xref: /openbmc/linux/drivers/acpi/bus.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_bus.c - ACPI Bus Driver ($Revision: 80 $)
4  *
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  */
7 
8 #define pr_fmt(fmt) "ACPI: " fmt
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/ioport.h>
13 #include <linux/kernel.h>
14 #include <linux/list.h>
15 #include <linux/sched.h>
16 #include <linux/pm.h>
17 #include <linux/device.h>
18 #include <linux/proc_fs.h>
19 #include <linux/acpi.h>
20 #include <linux/slab.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/workqueue.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #ifdef CONFIG_X86
26 #include <asm/mpspec.h>
27 #include <linux/dmi.h>
28 #endif
29 #include <linux/acpi_agdi.h>
30 #include <linux/acpi_iort.h>
31 #include <linux/acpi_viot.h>
32 #include <linux/pci.h>
33 #include <acpi/apei.h>
34 #include <linux/suspend.h>
35 #include <linux/prmt.h>
36 
37 #include "internal.h"
38 
39 struct acpi_device *acpi_root;
40 struct proc_dir_entry *acpi_root_dir;
41 EXPORT_SYMBOL(acpi_root_dir);
42 
43 #ifdef CONFIG_X86
44 #ifdef CONFIG_ACPI_CUSTOM_DSDT
45 static inline int set_copy_dsdt(const struct dmi_system_id *id)
46 {
47 	return 0;
48 }
49 #else
50 static int set_copy_dsdt(const struct dmi_system_id *id)
51 {
52 	pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident);
53 	acpi_gbl_copy_dsdt_locally = 1;
54 	return 0;
55 }
56 #endif
57 
58 static const struct dmi_system_id dsdt_dmi_table[] __initconst = {
59 	/*
60 	 * Invoke DSDT corruption work-around on all Toshiba Satellite.
61 	 * https://bugzilla.kernel.org/show_bug.cgi?id=14679
62 	 */
63 	{
64 	 .callback = set_copy_dsdt,
65 	 .ident = "TOSHIBA Satellite",
66 	 .matches = {
67 		DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
68 		DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"),
69 		},
70 	},
71 	{}
72 };
73 #endif
74 
75 /* --------------------------------------------------------------------------
76                                 Device Management
77    -------------------------------------------------------------------------- */
78 
79 acpi_status acpi_bus_get_status_handle(acpi_handle handle,
80 				       unsigned long long *sta)
81 {
82 	acpi_status status;
83 
84 	status = acpi_evaluate_integer(handle, "_STA", NULL, sta);
85 	if (ACPI_SUCCESS(status))
86 		return AE_OK;
87 
88 	if (status == AE_NOT_FOUND) {
89 		*sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
90 		       ACPI_STA_DEVICE_UI      | ACPI_STA_DEVICE_FUNCTIONING;
91 		return AE_OK;
92 	}
93 	return status;
94 }
95 EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle);
96 
97 int acpi_bus_get_status(struct acpi_device *device)
98 {
99 	acpi_status status;
100 	unsigned long long sta;
101 
102 	if (acpi_device_override_status(device, &sta)) {
103 		acpi_set_device_status(device, sta);
104 		return 0;
105 	}
106 
107 	/* Battery devices must have their deps met before calling _STA */
108 	if (acpi_device_is_battery(device) && device->dep_unmet) {
109 		acpi_set_device_status(device, 0);
110 		return 0;
111 	}
112 
113 	status = acpi_bus_get_status_handle(device->handle, &sta);
114 	if (ACPI_FAILURE(status))
115 		return -ENODEV;
116 
117 	acpi_set_device_status(device, sta);
118 
119 	if (device->status.functional && !device->status.present) {
120 		pr_debug("Device [%s] status [%08x]: functional but not present\n",
121 			 device->pnp.bus_id, (u32)sta);
122 	}
123 
124 	pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta);
125 	return 0;
126 }
127 EXPORT_SYMBOL(acpi_bus_get_status);
128 
129 void acpi_bus_private_data_handler(acpi_handle handle,
130 				   void *context)
131 {
132 	return;
133 }
134 EXPORT_SYMBOL(acpi_bus_private_data_handler);
135 
136 int acpi_bus_attach_private_data(acpi_handle handle, void *data)
137 {
138 	acpi_status status;
139 
140 	status = acpi_attach_data(handle,
141 			acpi_bus_private_data_handler, data);
142 	if (ACPI_FAILURE(status)) {
143 		acpi_handle_debug(handle, "Error attaching device data\n");
144 		return -ENODEV;
145 	}
146 
147 	return 0;
148 }
149 EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data);
150 
151 int acpi_bus_get_private_data(acpi_handle handle, void **data)
152 {
153 	acpi_status status;
154 
155 	if (!data)
156 		return -EINVAL;
157 
158 	status = acpi_get_data(handle, acpi_bus_private_data_handler, data);
159 	if (ACPI_FAILURE(status)) {
160 		acpi_handle_debug(handle, "No context for object\n");
161 		return -ENODEV;
162 	}
163 
164 	return 0;
165 }
166 EXPORT_SYMBOL_GPL(acpi_bus_get_private_data);
167 
168 void acpi_bus_detach_private_data(acpi_handle handle)
169 {
170 	acpi_detach_data(handle, acpi_bus_private_data_handler);
171 }
172 EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data);
173 
174 static void acpi_print_osc_error(acpi_handle handle,
175 				 struct acpi_osc_context *context, char *error)
176 {
177 	int i;
178 
179 	acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error);
180 
181 	pr_debug("_OSC request data:");
182 	for (i = 0; i < context->cap.length; i += sizeof(u32))
183 		pr_debug(" %x", *((u32 *)(context->cap.pointer + i)));
184 
185 	pr_debug("\n");
186 }
187 
188 acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context)
189 {
190 	acpi_status status;
191 	struct acpi_object_list input;
192 	union acpi_object in_params[4];
193 	union acpi_object *out_obj;
194 	guid_t guid;
195 	u32 errors;
196 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
197 
198 	if (!context)
199 		return AE_ERROR;
200 	if (guid_parse(context->uuid_str, &guid))
201 		return AE_ERROR;
202 	context->ret.length = ACPI_ALLOCATE_BUFFER;
203 	context->ret.pointer = NULL;
204 
205 	/* Setting up input parameters */
206 	input.count = 4;
207 	input.pointer = in_params;
208 	in_params[0].type 		= ACPI_TYPE_BUFFER;
209 	in_params[0].buffer.length 	= 16;
210 	in_params[0].buffer.pointer	= (u8 *)&guid;
211 	in_params[1].type 		= ACPI_TYPE_INTEGER;
212 	in_params[1].integer.value 	= context->rev;
213 	in_params[2].type 		= ACPI_TYPE_INTEGER;
214 	in_params[2].integer.value	= context->cap.length/sizeof(u32);
215 	in_params[3].type		= ACPI_TYPE_BUFFER;
216 	in_params[3].buffer.length 	= context->cap.length;
217 	in_params[3].buffer.pointer 	= context->cap.pointer;
218 
219 	status = acpi_evaluate_object(handle, "_OSC", &input, &output);
220 	if (ACPI_FAILURE(status))
221 		return status;
222 
223 	if (!output.length)
224 		return AE_NULL_OBJECT;
225 
226 	out_obj = output.pointer;
227 	if (out_obj->type != ACPI_TYPE_BUFFER
228 		|| out_obj->buffer.length != context->cap.length) {
229 		acpi_print_osc_error(handle, context,
230 			"_OSC evaluation returned wrong type");
231 		status = AE_TYPE;
232 		goto out_kfree;
233 	}
234 	/* Need to ignore the bit0 in result code */
235 	errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0);
236 	if (errors) {
237 		if (errors & OSC_REQUEST_ERROR)
238 			acpi_print_osc_error(handle, context,
239 				"_OSC request failed");
240 		if (errors & OSC_INVALID_UUID_ERROR)
241 			acpi_print_osc_error(handle, context,
242 				"_OSC invalid UUID");
243 		if (errors & OSC_INVALID_REVISION_ERROR)
244 			acpi_print_osc_error(handle, context,
245 				"_OSC invalid revision");
246 		if (errors & OSC_CAPABILITIES_MASK_ERROR) {
247 			if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD]
248 			    & OSC_QUERY_ENABLE)
249 				goto out_success;
250 			status = AE_SUPPORT;
251 			goto out_kfree;
252 		}
253 		status = AE_ERROR;
254 		goto out_kfree;
255 	}
256 out_success:
257 	context->ret.length = out_obj->buffer.length;
258 	context->ret.pointer = kmemdup(out_obj->buffer.pointer,
259 				       context->ret.length, GFP_KERNEL);
260 	if (!context->ret.pointer) {
261 		status =  AE_NO_MEMORY;
262 		goto out_kfree;
263 	}
264 	status =  AE_OK;
265 
266 out_kfree:
267 	kfree(output.pointer);
268 	return status;
269 }
270 EXPORT_SYMBOL(acpi_run_osc);
271 
272 bool osc_sb_apei_support_acked;
273 
274 /*
275  * ACPI 6.0 Section 8.4.4.2 Idle State Coordination
276  * OSPM supports platform coordinated low power idle(LPI) states
277  */
278 bool osc_pc_lpi_support_confirmed;
279 EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed);
280 
281 /*
282  * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities':
283  *   Starting with ACPI Specification 6.2, all _CPC registers can be in
284  *   PCC, System Memory, System IO, or Functional Fixed Hardware address
285  *   spaces. OSPM support for this more flexible register space scheme is
286  *   indicated by the “Flexible Address Space for CPPC Registers” _OSC bit.
287  *
288  * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in:
289  * - PCC or Functional Fixed Hardware address space if defined
290  * - SystemMemory address space (NULL register) if not defined
291  */
292 bool osc_cpc_flexible_adr_space_confirmed;
293 EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed);
294 
295 /*
296  * ACPI 6.4 Operating System Capabilities for USB.
297  */
298 bool osc_sb_native_usb4_support_confirmed;
299 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed);
300 
301 bool osc_sb_cppc2_support_acked;
302 
303 static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48";
304 static void acpi_bus_osc_negotiate_platform_control(void)
305 {
306 	u32 capbuf[2], *capbuf_ret;
307 	struct acpi_osc_context context = {
308 		.uuid_str = sb_uuid_str,
309 		.rev = 1,
310 		.cap.length = 8,
311 		.cap.pointer = capbuf,
312 	};
313 	acpi_handle handle;
314 
315 	capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE;
316 	capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */
317 	if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR))
318 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT;
319 	if (IS_ENABLED(CONFIG_ACPI_PROCESSOR))
320 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT;
321 
322 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT;
323 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT;
324 	if (IS_ENABLED(CONFIG_ACPI_PRMT))
325 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT;
326 
327 #ifdef CONFIG_ARM64
328 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT;
329 #endif
330 #ifdef CONFIG_X86
331 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT;
332 #endif
333 
334 #ifdef CONFIG_ACPI_CPPC_LIB
335 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT;
336 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT;
337 #endif
338 
339 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_FLEXIBLE_ADR_SPACE;
340 
341 	if (IS_ENABLED(CONFIG_SCHED_MC_PRIO))
342 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT;
343 
344 	if (IS_ENABLED(CONFIG_USB4))
345 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT;
346 
347 	if (!ghes_disable)
348 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT;
349 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
350 		return;
351 
352 	if (ACPI_FAILURE(acpi_run_osc(handle, &context)))
353 		return;
354 
355 	capbuf_ret = context.ret.pointer;
356 	if (context.ret.length <= OSC_SUPPORT_DWORD) {
357 		kfree(context.ret.pointer);
358 		return;
359 	}
360 
361 	/*
362 	 * Now run _OSC again with query flag clear and with the caps
363 	 * supported by both the OS and the platform.
364 	 */
365 	capbuf[OSC_QUERY_DWORD] = 0;
366 	capbuf[OSC_SUPPORT_DWORD] = capbuf_ret[OSC_SUPPORT_DWORD];
367 	kfree(context.ret.pointer);
368 
369 	if (ACPI_FAILURE(acpi_run_osc(handle, &context)))
370 		return;
371 
372 	capbuf_ret = context.ret.pointer;
373 	if (context.ret.length > OSC_SUPPORT_DWORD) {
374 #ifdef CONFIG_ACPI_CPPC_LIB
375 		osc_sb_cppc2_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPCV2_SUPPORT;
376 #endif
377 
378 		osc_sb_apei_support_acked =
379 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT;
380 		osc_pc_lpi_support_confirmed =
381 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT;
382 		osc_sb_native_usb4_support_confirmed =
383 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT;
384 		osc_cpc_flexible_adr_space_confirmed =
385 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPC_FLEXIBLE_ADR_SPACE;
386 	}
387 
388 	kfree(context.ret.pointer);
389 }
390 
391 /*
392  * Native control of USB4 capabilities. If any of the tunneling bits is
393  * set it means OS is in control and we use software based connection
394  * manager.
395  */
396 u32 osc_sb_native_usb4_control;
397 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control);
398 
399 static void acpi_bus_decode_usb_osc(const char *msg, u32 bits)
400 {
401 	pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg,
402 	       (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-',
403 	       (bits & OSC_USB_DP_TUNNELING) ? '+' : '-',
404 	       (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-',
405 	       (bits & OSC_USB_XDOMAIN) ? '+' : '-');
406 }
407 
408 static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A";
409 static void acpi_bus_osc_negotiate_usb_control(void)
410 {
411 	u32 capbuf[3];
412 	struct acpi_osc_context context = {
413 		.uuid_str = sb_usb_uuid_str,
414 		.rev = 1,
415 		.cap.length = sizeof(capbuf),
416 		.cap.pointer = capbuf,
417 	};
418 	acpi_handle handle;
419 	acpi_status status;
420 	u32 control;
421 
422 	if (!osc_sb_native_usb4_support_confirmed)
423 		return;
424 
425 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
426 		return;
427 
428 	control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING |
429 		  OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN;
430 
431 	capbuf[OSC_QUERY_DWORD] = 0;
432 	capbuf[OSC_SUPPORT_DWORD] = 0;
433 	capbuf[OSC_CONTROL_DWORD] = control;
434 
435 	status = acpi_run_osc(handle, &context);
436 	if (ACPI_FAILURE(status))
437 		return;
438 
439 	if (context.ret.length != sizeof(capbuf)) {
440 		pr_info("USB4 _OSC: returned invalid length buffer\n");
441 		goto out_free;
442 	}
443 
444 	osc_sb_native_usb4_control =
445 		control &  acpi_osc_ctx_get_pci_control(&context);
446 
447 	acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control);
448 	acpi_bus_decode_usb_osc("USB4 _OSC: OS controls",
449 				osc_sb_native_usb4_control);
450 
451 out_free:
452 	kfree(context.ret.pointer);
453 }
454 
455 /* --------------------------------------------------------------------------
456                              Notification Handling
457    -------------------------------------------------------------------------- */
458 
459 /*
460  * acpi_bus_notify
461  * ---------------
462  * Callback for all 'system-level' device notifications (values 0x00-0x7F).
463  */
464 static void acpi_bus_notify(acpi_handle handle, u32 type, void *data)
465 {
466 	struct acpi_device *adev;
467 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
468 	bool hotplug_event = false;
469 
470 	switch (type) {
471 	case ACPI_NOTIFY_BUS_CHECK:
472 		acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n");
473 		hotplug_event = true;
474 		break;
475 
476 	case ACPI_NOTIFY_DEVICE_CHECK:
477 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n");
478 		hotplug_event = true;
479 		break;
480 
481 	case ACPI_NOTIFY_DEVICE_WAKE:
482 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n");
483 		break;
484 
485 	case ACPI_NOTIFY_EJECT_REQUEST:
486 		acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n");
487 		hotplug_event = true;
488 		break;
489 
490 	case ACPI_NOTIFY_DEVICE_CHECK_LIGHT:
491 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n");
492 		/* TBD: Exactly what does 'light' mean? */
493 		break;
494 
495 	case ACPI_NOTIFY_FREQUENCY_MISMATCH:
496 		acpi_handle_err(handle, "Device cannot be configured due "
497 				"to a frequency mismatch\n");
498 		break;
499 
500 	case ACPI_NOTIFY_BUS_MODE_MISMATCH:
501 		acpi_handle_err(handle, "Device cannot be configured due "
502 				"to a bus mode mismatch\n");
503 		break;
504 
505 	case ACPI_NOTIFY_POWER_FAULT:
506 		acpi_handle_err(handle, "Device has suffered a power fault\n");
507 		break;
508 
509 	default:
510 		acpi_handle_debug(handle, "Unknown event type 0x%x\n", type);
511 		break;
512 	}
513 
514 	adev = acpi_get_acpi_dev(handle);
515 	if (!adev)
516 		goto err;
517 
518 	if (adev->dev.driver) {
519 		struct acpi_driver *driver = to_acpi_driver(adev->dev.driver);
520 
521 		if (driver && driver->ops.notify &&
522 		    (driver->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS))
523 			driver->ops.notify(adev, type);
524 	}
525 
526 	if (!hotplug_event) {
527 		acpi_put_acpi_dev(adev);
528 		return;
529 	}
530 
531 	if (ACPI_SUCCESS(acpi_hotplug_schedule(adev, type)))
532 		return;
533 
534 	acpi_put_acpi_dev(adev);
535 
536  err:
537 	acpi_evaluate_ost(handle, type, ost_code, NULL);
538 }
539 
540 static void acpi_notify_device(acpi_handle handle, u32 event, void *data)
541 {
542 	struct acpi_device *device = data;
543 	struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver);
544 
545 	acpi_drv->ops.notify(device, event);
546 }
547 
548 static void acpi_notify_device_fixed(void *data)
549 {
550 	struct acpi_device *device = data;
551 
552 	/* Fixed hardware devices have no handles */
553 	acpi_notify_device(NULL, ACPI_FIXED_HARDWARE_EVENT, device);
554 }
555 
556 static u32 acpi_device_fixed_event(void *data)
557 {
558 	acpi_os_execute(OSL_NOTIFY_HANDLER, acpi_notify_device_fixed, data);
559 	return ACPI_INTERRUPT_HANDLED;
560 }
561 
562 static int acpi_device_install_notify_handler(struct acpi_device *device)
563 {
564 	acpi_status status;
565 
566 	if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON)
567 		status =
568 		    acpi_install_fixed_event_handler(ACPI_EVENT_POWER_BUTTON,
569 						     acpi_device_fixed_event,
570 						     device);
571 	else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON)
572 		status =
573 		    acpi_install_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON,
574 						     acpi_device_fixed_event,
575 						     device);
576 	else
577 		status = acpi_install_notify_handler(device->handle,
578 						     ACPI_DEVICE_NOTIFY,
579 						     acpi_notify_device,
580 						     device);
581 
582 	if (ACPI_FAILURE(status))
583 		return -EINVAL;
584 	return 0;
585 }
586 
587 static void acpi_device_remove_notify_handler(struct acpi_device *device)
588 {
589 	if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON)
590 		acpi_remove_fixed_event_handler(ACPI_EVENT_POWER_BUTTON,
591 						acpi_device_fixed_event);
592 	else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON)
593 		acpi_remove_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON,
594 						acpi_device_fixed_event);
595 	else
596 		acpi_remove_notify_handler(device->handle, ACPI_DEVICE_NOTIFY,
597 					   acpi_notify_device);
598 }
599 
600 /* Handle events targeting \_SB device (at present only graceful shutdown) */
601 
602 #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81
603 #define ACPI_SB_INDICATE_INTERVAL	10000
604 
605 static void sb_notify_work(struct work_struct *dummy)
606 {
607 	acpi_handle sb_handle;
608 
609 	orderly_poweroff(true);
610 
611 	/*
612 	 * After initiating graceful shutdown, the ACPI spec requires OSPM
613 	 * to evaluate _OST method once every 10seconds to indicate that
614 	 * the shutdown is in progress
615 	 */
616 	acpi_get_handle(NULL, "\\_SB", &sb_handle);
617 	while (1) {
618 		pr_info("Graceful shutdown in progress.\n");
619 		acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN,
620 				ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL);
621 		msleep(ACPI_SB_INDICATE_INTERVAL);
622 	}
623 }
624 
625 static void acpi_sb_notify(acpi_handle handle, u32 event, void *data)
626 {
627 	static DECLARE_WORK(acpi_sb_work, sb_notify_work);
628 
629 	if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) {
630 		if (!work_busy(&acpi_sb_work))
631 			schedule_work(&acpi_sb_work);
632 	} else
633 		pr_warn("event %x is not supported by \\_SB device\n", event);
634 }
635 
636 static int __init acpi_setup_sb_notify_handler(void)
637 {
638 	acpi_handle sb_handle;
639 
640 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle)))
641 		return -ENXIO;
642 
643 	if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY,
644 						acpi_sb_notify, NULL)))
645 		return -EINVAL;
646 
647 	return 0;
648 }
649 
650 /* --------------------------------------------------------------------------
651                              Device Matching
652    -------------------------------------------------------------------------- */
653 
654 /**
655  * acpi_get_first_physical_node - Get first physical node of an ACPI device
656  * @adev:	ACPI device in question
657  *
658  * Return: First physical node of ACPI device @adev
659  */
660 struct device *acpi_get_first_physical_node(struct acpi_device *adev)
661 {
662 	struct mutex *physical_node_lock = &adev->physical_node_lock;
663 	struct device *phys_dev;
664 
665 	mutex_lock(physical_node_lock);
666 	if (list_empty(&adev->physical_node_list)) {
667 		phys_dev = NULL;
668 	} else {
669 		const struct acpi_device_physical_node *node;
670 
671 		node = list_first_entry(&adev->physical_node_list,
672 					struct acpi_device_physical_node, node);
673 
674 		phys_dev = node->dev;
675 	}
676 	mutex_unlock(physical_node_lock);
677 	return phys_dev;
678 }
679 EXPORT_SYMBOL_GPL(acpi_get_first_physical_node);
680 
681 static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev,
682 						      const struct device *dev)
683 {
684 	const struct device *phys_dev = acpi_get_first_physical_node(adev);
685 
686 	return phys_dev && phys_dev == dev ? adev : NULL;
687 }
688 
689 /**
690  * acpi_device_is_first_physical_node - Is given dev first physical node
691  * @adev: ACPI companion device
692  * @dev: Physical device to check
693  *
694  * Function checks if given @dev is the first physical devices attached to
695  * the ACPI companion device. This distinction is needed in some cases
696  * where the same companion device is shared between many physical devices.
697  *
698  * Note that the caller have to provide valid @adev pointer.
699  */
700 bool acpi_device_is_first_physical_node(struct acpi_device *adev,
701 					const struct device *dev)
702 {
703 	return !!acpi_primary_dev_companion(adev, dev);
704 }
705 
706 /*
707  * acpi_companion_match() - Can we match via ACPI companion device
708  * @dev: Device in question
709  *
710  * Check if the given device has an ACPI companion and if that companion has
711  * a valid list of PNP IDs, and if the device is the first (primary) physical
712  * device associated with it.  Return the companion pointer if that's the case
713  * or NULL otherwise.
714  *
715  * If multiple physical devices are attached to a single ACPI companion, we need
716  * to be careful.  The usage scenario for this kind of relationship is that all
717  * of the physical devices in question use resources provided by the ACPI
718  * companion.  A typical case is an MFD device where all the sub-devices share
719  * the parent's ACPI companion.  In such cases we can only allow the primary
720  * (first) physical device to be matched with the help of the companion's PNP
721  * IDs.
722  *
723  * Additional physical devices sharing the ACPI companion can still use
724  * resources available from it but they will be matched normally using functions
725  * provided by their bus types (and analogously for their modalias).
726  */
727 struct acpi_device *acpi_companion_match(const struct device *dev)
728 {
729 	struct acpi_device *adev;
730 
731 	adev = ACPI_COMPANION(dev);
732 	if (!adev)
733 		return NULL;
734 
735 	if (list_empty(&adev->pnp.ids))
736 		return NULL;
737 
738 	return acpi_primary_dev_companion(adev, dev);
739 }
740 
741 /**
742  * acpi_of_match_device - Match device object using the "compatible" property.
743  * @adev: ACPI device object to match.
744  * @of_match_table: List of device IDs to match against.
745  * @of_id: OF ID if matched
746  *
747  * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of
748  * identifiers and a _DSD object with the "compatible" property, use that
749  * property to match against the given list of identifiers.
750  */
751 static bool acpi_of_match_device(struct acpi_device *adev,
752 				 const struct of_device_id *of_match_table,
753 				 const struct of_device_id **of_id)
754 {
755 	const union acpi_object *of_compatible, *obj;
756 	int i, nval;
757 
758 	if (!adev)
759 		return false;
760 
761 	of_compatible = adev->data.of_compatible;
762 	if (!of_match_table || !of_compatible)
763 		return false;
764 
765 	if (of_compatible->type == ACPI_TYPE_PACKAGE) {
766 		nval = of_compatible->package.count;
767 		obj = of_compatible->package.elements;
768 	} else { /* Must be ACPI_TYPE_STRING. */
769 		nval = 1;
770 		obj = of_compatible;
771 	}
772 	/* Now we can look for the driver DT compatible strings */
773 	for (i = 0; i < nval; i++, obj++) {
774 		const struct of_device_id *id;
775 
776 		for (id = of_match_table; id->compatible[0]; id++)
777 			if (!strcasecmp(obj->string.pointer, id->compatible)) {
778 				if (of_id)
779 					*of_id = id;
780 				return true;
781 			}
782 	}
783 
784 	return false;
785 }
786 
787 static bool acpi_of_modalias(struct acpi_device *adev,
788 			     char *modalias, size_t len)
789 {
790 	const union acpi_object *of_compatible;
791 	const union acpi_object *obj;
792 	const char *str, *chr;
793 
794 	of_compatible = adev->data.of_compatible;
795 	if (!of_compatible)
796 		return false;
797 
798 	if (of_compatible->type == ACPI_TYPE_PACKAGE)
799 		obj = of_compatible->package.elements;
800 	else /* Must be ACPI_TYPE_STRING. */
801 		obj = of_compatible;
802 
803 	str = obj->string.pointer;
804 	chr = strchr(str, ',');
805 	strscpy(modalias, chr ? chr + 1 : str, len);
806 
807 	return true;
808 }
809 
810 /**
811  * acpi_set_modalias - Set modalias using "compatible" property or supplied ID
812  * @adev:	ACPI device object to match
813  * @default_id:	ID string to use as default if no compatible string found
814  * @modalias:   Pointer to buffer that modalias value will be copied into
815  * @len:	Length of modalias buffer
816  *
817  * This is a counterpart of of_modalias_node() for struct acpi_device objects.
818  * If there is a compatible string for @adev, it will be copied to @modalias
819  * with the vendor prefix stripped; otherwise, @default_id will be used.
820  */
821 void acpi_set_modalias(struct acpi_device *adev, const char *default_id,
822 		       char *modalias, size_t len)
823 {
824 	if (!acpi_of_modalias(adev, modalias, len))
825 		strscpy(modalias, default_id, len);
826 }
827 EXPORT_SYMBOL_GPL(acpi_set_modalias);
828 
829 static bool __acpi_match_device_cls(const struct acpi_device_id *id,
830 				    struct acpi_hardware_id *hwid)
831 {
832 	int i, msk, byte_shift;
833 	char buf[3];
834 
835 	if (!id->cls)
836 		return false;
837 
838 	/* Apply class-code bitmask, before checking each class-code byte */
839 	for (i = 1; i <= 3; i++) {
840 		byte_shift = 8 * (3 - i);
841 		msk = (id->cls_msk >> byte_shift) & 0xFF;
842 		if (!msk)
843 			continue;
844 
845 		sprintf(buf, "%02x", (id->cls >> byte_shift) & msk);
846 		if (strncmp(buf, &hwid->id[(i - 1) * 2], 2))
847 			return false;
848 	}
849 	return true;
850 }
851 
852 static bool __acpi_match_device(struct acpi_device *device,
853 				const struct acpi_device_id *acpi_ids,
854 				const struct of_device_id *of_ids,
855 				const struct acpi_device_id **acpi_id,
856 				const struct of_device_id **of_id)
857 {
858 	const struct acpi_device_id *id;
859 	struct acpi_hardware_id *hwid;
860 
861 	/*
862 	 * If the device is not present, it is unnecessary to load device
863 	 * driver for it.
864 	 */
865 	if (!device || !device->status.present)
866 		return false;
867 
868 	list_for_each_entry(hwid, &device->pnp.ids, list) {
869 		/* First, check the ACPI/PNP IDs provided by the caller. */
870 		if (acpi_ids) {
871 			for (id = acpi_ids; id->id[0] || id->cls; id++) {
872 				if (id->id[0] && !strcmp((char *)id->id, hwid->id))
873 					goto out_acpi_match;
874 				if (id->cls && __acpi_match_device_cls(id, hwid))
875 					goto out_acpi_match;
876 			}
877 		}
878 
879 		/*
880 		 * Next, check ACPI_DT_NAMESPACE_HID and try to match the
881 		 * "compatible" property if found.
882 		 */
883 		if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id))
884 			return acpi_of_match_device(device, of_ids, of_id);
885 	}
886 	return false;
887 
888 out_acpi_match:
889 	if (acpi_id)
890 		*acpi_id = id;
891 	return true;
892 }
893 
894 /**
895  * acpi_match_device - Match a struct device against a given list of ACPI IDs
896  * @ids: Array of struct acpi_device_id object to match against.
897  * @dev: The device structure to match.
898  *
899  * Check if @dev has a valid ACPI handle and if there is a struct acpi_device
900  * object for that handle and use that object to match against a given list of
901  * device IDs.
902  *
903  * Return a pointer to the first matching ID on success or %NULL on failure.
904  */
905 const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids,
906 					       const struct device *dev)
907 {
908 	const struct acpi_device_id *id = NULL;
909 
910 	__acpi_match_device(acpi_companion_match(dev), ids, NULL, &id, NULL);
911 	return id;
912 }
913 EXPORT_SYMBOL_GPL(acpi_match_device);
914 
915 static const void *acpi_of_device_get_match_data(const struct device *dev)
916 {
917 	struct acpi_device *adev = ACPI_COMPANION(dev);
918 	const struct of_device_id *match = NULL;
919 
920 	if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match))
921 		return NULL;
922 
923 	return match->data;
924 }
925 
926 const void *acpi_device_get_match_data(const struct device *dev)
927 {
928 	const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table;
929 	const struct acpi_device_id *match;
930 
931 	if (!acpi_ids)
932 		return acpi_of_device_get_match_data(dev);
933 
934 	match = acpi_match_device(acpi_ids, dev);
935 	if (!match)
936 		return NULL;
937 
938 	return (const void *)match->driver_data;
939 }
940 EXPORT_SYMBOL_GPL(acpi_device_get_match_data);
941 
942 int acpi_match_device_ids(struct acpi_device *device,
943 			  const struct acpi_device_id *ids)
944 {
945 	return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT;
946 }
947 EXPORT_SYMBOL(acpi_match_device_ids);
948 
949 bool acpi_driver_match_device(struct device *dev,
950 			      const struct device_driver *drv)
951 {
952 	const struct acpi_device_id *acpi_ids = drv->acpi_match_table;
953 	const struct of_device_id *of_ids = drv->of_match_table;
954 
955 	if (!acpi_ids)
956 		return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL);
957 
958 	return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL);
959 }
960 EXPORT_SYMBOL_GPL(acpi_driver_match_device);
961 
962 /* --------------------------------------------------------------------------
963                               ACPI Driver Management
964    -------------------------------------------------------------------------- */
965 
966 /**
967  * acpi_bus_register_driver - register a driver with the ACPI bus
968  * @driver: driver being registered
969  *
970  * Registers a driver with the ACPI bus.  Searches the namespace for all
971  * devices that match the driver's criteria and binds.  Returns zero for
972  * success or a negative error status for failure.
973  */
974 int acpi_bus_register_driver(struct acpi_driver *driver)
975 {
976 	if (acpi_disabled)
977 		return -ENODEV;
978 	driver->drv.name = driver->name;
979 	driver->drv.bus = &acpi_bus_type;
980 	driver->drv.owner = driver->owner;
981 
982 	return driver_register(&driver->drv);
983 }
984 
985 EXPORT_SYMBOL(acpi_bus_register_driver);
986 
987 /**
988  * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus
989  * @driver: driver to unregister
990  *
991  * Unregisters a driver with the ACPI bus.  Searches the namespace for all
992  * devices that match the driver's criteria and unbinds.
993  */
994 void acpi_bus_unregister_driver(struct acpi_driver *driver)
995 {
996 	driver_unregister(&driver->drv);
997 }
998 
999 EXPORT_SYMBOL(acpi_bus_unregister_driver);
1000 
1001 /* --------------------------------------------------------------------------
1002                               ACPI Bus operations
1003    -------------------------------------------------------------------------- */
1004 
1005 static int acpi_bus_match(struct device *dev, struct device_driver *drv)
1006 {
1007 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1008 	struct acpi_driver *acpi_drv = to_acpi_driver(drv);
1009 
1010 	return acpi_dev->flags.match_driver
1011 		&& !acpi_match_device_ids(acpi_dev, acpi_drv->ids);
1012 }
1013 
1014 static int acpi_device_uevent(struct device *dev, struct kobj_uevent_env *env)
1015 {
1016 	return __acpi_device_uevent_modalias(to_acpi_device(dev), env);
1017 }
1018 
1019 static int acpi_device_probe(struct device *dev)
1020 {
1021 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1022 	struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
1023 	int ret;
1024 
1025 	if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev))
1026 		return -EINVAL;
1027 
1028 	if (!acpi_drv->ops.add)
1029 		return -ENOSYS;
1030 
1031 	ret = acpi_drv->ops.add(acpi_dev);
1032 	if (ret)
1033 		return ret;
1034 
1035 	pr_debug("Driver [%s] successfully bound to device [%s]\n",
1036 		 acpi_drv->name, acpi_dev->pnp.bus_id);
1037 
1038 	if (acpi_drv->ops.notify) {
1039 		ret = acpi_device_install_notify_handler(acpi_dev);
1040 		if (ret) {
1041 			if (acpi_drv->ops.remove)
1042 				acpi_drv->ops.remove(acpi_dev);
1043 
1044 			acpi_dev->driver_data = NULL;
1045 			return ret;
1046 		}
1047 	}
1048 
1049 	pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name,
1050 		 acpi_dev->pnp.bus_id);
1051 
1052 	get_device(dev);
1053 	return 0;
1054 }
1055 
1056 static void acpi_device_remove(struct device *dev)
1057 {
1058 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1059 	struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
1060 
1061 	if (acpi_drv->ops.notify)
1062 		acpi_device_remove_notify_handler(acpi_dev);
1063 
1064 	if (acpi_drv->ops.remove)
1065 		acpi_drv->ops.remove(acpi_dev);
1066 
1067 	acpi_dev->driver_data = NULL;
1068 
1069 	put_device(dev);
1070 }
1071 
1072 struct bus_type acpi_bus_type = {
1073 	.name		= "acpi",
1074 	.match		= acpi_bus_match,
1075 	.probe		= acpi_device_probe,
1076 	.remove		= acpi_device_remove,
1077 	.uevent		= acpi_device_uevent,
1078 };
1079 
1080 int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data)
1081 {
1082 	return bus_for_each_dev(&acpi_bus_type, NULL, data, fn);
1083 }
1084 EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev);
1085 
1086 struct acpi_dev_walk_context {
1087 	int (*fn)(struct acpi_device *, void *);
1088 	void *data;
1089 };
1090 
1091 static int acpi_dev_for_one_check(struct device *dev, void *context)
1092 {
1093 	struct acpi_dev_walk_context *adwc = context;
1094 
1095 	if (dev->bus != &acpi_bus_type)
1096 		return 0;
1097 
1098 	return adwc->fn(to_acpi_device(dev), adwc->data);
1099 }
1100 EXPORT_SYMBOL_GPL(acpi_dev_for_each_child);
1101 
1102 int acpi_dev_for_each_child(struct acpi_device *adev,
1103 			    int (*fn)(struct acpi_device *, void *), void *data)
1104 {
1105 	struct acpi_dev_walk_context adwc = {
1106 		.fn = fn,
1107 		.data = data,
1108 	};
1109 
1110 	return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check);
1111 }
1112 
1113 int acpi_dev_for_each_child_reverse(struct acpi_device *adev,
1114 				    int (*fn)(struct acpi_device *, void *),
1115 				    void *data)
1116 {
1117 	struct acpi_dev_walk_context adwc = {
1118 		.fn = fn,
1119 		.data = data,
1120 	};
1121 
1122 	return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check);
1123 }
1124 
1125 /* --------------------------------------------------------------------------
1126                              Initialization/Cleanup
1127    -------------------------------------------------------------------------- */
1128 
1129 static int __init acpi_bus_init_irq(void)
1130 {
1131 	acpi_status status;
1132 	char *message = NULL;
1133 
1134 
1135 	/*
1136 	 * Let the system know what interrupt model we are using by
1137 	 * evaluating the \_PIC object, if exists.
1138 	 */
1139 
1140 	switch (acpi_irq_model) {
1141 	case ACPI_IRQ_MODEL_PIC:
1142 		message = "PIC";
1143 		break;
1144 	case ACPI_IRQ_MODEL_IOAPIC:
1145 		message = "IOAPIC";
1146 		break;
1147 	case ACPI_IRQ_MODEL_IOSAPIC:
1148 		message = "IOSAPIC";
1149 		break;
1150 	case ACPI_IRQ_MODEL_GIC:
1151 		message = "GIC";
1152 		break;
1153 	case ACPI_IRQ_MODEL_PLATFORM:
1154 		message = "platform specific model";
1155 		break;
1156 	case ACPI_IRQ_MODEL_LPIC:
1157 		message = "LPIC";
1158 		break;
1159 	default:
1160 		pr_info("Unknown interrupt routing model\n");
1161 		return -ENODEV;
1162 	}
1163 
1164 	pr_info("Using %s for interrupt routing\n", message);
1165 
1166 	status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model);
1167 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
1168 		pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status));
1169 		return -ENODEV;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  * acpi_early_init - Initialize ACPICA and populate the ACPI namespace.
1177  *
1178  * The ACPI tables are accessible after this, but the handling of events has not
1179  * been initialized and the global lock is not available yet, so AML should not
1180  * be executed at this point.
1181  *
1182  * Doing this before switching the EFI runtime services to virtual mode allows
1183  * the EfiBootServices memory to be freed slightly earlier on boot.
1184  */
1185 void __init acpi_early_init(void)
1186 {
1187 	acpi_status status;
1188 
1189 	if (acpi_disabled)
1190 		return;
1191 
1192 	pr_info("Core revision %08x\n", ACPI_CA_VERSION);
1193 
1194 	/* enable workarounds, unless strict ACPI spec. compliance */
1195 	if (!acpi_strict)
1196 		acpi_gbl_enable_interpreter_slack = TRUE;
1197 
1198 	acpi_permanent_mmap = true;
1199 
1200 #ifdef CONFIG_X86
1201 	/*
1202 	 * If the machine falls into the DMI check table,
1203 	 * DSDT will be copied to memory.
1204 	 * Note that calling dmi_check_system() here on other architectures
1205 	 * would not be OK because only x86 initializes dmi early enough.
1206 	 * Thankfully only x86 systems need such quirks for now.
1207 	 */
1208 	dmi_check_system(dsdt_dmi_table);
1209 #endif
1210 
1211 	status = acpi_reallocate_root_table();
1212 	if (ACPI_FAILURE(status)) {
1213 		pr_err("Unable to reallocate ACPI tables\n");
1214 		goto error0;
1215 	}
1216 
1217 	status = acpi_initialize_subsystem();
1218 	if (ACPI_FAILURE(status)) {
1219 		pr_err("Unable to initialize the ACPI Interpreter\n");
1220 		goto error0;
1221 	}
1222 
1223 #ifdef CONFIG_X86
1224 	if (!acpi_ioapic) {
1225 		/* compatible (0) means level (3) */
1226 		if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) {
1227 			acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK;
1228 			acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL;
1229 		}
1230 		/* Set PIC-mode SCI trigger type */
1231 		acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt,
1232 					 (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2);
1233 	} else {
1234 		/*
1235 		 * now that acpi_gbl_FADT is initialized,
1236 		 * update it with result from INT_SRC_OVR parsing
1237 		 */
1238 		acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi;
1239 	}
1240 #endif
1241 	return;
1242 
1243  error0:
1244 	disable_acpi();
1245 }
1246 
1247 /**
1248  * acpi_subsystem_init - Finalize the early initialization of ACPI.
1249  *
1250  * Switch over the platform to the ACPI mode (if possible).
1251  *
1252  * Doing this too early is generally unsafe, but at the same time it needs to be
1253  * done before all things that really depend on ACPI.  The right spot appears to
1254  * be before finalizing the EFI initialization.
1255  */
1256 void __init acpi_subsystem_init(void)
1257 {
1258 	acpi_status status;
1259 
1260 	if (acpi_disabled)
1261 		return;
1262 
1263 	status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE);
1264 	if (ACPI_FAILURE(status)) {
1265 		pr_err("Unable to enable ACPI\n");
1266 		disable_acpi();
1267 	} else {
1268 		/*
1269 		 * If the system is using ACPI then we can be reasonably
1270 		 * confident that any regulators are managed by the firmware
1271 		 * so tell the regulator core it has everything it needs to
1272 		 * know.
1273 		 */
1274 		regulator_has_full_constraints();
1275 	}
1276 }
1277 
1278 static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context)
1279 {
1280 	if (event == ACPI_TABLE_EVENT_LOAD)
1281 		acpi_scan_table_notify();
1282 
1283 	return acpi_sysfs_table_handler(event, table, context);
1284 }
1285 
1286 static int __init acpi_bus_init(void)
1287 {
1288 	int result;
1289 	acpi_status status;
1290 
1291 	acpi_os_initialize1();
1292 
1293 	status = acpi_load_tables();
1294 	if (ACPI_FAILURE(status)) {
1295 		pr_err("Unable to load the System Description Tables\n");
1296 		goto error1;
1297 	}
1298 
1299 	/*
1300 	 * ACPI 2.0 requires the EC driver to be loaded and work before the EC
1301 	 * device is found in the namespace.
1302 	 *
1303 	 * This is accomplished by looking for the ECDT table and getting the EC
1304 	 * parameters out of that.
1305 	 *
1306 	 * Do that before calling acpi_initialize_objects() which may trigger EC
1307 	 * address space accesses.
1308 	 */
1309 	acpi_ec_ecdt_probe();
1310 
1311 	status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE);
1312 	if (ACPI_FAILURE(status)) {
1313 		pr_err("Unable to start the ACPI Interpreter\n");
1314 		goto error1;
1315 	}
1316 
1317 	status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION);
1318 	if (ACPI_FAILURE(status)) {
1319 		pr_err("Unable to initialize ACPI objects\n");
1320 		goto error1;
1321 	}
1322 
1323 	/* Set capability bits for _OSC under processor scope */
1324 	acpi_early_processor_osc();
1325 
1326 	/*
1327 	 * _OSC method may exist in module level code,
1328 	 * so it must be run after ACPI_FULL_INITIALIZATION
1329 	 */
1330 	acpi_bus_osc_negotiate_platform_control();
1331 	acpi_bus_osc_negotiate_usb_control();
1332 
1333 	/*
1334 	 * _PDC control method may load dynamic SSDT tables,
1335 	 * and we need to install the table handler before that.
1336 	 */
1337 	status = acpi_install_table_handler(acpi_bus_table_handler, NULL);
1338 
1339 	acpi_sysfs_init();
1340 
1341 	acpi_early_processor_set_pdc();
1342 
1343 	/*
1344 	 * Maybe EC region is required at bus_scan/acpi_get_devices. So it
1345 	 * is necessary to enable it as early as possible.
1346 	 */
1347 	acpi_ec_dsdt_probe();
1348 
1349 	pr_info("Interpreter enabled\n");
1350 
1351 	/* Initialize sleep structures */
1352 	acpi_sleep_init();
1353 
1354 	/*
1355 	 * Get the system interrupt model and evaluate \_PIC.
1356 	 */
1357 	result = acpi_bus_init_irq();
1358 	if (result)
1359 		goto error1;
1360 
1361 	/*
1362 	 * Register the for all standard device notifications.
1363 	 */
1364 	status =
1365 	    acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY,
1366 					&acpi_bus_notify, NULL);
1367 	if (ACPI_FAILURE(status)) {
1368 		pr_err("Unable to register for system notifications\n");
1369 		goto error1;
1370 	}
1371 
1372 	/*
1373 	 * Create the top ACPI proc directory
1374 	 */
1375 	acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL);
1376 
1377 	result = bus_register(&acpi_bus_type);
1378 	if (!result)
1379 		return 0;
1380 
1381 	/* Mimic structured exception handling */
1382       error1:
1383 	acpi_terminate();
1384 	return -ENODEV;
1385 }
1386 
1387 struct kobject *acpi_kobj;
1388 EXPORT_SYMBOL_GPL(acpi_kobj);
1389 
1390 static int __init acpi_init(void)
1391 {
1392 	int result;
1393 
1394 	if (acpi_disabled) {
1395 		pr_info("Interpreter disabled.\n");
1396 		return -ENODEV;
1397 	}
1398 
1399 	acpi_kobj = kobject_create_and_add("acpi", firmware_kobj);
1400 	if (!acpi_kobj)
1401 		pr_debug("%s: kset create error\n", __func__);
1402 
1403 	init_prmt();
1404 	acpi_init_pcc();
1405 	result = acpi_bus_init();
1406 	if (result) {
1407 		kobject_put(acpi_kobj);
1408 		disable_acpi();
1409 		return result;
1410 	}
1411 
1412 	pci_mmcfg_late_init();
1413 	acpi_iort_init();
1414 	acpi_viot_early_init();
1415 	acpi_hest_init();
1416 	acpi_ghes_init();
1417 	acpi_scan_init();
1418 	acpi_ec_init();
1419 	acpi_debugfs_init();
1420 	acpi_sleep_proc_init();
1421 	acpi_wakeup_device_init();
1422 	acpi_debugger_init();
1423 	acpi_setup_sb_notify_handler();
1424 	acpi_viot_init();
1425 	acpi_agdi_init();
1426 	return 0;
1427 }
1428 
1429 subsys_initcall(acpi_init);
1430