perf_fb_ctrs->wraparound_time = ctr_wrap_time; 1430 out_err: 1431 if (regs_in_pcc) 1432 up_write(&pcc_ss_data->pcc_lock); 1433 return ret; 1434 } 1435 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); 1436 1437 /* 1438 * Set Energy Performance Preference Register value through 1439 * Performance Controls Interface 1440 */ 1441 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable) 1442 { 1443 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1444 struct cpc_register_resource *epp_set_reg; 1445 struct cpc_register_resource *auto_sel_reg; 1446 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1447 struct cppc_pcc_data *pcc_ss_data = NULL; 1448 int ret; 1449 1450 if (!cpc_desc) { 1451 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1452 return -ENODEV; 1453 } 1454 1455 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE]; 1456 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF]; 1457 1458 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) { 1459 if (pcc_ss_id < 0) { 1460 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu); 1461 return -ENODEV; 1462 } 1463 1464 if (CPC_SUPPORTED(auto_sel_reg)) { 1465 ret = cpc_write(cpu, auto_sel_reg, enable); 1466 if (ret) 1467 return ret; 1468 } 1469 1470 if (CPC_SUPPORTED(epp_set_reg)) { 1471 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf); 1472 if (ret) 1473 return ret; 1474 } 1475 1476 pcc_ss_data = pcc_data[pcc_ss_id]; 1477 1478 down_write(&pcc_ss_data->pcc_lock); 1479 /* after writing CPC, transfer the ownership of PCC to platform */ 1480 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1481 up_write(&pcc_ss_data->pcc_lock); 1482 } else { 1483 ret = -ENOTSUPP; 1484 pr_debug("_CPC in PCC is not supported\n"); 1485 } 1486 1487 return ret; 1488 } 1489 EXPORT_SYMBOL_GPL(cppc_set_epp_perf); 1490 1491 /** 1492 * cppc_get_auto_sel_caps - Read autonomous selection register. 1493 * @cpunum : CPU from which to read register. 1494 * @perf_caps : struct where autonomous selection register value is updated. 1495 */ 1496 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps) 1497 { 1498 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1499 struct cpc_register_resource *auto_sel_reg; 1500 u64 auto_sel; 1501 1502 if (!cpc_desc) { 1503 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1504 return -ENODEV; 1505 } 1506 1507 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE]; 1508 1509 if (!CPC_SUPPORTED(auto_sel_reg)) 1510 pr_warn_once("Autonomous mode is not unsupported!\n"); 1511 1512 if (CPC_IN_PCC(auto_sel_reg)) { 1513 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1514 struct cppc_pcc_data *pcc_ss_data = NULL; 1515 int ret = 0; 1516 1517 if (pcc_ss_id < 0) 1518 return -ENODEV; 1519 1520 pcc_ss_data = pcc_data[pcc_ss_id]; 1521 1522 down_write(&pcc_ss_data->pcc_lock); 1523 1524 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) { 1525 cpc_read(cpunum, auto_sel_reg, &auto_sel); 1526 perf_caps->auto_sel = (bool)auto_sel; 1527 } else { 1528 ret = -EIO; 1529 } 1530 1531 up_write(&pcc_ss_data->pcc_lock); 1532 1533 return ret; 1534 } 1535 1536 return 0; 1537 } 1538 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps); 1539 1540 /** 1541 * cppc_set_auto_sel - Write autonomous selection register. 1542 * @cpu : CPU to which to write register. 1543 * @enable : the desired value of autonomous selection resiter to be updated. 1544 */ 1545 int cppc_set_auto_sel(int cpu, bool enable) 1546 { 1547 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1548 struct cpc_register_resource *auto_sel_reg; 1549 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1550 struct cppc_pcc_data *pcc_ss_data = NULL; 1551 int ret = -EINVAL; 1552 1553 if (!cpc_desc) { 1554 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1555 return -ENODEV; 1556 } 1557 1558 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE]; 1559 1560 if (CPC_IN_PCC(auto_sel_reg)) { 1561 if (pcc_ss_id < 0) { 1562 pr_debug("Invalid pcc_ss_id\n"); 1563 return -ENODEV; 1564 } 1565 1566 if (CPC_SUPPORTED(auto_sel_reg)) { 1567 ret = cpc_write(cpu, auto_sel_reg, enable); 1568 if (ret) 1569 return ret; 1570 } 1571 1572 pcc_ss_data = pcc_data[pcc_ss_id]; 1573 1574 down_write(&pcc_ss_data->pcc_lock); 1575 /* after writing CPC, transfer the ownership of PCC to platform */ 1576 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1577 up_write(&pcc_ss_data->pcc_lock); 1578 } else { 1579 ret = -ENOTSUPP; 1580 pr_debug("_CPC in PCC is not supported\n"); 1581 } 1582 1583 return ret; 1584 } 1585 EXPORT_SYMBOL_GPL(cppc_set_auto_sel); 1586 1587 /** 1588 * cppc_set_enable - Set to enable CPPC on the processor by writing the 1589 * Continuous Performance Control package EnableRegister field. 1590 * @cpu: CPU for which to enable CPPC register. 1591 * @enable: 0 - disable, 1 - enable CPPC feature on the processor. 1592 * 1593 * Return: 0 for success, -ERRNO or -EIO otherwise. 1594 */ 1595 int cppc_set_enable(int cpu, bool enable) 1596 { 1597 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1598 struct cpc_register_resource *enable_reg; 1599 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1600 struct cppc_pcc_data *pcc_ss_data = NULL; 1601 int ret = -EINVAL; 1602 1603 if (!cpc_desc) { 1604 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1605 return -EINVAL; 1606 } 1607 1608 enable_reg = &cpc_desc->cpc_regs[ENABLE]; 1609 1610 if (CPC_IN_PCC(enable_reg)) { 1611 1612 if (pcc_ss_id < 0) 1613 return -EIO; 1614 1615 ret = cpc_write(cpu, enable_reg, enable); 1616 if (ret) 1617 return ret; 1618 1619 pcc_ss_data = pcc_data[pcc_ss_id]; 1620 1621 down_write(&pcc_ss_data->pcc_lock); 1622 /* after writing CPC, transfer the ownership of PCC to platfrom */ 1623 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1624 up_write(&pcc_ss_data->pcc_lock); 1625 return ret; 1626 } 1627 1628 return cpc_write(cpu, enable_reg, enable); 1629 } 1630 EXPORT_SYMBOL_GPL(cppc_set_enable); 1631 1632 /** 1633 * cppc_set_perf - Set a CPU's performance controls. 1634 * @cpu: CPU for which to set performance controls. 1635 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h 1636 * 1637 * Return: 0 for success, -ERRNO otherwise. 1638 */ 1639 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) 1640 { 1641 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1642 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg; 1643 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1644 struct cppc_pcc_data *pcc_ss_data = NULL; 1645 int ret = 0; 1646 1647 if (!cpc_desc) { 1648 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1649 return -ENODEV; 1650 } 1651 1652 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1653 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF]; 1654 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF]; 1655 1656 /* 1657 * This is Phase-I where we want to write to CPC registers 1658 * -> We want all CPUs to be able to execute this phase in parallel 1659 * 1660 * Since read_lock can be acquired by multiple CPUs simultaneously we 1661 * achieve that goal here 1662 */ 1663 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) { 1664 if (pcc_ss_id < 0) { 1665 pr_debug("Invalid pcc_ss_id\n"); 1666 return -ENODEV; 1667 } 1668 pcc_ss_data = pcc_data[pcc_ss_id]; 1669 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */ 1670 if (pcc_ss_data->platform_owns_pcc) { 1671 ret = check_pcc_chan(pcc_ss_id, false); 1672 if (ret) { 1673 up_read(&pcc_ss_data->pcc_lock); 1674 return ret; 1675 } 1676 } 1677 /* 1678 * Update the pending_write to make sure a PCC CMD_READ will not 1679 * arrive and steal the channel during the switch to write lock 1680 */ 1681 pcc_ss_data->pending_pcc_write_cmd = true; 1682 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt; 1683 cpc_desc->write_cmd_status = 0; 1684 } 1685 1686 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf); 1687 1688 /* 1689 * Only write if min_perf and max_perf not zero. Some drivers pass zero 1690 * value to min and max perf, but they don't mean to set the zero value, 1691 * they just don't want to write to those registers. 1692 */ 1693 if (perf_ctrls->min_perf) 1694 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf); 1695 if (perf_ctrls->max_perf) 1696 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf); 1697 1698 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) 1699 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */ 1700 /* 1701 * This is Phase-II where we transfer the ownership of PCC to Platform 1702 * 1703 * Short Summary: Basically if we think of a group of cppc_set_perf 1704 * requests that happened in short overlapping interval. The last CPU to 1705 * come out of Phase-I will enter Phase-II and ring the doorbell. 1706 * 1707 * We have the following requirements for Phase-II: 1708 * 1. We want to execute Phase-II only when there are no CPUs 1709 * currently executing in Phase-I 1710 * 2. Once we start Phase-II we want to avoid all other CPUs from 1711 * entering Phase-I. 1712 * 3. We want only one CPU among all those who went through Phase-I 1713 * to run phase-II 1714 * 1715 * If write_trylock fails to get the lock and doesn't transfer the 1716 * PCC ownership to the platform, then one of the following will be TRUE 1717 * 1. There is at-least one CPU in Phase-I which will later execute 1718 * write_trylock, so the CPUs in Phase-I will be responsible for 1719 * executing the Phase-II. 1720 * 2. Some other CPU has beaten this CPU to successfully execute the 1721 * write_trylock and has already acquired the write_lock. We know for a 1722 * fact it (other CPU acquiring the write_lock) couldn't have happened 1723 * before this CPU's Phase-I as we held the read_lock. 1724 * 3. Some other CPU executing pcc CMD_READ has stolen the 1725 * down_write, in which case, send_pcc_cmd will check for pending 1726 * CMD_WRITE commands by checking the pending_pcc_write_cmd. 1727 * So this CPU can be certain that its request will be delivered 1728 * So in all cases, this CPU knows that its request will be delivered 1729 * by another CPU and can return 1730 * 1731 * After getting the down_write we still need to check for 1732 * pending_pcc_write_cmd to take care of the following scenario 1733 * The thread running this code could be scheduled out between 1734 * Phase-I and Phase-II. Before it is scheduled back on, another CPU 1735 * could have delivered the request to Platform by triggering the 1736 * doorbell and transferred the ownership of PCC to platform. So this 1737 * avoids triggering an unnecessary doorbell and more importantly before 1738 * triggering the doorbell it makes sure that the PCC channel ownership 1739 * is still with OSPM. 1740 * pending_pcc_write_cmd can also be cleared by a different CPU, if 1741 * there was a pcc CMD_READ waiting on down_write and it steals the lock 1742 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this 1743 * case during a CMD_READ and if there are pending writes it delivers 1744 * the write command before servicing the read command 1745 */ 1746 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) { 1747 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */ 1748 /* Update only if there are pending write commands */ 1749 if (pcc_ss_data->pending_pcc_write_cmd) 1750 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1751 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */ 1752 } else 1753 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */ 1754 wait_event(pcc_ss_data->pcc_write_wait_q, 1755 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt); 1756 1757 /* send_pcc_cmd updates the status in case of failure */ 1758 ret = cpc_desc->write_cmd_status; 1759 } 1760 return ret; 1761 } 1762 EXPORT_SYMBOL_GPL(cppc_set_perf); 1763 1764 /** 1765 * cppc_get_transition_latency - returns frequency transition latency in ns 1766 * @cpu_num: CPU number for per_cpu(). 1767 * 1768 * ACPI CPPC does not explicitly specify how a platform can specify the 1769 * transition latency for performance change requests. The closest we have 1770 * is the timing information from the PCCT tables which provides the info 1771 * on the number and frequency of PCC commands the platform can handle. 1772 * 1773 * If desired_reg is in the SystemMemory or SystemIo ACPI address space, 1774 * then assume there is no latency. 1775 */ 1776 unsigned int cppc_get_transition_latency(int cpu_num) 1777 { 1778 /* 1779 * Expected transition latency is based on the PCCT timing values 1780 * Below are definition from ACPI spec: 1781 * pcc_nominal- Expected latency to process a command, in microseconds 1782 * pcc_mpar - The maximum number of periodic requests that the subspace 1783 * channel can support, reported in commands per minute. 0 1784 * indicates no limitation. 1785 * pcc_mrtt - The minimum amount of time that OSPM must wait after the 1786 * completion of a command before issuing the next command, 1787 * in microseconds. 1788 */ 1789 unsigned int latency_ns = 0; 1790 struct cpc_desc *cpc_desc; 1791 struct cpc_register_resource *desired_reg; 1792 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num); 1793 struct cppc_pcc_data *pcc_ss_data; 1794 1795 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num); 1796 if (!cpc_desc) 1797 return CPUFREQ_ETERNAL; 1798 1799 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1800 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg)) 1801 return 0; 1802 else if (!CPC_IN_PCC(desired_reg)) 1803 return CPUFREQ_ETERNAL; 1804 1805 if (pcc_ss_id < 0) 1806 return CPUFREQ_ETERNAL; 1807 1808 pcc_ss_data = pcc_data[pcc_ss_id]; 1809 if (pcc_ss_data->pcc_mpar) 1810 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar); 1811 1812 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000); 1813 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000); 1814 1815 return latency_ns; 1816 } 1817 EXPORT_SYMBOL_GPL(cppc_get_transition_latency); 1818